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Abstract4

This paper systematically treats the asymptotic behavior of many (linear/nonlinear)5

classes of higher-order fractional differential equations with multiple terms. To do this,6

we utilize the characteristics of Caputo fractional differentiable functions, the comparison7

principle, counterfactual reasoning, and the spectral analysis method (concerning the integral8

presentations of basic solutions). Some numerical examples are also provided to demonstrate9

the validity of the proposed results.10
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1 Introduction16

J.C.F. Sturm initiated oscillation theory in his investigations of Sturm–Louville problems in17

1836. Due to its great importance in describing many real applications, many papers dealing with18

non-autonomous ordinary differential equations have appeared, in which various classifications19

of equations according to the oscillatory properties of their solutions are proposed. Furthermore,20

the existence or absence of singular, proper, oscillatory, and monotone solutions of various types21

are shown and the asymptotic properties of such solutions are considered. We refer in particular22

to the survey paper by Wong [12], to the monographs by Elias [6], Kiguradze and Chanturiya23

[9], Swanson [11] and the references therein for some representative contributions related to this24

topic.25

Since the Leibnitz rule for derivatives of composite functions is not valid for fractional derivatives,26

many approaches and methods in ordinary differential equations are often not applicable to27

fractional differential equations concerning the study of the oscillatory properties of solutions.28

Hence, only a few studies on this theory have been published, and the development is still in29

its infancy and requires further investigation. From a personal perspective, we list some typical30

works below.31
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Grace [7] reported the first results on oscillatory solutions of fractional differential equations. In32

particular, in this paper, using a counterfactual argument when dealing with the definition of33

non-oscillation, the author obtained some simple sufficient conditions ensuring the existence of34

oscillatory solutions for some basic classes of equations with Riemann–Liouville derivatives of the35

order less than 1. After that in [7], he showed the oscillatory behavior of solutions to nonlinear36

fractional differential equations with the Caputo fractional derivative of the order α ∈ (1, 2).37

Băleanu et al. [1] investigated the eventual sign-changing for the solutions of a linear (1 + α)-38

order fractional differential equation (α ∈ (0, 1)) by presenting a Kamenev-type theorem in the39

framework of fractional calculus. A survey on one of the mathematical approaches used to solve40

a fractional differential equation whose solution gives the free dynamic response of viscoelastic41

single degree of freedom systems (viscosity is modeled by a fractional displacement derivative42

instead of first-order one) is introduced in [4]. The paper dealt with the Caputo fractional43

derivative and its Laplace transform (on which the resolution method is based).44

Recently in [2], the authors considered higher-order fractional differential equations with the45

Riemann–Liouville fractional derivatives and Emden–Fowler-type coefficients. They explored46

the effect of different orders of derivatives on the oscillatory and asymptotic properties of the47

studied equations. Moreover, the dissimilarities between integer and non-integer order cases are48

emphasized.49

Inspired by the works of Grace, Bartušek, and Došlá mentioned above, we focus on multi-term50

fractional differential equations with the Caputo fractional derivatives in the present paper. In51

light of the characteristics of Caputo fractional differentiable functions, the comparison principle,52

counterfactual reasoning, and the spectral analysis method (concerning the integral presentations53

of basic solutions), we systematically treat the asymptotic behavior of many (linear/nonlinear)54

classes of higher-order fractional differential equations with multiple terms. More precisely, in55

Section 3, we discuss the existence of (linear/nonlinear) fractional differential equations. The56

asymptotic behavior of oscillatory solutions is described in Section 4. The asymptotic behavior57

of non-oscillatory solutions of higher-order fractional differential equations with the Emden–58

Fowler-type coefficients is given in Section 5. We also provide numerical examples to illustrate59

the obtained theoretical findings.60

2 Preliminaries61

Let 0 < α ∈ R with ⌈α⌉ = n and J = [0, T ] or J = [0,∞) we defined Riemann-Liouville
fractional integral of a function f : J → R as below:

Iα0+f(t) :=
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds, t ∈ J,

its Riemann-Liouville fractional derivative order α of f as

RLDα
0+f(t) = D(n)In−α

0+
f(t), t ∈ J \ {0},

and its Caputo fractional derivative order α of function f as below:

CDα
0+f(t) :=

RL Dα
0+(f(t)− Tn−1[f ; 0](t)), t ∈ J \ {0},

where Tn−1[f ; 0](t) =
∑n−1

k=0
f (k)(0)

k! tk denotes the Taylor polynomial of order n− 1 of f centered62

at 0 and D(n) is usually derivative. See [5, Chapter III] and [13] for more details on the Caputo63

fractional derivative.64
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Lemma 2.1. Let α, β > 0 and x ∈ L1[0, T ]. Then, we have

Iα0+
(
Iβ
0+
x(t)

)
= Iβ

0+
(Iα0+x(t)) = Iα+β

0+
x(t), ∀t ∈ [0, T ].

Proof. See [5, Theorem 2.2 and Corollary 2.3 page 14]65

Lemma 2.2. Let f ∈ AC[0, T ], α ∈ (0, 1). Then,

CDα
0+f(t) =

1

Γ(1− α)

∫ t

0

f ′(s)

(t− s)α
ds, ∀t ∈ (0, T ).

Proof. See [5, Lemma 2.12, p. 27 and Lemma 3.4, p. 53].66

Lemma 2.3. If f is a continuous and α ∈ (0, 1), then

CDα
0+I

α
0+f = f.

Proof. See [5, Theorem3.7, p. 53].67

Definition 2.4. [3, Definition 2.2] Let 0 < α ∈ R with ⌈α⌉ = n and f ∈ Cn−1[0, T ]. If CDα
0+f68

exists and is in the class L1[0, T ], then we say that the function f is Caputo α-differentiable on69

[0, T ]. If CDα
0+f exists and is in the class C[0, T ], then we say that the function f is continuously70

Caputo α-differentiable on [0, T ].71

Lemma 2.5. Let α > 0. Suppose that x is continuously Caputo α-differentiable on [0,∞), then

Iα0+
(
CDα

0+x(t)
)
= x(t)−

⌊α⌋−1∑
k=0

x(k)(0)

k!
tk, ∀t ∈ [0,∞).

Proof. See [13, Proposition 5.1].72

Lemma 2.6. Let n− 1 < α < n, n ∈ N and assume that x : [0,∞) → R is continuously Caputo
α-differentiable on [0,∞). Then, for any t ∈ (0,∞), we have

CDα
0+x(t) =

1

Γ(n− α)

(
x(n−1)(t)− x(n−1)(0)

tα−n+1

)
+ (α− n+ 1)

∫ t

0

x(n−1)(t)− x(n−1)(s)

(t− s)α−n+2
ds.

Proof. See [13, Theorem 5.2].73

Lemma 2.7. [7, Lemma 2.1] For X ≥ 0 and Y > 0, we have74

(i) λXY λ−1 −Xλ ≤ (λ− 1)Y λ, λ > 1.75

(ii) λXY λ−1 −Xλ ≥ (λ− 1)Y λ, 0 < λ < 1.76

Definition 2.8. Let x : [0,∞) → R. It is said to be eventually (non) negative, positive if there77

is a T > 0 such that x(t) < 0 (> 0), x(t) > 0 for all t ≥ T , respectively.78
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Consider the multi-term fractional differential equation

k−1∑
i=1

ai
CDαi

0+
x(t) +C Dαk

0+
x(t) = f(t, x), t > 0 (1)

with the initial conditions

x(0) = x0, x
(j)(0) = xj , j = 1, 2, . . . , k − 1, (2)

where 0 < α1 ≤ 1 < α2 ≤ 2 < . . . < αk ≤ k, ai, i = 1, 2, . . . , k are constants, and f : [0,∞)×R →79

R is continuous.80

Definition 2.9. A function x : [0,∞) → R is called a solution of the system (1)–(2) if it81

is continuously Caputo α-differentiable on [0,∞) and satisfies (1) on (0,∞) and the initial82

conditions (2).83

Definition 2.10. A solution x of the system (1)–(2) is oscillatory if it exists globally on [0,∞)84

and there is a sequence {tn}∞n=1 ⊂ [0,∞) with tn → ∞ as n → ∞ such that x(tn) = 0, n ∈ N.85

Otherwise, it is called non-oscillatory.86

Theorem 2.11. Consider the system (1)–(2). Suppose that f(·, ·) is Lipchitz continuous to the
second variable, that is, there is a continuous function L : [0,∞) → [0,∞) such that

|f(t, x)− f(t, x̂)| ≤ L(t)|x− x̂|, ∀t ∈ [0,∞), x, x̂ ∈ R.

