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Abstract. C2-partial smoothness of functions has been an important subject of research in opti-
mization, on both theoretical and algorithmic aspects, since it was first introduced by Lewis in [18]. Our
work aims at providing a fresh variational analysis viewpoint on the class of C2-partly smooth functions.
Namely, we explore the relationship between C2-partial smoothness and strict twice epi-differentiability
and demonstrate that functions from the latter class are always strictly twice epi-differentiable. On the
other hand, we provide two examples to show that the opposite conclusion does not hold in general.
As a consequence of our analysis, we calculate the second subderivative of C2-partly smooth functions.
Applications to stability analysis of related generalized equations involving a general perturbation and
to asymptotic analysis of the well-known sample average approximation method for stochastic programs
with C2-partly smooth regularizers are also given.

Keywords. C2-partial smoothness, prox-regularity, strict proto-differentiability, differential stability,
(strong) metric regularity, sample average approximation method.

Mathematics Subject Classification (2000) 49J52, 65K10, 90C15, 90C31

1 Introduction

This paper is a continuation of our recent work [11] on strict proto-differentiability of subgradient
mappings and its applications in stability analysis of generalized equations, with an emphasis
on C2-partly smooth functions. The notion of partial smoothness, first formalized in [18] by
Lewis, expresses an underlying smooth structure of a nonsmooth function on a smooth manifold
and offers a powerful framework for both stability and algorithmic analysis of optimization
problems. Therefore, there has been considerable efforts to study various theoretical aspects
(cf. [2, 3, 7, 12, 14, 20, 23, 34]) as well as numerical advantages (cf. [1, 2, 4, 12, 19, 21, 22, 34]) of
C2-partly smooth functions.

Partial smoothness is widely satisfied by important classes of functions in optimization
and variational analysis, including the polyhedral and pointwise maximum functions [18], C2-
decomposable functions [32], and spectral functions [3, 18]. Calculus rules for this property,
established in [18, Section 4] and [12, Chapter 3], furthermore prove the abundance of partly
smooth functions in these areas.

Motivated by the aforementioned applications, we plan to study new second-order variational
properties of C2-partly smooth functions. More precisely, we follow our recent developments
in [9–11], where novel second-order variational properties, namely strict twice epi-differntiability
and strict proto-differentiability, of important classes of composite functions were brought to
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the surface. We also paid special attention to continuous differentiability of the proximal map-
pings and characterizations of regularity properties of certain generalized equations. Similar
results about the proximal mappings were established for C2-partly smooth functions in [4, The-
orem 28] and [34, Corollaries 4.4.2 and 4.4.3]. In addition, in [11, Section 5], strict twice epi-
differentiability was verified for a subclass of C2-partly smooth functions, called therein reliably
C2-decomposable functions; see Example 3.2 for the definition of this class of functions. These
inspire us to explore further the relationships between C2-partial smoothness and strict twice
epi-differentiability of functions. We should add here that strict twice epi-differentiability was
defined by Rockafellar and Poliquin in [27] and was further studied for prox-regular functions
in [28]. In particular, a characterization of this concept in term of epigraphical convergence of
the second subderivative of prox-regular functions was achieved in [28, Theorem 4.1], which will
be leveraged in this paper to show under a relative interior condition for the chosen subgradient
that C2-partly smooth functions are always strictly twice epi-differentiable in a neighborhood
of a given point relative to the graph of subgradient mappings. Moreover, our proof allows
us to calculate the second subderivative of C2-partly smooth functions. We also provide two
examples to show that there are strictly twice epi-differentiable functions that are not C2-partly
smooth. Not only does this enable us to extend the scope of our developments in [11] to a larger
class of functions but also provides a fresh viewpoint to investigate such important functions in
optimization and variational analysis. We then concentrate on stability analysis of a general-
ized equation related to subgradient mapping of a C2-partly smooth function under a general
perturbation and provide sufficient conditions for its solution mapping to have a single-valued
Lipschitz continuous graphical localization. Using this, we analyze asymptotic behavior of the
sequence, generated by a sample average approximation (SAA) method, for certain regularized
stochastic programs.

The rest of the paper is organized as follows. Section 2 recaps definitions of important
concepts used in this paper. Section 3 begins with reviewing the notion of partial smoothness.
We then present our main findings about strict twice epi-differentiability of C2-partly smooth
functions and regularity properties of the corresponding subgradient mappings. As important
consequences, we establish next in this section C1-smoothness and active manifold identifiability
of proximal mappings as well as differential stability for generalized equations involving a general
perturbation. The last section, Section 4, concerns asymptotic analysis of an SAA method for
stochastic programs with C2-partly smooth regularizers.

2 Tools of Variational Analysis

Throughout, suppose that X and Y are finite dimentional Hilbert spaces. We denote by B
the closed unit ball in the space in question and by Br(x) := x + rB the closed ball centered
at x with radius r > 0. Given a nonempty set C ⊂ X, the symbols riC, aff C, C∗, and
parC signify its relative interior, affine span, polar cone, and the linear subspace parallel to
aff C, respectively. The indicator function δC of the set C is defined by δC = 0 for x ∈ C
and δC(x) = ∞ for x ∈ X \ C. We denote by PC the projection mapping onto C and by
dist(x,C) the distance between x ∈ X and the set C. The domain, range, and graph of a
set-valued mapping F : X ⇒ Y are defined, respectively, by domF = {x ∈ X

∣∣F (x) ̸= ∅},
rgeF = {y ∈ Y

∣∣∃x ∈ Xwith y ∈ F (x)}, and gphF = {(x, y) ∈ X ×Y
∣∣ y ∈ F (x)}. Consider

an extended-real-valued function φ : X → R := R ∪ {±∞}. We denote by epiφ its epigraph set
given by {(x, α) ∈ X×R

∣∣α ≥ φ(x)}. Assuming that φ is twice differentiable at x̄ with Hessian
∇2φ(x̄), we also use the same notation ∇2φ(x̄) to denote the self-adjoint linear operator of X
associated with the symmetric bilinear form ∇2φ(x̄) : X×X → R.

Let {Ct}t>0 be a parameterized family of sets in X. Its inner and outer limit sets are defined,
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respectively, by

lim inf
t↘0

Ct =
{
x ∈ X

∣∣∀ tk ↘ 0 ∃ xtk → x with xtk ∈ Ctk for k sufficiently large
}
,

lim sup
t↘0

Ct =
{
x ∈ X

∣∣∃ tk ↘ 0 ∃ xtk → x with xtk ∈ Ctk
}
;

see [31, Definition 4.1]. The limit set of {Ct}t>0 exists if lim inft↘0C
t = lim supt↘0C

t =: C,

written as Ct → C when t ↘ 0. A sequence {fk}k∈IN of functions fk : X → R is said
to epi-converge to a function f : X → R if we have epi fk → epi f in X × R as k → ∞;
see [31, Definition 7.1] for more details on the epi-convergence of a sequence of extended-real-
valued functions. We denote by fk

e−→ f the epi-convergence of {fk}k∈IN to f .
Given a nonempty set Ω ⊂ X with x̄ ∈ Ω, the tangent cone to Ω at x̄, denoted TΩ(x̄), is

defined by TΩ(x̄) = lim supt↘0
Ω−x̄
t . The regular/Fréchet normal cone N̂Ω(x̄) to Ω at x̄ is defined

by N̂Ω(x̄) = TΩ(x̄)
∗. For x /∈ Ω, we set N̂Ω(x) = ∅. The limiting/Mordukhovich normal cone

NΩ(x̄) to Ω at x̄ is the collection of all vectors v̄ ∈ X for which there exist sequences {xk}k∈IN
and {vk}k∈IN with vk ∈ N̂Ω(x

k) such that (xk, vk) → (x̄, v̄). When Ω is convex, both normal
cones boil down to that of convex analysis. Given a function f : X → R and a point x̄ ∈ X with
f(x̄) finite, the subderivative function df(x̄) : X → R is defined by

df(x̄)(w) = lim inf
t↘0

w′→w

f(x̄+ tw′)− f(x̄)

t
, w ∈ X.

A vector v ∈ X is called a subgradient of f at x̄ if (v,−1) ∈ Nepi f (x̄, f(x̄)). The set of all sub-

gradients of f at x̄ is denoted by ∂f(x̄). Replacing the limiting normal cone with N̂epi f (x̄, f(x̄))

in the definition of ∂f(x̄) gives us ∂̂f(x̄), the regular subdifferential of f at x̄. The function f
is called subdifferentially regular at x̄ provided that Nepi f (x̄, f(x̄)) = N̂epi f (x̄, f(x̄)). By defi-

nition, subdifferential regularity of f at x̄ particularly ensures the coincidence ∂f(x̄) = ∂̂f(x̄).
The critical cone of f at x̄ for v̄ with v̄ ∈ ∂f(x̄) is defined by

Kf (x̄, v̄) =
{
w ∈ X

∣∣ ⟨v̄, w⟩ = df(x̄)(w)
}
.

When f = δΩ for a nonempty subset Ω ⊂ X, the critical cone of δΩ at x̄ for v̄ is denoted
by KΩ(x̄, v̄). In this case, one has dδΩ(x̄) = δTΩ(x̄), the above definition of the critical cone
of a function therefore boils down to the well-known concept of critical cone to a set (see [6,
page 109]), namely KΩ(x̄, v̄) = TΩ(x̄) ∩ [v̄]⊥, where [v] denotes the one-dimensional subspace
{tv | t ∈ R}. If f is subdifferentially regular and ∂f(x̄) ̸= ∅, then df(x̄) is the support function
of ∂f(x̄) (cf. [31, Theorem 8.30]) and the critical cone Kf (x̄, v̄) can be equivalently described by

Kf (x̄, v̄) = N∂f(x̄)(v̄). (2.1)

The second subderivative of f at x̄ for v̄, denoted d2f(x̄, v̄), is an extended-real-valued function
defined by

d2f(x̄, v̄)(w) = lim inf
t↘0

w′→w

∆2
t f(x̄, v̄)(w

′), w ∈ X,

where ∆2
t f(x̄, v̄), t > 0, is the parametric family of second-order difference quotients of f at x̄

for v̄ ∈ ∂f(x̄) defined by

∆2
t f(x̄, v̄)(w) =

f(x̄+ tw)− f(x̄)− t⟨v̄, w⟩
1
2 t

2
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for any w ∈ X and t > 0. According to [31, Definition 13.6], f is said to be twice epi-differentiable
at x̄ for v̄ if the functions ∆2

t f(x̄, v̄) epi-converge to d2f(x̄, v̄) as t ↘ 0. Further, we say that
f is strictly twice epi-differentiable at x̄ for v̄ if the functions ∆2

t f(x, v) epi-converge to some
function as t ↘ 0 and (x, v) → (x̄, v̄) with f(x) → f(x̄) and (x, v) ∈ gph ∂f . If this condition
holds, the limit function is then the second subderivative d2f(x̄, v̄).

Consider a set-valued mapping F : X ⇒ Y. According to [31, Definition 8.33], the graphical
derivative of F at x̄ for ȳ with (x̄, ȳ) ∈ gphF is the set-valued mapping DF (x̄, ȳ) : X ⇒ Y
defined via the tangent cone to gphF at (x̄, ȳ) by gphDF (x̄, ȳ) = TgphF (x̄, ȳ). Using the
definition of the tangent cone, we can alternatively represent gphDF (x̄, ȳ) in terms of graphical
limit as

gphDF (x̄, ȳ) = lim sup
t↘0

gphF − (x̄, ȳ)

t
. (2.2)

The set-valued mapping F is said to be proto-differentiable at x̄ for ȳ if the outer graphical
limit in (2.2) is actually a full limit. When F (x̄) is a singleton consisting of ȳ only, the notation
DF (x̄, ȳ) is simplified to DF (x̄). It is easy to see that for a single-valued mapping F , which is
differentiable at x̄, the graphical derivative DF (x̄) boils down to the Jacobian of F at x̄, denoted
by ∇F (x̄). Recall from [31, Definition 9.53] that the strict graphical derivative of a set-valued
mapping F at x̄ for ȳ with (x̄, ȳ) ∈ gphF , is the set-valued mapping D̃F (x̄, ȳ) : X ⇒ Y, defined
by

gph D̃F (x̄, ȳ) = lim sup
t↘0

(x,y)
gphF−−−→(x̄,ȳ)

gphF − (x, y)

t
. (2.3)

We say that F is strictly proto-differentiable at x̄ for ȳ if the outer graphical limit in (2.3) is
attained as a full limit, or, equivalently, if its graph gphF is strictly smooth at (x̄, ȳ), cf. [30,
page 173]. It is obvious from definitions that gphDF (x̄, ȳ) ⊂ gph D̃F (x̄, ȳ) in general. Strict
proto-differentiability of F at x̄ for ȳ particularly implies that the latter inclusion must hold as
equality, that is D̃F (x̄, ȳ) and DF (x̄, ȳ) coincide.