Then, for any xj ∈ R, j = 0, 1, . . . , k − 1, the system (1)–(2) has a unique solution on [0,∞).87

Proof. Using the same arguments as in the proof of [3, Theorem 4.5].88

3 On the existence of the oscillatory solutions of fractional dif-89

ferential equations90

3.1 The oscillation of multi-order fractional differential equations91

We first focus on the following fractional differential equation

CDα
0+x(t) + a CDβ

0+
x(t) = f(t, x(t)) + g(t), t > 0 (3)

with the initial conditions

x(0) = x0, x
(1)(0) = x1, . . . , x

(n−1)(0) = xn−1, (4)

where 0 < β < α ≤ ⌈α⌉ = n ∈ N, x0, x1, . . . , xn−1 ∈ R, a is a non-negative real number,92

f : [0,∞) × R → R and g : [0,∞) → R are continuous functions satisfying the assumptions93

below.94

(A) There exists T > 0 such that xf(t, x) ≤ 0 for all t ≥ T and x ∈ R.95

(B)

lim sup
t→+∞

tβ−α−n+1

∫ t

0
(t− s)α−1g(s)ds = +∞,

lim inf
t→+∞

tβ−α−n+1

∫ t

0
(t− s)α−1g(s)ds = −∞.
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Let m := ⌈β⌉. If β /∈ Z, we set α1 = β − [β] + 1, αi = α1 + i − 1, i = 2, 3, . . . ,m + 1,96

αi = i − 1, i = m + 2, . . . , n − 1, αn = α. If β ∈ Z, we set αi = i, i = 1, 2, . . . , n − 1, αn = α.97

Then the equation (3) is rewritten as98

CDαn

0+
x(t) = F (t, x(t),C Dα1

0+
x(t),C Dα2

0+
x(t), . . . ,C D

αn−1

0+
x(t)), t > 0, (5)

here

F (t, x(t),C Dα1

0+
x(t), . . . ,C D

αn−1

0+
x(t)) =

{
f(t, x(t)) + g(t)− a CD

αm+1

0+
x(t) if β /∈ Z,

f(t, x(t)) + g(t)− a CDαm

0+
x(t) if β ∈ Z.

By [3, Theorem 17], if f is globally Lipschitz continuous concerning the second variable, the99

system (5)–(4) has a unique global solution on [0,∞).100

Theorem 3.1. Assume that the conditions (A) and (B) hold. Then an arbitrary solution of101

(3) (if it exists globally) is oscillatory.102

Proof. The theorem will be proven by contradiction. Suppose that x is a non-oscillatory solution
of the system (3)–(4). Without loss of generality, assume that x(t) > 0 for t ≥ t1. According to
the assumption (A), we can find t2 > max{T, t1} so that x(t)f(t, x(t) ≤ 0 for all t ≥ t2 and thus
f(t, x(t)) ≤ 0 for all t ≥ t2. On the other hand, for all t > 0, we have

Iα0+
(
CDα

0+x(t) + a CDβ
0+
x(t)

)
= x(t)−

n−1∑
k=0

x(k)(0)

k!
tk + aIα−β

0+

(
x(t)−

m−1∑
k=0

x(k)(0)

k!
tk

)

= x(t)−
n−1∑
k=0

x(k)(0)

k!
tk −

m−1∑
k=0

ax(k)(0)

Γ(α− β + 1 + k)
tα−β+k + aIα−β

0+
x(t),

where m = ⌈β⌉. From this,

x(t) =
n−1∑
k=0

x(k)(0)

k!
tk +

m−1∑
k=0

ax(k)(0)

Γ(α− β + 1 + k)
tα−β+k − a

Γ(α− β)

∫ t

0
(t− s)α−β−1x(s)ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s, x(s))ds+

1

Γ(α)

∫ t

0
(t− s)α−1g(s)ds, ∀t > 0.

Put b = max{|x0|, |x1|, . . . , |xn−1|}, M1 = maxs∈[0,t2] |x(s)|, M2 = maxs∈[0,t2] |f(s, x(s))|. Since
0 < β < α, a ≥ 0, x(s) > 0, f(s, x(s)) ≤ 0 for all s ≥ t2, we obtain

x(t) ≤
n−1∑
k=0

b

k!
tk +

m−1∑
k=0

ab

Γ(α− β + 1 + k)
tα−β+k +

aM1

Γ(α− β + 1)
tα−β

+
1

Γ(α)

∫ t2

0
(t− s)α−1f(s;x(s))ds+

1

Γ(α)

∫ t

0
(t− s)α−1g(s)ds, ∀t > t2.

This implies that for all t > t2,

tβ−α−n+1x(t) ≤
n−1∑
k=0

b

k!
tk+β−α−n+1 +

m−1∑
k=0

ab

Γ(α− β + 1 + k)
tk−n+1 +

aM1

Γ(α− β + 1)
t1−n

+
tβ−n+1−α

Γ(α)

∫ t2

0
(t− s)α−1f(s, x(s))ds+

tβ−α−n+1

Γ(α)

∫ t

0
(t− s)α−1g(s)ds. (6)
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Consider the case when α ≤ 1. Notice that for all s ∈ [0, t2], t > t2, t(t2 − s) ≤ t2(t − s). It
deduces that t

t−s ≤ t2
t2−s . Hence,

t1−α

Γ(α)

∫ t2

0
(t− s)α−1f(s, x(s))ds ≤ M2t

1−α

Γ(α)

∫ t2

0
(t− s)α−1ds

=
M2

Γ(α)

∫ t2

0

(
t

t− s

)1−α

ds

≤ M2

Γ(α)

∫ t2

0

(
t2

t2 − s

)1−α

ds

=
M2t2

Γ(α+ 1)
, ∀t > t2. (7)

To deal with α > 1, we see that

t1−α

Γ(α)

∫ t2

0
(t− s)α−1f(s, x(s))ds ≤ M2t

1−α

Γ(α)

∫ t2

0
(t− s)α−1ds

=
M2

Γ(α)

∫ t2

0

(
t− s

t

)α−1

ds

≤ M2

Γ(α)

∫ t2

0
ds

=
M2t2
Γ(α)

, ∀t > t2. (8)

Since k + β − α− n+ 1 < 0 for all k = 0, . . . , n− 1, k − n+ 1 ≤ 0 for all k = 0, . . . ,m− 1 and
1− n ≤ 0, by combining (6), (7) and (8), there is a positive constant c = c(t2) such that

tβ−α−n+1x(t) ≤ c+
tβ−α−n+1

Γ(α)

∫ t

0
(t− s)α−1g(s)ds, ∀t ≥ t2, (9)

which together with (B) leads to

lim inf
t→∞

tβ−α−n+1x(t) ≤ c+ lim inf
t→∞

tβ−α−n+1

Γ(α)

∫ t

0
(t− s)α−1g(s)ds = −∞,

contrary to the counterfactual hypothesis that x(t) > 0 for all t > t2. The proof is complete.103

Corollary 3.2. Consider the system (3)–(4). Suppose that f satisfies the assumption (A) in104

Theorem 3.1 and g has the following form.105

(B)’ g(t) =C Dα
0+(t+1)σh(t), t ≥ 0, where σ > α−β+n−1 > 0, h is continuously differentiable106

on [0,∞), lim supt→∞ h(t) > 0 and lim inft→∞ h(t) < 0.107

Then, its solution (if it exists globally) is oscillatory.108

Proof. It is sufficient to check that g verifies the condition (B) in Theorem 3.1. Indeed, due to
h is continuously differentiable on [0,∞), according to Lemma 2.5, we obtain

tβ−α−n+1

∫ t

0
(t− s)α−1g(s)ds = Γ(α)tβ−α−n+1Iα0+g(t)

= Γ(α)tβ−α−n+1(t+ 1)σh(t), t > 0.
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Notice that σ > α− β + n− 1, therefore

lim sup
t→∞

tβ−α−n+1

∫ t

0
(t− s)α−1g(s)ds = lim

t→∞
tβ−α−n+1(t+ 1)σ lim sup

t→∞
h(t) = +∞.

In the same manner, we can see that

lim inf
t→∞

tβ−α−n+1

∫ t

0
(t− s)α−1g(s)ds = −∞,

which completes the proof.109

Example 3.3. Consider the fractional differential equation (3) with α = 1/2, β = 1/3, a = 2,

f(t, x) = −(t− 1)x− (t2 − 3)x3 and g(t) =C D
1/2
0+

(
t7/6 sin t

)
. This equation is rewritten as

CD
1/2
0+

x(t) + 2 CD
1/3
0+

x(t) = −(t− 1)x(t)− (t2 − 3)x3(t) +C D
1/2
0+

(t7/6 sin t), t > 0. (10)

It is easy to check that xf(t, x) ≤ 0 for all t ≥ 2. Thus f satisfies the condition (A). Moreover,
for all t > 0,

t−1/6

∫ t

0
(t− s)−1/2g(s)ds = Γ(1/2)t−1/6I

1/2
0+

g(t) = Γ(1/2)t−1/6I
1/2
0+

(
CD

1/2
0+

(
t7/6 sin t

))
= Γ(1/2)t−1/6t7/6 sin t = Γ(1/2)t sin t.

This implies that

lim sup
t→∞

t−1/6

∫ t

0
(t− s)−1/2g(s)ds = +∞,

lim inf
t→∞

t−1/6

∫ t

0
(t− s)−1/2g(s)ds = −∞.

Thus the condition (B) is verified. By Theorem 3.1, all solutions of the equation (10) are110

oscillatory. In Figure 1, we simulate the orbit of the solution with the initial condition x(0) = 1111

on the interval [0, 70].112

Remark 3.4. Under assumptions (A) and (B), the conclusion of Theorem 3.1 is still true for the
following general multi-order fractional system

CDαk

0+
x(t) +

k−1∑
i=1

ai
CDαi

0+
x(t) = f(t, x(t)) + g(t), t > 0

with arbitrary initial values

x(0) = x0, x
(1)(0) = x1, . . . , x

(n−1)(0) = xn−1,

here 0 < α1 < α2 < . . . αk ≤ ⌈αk⌉ = n ∈ N, ai, i = 1, . . . , k − 1, are nonnegative real numbers.113

3.2 The oscillation of equations with higher-order nonlinearities114

We now study the multi-term fractional differential equation with higher-order nonlinearities

CDα
0+x(t) + a CDβ

0+
x(t) + p(t)x(t) +

k∑
i=1

qi(t)sgn (x(t)) |x(t)|λi = g(t), t > 0 (11)
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Figure 1: The orbit of the solution to equation (10) with the initial condition x0 = 1 on the
interval [0, 70].

with the initial conditions

x(0) = x0, x
(1)(0) = x1, . . . , x

(n−1)(0) = xn−1, (12)

where 0 < β < α ≤ ⌈α⌉ = n ∈ N, x0, x1, . . . , xn−1 ∈ R, a is a nonnegative real number, 0 < λ1 <115

λ2 < · · · < λk, k ≥ 2 are positive real numbers, p : [0,∞) → R, qi : [0,∞) → R, i = 1, 2, . . . , k,116

sgn(·) is the sign function, and g : [0,∞) → R are continuous functions. Suppose that the117

following conditions are true.118

(C) λi ̸= 1 for all i = 1, 2, . . . , k and satisfy one of the following two conditions119

(C)1 1 < λ1 < λ2 < · · · < λk.120

(C)2 There exists l ∈ {1, . . . , k − 1} such that λ1 < · · · < λl < 1 < λl+1 < · · · < λk.121

(D) There exists T1 ≥ 0 such that p(t) ̸= 0 for all t ≥ T1.122

(E) There exists T2 ≥ 0 such that sgn(λi − 1)qi(t) > 0, i = 1, 2, . . . ,m for all t ≥ T2.123

(F) There exists T ≥ max{T1, T2} such that

lim inf
t→∞

tβ−α−n+1

∫ t

T
(t− s)α−1

(
γ

k∑
i=1

|p(s)|
λi

λi−1 |qi(s)|
1

1−λi + g(s)

)
ds = −∞,

lim sup
t→∞

tβ−α−n+1

∫ t

T
(t− s)α−1

(
−γ

k∑
i=1

|p(s)|
λi

λi−1 |qi(s)|
1

1−λi + g(s)

)
ds = +∞,

where

γ :=

(
1

kλ1

) λk
λk−1

, if (C)1 holds,

γ := max

 max
i∈{1,...,l}

(1− λi)

(
lλi∑k

j=l+1 λj − 1

) λi
1−λi

, λk − 1

 , if (C)2 holds.
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Theorem 3.5. Assume that the conditions (C), (D), (E), and (F) hold. Then an arbitrary124

solution of (11) (if it exists globally) is oscillatory.125

Proof. Suppose to the contrary that there exists a non-oscillatory solution x of system (11)–(12).
Without loss of generality, we can assume that x(t) > 0 for t > t1. Due to the assumptions (D)
and (E), we can find t2 > max{t1, T} such that p(t) ̸= 0 and sgn(λi−1)qi(t) > 0, i = 1, 2, . . . , k,
for t ≥ t2. Using the same arguments as in the proof of Theorem 3.1, for all t > t2, we obtain

x(t) =
n−1∑
i=0

x(i)(0)

i!
ti +

m−1∑
i=0

ax(i)(0)

Γ(α− β + 1 + i)
tα−β+i − a

Γ(α− β)

∫ t

0
(t− s)α−β−1x(s)ds

− 1

Γ(α)

∫ t

0
(t− s)α−1p(s)x(s)ds− 1

Γ(α)

k∑
i=1

∫ t

0
(t− s)α−1qi(s)sgn (x(s)) |x(s)|λids

+
1

Γ(α)

∫ t

0
(t− s)α−1g(s)ds

=

n−1∑
i=0

x(i)(0)

i!
ti +

m−1∑
i=0

ax(i)(0)

Γ(α− β + 1 + i)
tα−β+i − a

Γ(α− β)

∫ t2

0
(t− s)α−β−1x(s)ds

− 1

Γ(α)

∫ t2

0
(t− s)α−1p(s)x(s)ds− 1

Γ(α)

k∑
i=1

∫ t2

0
(t− s)α−1qi(s)sgn (x(s)) |x(s)|λids

+
1

Γ(α)

∫ T

0
(t− s)α−1g(s)ds− a

Γ(α− β)

∫ t

t2

(t− s)α−β−1x(s)ds

− 1

Γ(α)

∫ t

t2

(t− s)α−1p(s)x(s)ds− 1

Γ(α)

k∑
i=1

∫ t

t2

(t− s)α−1qi(s)sgn (x(s)) |x(s)|λids

+
1

Γ(α)

∫ t

T
(t− s)α−1g(s)ds,

where m = ⌈β⌉. Notice that (t−s)α−β−1 ≤ (t− t2)
α−β−1 for all s ∈ [0, t2], t > t2 if α−β−1 ≤ 0

and (t − s)α−β−1 ≤ tα−β−1 for all s ∈ [0, t2], t > t2 if α − β − 1 > 0. Thus, (t − s)α−β−1 ≤
(t− t2)

α−β−1 + tα−β−1 for all s ∈ [0, t2], which implies

− a

Γ(α− β)

∫ t2

0
(t− s)α−β−1x(s)ds ≤ a

Γ(α− β)

(
(t− t2)

α−β−1 + tα−β−1
)∫ t2

0
|x(s)|ds

= M1

(
(t− t2)

α−β−1 + tα−β−1
)
, t > t2. (13)

Furthermore, it is not difficult to check

− 1

Γ(α)

∫ t2

0
(t− s)α−1p(s)x(s)ds ≤ M2

(
(t− t2)

α−1 + tα−1
)
, (14)

1

Γ(α)

k∑
i=1

∫ t2

0
(t− s)α−1qi(s)sgn (x(s)) |x(s)|λids ≤ M3

(
(t− t2)

α−1 + tα−1
)
, (15)

and

1

Γ(α)

∫ T

0
(t− s)α−1g(s)ds ≤ M4

(
(t− t2)

α−1 + tα−1
)

(16)
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for all t > t2. Take b := max{|x0|, |x1|, . . . , |xn−1|}. For t ≥ t2, it follows from (13), (14), (15)
and (16) that

x(t) ≤
n−1∑
k=0

b

k!
tk +

m−1∑
k=0

ab

Γ(α− β + 1 + k)
tα−β+k +M1

(
(t− t2)

α−β−1 + tα−β−1
)

+ (M2 +M3 +M4)
(
(t− t2)

α−1 + tα−1
)
+

1

Γ(α)

∫ t

T
(t− s)α−1g(s)ds

+
1

Γ(α)

∫ t

t2

(t− s)α−1

(
|p(s)|x(s)−

m∑
i=1

qi(s)x(s)
λi

)
ds. (17)

Consider the case when (C)1 is true, that is, 1 < λ1 < λ2 < · · · < λk. We get qi(t) > 0, i =
1, 2, . . . , k and t ≥ t2. Then,

|p(s)|x(s)−
k∑

i=1

qi(s)x(s)
λi =

k∑
i=1

(
1

k
|p(s)|x(s)− qi(s)x(s)

λi

)
, s ≥ t2. (18)

For each i = 1, 2, . . . , k, let

Xi(s) := qi(s)
1
λi x(s), Yi(s) :=

(
1

mλi
|p(s)|qi(s)

−1
λi

) 1
λi−1

, s ≥ t2.

Due to Lemma 2.7(i), we see

λiqi(s)
1
λi x(s)

1

kλi
|p(s)|qi(s)

−1
λi − qi(s)x(s)

λi ≤ (λi − 1)

(
1

kλi
|p(s)|qi(s)

−1
λi

) λi
λi−1

,

this means that

1

m
|p(s)|x(s)− qi(s)x(s)

λi ≤ (λi − 1)

(
1

mλi
|p(s)|qi(s)

−1
λi

) λi
λi−1

≤ γ|p(s)|
λi

λi−1 |qi(s)|
1

1−λi . (19)

From (18) and (19), it leads to

|p(s)|x(s)−
k∑

i=1

qi(s)x(s)
λi ≤ γ

k∑
i=1

|p(s)|
λi

λi−1 |qi(s)|
1

1−λi , s ≥ t2. (20)

If the assumption (C)2 holds, that is, there is an index l satisfying λ1 < · · · < λl < 1 < λl+1 <
· · · < λk. It implies that qi(t) < 0, i = 1, . . . , l and qi(t) > 0, i = l + 1, . . . , k for t ≥ t2. In this
case, we write

|p(s)|x(s)−
k∑

i=1

qi(s)x(s)
λi = |p(s)|x(s) +

l∑
i=1

|qi(s)|x(s)λi −
k∑

i=l+1

qi(s)x(s)
λi

=

l∑
i=1

(
|qi(s)|x(s)λi −A|p(s)|x(s)

)
+

k∑
i=l+1

(
λi|p(s)|x(s)− qi(s)x(s)

λi

)
, (21)

where A =
∑k

j=l+1 λj−1

l > 0. For each i = 1, . . . , l, define

Xi(s) := |qi(s)|
1
λi x(s), Yi(s) :=

(
A

λi
|p(s)||qi(s)|

−1
λi

) 1
λi−1

, s ≥ t2.
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By Lemma 2.7(ii),

λi|qi(s)|
1
λi x(s)

A

λi
|p(s)| |qi(s)|

−1
λi − |qi(s)|x(s)λi ≥ (λi − 1)

(
A

λi
|p(s)| |qi(s)|

−1
λi

) λi
λi−1

.