3 Strict Twice Epi-Differentiability of C2-Partly Smooth Func-
tions

This section aims at establishing new second-order variational properties of C2-partly smooth
functions as well as their applications in stability analysis of related variational systems. We
begin with reviewing this notion and some of its well-known consequences established in [18,20].
Recall that a set M ⊂ X is called a C2-smooth manifold of codimension m ≤ dimX around a
point x̄ ∈ X if x̄ ∈ M and there is an open neighborhood O ⊂ X of x̄ and a C2-smooth mapping
Φ : O → Rm such that

M∩O =
{
x ∈ O

∣∣Φ(x) = 0
}

and ∇Φ(x̄) : X → Rm is surjective. (3.1)

We should stress that the surjectivity of ∇Φ(x̄), assumed above, yields the validity of the
same property of ∇Φ(x) : X → Rm for all x in an open neighborhood of x̄. Thus, we can
assume without loss of generality that ∇Φ(x) is surjective for all x ∈ M∩O. It is well known
(cf. [31, Example 6.8]) that the tangent and normal cones toM at x ∈ M∩O are linear subspaces
of X, given by TM(x) = ker∇Φ(x) and NM(x) = rge∇Φ(x)∗, respectively. We should point
out that these two orthogonal complement linear subspaces are independent of the choice of Φ,
and that the critical cone to M at enjoys the relationship

KM(x, y) = TM(x) (3.2)
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for all x ∈ M∩O and y ∈ NM(x); see (2.1) for the definition of the critical cone.

Definition 3.1 (C2-partial smoothness, cf. [20, Definition 3.2]). A function f : X → R is said
to be C2-partly smooth at x̄ relative to a set M ⊂ X containing x̄ if M is a C2-smooth manifold
around x̄ and the following properties hold:

(a) (restricted smoothness) f |M is C2-smooth around x̄, that is, there exists a representative
function f̂ : X → R which is C2-smooth around x̄ with f̂ |M = f |M locally around x̄;

(b) (regularity) at every point x ∈ M close to x̄, the function f is subdifferentially regular
and has nonempty subdifferential ∂f(x);

(c) (normal sharpness) NM(x̄) = par {∂f(x̄)};
(d) (subdifferential continuity) the subgradient mapping ∂f is continuous at x̄ relative to M

in the sense that the limit set limx∈M, x→x̄ ∂f(x) exists and equals to ∂f(x̄).

The manifold M is often referred to as the active manifold at the point x̄, and also as the optimal
manifold when x̄ is actually a minimizer of the function f .

Observe that not only does a C2-partly smooth function behave smoothly along some mani-
fold according to condition (a), but also satisfies regularity and normal sharpness properties in
items (b)–(d). These additional requirements create a strong bond between the function and its
active manifold. In fact, the active manifold associated with a C2-partly smooth function at a
given point is locally unique in the presence of a suitable additional regularity, see the discussion
prior to Proposition 3.7. Note also that conditions (a), (b), and M being a C2-smooth manifold
in the above definition are properties required in a neighborhood of the point x̄ in question. On
the other hand, the normal sharpness condition (c) was proved to be stable in the sense that if
the function f is C2-partly smooth at x̄ relative to M, then the normal sharpness property in
Definition 3.1(c) must be satisfied at all nearby points x ∈ M (cf. [18, Proposition 2.10]). Thus,
if continuity of the subgradient mapping x ∈ M 7→ ∂f(x) in (d) is maintained around x̄, then
C2-partial smoothness of f at x̄ relative to M yields the same property at all points x ∈ M
nearby. A localized version of the condition in (d) with respect to a dual variable v̄ ∈ ∂f(x̄),
which is absent from the definition above, will be justified in Proposition 3.9 to hold around
x̄. In the sequel, we refer to the properties described in Definition 3.1 with condition (d) being
replaced by

(d’) there exists a neighborhood V of v̄ such that limx∈M, x→x̄(V ∩ ∂f(x)) = V ∩ ∂f(x̄)
as the C2-partial smoothness of f at x̄ for v̄. Note also that this modified version of the C2-partial
smoothness is stable (cf. Proposition 3.9) and suffices for second-order variational analysis in
this paper, since we mainly concern with pairs (x, v) in gph ∂f .

The class of C2-partly smooth functions is known to encompass important functions that
often appear in constrained and composite optimization problems, as mentioned in Section 1.
We particularly refer the interested readers to [13] for examples of C2-partly smooth functions and
relations between partial smoothness structure and other smooth substructures of nonsmooth
functions. Below we briefly discuss the conditions outlined in Definition 3.1 for some important
classes of functions.

Example 3.2 (reliably C2-decomposable functions). Following [32], a function f : X → R is
called C2-decomposable at x̄ ∈ X if f(x̄) is finite and f enjoys the composite representation

f(x) = f(x̄) + (ϑ ◦ Φ)(x) for x ∈ O, (3.3)

whereO ⊂ X is an open neighborhood of x̄, ϑ : Y → R is proper, lsc, and sublinear, and Φ : O →
Y is C2-smooth with Φ(x̄) = 0. Denote by S the subspace of Y parallel to aff {∂ϑ(0)}, namely

5



S = par {∂ϑ(0)}. It was shown in [32, pp. 683–684] that under the following nondegeneracy
condition

S ∩ ker∇Φ(x̄)∗ = {0}, (3.4)

the composite function f in (3.3) is C2-partly smooth at x̄ relative to the C2-smooth manifold
M =

{
x ∈ X

∣∣ (PS ◦ Φ)(x) = 0
}
with f̂(x) = ⟨y,Φ(x)⟩ for all x ∈ M, where y ∈ ∂ϑ(0) can

be chosen arbitrarily. Moreover, it is argued therein that subdifferential continuity in Defini-
tion 3.1(d) holds around the point x̄ relative to M. In [11, Section 5], a composite function,
satisfying the local representation in (3.3) and the nondegeneracy condition in (3.4), is called
reliably C2-decomposable at x̄. Also, it was verified in [11, Example 5.1] that this class en-
compasses a variety of important functions including polyhedral functions, certain composite
functions, and indicator functions of important cones such as the second-order cone and the
cone of semidefinite matrices.

Example 3.3 (spectral functions). Let X = Rn×m, the space of n×m real matrices equipped
with the trace inner product ⟨X,Y ⟩ := tr (X⊤Y ) for all X,Y ∈ Rn×m. Recall that singular
values of a matrix X ∈ Rn×m are the square roots of the eigenvalues of X⊤X. Denote by σ(X)
the vector of m singular values of a given matrix X ∈ Rn×m with components σ1(X) ≥ σ2(X) ≥
· · · ≥ σm(X) ≥ 0. The correspondence X 7→ σ(X) defines a mapping from Rn×m to Rm. In
this example, we consider a spectral function f : Rn×m → R formulated as a composition by
f(X) = (ϑ ◦ σ)(X), where the outer function ϑ : Rm → R is lsc and absolutely permutation-
invariant, meaning invariant under all signed permutations of coordinates. Let X ∈ Rn×m

and let S ⊂ Rm be a C2-smooth manifold around σ(X) with δS being absolutely permutation-
invariant, and MS = σ−1(S). It was shown in [3, Theorem 5.3] that f is C2-partly smooth at
X relative to MS if and only if ϑ is C2-partly smooth at σ(X) relative to S.

The next lemma presents a simple observation on normal cone to a convex set that will
be employed to analyze next the class convex piecewise linear-quadratic functions to see under
which conditions such functions are C2-partly smooth.

Lemma 3.4. Assume that Ω ⊂ X is a convex set and x̄ ∈ Ω. Then par {Ω}⊥ ⊂ NΩ(x̄) and
equality holds if and only if x̄ ∈ ri Ω.

Proof. It is clear that par {Ω}⊥ ⊂ NΩ(x) for all x ∈ Ω. Assume now that x̄ ∈ ri Ω and pick
v̄ ∈ NΩ(x̄). There must exist ϵ > 0 such that Bϵ(x̄) ∩ aff {Ω} ⊂ Ω. Observe that

⟨v̄, u⟩ = 1

ϵ
⟨v̄, (x̄+ ϵu)− x̄⟩ ≤ 0

for all u ∈ B ∩ par {Ω}, which in turn yields v̄ ∈ par {Ω}⊥. Conversely, if NΩ(x̄) = par {Ω}⊥, a
subspace, then we infer via [25, Proposition 2.51] that x̄ ∈ ri Ω. The proof is then complete.

Example 3.5 (convex piecewise linear-quadratic functions). Let X = Rn and consider a convex
piecewise linear-quadratic (CPLQ) function f defined on Rn. Recall that a proper function
f : Rn → R is piecewise linear-quadratic if dom f =

⋃
i∈I Ci with Ci being a polyhedral convex

set for any index i from a finite set I, relative to each of which f takes the form

f(x) = 1
2⟨Aix, x⟩+ ⟨ai, x⟩+ αi, x ∈ Ci, (3.5)

for some n×n symmetric matrix Ai, vector ai ∈ Rn, and scalar αi ∈ R; cf. [31, Definition 10.20].
Since f is convex, we know from [31, Proposition 10.21] that dom f is polyhedral convex and
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∂f(x) ̸= ∅ for all x ∈ dom f . Thus, a CPLQ function always satisfies regularity condition in
Definition 3.1(b). Pick x̄ ∈ dom f and define the set of active indices of the domain of f at x̄ by

I(x̄) =
{
i ∈ I

∣∣ x̄ ∈ Ci

}
.

We first analyze the simplest case when I(x̄) is a singleton, say I(x̄) = {i0} for some i0 ∈ I.
Since I(x) ⊂ I(x̄) for all x ∈ dom f sufficiently close to x̄, there is a neighborhood of x̄ in which
the function f behaves as if it is comprised of a single quadratic piece, defined on a polyhedral
convex set, namely

f(x) = 1
2⟨Ai0x, x⟩+ ⟨ai0 , x⟩+ αi0 + δCi0

(x), x ∈ Rn.

According to [29, Theorem 18.2], there exists a unique face of Ci0 containing x̄ in its relative
interior. Let Mx̄ be the relative interior of such a face. Clearly, Mx̄ coincides with an affine
subspace locally around x̄, and thus forms a C2-smooth manifold around that point. This tells
us that f restricted to Mx̄ is a quadratic function and thus is C2-smooth. Moreover, observing
that

∂f(x) = Ai0x+ ai0 +NCi0
(x) = Ai0x+ ai0 +NCi0

(x̄)

for all x ∈ Mx̄, we get the fulfillment of the subdifferential continuitity in Definition 3.1(d).
It is also straightforward to see that par {∂f(x̄)} = span {NCi0

(x̄)} = NMx̄(x̄), meaning that
the normal sharpness property in Definition 3.1(c) holds. Thus, if I(x̄) is a singleton, we can
conclude that f is C2-partly smooth at x̄ relative to Mx̄, where Mx̄ is the maximal relatively
open subset of dom f = Ci0 containing x̄, cf. [29, Theorem 18.2].