Thus,

|qi(s)|x(s)λi −A|p(s)|x(s) ≤ (1− λi)

(
A

λi
|p(s)||qi(s)|

−1
λi

) λi
λi−1

≤ γ|p(s)|
λi

λi−1 |qi(s)|
1

1−λi , i = 1, . . . , l, s ≥ t2. (22)

For each i = l + 1, . . . ,m, let

Xi(s) := qi(s)
1
λi x(s), Yi(s) :=

(
|p(s)|qi(s)

−1
λi

) 1
λi−1

, s ≥ t2.

From Lemma 2.7(i),

λiqi(s)
1
λi x(s)|p(s)|qi(s)

−1
λi − qi(s)x(s)

λi ≤ (λi − 1)
(
|p(s)|qi(s)

−1
λi

) λi
λi−1

,

which gives

λi|p(s)|x(s)− qi(s)x(s)
λi ≤ (λi − 1)

(
|p(s)|qi(s)

−1
λi

) λi
λi−1

≤ γ|p(s)|
λi

λi−1 |qi(s)|
1

1−λi , i = l + 1, . . . ,m, s ≥ t2. (23)

Combining (21), (22) and (23) yields

|p(s)|x(s)−
k∑

i=1

qi(s)x(s)
λi ≤ γ

k∑
i=1

|p(s)|
λi

λi−1 |qi(s)|
1

1−λi , s ≥ t2. (24)

In short, if the condition (C) is true, from (20) and (24), the following estimate is derived

|p(s)|x(s)−
k∑

i=1

qi(s)x(s)
λi ≤ γ

k∑
i=1

|p(s)|
λi

λi−1 |qi(s)|
1

1−λi , s ≥ t2, (25)

which together with (17) implies

tβ−α−n+1x(t) ≤
n−1∑
k=0

b

k!
tk+β−α−n+1 +

m−1∑
k=0

ab

Γ(α− β + 1 + k)
tk−n+1

+M1

(
(t− t2)

α−β−1tβ−α−n+1 + t−n
)

+ (M2 +M3 +M4)
(
(t− t2)

α−1tβ−α−n+1 + tβ−n
)

+
tβ−α−n+1

Γ(α)

∫ t

T
(t− s)α−1

(
γ

m∑
i=1

|p(s)|
λi

λi−1 |qi(s)|
1

1−λi + g(s)

)
ds, t > t2.

Therefore, there exist c > 0 and t3 > t2 such that

tβ−α−n+1x(t) ≤ c+
tβ−α−n+1

Γ(α)

∫ t

T
(t− s)α−1

(
γ

m∑
i=1

|p(s)|
λi

λi−1 |qi(s)|
1

1−λi + g(s)

)
ds, t > t3.

Under the assumption (F), we conclude

lim inf
t→∞

tβ−α−n+1x(t) = −∞,

contrary to the counterfactual hypothesis that x(t) > 0 for all t ≥ t2. The proof is complete.126
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Example 3.6. Consider the initial value problem (11)–(12), here α = 1/2, β = 1/3, a = 2,

p(t) = −t, λ1 = 1/2, λ2 = 2, q1(t) = −t2, q2(t) = t3, g(t) =C D
1/2
0+

(t6 sin t) for t ≥ 0. This
equation is rewritten as

CD
1/2
0+

x(t) + 2 CD
1/3
0+

x(t)− tx(t)− t2sgn (x(t)) |x(t)|1/2 + t3sgn (x(t)) |x(t)|2 =C D
1/2
0+

(t6 sin t).

(26)

Then it is easy to check that λ1, λ2 satisfy (C)2, p satisfies (D) and q1, q2 satisfy (E) for T1 =
T2 = 1, respectively. Next, we see γ = 1 and

γ
m∑
i=1

|p(s)|
λi

λi−1 |qi(s)|
1

1−λi = t3 + t5, t ≥ 0.

Notice that

g(t) =
1

Γ(1/2)

∫ t

0

s5 sin s+ s6 cos s

(t− s)1/2
ds, t ≥ 0,

which implies

|g(t)| ≤ 1

Γ(1/2)

∫ t

0

s5 + s6

(t− s)1/2
ds =

5!

Γ(13/2)
t11/2 +

6!

Γ(15/2)
t13/2, t ≥ 0.

Hence, for t > 1, we obtain∫ t

1
(t− s)−1/2

(
γ

m∑
i=1

|p(s)|
λi

λi−1 |qi(s)|
1

1−λi + g(s)

)
ds < Γ(1/2)I

1/2
0+

(
t3 + t5 +C D

1/2
0+

(t6 sin t)
)

+ 2M(t− 1)1/2

<
3!

Γ(9/2)
t7/2 +

6!

Γ(13/2)
t11/2 + Γ(1/2)t6 sin t+ 2Mt1/2,

where M = maxt∈[0,1](t
3 + t5 + |g(t)|) = 2 + 5!

Γ(13/2) +
6!

Γ(15/2) . From this,

lim inf
t→∞

t−1/2

∫ t

1
(t− s)−1/2

(
γ

m∑
i=1

|p(s)|
λi

λi−1 |qi(s)|
1

1−λi + g(s)

)
ds

≤ lim inf
t→∞

(
3!

Γ(9/2)
t3 +

6!

Γ(13/2)
t5 + Γ(1/2)t11/2 sin t+ 2M) = −∞.

By the same arguments, we also see

lim sup
t→∞

t−1/2

∫ t

1
(t− s)−1/2

(
−γ

m∑
i=1

|p(s)|
λi

λi−1 |qi(s)|
1

1−λi + g(s)

)
ds

≥ lim sup
t→∞

(− 3!

Γ(9/2)
t3 − 6!

Γ(13/2)
t5 + Γ(1/2)t11/2 sin t+ 2M) = +∞,

and thus the condition (F) is verified. From Theorem 3.5, we conclude that all solutions (if they127

exist globally) are oscillatory. Figure 2 depicts the orbit of the solution with the initial condition128

x(0) = 1 on the interval [0, 80].129
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Figure 2: The orbit of the solution to equation (26) with the initial condition x0 = 1 on the
interval [0, 80].

4 On the asymptotic behavior of oscillatory solutions of frac-130

tional differential equations131

This section is devoted to the asymptotic behavior of oscillatory solutions of some classes of132

fractional differential equations. We first present some comparison results for equations with133

two fractional derivatives to do this. Then, we consider linear equations. Finally, we deal134

with the nonlinear case by combining Theorem 3.1, the approach as in [10], and the proposed135

comparison principles.136

4.1 Comparison results for multi-order fractional differential equations137

For given a parameter T > 0, consider the equation

CDα
0+x(t) + a CDβ

0+
x(t) = f(t, x(t)), t ∈ (0, T ], (27)

x(0) = x0 ∈ R, (28)

where 0 < β < α ≤ 1, a is a positive constant, f : [0, T ] × R → R is a continuous function138

and Lipschitz continuous with respect to the second variable. We will present some comparison139

results of the solutions of the system (27)–(28).140

Lemma 4.1. Let x(·) be the unique solution of the initial value problem (27)–(28). Suppose
that y : [0, T ] → R is continuously Caputo α-differentiable satisfying

CDα
0+y(t) + a CDβ

0+
y(t) ≤ f(t, y(t)), t ∈ (0, T ],

y(0) = y0 < x0,

then y(t) < x(t) for all t ∈ [0, T ].141

Proof. Suppose by contradiction that there is a t ∈ (0, T ] such that y(t) = x(t). Due to
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y(0) = y0 < x0 = x(0) and x, y ∈ C[0, T ], there exists a t1 ∈ (0, T ] such that

y(t) < x(t), ∀t ∈ [0, t1), (29)

y(t1) = x(t1) (30)

Define

z(t) := x(t)− y(t), t ∈ [0, T ].

Then z(t) > 0 for all t ∈ [0, t1) and z(t1) = 0. Notice that for 0 < α < 1, by virtue of Lemma
2.6, we have

CDα
0+z(t1) =

1

Γ(1− α)

(
z(t1)− z(0)

tα1

)
+ α

∫ t1

0

z(t1)− z(s)

(t1 − s)α+1
ds

=
1

Γ(1− α)

(
−z(0)

tα1

)
+ α

∫ t1

0

−z(s)

(t1 − s)α+1
ds < 0. (31)

In the case α = 1, then

z′(t1) = lim
h→0−

z(t1 + h)− z(t1)

h

= lim
h→0−

z(t1 + h)

h

≤ 0. (32)

Thus, from (31) and (32), we claim

CDα
0+z(t1) ≤ 0. (33)

Furthermore, due to z(·) is continuously Caputo α-differentiable on [0, T ] and 0 < β < α ≤ 1, it
follows from [3, Theorem 3.8 (i)] that this function is also continuously Caputo β-differentiable

and thus, by the same arguments as shown above, CDβ
0+
z(t1) < 0. This together with (33)

implies

CDα
0+z(t1) + a CDβ

0+
z(t1) < 0,

that is,142

CDα
0+x(t1) + a CDβ

0+
x(t1) <

C Dα
0+y(t1) + a CDβ

0+
y(t1). (34)

However,

CDα
0+x(t1) + a CDβ

0+
x(t1) = f(t1, x(t1)) = f(t1, y(t1)) ≥C Dα

0+y(t1) + a CDβ
0+
y(t1),

contrary to (34). Therefore, y(t) < x(t) for all t ∈ [0, T ].143

Theorem 4.2. Let x(·) be the unique solution of the initial value problem (27)–(28). Assume
that y : [0, T ] → R is continuously Caputo α-differentiable satisfying

CDα
0+y(t) + a CDβ

0+
y(t) ≤ f(t, y(t)), t ∈ (0, T ],

y(0) = y0 ≤ x0,

then y(t) ≤ x(t) for all t ∈ [0, T ].144
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Proof. For each m ∈ N, by Theorem 2.11, the following initial value problem

CDα
0+x(t) + a CDβ

0+
x(t) = f(t, x(t)), t ∈ (0, T ], (35)

x(0) = x0 +
1

m
, (36)

has a unique solution xm : [0, T ] → R. Because y(0) = y0 ≤ x0 < x0+
1
m = xm(0) for all m ∈ N,

according to Lemma 4.1, we see

y(t) < xm(t) ≤ x1(t), ∀t ∈ [0, T ]. (37)

In addition, for n,m ∈ N and n > m, then

xn(t) < xm(t), ∀t ∈ [0, T ].

Thus, the sequence {xm(·)}m∈N is uniformly bounded on [0, T ] and for each t ∈ [0, T ], the
sequence {xm(t)}m∈N is strictly decreasing. We next show that this sequence is equicontin-
uous. Let C1 > 0 such that |xm(t)| ≤ C1 for all t ∈ [0, T ] and m ∈ N and take C2 :=
max[0,T ]×[−C1,C1] |f(t, x)|. For 0 ≤ t1 < t2 ≤ T and m ∈ N, based on [10, Lemma 2.1], we obtain
the following estimates

|xm(t2)− xm(t1)| =
∣∣∣∣ a

Γ(α− β)

(∫ t1

0
(t1 − s)α−β−1xm(s)ds−

∫ t2

0
(t2 − s)α−β−1xm(s)ds

)
+

1

Γ(α)

(∫ t2

0
(t2 − s)α−1f(s, xm(s)ds−

∫ t1

0
(t1 − s)α−1f(s, xm(s)ds

)∣∣∣∣
≤ a

Γ(α− β)

∫ t1

0

(
(t1 − s)α−β−1 − (t2 − s)α−β−1

)
|xm(s)|ds

+
a

Γ(α− β)

∫ t2

t1

(t2 − s)α−β−1|xm(s)|ds

+
1

Γ(α)

∫ t1

0

(
(t1 − s)α−1 − (t2 − s)α−1

)
|f(s, xm(s)|ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1|f(s, xm(s)|ds

≤ aC1

Γ(α− β + 1)
(tα−β

1 + (t2 − t1)
α−β − tα−β

2 ) +
aC1

Γ(α− β + 1)
(t2 − t1)

α−β

+
C2

Γ(α+ 1)
(tα1 + (t2 − t1)

α − tα2 ) +
C2

Γ(α+ 1)
(t2 − t1)

α

≤ 2aC1

Γ(α− β + 1)
(t2 − t1)

α−β +
2C2

Γ(α+ 1)
(t2 − t1)

α. (38)

Let ϵ > 0 be arbitrarily small. Choosing

0 < δ < min

{(
ϵ

2

Γ(α− β + 1)

2aC1

) 1
α−β

,

(
ϵ

2

Γ(α+ 1)

2C2

) 1
α

}
,

from (38), we get

|xm(t2)− xm(t1)| <
ϵ

2
+

ϵ

2
= ϵ

for all t1, t2 ∈ [0, T ] with |t1 − t2| < δ. This means that {xm(·)}m∈N is equicontinuous on [0, T ].
By Arzelà–Ascoli theorem, there is a subsequence {xmk

(·)}k∈N of {xm(·)}m∈N which uniformly
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converges to a function x∗(·) on [0, T ]. In particular, y(t) ≤ x∗(t) for all t ∈ [0, T ]. Notice that,
for each k ∈ N and t ∈ [0, T ], we have (by [10, Lemma 2.1])

xmk
(t) = x0 +

1

mk
+

a(x0 +
1
mk

)

Γ(1 + α− β)
tα−β − a

Γ(α− β)

∫ t

0
(t− s)α−β−1xmk

(s)ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s, xmk

(s))ds.

Letting k → ∞, then

x∗(t) = x0 +
ax0

Γ(1 + α− β)
tα−β − a

Γ(α− β)

∫ t

0
(t− s)α−β−1x∗(s)ds

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s, x∗(s))ds, t ∈ [0, T ]. (39)

On the other hand, due to Theorem 2.11, the original system (27)–(28) has a unique solution145

x(·), which is also written in the form (39) (by [10, Lemma 2.1]). This implies x∗ ≡ x on [0, T ]146

and thus y(t) ≤ x(t) for all t ∈ [0, T ].147

Corollary 4.3. Let x(·) be the unique solution of the initial value problem (27)–(28). Assume
that y : [0, T ] → R is continuously Caputo α-differentiable satisfying

CDα
0+y(t) + a CDβ

0+
y(t) ≥ f(t, y(t)), t ∈ (0, T ],

y(0) = y0 ≥ x0,

then y(t) ≥ x(t) for all t ∈ [0, T ].148

Proof. Put u(t) = −x(t), v(t) = −y(t), t ∈ [0, T ] and define g(t, x) = −f(t,−x), t ∈ [0, T ], x ∈ R.
Then, the function g(·, ·) is continuous and is Lipschitz continuous to the second variable. It is
easy to check that

CDα
0+u(t) + a CDβ

0+
u(t) = −CDα

0+x(t)− a CDβ
0+
x(t)

= −f(t, x(t)) = g(t,−x(t)) = g(t, u(t)), t ∈ (0, T ],

u(0) = −x0.

Similarly, v(·) is continuously Caputo α-differentiable and satisfies

CDα
0+v(t) + a CDβ

0+
v(t) ≤ g(t, v(t)), t ∈ (0, T ],

y(0) = −y0 ≤ −x0.

On account of Theorem 4.2 above, we have v(t) ≤ u(t), t ∈ [0, T ], that is, y(t) ≥ x(t), t ∈149

[0, T ].150

4.2 Asymptotic behavior of oscillatory solutions of fractional-order linear151

equations152

Consider the linear equation

CDα
0+x(t) + a CDβ

0+
x(t) = −bx(t) + g(t), t > 0 (40)

with the initial value

x(0) = x0, (41)

where 0 < β < α ≤ 1, a, b are positive real constants, g : [0,∞) → R is a continuous function.153
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Theorem 4.4. Suppose that g(·) satisfies the following assumption.154

(B)” For t ∈ [0,∞), g(t) :=C Dα
0+(t+ 1)σh(t), here α− β < σ < α ≤ 1 and h(·) is continuously155

differentiable and bounded on [0,∞) such that lim supt→∞ h(t) > 0, lim inft→∞ h(t) < 0.156

In addition, assume that h′(t) = O(tη) as t → ∞, here −1 < η < α− σ − 1.157

Then, an arbitrary nontrivial solution x(·) of the initial value problem (40)–(41) is oscillatory.158

Furthermore, its asymptotic behavior has the form O(tmax{−β,η+σ−α+1}) at infinity.159

Proof. It is easy to check that for a function g(·) satisfying the condition (B)”, it also satisfies
the assumption (B) in Theorem 3.1. Thus, all non-trivial solutions of the system (40)–(41) are
oscillatory. Next, we show that g(t) = O(tη+σ−α+1) as t → ∞. Indeed, for t > 0, we have

g(t) =C Dα
0+(t+ 1)σh(t) =

1

Γ(1− α)

∫ t

0

(s+ 1)σ−1h(s) + (s+ 1)σh′(s)

(t− s)α
ds. (42)

Notice that h(·) is bounded on [0,∞), there is a M1 > 0 such that∣∣∣∣ 1

Γ(1− α)

∫ t

0

(s+ 1)σ−1h(s)

(t− s)α
ds

∣∣∣∣ ≤ M1

Γ(1− α)

∫ t

0
sσ−1(t− s)−αds

≤ M1

Γ(1− α)
tσ−αB(σ, 1− α)

≤ M2t
σ−α, (43)

where M2 := M1
B(σ,1−σ)
Γ(1−α) . On the other hand, due to h′(t) = O(tη) as t → ∞, we can find a

M3 > 0 and T > 1 large enough so that |h′(t)| ≤ M3t
η for all t ≥ T . From this, for any t > T ,

we obtain∣∣∣∣ 1

Γ(1− α)

∫ t

0

(s+ 1)σh′(s)

(t− s)α
ds

∣∣∣∣ ≤ 1

Γ(1− α)

∫ T

0

(s+ 1)σ|h′(s)|
(t− s)α

ds

+
1

Γ(1− α)

∫ t

T

(s+ 1)σ|h′(s)|
(t− s)α

ds

≤ 1

Γ(1− α)

(T + 1)σ

(t− T )α

∫ T

0
|h′(s)|ds

+
M3(t+ 1)σ

Γ(1− α)

∫ t

T
sη(t− s)−αds

≤ M4(t− T )−α +
M3(t+ 1)σ

Γ(1− α)

∫ t

0
sη(t− s)−αds

= M4(t− T )−α +
M3(t+ 1)σ

Γ(1− α)
tη−α+1B(1 + η, 1− α)

≤ M4(t− T )−α +M5t
η+σ−α+1, (44)

where M4 := 1
Γ(1−α)(T + 1)σ

∫ T
0 |h′(s)|ds, M5 := 2σM3B(η+1,1−α)

Γ(1−α) . Because α − β < σ < α ≤ 1,160

−1 < η < α − σ − 1, from (42), (43), and (44), it shows that g(t) = O(tη+σ−α+1) as t → ∞.161

Now, by [10, Theorem 5.2], we conclude that the asymptotic behavior of an arbitrary non-trivial162

solution of the system (40)–(41) has the form O(tmax{−β,η+σ−α+1}) at infinity.163
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Figure 3: The orbit of the solution to equation (45) with the initial condition x(0) = −0.5 on
the interval [0, 150].