We now turn to the general case when I(x̄) may not be a singleton. Observe from the
analysis above for the case of a single linear-quadratic piece that the manifold Mx̄ consists of
all points x ∈ Rn sharing not only a common set of active polyhedra {Ci0} but also the same
normal cone NCi0

(x) = NCi0
(x̄). We aim to construct a set Mx̄ enjoying this property and to

examine to what extent the CPLQ function f is C2-partly smooth at x̄ relative to Mx̄.
According to the analysis in the proof of [31, Theorem 11.14(b)], we argue that such a set

Mx̄ can be defined as follows. Let H be a finite collection of closed half-spaces H =
{
x ∈

Rn
∣∣ ⟨bH , x⟩ ≤ βH

}
, for some (bH , βH) ∈ (Rn \ {0}) × R, such that (i) each of the polyhedral

convex sets dom f and Ci, i ∈ I, is the intersection of a subcollection of half-spaces in H; and
(ii) for every H ∈ H, the opposite closed half-space H ′ =

{
x ∈ Rn

∣∣ ⟨−bH , x⟩ ≤ −βH
}
is also

in H. Corresponding to this collection, define for each x̄ ∈ dom f a subcollection Hx̄ =
{
H ∈

H
∣∣ x̄ ∈ H

}
and a relatively open set Mx̄ =

{
x ∈ dom f

∣∣Hx = Hx̄

}
. Thus, we have I(x) = I(x̄)

for all x ∈ Mx̄, and NCi(x) = NCi(x̄) for any x ∈ Mx̄ and any i ∈ I(x̄). Note also that Mx̄

has the alternative representation

Mx̄ = ri
⋂

H∈Hx̄

H =
( ⋂

H∈H∗
x̄

H ∩H ′
)⋂( ⋂

H∈Hx̄\H∗
x̄

intH
)
, (3.6)

where H∗
x̄ =

{
H ∈ Hx̄

∣∣H ′ ∈ Hx̄

}
. This clearly shows that in some neighborhood of x̄, Mx̄

coincides with the affine subspace
⋂

H∈H∗
x̄
(H ∩ H ′). Hence, Mx̄ forms a C2-smooth manifold

around x̄ and satisfies

NMx̄(x) = span
{
bH |H ∈ H∗

x̄

}
for all x ∈ Mx̄.

Fix an index i0 ∈ I(x̄). Observing that Mx̄ ∩ Ci0 ̸= ∅, we get Mx̄ ⊂ Ci0 and conclude that f
restricted to Mx̄ coincides with 1

2⟨Ai0x, x⟩ + ⟨ai0 , x⟩ + αi0 and thus is C2-smooth. Recall also
from [31, page 487] that

∂f(x) =
⋂

i∈I(x̄)

(
Aix+ ai +NCi(x̄)

)
⊂ Ai0x+ ai0 +NMx̄(x̄) (3.7)
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for all x ∈ Mx̄, where the last inclusion is due to [18, Proposition 2.2].
Claim. The CPLQ function f in (3.5) is C2-partly smooth at x̄ relative to the affine manifold

Mx̄ in (3.6) if and only if the following conditions are satisfied:{
span {NCi(x̄)} = NMx̄(x̄) for all i ∈ I(x̄), and⋂

i∈I(x̄)(Aix̄+ ai + riNCi(x̄)) ̸= ∅.
(3.8)

To verify the “if” part, assume that the conditions in (3.8) hold. Pick v ∈ ri ∂f(x̄) and
conclude from (3.7) and [31, Proposition 2.42] that v ∈ Aix̄ + ai + riNCi(x̄) for all i ∈ I(x̄).
Employing Lemma 3.4 and the first condition in (3.8) implies for any i ∈ I(x̄) that

NNCi
(x̄)(v −Aix̄− ai) = span {NCi(x̄)}⊥ = TMx̄(x̄).

We then get from [29, Corollary 23.8.1] and (3.7) that

N∂f(x̄)(v) =
∑

i∈I(x̄)

NNCi
(x̄)(v −Aix̄− ai) =

∑
i∈I(x̄)

TMx̄(x̄) = TMx̄(x̄). (3.9)

Recalling that v ∈ ri ∂f(x̄), we infer from Lemma 3.4 that N∂f(x̄)(v) = par {∂f(x̄)}⊥, which,
together with (3.9), implies the normal sharpness condition par {∂f(x̄)} = NMx̄(x̄). It follows
from [31, Proposition 2.42] and the second condition in (3.8) that the sets Aix̄+ai+NCi(x̄) and⋂

k∈I(x̄)\{i}(Akx̄+ ak +NCk
(x̄)) have relative interior points in common for all i ∈ I(x̄). These

amount to none of the sets Aix̄ + ai + NCi(x̄) being separated properly from the intersection⋂
k∈I(x̄)\{i}(Akx̄ + ak + NCk

(x̄)) of the others, cf. [29, Theorem 11.3]. Employing [31, Exer-
cise 4.33], we can then deduce from the representation of ∂f(x) in (3.7) that ∂f is continuous
at x̄ relative to Mx̄. Thus, f is C2-partly smooth at x̄ with respect to Mx̄, defined in (3.6).

We now turn to the “only if” part. First observe from (3.7) and the inclusions Mx̄ ⊂ Ci, i ∈
I(x̄), that

par {∂f(x̄)} ⊂ span {NCi(x̄)} ⊂ NMx̄(x̄), i ∈ I(x̄). (3.10)

The normal sharpness condition par {∂f(x̄)} = NMx̄(x̄) then yields the first condition in (3.8)
for all i ∈ I(x̄). We prove next that v ∈ Aix̄ + ai + riNCi(x̄) for all i ∈ I(x̄). Assume that
v − Ai0 x̄ − ai0 /∈ riNCi0

(x̄) for some i0 ∈ I(x̄). We then get from span {NCi0
(x̄)}⊥ = TMx̄(x̄)

and Lemma 3.4 that TMx̄(x̄) ⊊ NNCi0
(x̄)(v − Ai0 x̄ − ai0). The first equality in (3.9), which is

always valid due to (3.7), therefore leads to TMx̄(x̄) ⊊ N∂f(x̄)(v) = NMx̄(x̄)
⊥, a contradiction.

Thus, we arrive at v ∈
⋂

i∈I(x̄)
(
Aix̄+ ai + riNCi(x̄)

)
and complete verification of the claim.

Observe that conditions required in (3.8) automatically hold when I(x̄) is a singleton, as
analyzed above. However, (3.8) should not be taken for granted in general. A simple counterex-
ample is given by f(x) = 1

2(max{x, 0})2, x ∈ R. It can be seen that f is C1-smooth everywhere
but not C2-partly smooth at x̄ = 0 relative to Mx̄ = {0}, since the normal sharpness property
does not hold: par {∇f(x̄)} = {0} while NMx̄(x̄) = R.

It is noticed, in our forthcoming analysis, that subdifferential regularity in Definition 3.1(b)
should be replaced with a stronger condition called prox-regularity. In fact, this was well ob-
served in the literature on partial smoothness. For example, in [18, Section 7], Lewis constructed
an example of an everywhere subdifferentially regular function that is C2-partly smooth relative
to two distinct manifolds. It was then pointed out in [20, Corollary 4.12] that such a concern is
eliminated for prox-regular functions. More precisely, the additional prox-regularity ensures lo-
cal uniqueness of the corresponding active manifolds, and hence, it does have appealing effects on
C2-partly smooth functions, see, e.g., [20, Sections 4 and 5]. Prox-regularity was therefore a key
ingredient in exploiting the partial smoothness structure, see, e.g., [3,4,7]. Also, prox-regularity
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and subdifferential continuity of the function in question were essential assumptions throughout
the analysis carried out in [11] on strict proto-differentiability of subgradient mappings. Among
appealing implications of those two properties, we should mention the equivalence between
(strict) twice epi-differentiability and (strict) subgradient proto-differentiability; cf. [31, Theo-
rem 13.40] and [27, Corollary 6.2(b)]. These will be extensively exploited in our establishment
of strict twice epi-differentiability of a C2-partly smooth function and its consequences in this
section. We now recall the notion of such regularity. According to [31, Definition 13.27], a
function f : X → R is prox-regular at x̄ for v̄ if f is finite at x̄ and locally lower semicontinuous
(lsc) around x̄ with v̄ ∈ ∂f(x̄), and there exist ϵ > 0 and ρ ≥ 0 such that{

f(u) ≥ f(x′) + ⟨v′, u− x′⟩ − ρ
2∥u− x′∥2 for all u ∈ Bϵ(x̄)

whenever (x′, v′) ∈ Bϵ(x̄, v̄) ∩ gph ∂f and f(x′) ≤ f(x̄) + ϵ.
(3.11)

When this property holds for all v ∈ ∂f(x̄), the function f is called prox-regular at x̄. The
function f is said to be subdifferentially continuous at x̄ for v̄ if the convergence (xk, vk) → (x̄, v̄)
with vk ∈ ∂f(xk) yields f(xk) → f(x̄) as k → ∞. The localization in function value in (3.11)
can be omitted if f is subdifferentially continuous at x̄ for v̄.

Proposition 3.6. Assume that f : X → R is prox-regular and subdifferentially continuous at x̄
for v̄. Then, there exists ε > 0 such that f is prox-regular and subdifferentially continuous at x
for v for any (x, v) ∈ Bε(x̄, v̄) ∩ gph ∂f .

Proof. Pick the constants ϵ and ρ for which (3.11) holds. Since f is subdifferentially continuous
at x̄ for v̄, we find ε ∈ (0, ϵ/2) such that |f(x) − f(x̄)| < ϵ for any (x, v) ∈ Bε(x̄, v̄) ∩ gph ∂f .
Pick any (x, v) ∈ Bε(x̄, v̄)∩ gph ∂f . It is easy to see that the prox-regularity inequality in (3.11)
with the same constant ρ is satisfied for all u ∈ Bϵ/2(x) and all (x′, v′) ∈ Bϵ/2(x, v) ∩ gph ∂f .
This proves prox-regularity of f at x for v. Shrinking ε if necessary, we deduce from [27,
Proposition 2.3] that f(x′) → f(x) whenever (x′, v′) → (x, v) with (x′, v′) ∈ Bε(x̄, v̄) ∩ gph ∂f ,
which proves subdifferential continuity of f at x for v and completes the proof.

The following result summarizes important properties of C2-partly smooth functions obtained
in [18, 20]. While the local representation of graphs of C2-partly smooth functions in (3.12)
below is the cornerstone in our justification of strict twice epi-differentiability of such functions,
stability of the relative interior condition plays a key role in extending the latter point-based
property to all points nearby. The latter stability can be derived from [4, Lemma 20], however,
the equivalence between our statement and the latter lemma is probably not apparent. We
instead supply a direct proof for stability of the relative interior condition based on arguments
in the proof of [20, Proposition 4.3].

Proposition 3.7. Let f : X → R be a C2-partly smooth function at x̄ relative to a C2-smooth
manifold M. Let f̂ : X → R be any C2-smooth representative of f around x̄ relative to M. The
following assertions hold.

(a) We have ∇f̂(x̄) ∈ aff {∂f(x̄)}.
(b) Suppose, moreover, that f is prox-regular and subdifferentially continuous at x̄ for some

v̄ ∈ ri ∂f(x̄). Then there exists ε > 0 such that

Bε(x̄, v̄) ∩ gph ∂f = Bε(x̄, v̄) ∩ gph (∇f̂ +NM) (3.12)

and v ∈ ri ∂f(x) for all (x, v) ∈ Bε(x̄, v̄) ∩ gph ∂f .

Proof. First, assertion (a) follows immediately from [18, Proposition 2.4]. We now turn to
(b). Since the function f is C2-partly smooth at x̄ relative to M and both prox-regular and
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subdifferentially continuous at x̄ for v̄ ∈ ri ∂f(x̄), the local representation of gph ∂f in (3.12)
results from [20, Corollary 5.2].

It remains to show that the relative interior condition is stable in some neighborhood of
(x̄, v̄) relative to gph ∂f . The proof of this part mimics that of [20, Proposition 4.3]. Assume the
contrary that there exists a sequence {(xk, vk)}k∈IN ⊂ gph ∂f with xk → x̄ and vk → v̄ as k → ∞
and vk /∈ ri ∂f(xk) for all k. The local representation in (3.12) then particularly tells us that
eventually xk ∈ M. Recall that f is subdifferentially regular at all point x ∈ M close to x̄. We
can assume that ∂f(xk) is closed and convex for all sufficiently large k ∈ IN. Due to stability of
the normal sharpness property as noted above, we can also assume that par {∂f(xk)} = NM(xk)
for all such k. Employing now the separation theorem for the nonempty closed convex set
∂f(xk) and a point vk from its relative boundary (cf. [31, Exercise 2.45(e)]), we find ηk ∈
par {∂f(xk)} = NM(xk) with ∥ηk∥ = 1 such that ⟨ηk, vk⟩ ≥ ⟨ηk, u⟩ for all u ∈ ∂f(xk). Let η̄ be
any accumulation point of {ηk}k∈IN. Clearly, η̄ ̸= 0. Moreover, we conclude via robustness of the
limiting normal cone that η̄ ∈ NM(x̄) = par {∂f(x̄)}. Recall that v̄ ∈ ri ∂f(x̄). There must exist
ϵ > 0 such that Bϵ(v̄) ∩ aff {∂f(x̄)} ⊂ ∂f(x̄). Pick an arbitrary u ∈ Bϵ(v̄) ∩ aff {∂f(x̄)}. Since
u ∈ ∂f(x̄), we can find uk → u with uk ∈ ∂f(xk) for all k sufficiently large due to subdifferential
continuity of ∂f at x̄ relative to M and to the facts that xk → x̄ and xk ∈ M as k → ∞.
Noting that ⟨ηk, vk⟩ ≥ ⟨ηk, uk⟩ for all sufficiently large k, we arrive at ⟨η̄, v̄⟩ ≥ ⟨η̄, u⟩. Since
u ∈ ∂f(x̄) is chosen arbitrarily from Bϵ(v̄)∩ aff {∂f(x̄)}, the latter implies that ⟨η̄, u⟩ ≤ 0 for all
u ∈ ϵB∩par {∂f(x̄)}, a contradiction with 0 ̸= η̄ ∈ par {∂f(x̄)}. The proof is then complete.