Example 4.5. Consider the system (46)–(47) with α = 2/3, β = 1/2, a = 2, b = 1, and
g(t) =C D2/3(t+ 1)1/3 sin((t+ 1)1/4). The system is rewritten as

CD
2/3
0+

x(t) + 2 CD
1/2
0+

x(t) = −x(t) +C D2/3(t+ 1)1/3 sin((t+ 1)1/4), t > 0. (45)

In this case, we have σ = 1/3 and h(t) = sin((t + 1)1/4), t ≥ 0. It is obvious to see that164

α−β = 1/6 < 1/3 = σ < 2/3 = α, h ∈ C1[0,∞), lim supt→∞ h(t) = 1 > 0, and lim inft→∞ h(t) =165

−1 < 0. Moreover, h′(t) = 1
4(t+ 1)−3/4 cos((t+ 1)1/4), thus |h′(t)| < 1

4 t
−3/4 for all t > 0. From166

this, we have h′ = O(t−3/4) as t → ∞. Notice that −1 < −3/4 = η < −2/3 = α − σ − 1, it167

deduces that g satisfies the assumption (B)” in Theorem 4.4. Therefore, for any x0 ∈ R, the168

non-trivial solution φ(·, x0) of (45) is oscillatory and limt→∞ φ(t, x0) = 0. Figure 3 shows the169

orbit of the solution with the initial condition x(0) = −0.5 on the interval [0, 150].170

4.3 Asymptotic behavior of oscillatory solutions of fractional-order nonlinear171

equations172

Consider the following fractional differential equation

CDα
0+x(t) + a CDβ

0+
x(t) = −bx(t) +

m∑
k=1

qk(t)fk(x(t)) + g(t), t > 0, (46)

x(0) = x0 ∈ R, (47)
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where 0 < β < α ≤ 1, a, b are positive constants, qk : [0,∞) → R, k = 1, . . . ,m, are continuous,173

bounded and eventually non-negative. Suppose that g : [0,∞) → R is continuous and satisfies174

the condition (B)” in Theorem 4.4 and fk : R → R, k = 1, . . . ,m, are continuous such that the175

assumptions below are true.176

(F1) fk(0) = 0.177

(F2) fk is locally Lipschitz continuous at the origin and limr→0 ℓfk(r) = 0, where

ℓfk(r) = sup
|x|,|x̂|≤r,x ̸=x̂

|fk(x)− fk(x̂)|
|x− x̂|

.

(F3) xfk(x) ≤ 0 for all x ∈ R.178

Theorem 4.6. Consider the initial value problem (46)–(47). Then for every ϵ > 0 small enough,179

there exit positive parameters δ1 = δ1(ϵ), δ2 = δ2(ϵ) > 0 such that if |g(t)| ≤ δ1 for all t ≥ 0180

and |x0| < δ2, the solution φ(·, x0) is oscillatory and |φ(t, x0)| ≤ ε for all t ≥ 0. Moreover,181

limt→∞ φ(t, x0) = 0.182

Proof. Define F (t, x) = −bx +
∑m

k=1 qk(t)fk(x) for all t ≥ 0, x ∈ R. Since qk, k = 1, . . . ,m,183

are eventually non-negative, it follows from (F3) that the function F satisfies the condition (A)184

in Theorem 3.1. Moreover, the condition (B)’ in Corollary 3.2 is verified by the function g.185

Hence, by Corollary 3.2, for any x0 ∈ R, the solution φ(·, x0) of the system (40)–(41) (if it exists186

globally) is oscillatory.187

We next show that for the initial condition x0 small enough and the inhomogeneous term g
small uniformly on [0,∞), the solution φ(·, x0) exists globally and converges to the origin. The
approach proposed in [10, Theorem 5.7] will be applied to do that. We first recall some important
properties of the function Gκ

α,β;a,b(t) given by

Gκ
α,β;a,b(t) := L−1

(
sκ−1

sα + asβ + b

)
(t) t ≥ 0, κ ∈ {α, β, 1}.

Taking into account [10, Proposition 4.4 (ii) and (iii)], there is a positive constant K > 0 such
that

|G1
α,β;a,b(t)| ≤

K

t1−α
, t ∈ (0, 1), |G1

α,β;a,b(t) ≤
K

t1+β
, t ≥ 1. (48)

Furthermore, using the same arguments as in the proof of [10, Proposition 4.4 (v)], for any
γ ∈ (0, 1), we can find a constant Kγ > 0 with

sup
t≥0

tγ
∫ t

0
|G1

α,β;a,b(t− s)|s−γds ≤ Kγ . (49)

We conclude that

lim
t→∞

∫ t

0
G1

α,β;a,b(t− s)g(s)ds = 0.

Indeed, it deduces from the proof of Theorem 4.4 that g = O(t−γ) as t → ∞, here γ =
−(η + σ − α+ 1) > 0. Thus, there is a constant M > 0 and t0 > 0 large enough satisfying

|g(t)| ≤ M

tγ
, t ≥ t0. (50)
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Then, for t > t0 + 1, we have∣∣∣∣∫ t

0
G1

α,β;a,b(t− s)g(s)ds

∣∣∣∣ ≤ ∫ t0

0
|G1

α,β;a,b(t− s)| |g(s)|ds+
∫ t

t0

|G1
α,β;a,b(t− s)| |g(s)|ds

= I1(t) + I2(t). (51)

Let s ∈ [0, t0]. By (48), we estimate

|G1
α,β;a,b(t− s)| ≤ K(t− s)−1−β ≤ K(t− t0)

−1−β.

From this,

I1(t) ≤ K(t− t0)
−1−β

∫ t0

0
|g(s)|ds = K1(t− t0)

−1−β, (52)

where K1 = K
∫ t0
0 |g(s)|ds. To deal with I2(t), by virtue of (49) and (50), we see

I2(t) ≤ M

∫ t

t0

|G1
α,β;a,b(t− s)| s−γds

≤ M

∫ t

0
|G1

α,β;a,b(t− s)| s−γds

≤ MKγt
−γ = K2t

−γ . (53)

By combining (51), (52) and (53), for any t > t0 + 1, it implies that∣∣∣∣∫ t

0
G1

α,β;a,b(t− s)g(s)ds

∣∣∣∣ ≤ K1(t− t0)
−1−β +K2t

−γ ,

and thus

lim
t→∞

∫ t

0
G1

α,β;a,b(t− s)g(s)ds = 0. (54)

Fix ϵ̂ > 0 small enough such that fk, k = 1, . . . ,m are Lipchitz continuous on Bϵ̂(0) := {x ∈ R :
|x| ≤ ε̂}. Take C > 0 such that |qk(t)| ≤ C, k = 1, . . . ,m for all t ≥ 0 and set

h1(x) := −C
m∑
k=1

|fk(x)| and h2(x) := C
m∑
k=1

|fk(x)|.

It is easy to see that h1 and h2 satisfy the assumptions (F1) and (F2).188

Consider the initial value problems

CDα
0+x(t) + a CDβ

0+
x(t) = −bx(t) + h1(x) + g(t), t > 0, (55)

x(0) = x0, (56)

and

CDα
0+x(t) + a CDβ

0+
x(t) = −bx(t) + h2(x) + g(t), t > 0, (57)

x(0) = x0. (58)

Choosing ε > 0 be small enough, for example, ε ≤ ε̂ and189

max
1≤k≤m

ℓfk(ε)

∫ ∞

0
|G1

α,β;a,b(t)|dt <
1

2
.
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Figure 4: The orbit of the solution to equation (60) with the initial condition x(0) = 0.6 on the
interval [0, 150].

In light of [10, Theorem 5.7], we can find positive parameters δ1, δ2 > 0 such that if |g(t)| ≤ δ1
for all t ≥ 0 and |x0| ≤ δ2 then |φ1(t, x0)|, |φ2(t, x0)| ≤ ϵ for all t ≥ 0 and limt→∞ φ1(t, x0) =
limt→∞ φ2(t, x0) = 0, here φ1(·, x0), φ2(·, x0) are the solutions of the systems (55)–(56) and
(57)–(58), respectively. On the other hand, according to Theorem 4.2 and Corollary 4.3, we
claim that

φ1(t, x0) ≤ φ(t, x0) ≤ φ2(t, x0), t ≥ 0. (59)

This implies that the solution φ(·, x0) exists globally and limt→∞ φ(t, x0) = 0. The proof is190

complete.191

Example 4.7. Consider the system (46)–(47) with α = 2/3, β = 1/2, a = 2, b = 1, m = 1,
q1(t) = 1, t ≥ 0, f1(x) = −x3, x ∈ R and g(t) = 1

100
CD2/3(t+ 1)1/3 sin((t+ 1)1/4). The system

is rewritten as

CD
2/3
0+

x(t) + 2 CD
1/2
0+

x(t) = −x(t)− 2x2(t) +
1

100
CD2/3(t+ 1)1/3 sin((t+ 1)1/4), t > 0. (60)

It is obvious to see that the assumptions in Theorem 4.6 are satisfied. Thus, for the initial192

condition x0 is small enough, the solution φ(·, x0) is oscillatory and limt→∞ φ(t, x0) = 0. Figure193

4 depicts the orbit of the solution to equation (60) with the initial condition x(0) = 0.6 on the194

interval [0, 150].195

5 On the asymptotic behavior of non-oscillatory solutions of196

multi-order fractional differential equations197

Consider the equation

CDα
0+x(t) + a CDβ

0+
x(t) + q(t)f(x) + sgn(x(t))g(t) = 0, t > 0, (61)

x(0) = x0, x
(i)(0) = xi, i = 1, 2, . . . , n− 1, (62)
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where n − 1 < β < α ≤ ⌈α⌉ = n, n ≥ 3, a, xi ∈ R, i = 0, 1, 2, . . . , n − 1, a > 0, f : R → R,198

q : [0,∞) → R, and g : [0,∞) → R are continuous.199

In this section, the following restrictions are imposed on the functions f(·), q(·), and g(·).200

(G1) xf(x) > 0 for all x ̸= 0.201

(G2) There are positive constants c1, η > 0 such that |f(x)| ≥ c1|x|η for all |x| ≥ 1.202

(G3) There exist positive constants c2 > 0, µ ∈ (0, n−2
n−β ) with |f(x)| ≥ c2|x|µ for all |x| < 1.203

(H) There are T1, c3 > 0 so that q(t) ≥ c3 > 0 for all t ≥ T1.204

(K) There are σ ∈ (n− β, 1), c4 ∈ (0,∞) and T2 > 0 such that

g(t) ≥ c4t
n−β−σ, t ≥ T2.

Under the assumptions mentioned above, we aim to study the asymptotic behavior of the non-205

oscillatory solutions of the higher-order fractional differential equation (61). Our main contri-206

butions are as follows.207

Theorem 5.1. Assume that the assumptions (G1), (G2), (H), (K) are true and n is odd. Let
x(·) be a non-oscillatory solution of the initial value problem (61)–(62). Then,

x(t) = O(tα−n) as t → ∞.

Theorem 5.2. Assume that the assumptions (G1), (G2), (G3), (H), (K) are true and n is even.
Let x(·) be a non-oscillatory solution of the initial value problem (61)–(62). Then,

x(t) = O(tα−n) as t → ∞.

The proof of the above results is long and requires much preparation. To make the presentation208

clear and easy to follow, we have divided it into a sequence of lemmas.209

Throughout this part, the following notations will be used:

y1(t) =In−α
0+

x(t) + a In−β
0+

x(t)

=In−α
0+

(
x(t) + a Iα−β

0+
x(t)

)
,

y2(t) =
CDα−n+1

0+
x(t) + a CDβ−n+1

0+
x(t) +

x0
Γ(n− α)

tn−α−1 +
a x0

Γ(n− β)
tn−β−1,

yi(t) =
CDα−n−1+i

0+
x(t) + a CDβ−n−1+i

0+
x(t)

+
i−2∑
k=0

xk
∏i−2−k

j=0 (n− α− i+ 2 + k + j)

Γ(n− α+ 1)
tn−α−i+1+k

+
i−2∑
k=0

a xk
∏i−2−k

j=0 (n− β − i+ 2 + k + j)

Γ(n− β + 1)
tn−β−i+1+k, i = 3, . . . , n, t > 0.

(63)
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Lemma 5.3. Let x(·) be a solution of the system (61)–(62) and yi, i = 1, 2, 3, . . . , n are defined
as in (63). Then, y1 ∈ AC[0,∞), yi ∈ C(0,∞), i = 2, 3, . . . , n, and

y′i(t) =yi+1(t), t > 0, i = 1, 2, . . . , n− 1,

y′n(t) =− q(t)f(x(t))− sgn(x(t))g(t) +
n−1∑
k=0

ak
∏n−1−k

j=0 (1− α+ k + j)

Γ(n− α+ 1)
t−α+k

+
n−1∑
k=0

aak
∏n−1−k

j=0 (1− β + k + j)

Γ(n− β + 1)
t−β+k, t > 0.

(64)

In addition, if (G1), (H), (K) are satisfied and x(·) is eventually positive, then yn(·) is mono-210

tonically decreasing and yi, i = 1, 2, . . . , n− 1, are monotonic on the interval [T,∞) with some211

T > 0 large enough.212

Proof. By a simple computation, for k ∈ N ∪ {0}, we have

In−α
0+

tk =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1skds

=
1

Γ(n− α)

∫ 1

0
tn−α−1(1− u)n−α−1tkuktdu

=
1

Γ(n− α)
tn−α+kB(k + 1, n− α)

=
k!

Γ(n− α+ 1 + k)
tn−α+k, t > 0,

where B(·, ·) is the Beta function, and thus

In−β
0+

tk =
k!

Γ(n− β + 1 + k)
tn−β+k, ∀k ∈ N ∪ {0}, t > 0.

To simplify notation, we use the symbol D instead of d
dt . First, for any t > 0, then

y′1(t) = D In−α
0+

x(t) + aD In−β
0+

x(t)

= D I
1−(α−n+1)
0+

(x(t)− x0) + aD I
1−(β−n+1)
0+

(x(t)− x0)

+D
(
In−α
0+

x0 + a In−β
0+

x0

)
= CDα−n+1

0+x(t) + a CDβ−n+1
0+

x(t) +
a0

Γ(n− α)
tn−α−1 +

a a0
Γ(n− β)

tn−β−1

= y2(t).
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Next, by direct computation, it is not difficult to check that

y′2(t) =D
(
CDα−n+1

0+
x(t)

)
+ aD

(
CDβ−n+1

0+
x(t)

)
+

x0(n− α− 1)

Γ(n− α)
tn−α−2 +

ax0(n− β − 1)

Γ(n− β)
tn−β−2

=D
(
DI

1−(α−n+1)
0+

(x(t)− x0)
)
+ aD

(
DI

1−(β−n+1)
0+

(x(t)− x0)
)

+
x0(n− α− 1)

Γ(n− α)
tn−α−2 +

ax0(n− β − 1)

Γ(n− β)
tn−β−2

=D(2)
(
I
2−(α−n+2)
0+

(x(t)− x0 − x1t)
)
+ aD(2)

(
I
2−(β−n+2)
0+

(x(t)− x0 − x1t)
)

+D(2)
(
In−α
0+

a1t
)
+ aD(2)

(
In−β
0+

x1t
)
+

x0(n− α− 1)

Γ(n− α)
tn−α−2 +

aa0(n− β − 1)

Γ(n− β)
tn−β−2

=CDα−n+2
0+

x(t) + a CDβ−n+2
0+

x(t) +
x1

Γ(n− α)
tn−α−1 +

ax1
Γ(n− β)

tn−β−1

+
x0(n− α− 1)(n− α)

Γ(n− α+ 1)
tn−α−2 +

ax0(n− β − 1)(n− β)

Γ(n− β + 1)
tn−β−2

=CDα−n−1+3
0+x(t) + a CDβ−n−1+3

0+
x(t)

+

(3−2)∑
k=0

xk
∏3−2−k

j=0 (n− α− 3 + 2 + k + j)

Γ(n− α+ 1)
tn−α−3+1+k

+

(3−2)∑
k=0

axk
∏3−2−k

j=0 (n− β − 3 + 2 + k + j)

Γ(n− β + 1)
tn−β−3+1+k

=x3(t) for all t > 0.
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Using the same arguments, for i = 3, . . . , n− 1 and t > 0, we also obtain

y′i(t) =D
(
CDα−n−1+i

0+
x(t)

)
+ aD

(
CDβ−n−1+i

0+
x(t)

)
+

i−2∑
k=0

xk(n− α− i+ 1 + k)
∏i−2−k

j=0 (n− α− i+ 2 + k + j)

Γ(n− α+ 1)
tn−α−i+k

+
i−2∑
k=0

axk(n− β − i+ 1 + k)
∏i−2−k

j=0 (n− β − i+ 2 + k + j)

Γ(n− β + 1)
tn−β−i+k

=D

(
D(i−1)I(i−1−(α−n−1+i))

(
x(t)−

i−2∑
k

xk
k!

tk

))

+ aD

(
D(i−1)I(i−1−(β−n−1+i))

(
x(t)−

i−2∑
k

xk
k!

tk

))

+

i−2∑
k=0

xk(n− α+ k − i+ 1)
∏i−1−k

j=1 (n− α− i+ 1 + k + j)

Γ(n− α+ 1)
tn−α−i+k

+
i−2∑
k=0

axk(n− β + k − i+ 1)
∏i−1−k

j=1 (n− β − i+ 1 + k + j)

Γ(n− β + 1)
tn−β−i+k

=D(i)I
i−(α−n+i)
0+

(
x(t)−

i−1∑
k=0

xk
k!

tk

)
+ aD(i)I

i−(β−n+i)
0+

(
x(t)−

i−1∑
k=0

xk
k!

tk

)

+D(i)

(
In−α
0+

(
xi−1

(i− 1)!
ti−1

)
+ In−β

0+

(
axi−1

(i− 1)!
ti−1

))
+

i−2∑
k=0

xk
∏i−1−k

j=0 (n− α− i+ 1 + k + j)

Γ(n− α+ 1)
tn−α−i+k

+
i−2∑
k=0

axk
∏i−1−k

j=0 (n− β − i+ 1 + k + j)