Remark 3.8. We should point out that the subdifferential continuity assumption in Proposi-
tion 3.7 can be dropped from this result with no harm. Indeed, one can conclude from [8, Propo-
sition 10.12] that the crucial representation in (3.12) does hold without the latter condition.
Having this result in our disposal, we can drop the subdifferential continuity assumption from
all the results in this paper. However, we proceed with assuming it to avoid more complication
in our presentation.

Proposition 3.9 (continuity of subgradient mapping). Let f : X → R be a C2-partly smooth
function at x̄ relative to a C2-smooth manifold M such that f is prox-regular and subdifferentially
continuous at x̄ for some v̄ ∈ ri ∂f(x̄). Then there exists a neighborhood V of v̄ such that the
subgradient mapping x ∈ M 7→ V ∩ ∂f(x) is continuous around x̄.

Proof. According to Proposition 3.7, the local representation of gph ∂f in (3.12) with Bε(x̄, v̄)
replaced with Bε(x̄) × Bε(v̄) is valid for some ε > 0 and some C2-smooth function f̂ . Set
V := Bε/2(v̄) and pick x ∈ Bε/2(x̄) ∩ M, v ∈ V ∩ ∂f(x), and xk → x with xk ∈ M. We now

construct a sequence vk converging to v with vk ∈ ∂f(xk) for all large k. It follows from (3.12)
that v − ∇f̂(x) ∈ NM(x). Due to surjectivity of ∇Φ(x̄) and smoothness of Φ around x̄, the
normal cone mapping x 7→ NM(x) = rge∇Φ(x)∗ is continuous around x̄. Choosing a smaller
ε if necessary, we can assume that NM is continuous at x and then, for the given sequence
{xk}k∈IN, we find yk → v − ∇f̂(x) with yk ∈ NM(xk) for all k. Let vk := ∇f̂(xk) + yk and
observe that vk → v. We then have xk ∈ Bε(x̄) and v

k ∈ Bε(v̄), for all k sufficiently large, and
thus arrive at (xk, vk) ∈ (Bε(x̄) × Bε(v̄)) ∩ gph (∇f̂ + NM) for such k. Again, it follows from
(3.12) that vk ∈ ∂f(xk) for all k sufficiently large. This confirms continuity of the localization
of subgradient mapping ∂f around x̄ relative to M and completes the proof.

Below, we present our main result in this section in which strict twice epi-differentiability of
C2-partly smooth functions is justified. Taking a C2-partly smooth function at x̄ relative to M,
denoted f , and assuming f̂ : X → R as a C2-smooth representative of f around x̄ relative to
M, we define the Lagrangian function L : X× Rm → R associated with f by

L(u, y) := f̂(u) + ⟨y,Φ(u)⟩, (u, y) ∈ X× Rm, (3.13)
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where the mapping Φ comes from (3.1).

Theorem 3.10 (strict twice epi-differentiability). Let M be a C2-smooth manifold around x̄
with the local representation (3.1) and f : X → R a C2-partly smooth function at x̄ relative
to M such that f is prox-regular and subdifferentially continuous at x̄ for some v̄ ∈ ri ∂f(x̄).
Let f̂ : X → R be any C2-smooth representative of f around x̄ relative to M. Then, for all
(x, v) ∈ gph ∂f sufficiently close to (x̄, v̄), the following properties hold:

(a) the subgradient mapping ∂f is strictly proto-differentiable at x for v and its graphical
derivative D(∂f)(x, v) can be calculated by

D(∂f)(x, v)(w) =

{
∇2

xxL(x, µ)(w) +NM(x) if w ∈ TM(x),

∅ otherwise,
(3.14)

where µ ∈ Rm is the unique vector satisfying ∇Φ(x)∗µ = v −∇f̂(x);
(b) the function f is strictly twice epi-differentiable at x for v and its second subderivative can

be calculated by

d2f(x, v)(w) = ∇2
xxL(x, µ)(w,w) + δTM(x)(w), w ∈ X. (3.15)

Proof. We first verify the claimed assertions in (a) and (b) for (x̄, v̄) with µ̄ being the unique
vector satisfying ∇Φ(x̄)∗µ̄ = v̄−∇f̂(x̄). To this end, we begin by showing that f̂+δM is strictly
twice epi-differentiable at x̄ for v̄. Take (x, η) ∈ gphNM with x sufficiently close to x̄. According
to [24, Theorem 6.2], δM is twice epi-differentible at x for η, and its second subderivative at x
for η is given by

d2δM(x, η)(w) = ⟨ν,∇Φ2(x̄)(w,w)⟩+ δKM(x, η)(w), w ∈ X, (3.16)

where ν ∈ Rm is the unique vector satisfying ∇Φ(x)∗ν = η. Since f̂ is C2-smooth, [31, Exer-
cise 13.18] tells us that f̂ + δM maintains twice epi-differentiability at such x for ∇f̂(x) + η
and

d2(f̂ + δM)(x,∇f̂(x) + η)(w) = ∇2f̂(x)(w,w) + d2δM(x, η)(w), w ∈ X. (3.17)

Note further from Proposition 3.7(a) and the normal sharpness in Definition 3.1 that v̄−∇f̂(x̄) ∈
par {∂f(x̄)} = NM(x̄). SinceNM(x̄) is obviously a linear subspace, we get v̄−∇f̂(x̄) ∈ ri ∂δM(x̄)
and conclude from [11, Theorem 5.8] that δM is strictly twice epi-differentiable at x̄ for v̄−∇f̂(x̄).
By [11, Proposition 5.6] and the aforementioned twice epi-differentiability of δM, we obtain for
any pair (x, η) → (x̄, v̄ −∇f̂(x̄)) with η ∈ NM(x) that

d2δM(x, η)
e−→ d2δM(x̄, v̄ −∇f̂(x̄)).

Employing now the sum rule for epi-convergence in [31, Theorem 7.46(b)], we deduce from the
latter and (3.17) that

d2(f̂ + δM)(x,∇f̂(x) + η)
e−→ ∇2f̂(x̄)(·, ·) + d2δM(x̄, v̄ −∇f̂(x̄))

as (x, η) → (x̄, v̄ − ∇f̂(x̄)) with η ∈ NM(x). We then conclude via [11, Proposition 5.6] that
f̂ + δM is strictly twice epi-differentiable at x̄ for v̄ and that

d2(f̂ + δM)(x̄, v̄)(w) = ∇2f̂(x̄)(w,w) + d2δM(x̄, v̄ −∇f̂(x̄))(w), w ∈ X.
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Recall that µ̄ is the unique vector satisfying the equation ∇Φ(x̄)∗µ̄ = v̄ − ∇f̂(x̄). In view of
(3.2) and (3.16), we get from the above formula that

d2(f̂ + δM)(x̄, v̄)(w) = ∇2f̂(x̄)(w,w) + ⟨µ̄,∇2Φ(x̄)(w,w)⟩+ δTM(x̄)(w)

= ∇2
xxL(x̄, µ̄)(w,w) + δTM(x̄)(w), w ∈ X.

By [31, Example 10.24(f)], f̂ + δM is strongly amenable at x̄ in the sense of [31, Defini-
tion 10.23(b)]. Thus, by [31, Theorem 13.32], it is prox-regular and subdifferentially continuous
at any x ∈ M sufficiently close to x̄. Appealing now to [28, Corollary 4.3] and [31, Theo-
rem 13.40], we deduce that the subgradient mapping ∂(f̂ + δM) = ∇f̂ +NM is strictly proto-
differentiable at x̄ for v̄ and that

D(∇f̂ +NM)(x̄, v̄)(w) = ∂
(
1
2∇

2
xxL(x̄, µ̄)(·, ·) + δTM(x̄)

)
(w)

= ∇2
xxL(x̄, µ̄)(w) +NTM(x̄)(w), w ∈ X.

According to Proposition 3.7(a), gph ∂f and gph ∂(f̂ + δM) locally coincide around (x̄, v̄). This
yields strict proto-differentiability of ∂f at x̄ for v̄. It also confirms that

D(∂f)(x̄, v̄) = D(∇f̂ +NM)(x̄, v̄)

and hence proves the claimed formula in (3.14). Moreover, we infer via [31, Corollary 4.3] that
f is strictly twice epi-differentiable at x̄ for v̄. Remembering from [31, Theorem 13.40] that

∂
(
1
2d

2f(x̄, v̄)
)
= D(∂f)(x̄, v̄),

and setting φ(w) := ∇2
xxL(x̄, µ̄)(w,w) + δTM(x̄)(w) for any w ∈ X, we deduce from (3.14)

that ∂
(
d2f(x̄, v̄)

)
(w) = ∂φ(w) for any w ∈ X. By [31, Proposition 13.49], we find r > 0

such that the mapping w 7→ d2f(x̄, v̄)(w) + r∥w∥2 is a proper lsc convex function. Choosing
a bigger r if necessary, we can assume without loss of generality that w 7→ φ(w) + r∥w∥2 is
also a proper lsc convex function. Appealing to [31, Theorem 12.25], which is an integration
of the subdifferential for convex functions, tells us that there is a constant c for which we have
d2f(x̄, v̄)(w) + r∥w∥2 = φ(w) + r∥w∥2 + c for any w ∈ X. Since d2f(x̄, v̄)(0) = 0, we get c = 0,
which proves the formula (3.15) for (x̄, v̄).

We now argue that assertions (a) and (b) are also valid for any (x, v) ∈ gph ∂f sufficiently
close to (x̄, v̄). It follows from the discussion after Definition 3.1 and Proposition 3.9 that f is
C2-partly smooth at x for v ∈ ∂f(x) for all (x, v) sufficiently close to (x̄, v̄). Also, Proposition 3.6
tells us that prox-regularity and subdifferential continuity of f at x for v are preserved whenever
(x, v) ∈ gph ∂f and sufficiently close to (x̄, v̄). For any such a pair (x, v), we can deduce, without
loss of generality, via Proposition 3.7(b) that v ∈ ri ∂f(x). Using an argument for any such a pair
(x, v) similar to that for (x̄, v̄) proves (a) and (b) for (x, v) and hence completes the proof.

Strict twice epi-differentiability in a neighborhood relative to the graph of subgradient map-
ping was first characterized for polyhedral functions in [9, Theorem 4.1] via the same relative
interior condition in Theorem 3.10. A similar result was then achieved for composite functions
whose outer functions are polyhedral convex in [10, Theorem 3.9] under a second-order qualifica-
tion condition (SOQC). We should stress that these structures, namely, polyhedral function and
C2-smooth mapping composed with polyhedral function satisfying SOQC, are stable in the sense
that if a given function has such a structure at a given point, it maintains the same structure
at all points nearby. In [11, Theorem 5.8], by assuming the reliable C2-decomposability of the
function in a neighborhood of the point in question, the characterization was extended to the
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class of reliably C2-decomposable functions considered in Example 3.2. However, Example 3.2
and Theorem 3.10 together tell us that reliable C2-decomposability at the point in question
solely can guarantee the aforementioned characterization. This discloses the power of robust-
ness of C2-partial smoothness. We should remark, however, that in Theorem 3.10 the relative
interior condition serves as a sufficient condition, not as a characterization, for strict twice epi-
diffrentiability. In fact, the essence of C2-partial smoothness is rooted in the local representation
of gph ∂f in (3.12) which is available only for multipliers taken from the relative interior of the
subdifferential, to the best of our knowledge.

Remark 3.11. Note that it is possible to get another proof of Theorem 3.10 using [28, Theo-
rem 4.4] and [4, Theorem 28]. Indeed, it was shown in the former that for prox-regular functions,
strict twice epi-differentiability amounts to continuous differentiability of proximal mappings un-
der an extra condition that the function has a global minimum. The latter restrictive condition
was weakened recently by the authors in [11, Theorem 4.7], where it was argued that prox-
boundedness suffices to achieve this equivalence. On the other hand, it was shown in [4, Theo-
rem 28] for prox-regular and prox-bounded functions that are C2-partly smooth that the proximal
mapping is continuously differentiable. Combining these results tells us that, providing the same
relative interior condition imposed in Theorem 3.10 is satisfied, any prox-regular, prox-bounded,
and C2-partly smooth function is strictly twice epi-differentiable. Theorem 3.10 provides new
information, however. First, it shows that prox-boundedness is not required. Second, it proves
strict twice epi-differentiability of a prox-regular and C2-partly smooth function in a neighbor-
hood of a given point. Lastly, it presents a simple formula for the second subderivative of such
functions that has been reported before and is a byproduct of our direct proof for this result.

Remark 3.12. Assume that f : X → R is reliably C2-decomposable at x̄ ∈ X with represen-
tation (3.3) and that v̄ ∈ ri ∂f(x̄). Pick an arbitrary y ∈ ∂ϑ(0). Example 3.2 asserts that f is
C2-partly smooth at x̄ relative to the C2-smooth manifold M =

{
x ∈ X

∣∣Φ(x) ∈ S⊥}, where
S = par {∂ϑ(0)}, and f̂(x) = ⟨y,Φ(x)⟩ is a C2-smooth representative of f around x̄ relative
to M. It can be shown that the composite function (3.3) satisfying (3.4) is prox-regular and
subdifferentially continuous at x̄ for v̄, since it is strongly amenable at x̄ in the sense of [31, Def-
inition 10.23(b)]. Let µ̄ ∈ Y be any solution to ∇(PS ◦ Φ)(x̄)∗µ = v̄ −∇Φ(x̄)∗y. Recalling that
the projection PS is linear and self-adjoint, we get from the latter that

∇Φ(x̄)∗PS(µ̄) = v̄ −∇f̂(x̄).

It then follows from (3.4) that η := PS(µ̄) is the unique vector in S satisfying ∇Φ(x̄)∗η =
v̄ −∇f̂(x̄). We now can conclude via Theorem 3.10 that f is strictly twice epi-differentiable at
x̄ for v̄ and that

d2f(x̄, v̄)(w) = ∇2
xx⟨y + PS(µ̄),Φ⟩(x̄)(w,w) + δTM(x̄)(w), w ∈ X. (3.18)

We next justify that ȳ := y + PS(µ̄) ∈ ∂ϑ(0) and ∇Φ(x̄)∗ȳ = v̄. Indeed, the latter follows
from definition of µ̄. To prove the former, let ŷ be the unique vector from ∂ϑ(0) satisfying
∇Φ(x̄)∗ŷ = v̄, thanks to (3.4). Since v̄ ∈ ri ∂f(x̄), we infer via [11, Proposition 5.3(b)] that
ŷ ∈ ri ∂ϑ(0). For any t ∈ [0, 1), we have (1− t)ŷ + ty ∈ ri ∂ϑ(0) which results in

(1− t)ŷ + tȳ = (1− t)ŷ + ty + tPS(µ̄) ∈ ∂ϑ(0)

for all t ≥ 0 sufficiently small due to S = par {∂ϑ(0)}. Because ∇Φ(x̄)∗((1 − t)ŷ + tȳ) = v̄,
we then conclude from the uniqueness of ŷ that ȳ = ŷ. Recalling the composite form (3.3)
of f , we have Kf (x̄, v̄) =

{
w ∈ X

∣∣∇Φ(x̄)w ∈ Kϑ(0, ȳ)
}
. Using sublinearity of ϑ, we have
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ϑ(u) = dϑ(0)(u) for any u ∈ domϑ, which coupled with [31, Theorem 8.24 and Corollary 8.25]
leads us to

Kϑ(0, ȳ) =
{
u ∈ Y

∣∣ϑ(u) = ⟨ȳ, u⟩
}
=

{
u ∈ Y

∣∣ ȳ ∈ argmax
y∈∂ϑ(0)

⟨u, y⟩
}
.

Since ȳ ∈ ri ∂ϑ(0), the linear function ⟨u, ·⟩ attains its maximum over ∂ϑ(0) at ȳ if and only if
u ∈ (aff {∂ϑ(0)})⊥ = S⊥. Thus, we have

Kf (x̄, v̄) =
{
w ∈ X

∣∣∇Φ(x̄)w ∈ S⊥} = TM(x̄),

where the last equality follows from (3.4). Combining this, (3.18), and the fact that ȳ = y+PS(µ̄)
is the unique vector from ∂ϑ(0) satisfying ∇Φ(x̄)∗ȳ = v̄ implies that Theorem 3.10 covers the
implication (c) =⇒ (a), and also the implication (c) =⇒ (b), in [11, Theorem 5.8]. We should
stress here that in order to apply Theorem 3.10, one only needs to justify the reliable C2-
decomposability of the function f at the point x̄. On the contrast, [11, Theorem 5.8] demands the
latter property in a neighborhood of x̄. Thus, Theorem 3.10 actually improves those implications.
Particularly, we infer from the latter theorem that a proper, lsc, and sublinear function ϑ : Y →
R is strictly twice epi-differentiable at z ∈ Y for y ∈ ∂ϑ(z) for all (z, y) ∈ gph ∂ϑ close to (0, ȳ),
for any ȳ ∈ ri ∂ϑ(0), which is an improvement of [11, Theorem 5.7].

Stability of the strict twice-epidifferentiability of a C2-partly smooth function, established in
Theorem 3.10, makes the class of such functions a proper subset of the class of strictly twice
epi-differentiable functions as demonstrated in the next example.

Example 3.13 (failure of strict twice epi-diffrentiability in a neighborhood). To demonstrate
that the class of strictly twice epi-differentiable functions is strictly larger than that of C2-
partly smooth functions, consider the function f(x) =

∫ x
0 g(t)dt, x ∈ R, where g : R → R is a

continuous piecewise affine function given by

g(x) =

{
0 if x ≤ 0,

22i + 3 · 2i(x− 2i) if x ∈ [2i, 2i+1), i ∈ Z.

Observe that f is C1-smooth with ∇f(x) = g(x) for all x ∈ R. Moreover, it can be seen that
g is monotonically increasing over R, which ensures that f is convex. Note also that the affine
pieces comprising the graph of g have increasing slopes of 0 and 3 · 2i, i ∈ Z. Assume that t and
u are close to 0 and that t > u with t ∈ [2−i, 2−i+1) for some i ∈ IN. If u ≤ 0 < t, we arrive at

g(t)− g(u) = g(t) = 3 · 2−it− 2−2i+1 ≤ 3 · 2−it ≤ 3 · 2−i(t− u).

If t > u ≥ 0, then u ∈ [2−j , 2−j+1) for some j ≥ i. Assume that j > i and consider the lines

y = gi(x) := 3 · 2−ix− 2−2i+1 and y = gj(x) := 3 · 2−jx− 2−2j+1,

which intersect each other at the point whose x-coordinate is x0 = 2
32

−i + 1
32

−j+1. Since
u ≤ x0 ≤ t, we have g(u) = gj(u) ≥ gi(u) and

g(t)− g(u) ≤ gi(t)− gi(u) = 3 · 2−i(t− u).

Clearly, the latter estimate is also valid for j = i. Combining these tells us that

0 ≤ g(t)− g(u)

t− u
≤ 3 · 2−i(t− u)

t− u
≤ 3t→ 0 as t, u↘ 0.
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Finally, we have g(t) − g(u) = 0 if u < t ≤ 0. Thus, g is strictly differentiable at x̄ = 0 with
∇g(0) = 0. Note, however, that g is not differentiable at any x = 2i, i ∈ Z, since those points
correspond to kinks on gph g. In view of [30, Proposition 3.1(b)] and [28, Theorem 4.3], we
conclude that the convex function f is strictly twice epi-differentiable at x̄ = 0 for ∇f(x̄) = 0
while not satisfying such a property along the sequence xk := 2−k, k ∈ IN, which converges to
0. Theorem 3.10 then tells us that f is not C2-partly smooth at 0.

As Theorem 3.10 shows, under the assumptions therein a C2-partly smooth function is always
strictly twice epi-differentiable around the point under consideration. One may wonder whether
strict twice epi-differentiability in a neighborhood actually amounts to C2-partial smoothness.
The example below rules out this possibility.

Example 3.14 (failure of C2-partial smoothness). Define the function f : R2 → R by f(x1, x2) =
|x31x22|, which is taken from [26, Example 4.11]. Since f can be expressed equivalently as
max{x31x22,−x31x22}, it is prox-regular and subdifferentially continuous on R2. Moreover, f is
C1-smooth on R2 and C2-smooth around any point (x1, x2) with x1 ̸= 0. Its gradient and
Hessian, when exists, can be calculated as

∇f(x1, x2) = sgn (x1)(3x
2
1x

2
2, 2x

3
1x2)

and

∇2f(x1, x2) = sgn (x1)

[
6x1x

2
2 6x21x2

6x21x2 2x31

]
if x1 ̸= 0,

where sgn (x1) signifies the sign of x1: sgn (x1) = 1 if x1 > 0, sgn (x1) = −1 if x1 < 0, and
sgn (x1) = 0 otherwise. For any w = (w1, w2) ∈ R2, it is not hard to see that

d2f(x1, x2)(w) =

{
0 if (x1, x2) ∈ {0} × R,
∇2f(x1, x2)(w,w) otherwise.

Observe from these formulas that d2f(x′1, x
′
2) → d2f(x1, x2) uniformly on bounded sets when-

ever (x′1, x
′
2) → (x1, x2). It then follows from [31, Proposition 7.15] that the latter uniform

convergence implies d2f(x′1, x
′
2)

e−→ d2f(x1, x2) when (x′1, x
′
2) → (x1, x2), or, equivalently, f is

strictly twice epi-differentiability at any (x1, x2) ∈ R2. However, we see that f is not C2-partly
smooth at x̄ := (0, 0). Indeed, if that was the case, we would conclude from the smoothness of
f at x̄ and the normal sharpness property of f at this point that NM(x̄) = {0}, where M is
the associated manifold to f from Definition 3.1. By [31, Exercise 6.19], we arrive at x̄ ∈ intM,
which tells us that f must be C2-smooth around x̄, a contradiction to the calculation above.
This confirms that f is not C2-partly smooth at x̄.

Recall that for a set-valued mapping F : X ⇒ Y with (x̄, ȳ) ∈ gphF , the coderivative
mapping of F at x̄ for ȳ, denoted D∗F (x̄, v̄), is defined via the normal cone to gphF at (x̄, ȳ)
by

η ∈ D∗F (x̄, ȳ)(w) ⇐⇒ (η,−w) ∈ NgphF (x̄, ȳ). (3.19)

Corollary 3.15. Let f : X → R be a C2-partly smooth function at x̄ relative to a C2-smooth
manifold M such that f is prox-regular and subdifferentially continuous at x̄ for v̄ with v̄ ∈
ri ∂f(x̄). Then, for any (x, v) ∈ gph ∂f sufficiently close to (x̄, v̄), we have

D(∂f)(x, v) = D̃(∂f)(x, v) = D∗(∂f)(x, v). (3.20)

Proof. According to Theorem 3.10, f is strictly proto-differentiable at x for v for any (x, v) ∈
gph ∂f sufficiently close to (x̄, v̄), which in turn justifies the first claimed equality. The second
one then results from the recent observation in [11, Theorem 3.9].
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We should add here that the local representation of gph ∂f in (3.12) for a C2-partly smooth
function f was exploited in [20, Theorem 5.3 and Corollary 5.4] to derive an exact formula for
D∗(∂f)(x̄, v̄) in terms of the covariant Hessian ∇2

Mfv̄(x̄) of the tilted function fv̄ := f − ⟨v̄, ·⟩.
Note that the bilinear form ∇2

xxL(x̄, λ̄) in (3.14) restricted to TM(x̄) × TM(x̄) gives ∇2
Mfv̄(x̄);

see [20, Definition 2.11] and the discussion afterwards. Corollary 3.15 not only provides a new
proof for this result but also goes one step further and calculates the strict graphical derivative
of the subgradient mapping for this class of functions.

Recall that a function f : X → R enjoys the quadratic growth condition at x̄ if f(x̄) is finite
and there exists ℓ > 0 such that

f(x) ≥ f(x̄) +
ℓ

2
∥x− x̄∥2 (3.21)

for all x close to x̄. In the corollary below, we glean a characterization for the quadratic growth
of C2-partly smooth functions from our calculation of the second subderivative of those functions
in the proof of Theorem 3.10. The same result was previously observed in [20, Propostion 4.13]
using a different approach.

Corollary 3.16. Under the hypothesis of Theorem 3.10, there exists ε > 0 such that for any
(x, v) ∈ Bε(x̄, v̄) ∩ gph ∂f we have

d2f(x, v) = d2(f̂ + δM)(x, v). (3.22)

Consequently, if v̄ = 0 then f enjoys the quadratic growth condition at x̄ if and only if f̂ enjoys
the same property at x̄ with respect to M, namely (3.21) holds with f replaced with f̂ for all
x ∈ M close to x̄.

Proof. The first claim about the second subderivative of f was indeed proved in the proof of
Theorem 3.10. The second claim results from (3.22) for (x, v) = (x̄, 0) and the fact that the
validity of quadratic growth condition can be fully characterized by positiveness of the second
subderivative; see [31, Theorem 13.24(c)].

Remark 3.17. It is worth pointing out that in [20, Propostion 4.13] the subdifferential conti-
nuity was not assumed. Taking into account the discussion in Remark 3.8, it is possible to drop
the latter condition from Corollary 3.16 as well.

The rest of this section is devoted to some applications of the established strict twice epi-
differentiability of C2-partly smooth functions. We begin with regularity properties of the solu-
tion mapping to the generalized equation

p̄ ∈ G(x) := ψ(x) + ∂f(x), (3.23)

where f : X → R is a C2-partly smooth function, ψ : X → X is C1-smooth around the point
under consideration, and p̄ ∈ X. We are mainly interested in the solution mapping to (3.23),
that is the mapping p 7→ G−1(p).

Recall that a set-valued mapping F : X ⇒ Y is said to be metrically regular at x̄ for
ȳ ∈ F (x̄) if there exist a positive constant κ and neighborhoods U of x̄ and V of ȳ such that
the estimate dist

(
x, F−1(y)

)
≤ κdist

(
y, F (x)

)
holds for all (x, y) ∈ U × V . The mapping F is

said to be strongly metrically regular at x̄ for ȳ if its inverse F−1 admits a Lipschitz continuous
single-valued localization around ȳ for x̄, which means that there exist neighborhoods U of x̄ and
V of ȳ such that the mapping y 7→ F−1(y) ∩ U is single-valued and Lipschitz continuous on V .
According to [6, Proposition 3G.1], strong metric regularity of F at x̄ for ȳ amounts to F being
metrically regular at x̄ for ȳ and the inverse mapping F−1 admitting a single-valued localization
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around ȳ for x̄. These regularity properties of a set-valued mapping enjoy full characterizations
via the coderivative in (3.19) (cf. [31, Theorem 9.43]), and the strict graphical derivative in (2.3)
(cf. [31, Theorem 9.54(b)]), respectively. We recently demonstrated in [11, Proposition 4.1] that
these regularity properties are equivalent for the mapping G in (3.23) provided that ∂f is strictly
proto-differentiable. Moreover, we presented several simple characterizations for those equivalent
properties of G. In the presence of strict proto-differentiability of ∂f in a neighborhood relative
to gph ∂f , established for C2-partly smooth functions in Theorem 3.10, we provide below an
adaption of the aforementioned results for the mapping G from (3.23).

Proposition 3.18. Let x̄ be a solution to the generalized equation in (3.23) for p̄ ∈ X. Assume
that ψ is C1-smooth around x̄ and f is C2-partly smooth at x̄ relative to a C2-smooth manifold
M with local representation (3.1). Assume in addition that v̄ := p̄ − ψ(x̄) ∈ ri ∂f(x̄), and that
f is prox-regular and subdifferentially continuous at x̄ for v̄. Then the following properties are
equivalent.

(a) The mapping G from (3.23) is metrically regular at x̄ for p̄.
(b) The mapping G from (3.23) is strongly metrically regular at x̄ for p̄.
(c) The inverse mapping G−1 has a Lipschitz continuous single-valued localization s around p̄

for x̄.
(d) The condition {

w ∈ TM(x̄)
∣∣ (∇ψ(x̄) +∇2

xxL(x̄, µ̄)
)∗
(w) ∈ NM(x̄)

}
= {0} (3.24)

is satisfied, where L is taken from (3.13) and µ̄ is the unique solution to ∇Φ(x̄)∗µ̄ =
p̄ − (ψ(x̄) + ∇f̂(x)) with f̂ : X → R being any C2-smooth representative of f around x̄
relative to M.

(e) The composite mapping PTM(x̄)◦(∇ψ(x̄)+∇2
xxL(x̄, µ̄))|TM(x̄), where (∇ψ(x̄)+∇2

xxL(x̄, µ̄))|TM(x̄)

stands for the restriction of the linear mapping ∇ψ(x̄) +∇2
xxL(x̄, µ̄) to TM(x̄), is an one-

to-one linear mapping from TM(x̄) onto TM(x̄), where L and µ̄ are taken from (d).

Moreover, if any of the above equivalent properties holds, then the mapping s in (c) is M-
valued, namely s(p) ∈ M for any p in a neighborhood of p̄, and C1-smooth around p̄ with

∇s(p) = DG(x, p)−1 =
(
PTM(x) ◦ (∇ψ(x) +∇2

xxL(x, µ))|TM(x)

)−1 ◦ PTM(x). (3.25)

where x = s(p) and µ ∈ Rm is the unique vector satisfying ∇Φ(x)∗µ = p− (ψ(x) +∇f̂(x)).

Proof. Since v̄ ∈ ri ∂f(x̄), we infer from Theorem 3.10 that ∂f is strictly proto-differentiable at
x for v for all (x, v) ∈ gph ∂f sufficiently close to (x̄, v̄) and its graphical derivative D(∂f)(x, v)
is calculated by (3.14). Thus, the equivalence among assertions (a)–(d) is an immediate conse-
quence of [11, Proposition 4.1, (a) ⇐⇒ (b)] and [11, Theorems 4.2 and 4.3]. It remains to verify
that (d) and (e) are equivalent. If (d) holds, taking the orthogonal complements from both sides
of (3.24) and using [31, Corollary 11.25] tell us that (3.24) is equivalent to

NM(x̄) + (∇ψ(x̄) +∇2
xxL(x̄, µ̄))(TM(x̄)) = X. (3.26)

This, combined with a similar argument as the proof of [11, Theorem 4.2, (a) ⇐⇒ (b)], leads us
to the desirable claim in (e). Conversely, assuming (e), we arrive at

dim
(
(∇ψ(x̄) +∇2

xxL(x̄, µ̄))(TM(x̄))
)
= dimTM(x̄)

and
(∇ψ(x̄) +∇2

xxL(x̄, µ̄))(TM(x̄)) ∩NM(x̄) = {0},
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which together give us (3.26), and hence (3.24). This completes the proof of the equivalence of
(d) and (e).

Assume now that one of the equivalent properties in (a)–(e) is satisfied. By (c), we find
neighborhoods U and V of x̄ and p̄, respectively, such that the mapping s(p) := U ∩G−1(p), p ∈
V, is single-valued and Lipschitz continuous on V . It then holds that (s(p), p − ψ(s(p))) ∈
(U × Ṽ ) ∩ gph ∂f , where Ṽ is an open set containing (IX − ψ ◦ s)(V ), where IX stands for the
identity mapping from X onto X. Obviously, Ṽ is a neighborhood of v̄ = p̄ − ψ(x̄). Shrinking
U and V , if necessary, we can conclude from (3.12) that s(p) ∈ M for all p ∈ V . Recall
that ∂f is strictly proto-differentiable at x for v for all (x, v) ∈ gph ∂f near (x̄, v̄). We then
conclude via [11, Theorem 4.3] that s : V → U ∩ M is C1-smooth around p̄. We proceed by
justifying (3.25). Observe that metric regularity of G holds at x for p for all (x, p) ∈ gphG
sufficiently close to (x̄, p̄). By shrinking U and V , we can assume the latter property holds
for all (x, p) ∈ (U × V ) ∩ gphG and also differentiability of s at p. Pick now p ∈ V and
u ∈ X. Since s is differentiable at p, we get that w := ∇s(p)(u) = Ds(p)(u) = DG−1(p, x)(u),
where x := s(p) ∈ U . The latter verifies the first equality in (3.25) and also gives us u ∈
DG(x, p)(w). Employing the sum rule for graphical derivative from [31, Exercise 10.43(a)], we
have u ∈ ∇ψ(x)w + D(∂f)(x, p − ∇ψ(x))(w). This, together with (3.14), yields w ∈ TM(x)
and u ∈ ∇ψ(x)w +∇2

xxL(x, µ)w +NM(x), where µ is the unique vector satisfying ∇Φ(x)∗µ =
p − (∇ψ(x) + ∇f̂(x)). The equivalence (a) ⇐⇒ (e), together with G being metrically regular
at x for p, tells us that the mapping PTM(x) ◦ (∇ψ(x) +∇2

xxL(x, µ))|TM(x) : TM(x) → TM(x) is
one-to-one. Projecting u onto the subspace TM(x), we have

PTM(x)(u) = PTM(x)((∇ψ(x) +∇2
xxL(x, µ))(w)),

Since w ∈ TM(x), we get from the latter that

w =
(
PTM(x) ◦ (∇ψ(x) +∇2

xxL(x, µ))|TM(x)

)−1
(PTM(x)(u)),

which confirms (3.25) and hence completes the proof.

Note that a characterization of continuous differentiability of the solution mapping s, de-
fined in Proposition 3.18, which resembles the one in (3.25), was recently established in [5, The-
orem 2.7] via a different approach. However, the equivalence between metric regularity and
strong metric regularity was not obtained therein.

As an application of the Proposition 3.18 above, we present next C1-smoothness of the
proximal mapping of C2-partly smooth functions. Moreover, we demonstrate that the latter
proximal mapping is able to eventually identify the active manifold for this class of functions.
The same results were established for projection mapping onto a prox-regular and C2-partly
smooth set – a set is called C2-partly smooth if its indicator function is C2-partly smooth– in [14,
Theorem 3.3], and for the proximal mapping of a prox-bounded, prox-regular, and C2-partly
smooth function in [7, Theorem 28]. Proofs of these results rely mainly on [18, Theorem 5.7],
which establishes stability of strong critical points of parametric C2-partly smooth functions.
Below, we derive these results as an immediate consequence of Proposition 3.18. It is worth
mentioning that while we will assume the subdifferential continuity in our result below, which
was not assumed in [7], it is possible to drop using the discussion in Remark 3.8.

To proceed, recall that proximal mapping of a function f : X → R for a parameter r > 0,
denoted prox rf , is defined by

prox rf (x) = argmin
w∈X

{
f(w) + 1

2r∥w − x∥2
}
, x ∈ X.

Recall also that f is said to be prox-bounded if there exists a real number α such that the
function f + α∥ · ∥2 is bounded from below on X; see [31, Exercise 1.24].
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Corollary 3.19. Let f : X → R be a C2-partly smooth function at x̄ relative to a C2-smooth
manifold M with local representation (3.1) and let v̄ ∈ ri ∂f(x̄). Assume that f is prox-regular
and subdifferentially continuous at x̄ for v̄ and that f is prox-bounded. Then for any r > 0
sufficiently small, the proximal mapping prox rf is M-valued and C1-smooth around x̄+ rv̄ with

∇(prox rf )(z) =
(
PTM(x) ◦ (IX + r∇2

xxL(x, µ))|TM(x)

)−1 ◦ PTM(x), (3.27)

where L is taken from (3.13), x = prox rf (z), and µ ∈ Rm is the unique vector satisfying
∇xL(x, µ) = (z − x)/r.

Proof. Let ϵ > 0 and ρ ≥ 0 be constants for which (3.11) holds. Fixing r ∈ (0, 1/ρ), with
convention 1/0 = ∞, we can deduce from [31, Theorem 13.37] that prox rf = (IX+rTϵ)

−1, where
Tϵ is a localization of ∂f around (x̄, v̄) whose graph coincides with gph ∂f in Bϵ(x̄, v̄), is moreover
single-valued and Lipschitz continuous around x̄+ rv̄. Considering ψ = IX and p̄ = x̄+ rv̄, we
then infer from Proposition 3.18 that prox rf , a Lipschitz continuous single-valued localization
of the inverse mapping of G = IX+r∂f around x̄+rv̄ for x̄, is M-valued and C1-smooth around
that point. The formula for the Jacobian of prox rf at z sufficiently close to x̄ + rv̄ in (3.27)
follows immediately from that in (3.25), which completes the proof.

We close this section with an extension of Proposition 3.18 into stability analysis of the
generalized equation

0 ∈ ψ(p, x) + ∂f(x) (3.28)

associated with the subgardient mapping of a C2-partly smooth function. We will deal with the
mapping ψ : P ×X → X that concerns with a general perturbation represented by parameter
p ∈ P, where P ⊂ P is an open subset of a normed space P. Define the solution mapping
S : P ⇒ X by

S(p) :=
{
x ∈ X

∣∣ 0 ∈ ψ(p, x) + ∂f(x)
}

(3.29)

for p ∈ P and S(p) = ∅ otherwise. We are interested in conditions ensuring local single-
valuedness and certain differential stability properties of S around a given parameter p̄ ∈ P.
With characterizations for strong metric regularity in Proposition 3.18, we are in a position to
deliver the last result of this section establishing semidifferentiability and differentiability of the
solution mapping in (3.29). This will be the driving force behind our investigation in the next
section. Recall that for a set-valued mapping F : X ⇒ Y with (x̄, ȳ) ∈ gphF , if the limit vector

lim
t↘0

w′→w

F (x̄+ tw′)− ȳ

t

exists for all w ∈ X, then F is said to be semidifferentiable at x̄ for ȳ and the limit, which
equals to DF (x̄, ȳ)(w), is called the semiderivative of F at x̄ for ȳ and w. For a single-valued
mapping F , we simply call the limit, denoted by DF (x̄)(w), the semiderivative of F at x̄ for
w, and F is said to be semidifferentiable at x̄. For convenience, we now recall in addition some
notion from [6, Theorem 2B.7]–an extended implicit mapping theorem that will be exploited in
our next proof. A mapping ψ : P ×X → X is Lipschitz continuous with respect to p uniformly
in x around (p̄, x̄) with modulus ℓ > 0 if there exists ϵ > 0 such that∥∥ψ(p, x)− ψ(p′, x)

∥∥ ≤ ℓ∥p− p′∥ for all p, p′ ∈ Bϵ(p̄) and all x ∈ Bϵ(x̄). (3.30)

A mapping h : X → X is a strict estimator of ψ with respect to x uniformly in p at (p̄, x̄) with
constant τ > 0 if h(x̄) = ψ(p̄, x̄) and there exists ϵ > such that

∥r(p, x)− r(p, x′)∥ ≤ τ ∥x− x′∥ for all x, x′ ∈ Bϵ(x̄) and all p ∈ Bϵ(p̄),

where r(p, x) = ψ(p, x)− h(x).
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Theorem 3.20. Let (p̄, x̄) ∈ P ×X and ψ : P ×X → X satisfy the following conditions:

(i) for any p ∈ P near p̄, the mapping x 7→ ψ(p, x) is C1-smooth around x̄ and ∇xψ(·, ·) is
jointly continuous at (p̄, x̄); and

(ii) ψ is Lipschitz continuous with respect to p uniformly in x around (p̄, x̄).

Assume that f : X → R satisfies the hypotheses in Proposition 3.18, −ψ(p̄, x̄) ∈ ri ∂f(x̄) and that
(3.24) holds for ψ = ψ(p̄, ·). Then, there exist a neighborhood U of x̄ and a positive constant ε
such that U∩S(p) is a singleton for all p ∈ Bε(p̄) and the mapping s := U∩S(·) is M-valued and
Lipschitz continuous in Bε(p̄), where the solution mapping S is taken from (3.29). Moreover,

(a) if ψ has a strong partial semiderivative with respect to p at (p̄, x̄) in the sense that its partial
graphical derivative Dpψ(p̄, x̄) := D(ψ(·, x̄))(p̄) : P ⇒ X is everywhere single-valued and
for every ν > 0 there exists ϵ > 0 such that

∥ψ(p̄+ q, x)− ψ(p̄, x)−Dpψ(p̄, x̄)(q)∥ ≤ ν∥q∥ (3.31)

for all x ∈ Bϵ(x̄) and all q ∈ ϵB ⊂ P, then s is semidifferentiable at p̄ with

Ds(p̄)(q) = −DG(x̄, 0)−1(Dpψ(p̄, x̄)(q)), q ∈ P, (3.32)

where G := ψ(p̄, ·) + ∂f and DG(x̄, 0)−1 is calculated by (3.25);
(b) if ψ is differentiable with respect to p at (p̄, x̄) and for every ν > 0 there exists ϵ > 0 such

that (3.31) with ∇pψ(p̄, x̄)(·) in the place of Dpψ(p̄, x̄)(·) is satisfied for all x ∈ Bϵ(x̄) and
all q ∈ ϵB ⊂ P, then s is differentiable at p̄ with

∇s(p̄)(q) = −DG(x̄, 0)−1(∇pψ(p̄, x̄)(q)), q ∈ P,

where G and DG(x̄, 0) are defined in (a).

Proof. It is clear from −ψ(p̄, x̄) ∈ ri ∂f(x̄) that x̄ ∈ S(p̄). We shall utilize [6, Theorem 2B.7]
to establish the existence of a Lipschitz continuous single-valued localization of S around p̄ for x̄.
To begin with, recall that ψ = ψ(p̄, ·) is C1-smooth around x̄ and −ψ(x̄) = −ψ(p̄, x̄) ∈ ri ∂f(x̄)
and that the condition (3.24) is fulfilled. We then infer from Proposition 3.18 that the inverse
mapping G−1 of G := ψ + ∂f has a Lipschitz continuous single-valued localization around 0 for
x̄ that is M-valued and C1-smooth around 0. Let U be a neighborhood of x̄ and ϵ′ > 0 such
that

γ(v) := U ∩G−1(v) (3.33)

is a singleton for all v ∈ ϵ′B and the mapping γ : ϵ′B → U ∩ M is C1-smooth. Let κ > 0 be
the Lipschitzian constant of γ in ϵ′B. We now show that ψ(p̄, ·) is a strict estimator of ψ with
respect to x uniformly in p at (p̄, x̄) with a constant τ ∈ (0, κ−1). Let r(p, x) := ψ(p, x)−ψ(p̄, x)
for (p, x) ∈ P × X and ϵ′′ > 0 be such that Bϵ′′(p̄) ⊂ P. Pick p ∈ Bϵ′′(p̄) and x, x′ ∈ Bϵ′′(x̄)
arbitrarily and observe that

∥r(p, x)− r(p, x′)∥ ≤ sup
y∈[x, x′]

∥∇xr(p, y)∥ · ∥x− x′∥

= sup
y∈[x, x′]

∥∇xψ(p, y)−∇xψ(p̄, y)∥ · ∥x− x′∥ ≤ τ∥x− x′∥,

where [x, x′] := {(1− t)x+ tx′ | 0 ≤ t ≤ 1} and τ := supp∈Bϵ′′ (p̄), y∈Bϵ′′ (x̄)
∥∇xψ(p, y)−∇xψ(p̄, y)∥.

Recalling that ∇xψ is jointly continuous at (p̄, x̄), we can assume without loss of generality that
τ < κ−1, for otherwise we could select a smaller ϵ′′. Thus, ψ = ψ(p̄, ·) is a strict estimator of ψ
with respect to x uniform in p at (p̄, x̄) with constant τ satisfying κτ < 1. Appealing now to [6,
Theorem 2B.7], we conclude that the solution mapping S from (3.29) has a Lipschitz continuous
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single-valued localization around p̄ for x̄. We then find a neighborhood of x̄, which we denote
by the same U as above for simplicity, and ε > 0 such that the mapping s : P ⊃ Bε(p̄) → U ,
defined by s(p) = U ∩S(p), is single-valued and Lipschitz continuous on Bε(p̄). In view of (3.29),
we get for all p ∈ Bε(p̄) that

−(ψ(p, s(p))− ψ(p̄, s(p))) ∈ (ψ + ∂f)(s(p)),

or, equivalently, s(p) ∈ G−1(r(p, s(p))). Shrinking neighborhoods of x̄ and p̄ if necessary, we
can infer from (3.30) that ∥r(p, s(p))∥ ≤ ℓ∥p− p̄∥ < ϵ′ for all p ∈ Bε(p̄). Using (3.33), we arrive
at s(p) ∈ U ∩ G−1(r(p, s(p))) = {γ(r(p, s(p)))} ⊂ M for all p ∈ Bε(p̄). In summary, we have
showed that S has a single-valued localization s : Bε(p̄) → U that is M-valued and Lipschitz
continuous on Bε(p̄).

We now turn to differential stability properties of the mapping s above. Due to Lipschitz
continuity of s on Bε(p̄), to prove that s is semidifferentiable (respectively, differentiable) at p̄
it suffices to show that Ds(p̄) is single-valued (respectively, Ds(p̄) is single-valued and linear);
see [31, Exercise 9.25(a)–(b)]. Pick an arbitrary q ∈ P and assume that w ∈ Ds(p̄)(q). By
definition, there are sequences tk ↘ 0, qk → q in P, and wk → w inX with x̄+tkw

k = s(p̄+tkq
k).

The latter yields x̄+ tkw
k ∈ U and

0 ∈ ψ(p̄+ tkq
k, x̄+ tkw

k) + ∂f(x̄+ tkw
k)

= G(x̄+ tkw
k) + ψ(p̄+ tkq

k, x̄+ tkw
k)− ψ(p̄, x̄+ tkw

k)

Let ν > 0 be arbitrarily small. By (a), ψ has a strong partial semiderivative with respect to p
at (p̄, x̄). So, we get from the above inclusion that

−Dpψ(p̄, x̄)(q
k) ∈ G(x̄+ tkw

k)/tk + ν∥qk∥B

for all k sufficiently large. Passing to the limit as k → ∞ and observing that ν was arbitrary give
us −Dpψ(p̄, x̄)(q) ∈ DG(x̄, 0)(w), or, equivalently, w ∈ DG(x̄, 0)−1(−Dpψ(p̄, x̄)(q)). It follows
from (3.24) and Proposition 3.18 that DG(x̄, 0)−1 is calculated by (3.25). Thus, DG(x̄, 0)−1 is
single-valued and linear. We then have

Ds(p̄)(q) = {w} = −DG(x̄, 0)−1(Dpψ(p̄, x̄)(q)).

Since q ∈ P was chosen arbitrarily, the latter verifies semidifferentiability of s at p̄ and (3.32).
For (b), we can argue similarly to drive

Ds(p̄)(q) = {w} = −DG(x̄, 0)−1(∇pψ(p̄, x̄)(q)) for all q ∈ P.

Since DG(x̄, 0)−1 is single-valued and linear, the latter justifies differentiability of s at p̄ and the
claimed formula for ∇s(p̄) and hence completes the proof.

4 Asymptotics of Stochastic Programs with C2-Partly Smooth
Regularizers

Consider the generic regularized stochastic problem

minimize
x∈X

f(x) := φ(x) + θ(x), with φ(x) := E[φ̂(x;Z)], (P)

where Z is a random vector whose probability distribution P is supported on a measurable space
(Ξ,A ) and stands for a data sample and φ̂ : X × Ξ → R is a loss function. The regularizer
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θ : X → R in (P) may either encode a geometric constraint or promote desirable low-complexity
structure, such as sparsity or low-rank, for a minimizer. We assume that the function φ(·) =
E[φ̂(·;Z)], is well-defined within some given domain, where the expectation E is taken with
respect to Z ∼ P on (Ξ,A ). Let U be a bounded domain in X, where we expect that a
solution x̄ to the true problem (P) exists. For each x ∈ U , the expected value φ(x) can be
approximated through a sample average approximation (SAA) estimator. Namely, given k data
samples Z1, . . . ,Zk, independent and identically distributed (iid) copies of the random vector Z,
we use the averaging function of φ̂(·;Zi), i = 1, . . . , k, in place of φ in (P) and then consider the
so-called SAA problem of (P), which is formulated as

minimize
x∈X

fk(x) :=
1

k

k∑
i=1

φ̂(x;Zi) + θ(x). (Pk)

The emphasis of this section is on asymptotics of sequences of solutions to the SAA problem
(Pk). Our analysis closely follows developments of sensitivity analysis and asymptotic theory
made in [16, 17] by King and Rockafellar for (stochastic) generalized equations under proto-
differentiability, subinvertibility, and single-valuedness of the inverse graphical derivatives; see
[17, Assumptions M.2–M.4] and discussions therein. According to [16, Section 3], a set-valued
mapping F : X ⇒ Y is subinvertible at (x̄, 0) if 0 ∈ F (x̄) and there exist a compact convex
neighborhood U ⊂ X of x̄, a positive constant ε, and a nonempty convex-valued mapping
G : εB ⇒ U such that x̄ ∈ G(0) and gphG is a closed subset of (εB × U) ∩ gphF−1. If F−1

admits a continuous selection x(y) around 0 with x(0) = x̄, then F is clearly subinvertible at
(x̄, 0). Assume now that F : X ⇒ X is a maximal monotone mapping; see [31, Definitions 12.1
and 12.5] for the definition of this concept. It was shown in [16, Theorem 5.1] that the condition
DF (x̄, 0)−1(0) = {0} is sufficient for subinvertibility of F at (x̄, 0). Recalling also from [31,
Theorem 12.65] that the single-valued property of DF (x̄, 0)−1 = DF−1(0, x̄) is equivalent to
semidifferentiability of F−1 at 0 for x̄. Recall that Theorem 3.20 provides sufficient conditions
for semidifferetiability of solution mappings to generalized equations associated with C2-partly
smooth functions. In order to exploit our analysis in Section 3 in analyzing asymptotics of the
stochastic generalized equation associated with (P), we focus on objective functions that consist
of a C2-smooth loss function φ in conjunction with a C2-partial smoothness regularizer θ. Fixing
these settings, we are going to study the asymptotic distribution of solutions to

0 ∈ 1

k

k∑
i=1

∇xφ̂(x;Zi) + ∂θ(x), (4.1)

which is referred to as the SAA generalized equation of the true variational system corresponding
to problem (P) given by

0 ∈ E[∇xφ̂(x;Z)] + ∂θ(x). (4.2)

To begin with, we formally state standing assumptions in our analysis.

Assumption 4.1 (integrability and smoothness). (S.1) The function φ̂ : U × Ξ → R is mea-
surable in the second variable ξ ∈ Ξ for each x ∈ U , a bounded domain in X.

(S.2) For almost every ξ ∈ Ξ, the function x 7→ φ̂(x; ξ) is C2-smooth on U .
(S.3) There exists g : Ξ → R+ with E[g(Z)2] <∞ such that

max
{
|φ̂(x; ξ)|, ∥∇xφ̂(x; ξ)∥, ∥∇2

xxφ̂(x; ξ)∥
}
≤ g(ξ)

for almost every ξ ∈ Ξ and for all x ∈ U .
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(S.4) There exists ℓ : Ξ → R++ with E[ℓ(Z)] <∞ satisfying

max
{
|φ̂(x; ξ)− φ̂(x′; ξ)|, ∥∇xφ̂(x; ξ)−∇xφ̂(x

′; ξ)∥
}
≤ ℓ(ξ)∥x− x′∥

for almost every ξ ∈ Ξ and for all x, x′ ∈ U .
Here, in (S.3)–(S.4), the gradients∇xφ̂(·; ξ) and Hessians∇2

xxφ̂(·; ξ) of φ̂(·; ξ) exist for almost
every ξ ∈ Ξ, by (S.2).

Note from assumptions (S.1)–(S.4) and [33, Theorem 7.52] that the expectation function
φ = E[φ̂(·;Z)] is well-defined and, moreover, twice continuously differentiable with

∇φ(x) = E[∇xφ̂(x;Z)] and ∇2φ(x) = E[∇2
xxφ̂(x;Z)], x ∈ U .

Assumption 4.2 (analytical assumptions). Assume that x̄ ∈ dom θ for which the following
conditions are satisifed:

(A.1) −∇φ(x̄) ∈ ri ∂θ(x̄).
(A.2) θ is C2-partly smooth at x̄ relative to a C2-smooth manifoldM with the local representation

(3.1) and θ̂ : X → R is a C2-smooth representation of θ around x̄ relative to M; θ is prox-
regular and subdifferentially continuous at x̄ for −∇φ(x̄).

(A.3) The second-order condition{
w ∈ TM(x̄)

∣∣∇2
xxL(x̄, µ̄)(w) ∈ NM(x̄)

}
= {0} (4.3)

holds, where L(x, µ) := φ(x)+ θ̂(x)+ ⟨µ,Φ(x)⟩ for any (x, µ) ∈ X×Rm and where µ̄ ∈ Rm

is the unique vector, satisfying ∇Φ(x̄)∗µ̄ = −(∇φ(x̄) +∇θ̂(x̄)).

Let P be a separable Banach space equipped with its Borel algebra B(P). Recall from [15,
Section 3] that a sequence {pk}k∈IN of random vectors pk : Ξ → P is said to satisfy a generalized
central limit formula if there exist a limit p̄ ∈ P, a sequence {tk}k∈IN of positive scalars decreasing

to 0, and a limit distribution q such that (pk − p̄)/tk
D−→ q, where the notation

D−→ stands
for convergence in distribution. The following lemma establishes asymptotic behavior of the
sequence of stochastic gradient mappings

∇φ̂k := 1
k

k∑
i=1

∇xφ̂(·;Zi), k ∈ IN, (4.4)

taken from (4.1). In what follows, we use C1(U ,X) to denote the space of C1-smooth mappings
ϕ : U → X endowed with the norm

∥ϕ∥1,U := sup
x∈U

∥ϕ(x)∥+ sup
x∈U

∥∇ϕ(x)∥,

where ϕ(x) ∈ X and ∇ϕ(x) ∈ L(X,X), the space of linear operators from X into X itself
equipped with the operator norm. And, as usual, B(X) and B(C1(U ,X)) stand for the Borel
algebras on X and C1(U ,X), respectively.

Lemma 4.3. Suppose that φ̂ : X × Ξ :→ R satisfies Assumption 4.1. Then, for each k, the
stochastic gradient mapping ∇φ̂k in (4.4) is a random vector in C1(U ,X), and ∇φ̂k converges
to ∇φ with probability one in C1(U ,X). Moreover, one has

√
k
(
∇φ̂k −∇φ) D−→ ϕ (4.5)

as random vectors in C1(U ,X), where ϕ is normally distributed with mean 0 and variance

Σ(x) := Var∇xφ̂(x;Z) = E[(∇xφ̂(x;Z)−∇φ(x))(∇xφ̂(x;Z)−∇φ(x))⊤], x ∈ U .
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Proof. Note that ∇φ̂k converging with probability one to ∇φ in C1(U ,X) means that ∇φ̂k(x)
and∇2φ̂k(x) :=

1
k

∑k
i=1∇2

xxφ̂(x;Zi) converge with probability one to∇φ(x) inX and to∇2φ(x)
in L(X,X), respectively, uniformly in U . Both assertions are an adaptation of [33, Theorem 9.60]
for ∇xφ̂(·; ξ) and ∇2

xxφ̂(·; ξ) that are finite-dimensional vector-valued mappings. The claimed
generalized central limit formula in (4.5) follows from [17, Theorem A.3].

We conclude this section with asymptotic distribution of the solution to the SAA generalized
equation in (4.1).

Theorem 4.4 (asymptotic distribution). Suppose that Assumptions 4.1 and 4.2 hold for φ̂
and φ = E[φ̂(·;Z)] with respect to a bounded domain U in X containing x̄. Then, there exists
a neighborhood U ⊂ U of x̄ such that, with probability one, for k sufficiently large, the SAA
generalized equation in (4.1) admits a unique local solution xk ∈ U . Moreover, the sequence
{xk}k∈IN converges to x̄ with probability one and satisfies the generalized central limit formula

√
k(xk − x̄)

D−→ −
(
PTM(x̄) ◦ ∇2

xxL(x̄, µ̄)|TM(x̄)

)−1
(PTM(x̄)(ϕ(x̄))), (4.6)

where ϕ ∈ C1(U ,X) is taken from Lemma 4.3 and L and µ̄ are from Assumption 4.2(A.3).

Proof. Let P = C1(U ,X) and P ⊂ P an open subset containing p̄ := ∇φ. Consider the
evaluation mapping ψ : P × U → X, defined by ψ(p, x) := p(x) for any (p, x) ∈ P × U . This
instance of ψ clearly satisfies assumptions (i) and (ii) in Theorem 3.20 at (p̄, x̄). It was also
pointed out in [16, Remark 4.2] that ψ satisfies the assumption (a) in Theorem 3.20 at (p̄, x̄)
with

Dpψ(p̄, x̄)(q) = q(x̄) for all q ∈ C1(U ,X). (4.7)

Let U ⊂ U and δ > 0 be the neighborhood of p̄ and the constant taken from Theorem 3.20. In
the event of the convergence ∇φ̂k → ∇φ in C1(U ,X), which happens with probability one as
shown in Lemma 4.3, Theorem 3.20 tells us that (4.1) eventually admits a unique local solution
xk ∈ U . Compactness of U implies that the sequence {xk}k∈IN has at least one cluster point,
says x̂. Thus, there is a subsequence {xki}i∈IN of {xk}k∈IN that xki → x̂. It follows from the
local Lipschitz continuity of the localization s(·) = U ∩ S(·) of the solution mapping

S(p) :=
{
x ∈ X

∣∣ 0 ∈ ψ(p, x) + ∂θ(x)
}
, p ∈ P,

on Bδ(∇φ) that
x̂ = lim

i→∞
xki = lim

i→∞
s(∇φ̂ki)=s(∇φ) = x̄,

where the third equality holds with probability one. This tells us that all the convergent sub-
sequences of {xk}k∈IN tend to x̄ with probability one and therefore the sequence {xk}k∈IN con-
verges to x̄ with probability one. We can deduce from Theorem 3.20 together with (4.7) that
the graphical localization s of S is almost surely semidifferentiable at p̄ = ∇φ for x̄ with

Ds(p̄)(q) = −
(
PTM(x̄) ◦ ∇2

xxL(x̄, µ̄)|TM(x̄)

)−1(
PTM(x̄)(q(x̄))

)
, q ∈ C1(U ,X);

see [15, Definition 3.1] for the definition of the latter differentiability notion. Applying [15, The-
orem 3.2] to the continuous mapping s : Bδ(∇φ) → U and the sequence {∇φ̂k}k∈IN that satisfies
(4.5) by Lemma 4.3, we obtain the generalized central limit formula (4.6), which completes the
proof.

Note that asymptotic distribution of SAA of a generalized equation was first established
in [17, Theorem 2.7] under subinvertibility and the single-valuedness of the inverse of the graph-
ical derivative of the solution mapping; see also [33, section 5.2.2] for a similar result for the
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KKT system of nonlinear programming problems. These assumptions are automatically satis-
fied under Assumption 4.2. Furthermore, the latter result assumes the almost sure convergence
of the sequence {xk}k∈IN in Theorem 4.4, a fact that was not assumed in our result and in-
deed was proven as a consequence of Assumption 4.2. The asymptotic distribution of SAA
of a generalized equation was recently achieved in [5, Theorem 3.1] when the solution map-
ping to the generalized equation has a C1 single-valued graphical localization. According to
Theorem 3.20, our Assumption 4.2 ensures such a property for the solution mapping to (4.2).
However, similar to [17, Theorem 2.7], [5, Theorem 3.1] assumes the almost sure convergence of
the sequence {xk}k∈IN. Note that while our framework is not as general as the one considered
in [5], our approach clearly can be used for a generalized equation. Moreover, we can replace
Assumption 4.2 with the mere assumption that ∂θ is strictly proto-differentiable and study the
asymptotic distribution of solutions to the SAA approximation of the generalized equation

0 ∈ f(x) + ∂θ(x),

where f : X → R is C1-smooth. Such a condition is weaker than assuming the solution mapping
to the generalized equation has a C1 single-valued graphical localization, which was used in [5].
We will pursue this issue in our future works.
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