Γ(n− β + 1)
tn−β−i+k

=CDα−n+i
0+

x(t) + aCDβ−n+i
0+

x(t) +
xi−1

Γ(n− α)
tn−α−1 +

axi−1

Γ(n− β)
tn−β−1

+

i−2∑
k=0

xk
∏i−1−k

j=0 (n− α− i+ 1 + k + j)

Γ(n− α+ 1)
tn−α−i+k

+
i−2∑
k=0

axk
∏i−1−k

j=0 (n− β − i+ 1 + k + j)

Γ(n− β + 1)
tn−β−i+k

=CDα−n+i
0+

x(t) + aCDβ−n+i
0+

x(t) +
i−1∑
k=0

xk
∏i−1−k

j=0 (n− α− i+ 1 + k + j)

Γ(n− α+ 1)
tn−α−i+k

+

i−1∑
k=0

axk
∏i−1−k

j=0 (n− β − i+ 1 + k + j)

Γ(n− β + 1)
tn−β−i+k

=CD
α−n−1+(i+1)
0+

x(t) + aCD
β−n−1+(i+1)
0+

x(t)

+

(i+1)−2∑
k=0

xk
∏(i+1)−2−k

j=0 (n− α− (i+ 1) + 2 + k + j)

Γ(n− α+ 1)
tn−α−(i+1)+1+k

+

(i+1)−2∑
k=0

axk
∏(i+1)−2−k

j=0 (n− β − (i+ 1) + 2 + k + j)

Γ(n− β + 1)
tn−β−(i+1)+1+k

=xi+1(t). 25



Finally, for t > 0, from the definition of yn(·) and the observations shown above, then

y′n(t) =
CDα

0+x(t) + aCDβ
0+
x(t) +

n−1∑
k=0

xk
∏n−1−k

j=0 (1− α+ k + j)

Γ(n− α+ 1)
t−α+k

+

n−1∑
k=0

axk
∏n−1−k

j=0 (1− β + k + j)

Γ(n− β + 1)
t−β+k

=− q(t)f(x(t))− sgn(x(t))g(t) +
n−1∑
k=0

xk
∏n−1−k

j=0 (1− α+ k + j)

Γ(n− α+ 1)
t−α+k

+
n−1∑
k=0

axk
∏n−1−k

j=0 (1− β + k + j)

Γ(n− β + 1)
t−β+k, (65)

which implies that (64) is verified for all t > 0. On the other hand, due to β − n − 1 + i <213

α − n − 1 + i ≤ α − 1 ≤ n − 1 for i = 2, 3, . . . , n and x ∈ Cn−1[0,∞), it follows from [3,214

Theorem 8] that CDα−n−1+i
0+

x, CDβ−n−1+i
0+

x ∈ C[0,∞), i = 2, 3, . . . , n. Therefore, yi ∈ C(0,∞),215

i = 2, 3, . . . , n. Notice that by y′1(t) = y2(t) for all t > 0, y2(·) ∈ C(0,∞) and y2(·) is integrable216

on finite subintervals of [0,∞), we conclude that y1 ∈ AC[0,∞).217

Now, under the added assumptions (G1), (H), (K) and suppose that x(·) is eventually positive,
we can find a parameter t0 > 0 such that x(t) > 0, f(x(t)) > 0, q(t) > 0 and g(t) ≥ c4t

n−β−σ

for all t ≥ t0. From this together with the fact −α + k < −β + k ≤ n − β − 1 < 0 for all
k = 0, 1, 2, . . . , n− 1, there are constants M > 0 and t1 > t0 so that

n−1∑
k=0

xk
∏n−1−k

j=0 (1− α+ k + j)

Γ(n− α+ 1)
t−α+k

+

n−1∑
k=0

axk
∏n−1−k

j=0 (1− β + k + j)

Γ(n− β + 1)
t−β+k

≤ Mtn−β−1, ∀t ≥ t1. (66)

Let T = max

{(
M
c4

) 1
1−σ

, t1

}
, then

Mtn−β−1 < c4t
n−β−σ < g(t), ∀t > T. (67)

By combining (65), (66), (67) and the fact sgn(x(t)) = 1, q(t)f(x(t)) > 0 for all t > T yields218

y′n(t) < 0 on [T,∞). This together with the relation y′i(t) = yi+1(t), t > 0, i = 1, 2, . . . , n − 1219

leads to that yn(·) is monotonically decreasing and yi, i = 1, 2, . . . , n − 1 are monotonic on220

[T,∞). The proof finishes.221

Lemma 5.4. Consider the equation (61). Suppose that (G1), (H), (K) are true. If x(·) is an222

eventually positive solution and y1(·) is eventually negative, then limt→∞ y1(t) = 0 and y2(·) is223

eventually positive.224

Proof. Let x(·) be a solution of the equation (61) on [0,∞). Assume that it is eventually positive
and y1(·) is eventually negative. From this, there is a t0 > 0 large enough such x(t) > 0, y1(t) < 0

26



for all t ≥ t0. Taking M :=
∫ t0
0 |x(s)|ds. For any t > t0, it is easy to see

In−α
0+

x(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1x(s)ds

=
1

Γ(n− α)

∫ t0

0
(t− s)n−α−1x(s)ds+

1

Γ(n− α)

∫ t

t0

(t− s)n−α−1x(s)ds

≥ 1

Γ(n− α)

∫ t0

0
(t− s)n−α−1x(s)ds. (68)

Notice that (t− s)n−α−1x(s) ≥ −(t− t0)
n−α−1|x(s)| for all s ∈ [0, t0] and t > t0. This together

with (68) lead to

In−α
0+

x(t) ≥ −M

Γ(n− α)
(t− t0)

n−α−1, ∀t > t0. (69)

By the same arguments, it is also true that

In−β
0+

x(t) ≥ −M

Γ(n− β)
(t− t0)

n−β−1, ∀t > t0. (70)

From (63), (69) and (70), we get

−M

Γ(n− α)
(t− t0)

n−α−1 +
−aM

Γ(n− β)
(t− t0)

n−β−1 ≤ x1(t) < 0, ∀t > t0,

and thus limt→∞ x1(t) = 0. On the other hand, it follows from Lemma 5.3 that y1(·) is strictly225

monotonic on [T,∞) for some T > 0 large enough. Thus y1(·) is strictly increasing on that226

interval. Due to y′1(t) = y2(t) for all t > 0, we conclude that y2(·) is eventually positive.227

Lemma 5.5. Suppose that (G1), (G2), (H), (K) hold. Let x(·) be an eventually positive solution
of (61) such that yn(·) is also eventually positive, then

lim sup
t→∞

x(t) < ∞.

Proof. Because (F1), (F2), (Q), (G) are true, x(·), yn(·) are eventually positive, there is a t0 > 0
so that x(t) > 0, yn(t) > 0, f(x(t)) > 0, q(t) ≥ c3 > 0 and g(t) ≥ c4t

n−β−σ for all t ≥ t0. From
this, by (65), (66) and (67), we can find t1 > t0 so that

y′n(t) < −q(t)f(x(t)), ∀t > t1.

Moreover,

yn(t1) > yn(t1)− yn(t) = −
∫ t

t1

y′n(s)ds

>

∫ t

t1

q(s)f(x(s))ds

≥ c3

∫ t

t1

f(x(s))ds, ∀t > t1.

Letting t → ∞, then228 ∫ ∞

t1

f(x(s))ds <
yn(t1)

c3
< ∞, (71)
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which implies that f(x(·)) is bounded on [t1,∞). This together with (G2) shows that x(·) is
also bounded on [t1,∞) and thus

lim sup
t→∞

x(t) < ∞.

229

Lemma 5.6. Let x(·) be an eventually positive solution of (61) satisfying

y2(t) ≥ c5 > 0, ∀t ≥ T3 > 0.

Then,

lim sup
t→∞

x(t) = ∞.

Proof. From (63) and Lemma 2.3, we have

CDn−α
0+

y1(t) = x(t) + aIα−β
0+

x(t), ∀t > 0. (72)

Define x∗(t) = sups∈[0,t]x(s) for each t > 0, then

x(t) + aIα−β
0+

x(t) = x(t) +
a

Γ(α− β)

∫ t

0
(t− s)α−β−1x(s)ds

≤ x∗(t) +
ax∗(t)

Γ(α− β)
tα−β

= x∗(t)

(
1 +

a

Γ(α− β)
tα−β

)
, ∀t > 0. (73)

On the other hand, by the assumption of the lemma, there is a t0 > 0 such that x(t) > 0,
y2(t) ≥ c5 > 0 for all t ≥ t0. Define M1 :=

∫ t0
0 |y2(s)|ds. It follows from Lemma 2.2 that

CDn−α
0+

y1(t) =
1

Γ(1 + α− n)

∫ t

0

y2(s)

(t− s)n−α
ds

=
1

Γ(1 + α− n)

(∫ t0

0

y2(s)

(t− s)n−α
ds+

∫ t

t0

y2(s)

(t− s)n−α
ds

)
≥ 1

Γ(1 + α− n)

(
−1

(t− t0)n−α

∫ t0

0
|x(s)|ds+ c5

α− n+ 1
(t− t0)

α−n+1

)
=

1

Γ(1 + α− n)

(
−M1

(t− t0)n−α
+

c5
α− n+ 1

(t− t0)
α−n+1

)
, ∀t > t0. (74)

Using (72)–(74), for t > t0, then

x∗(t)

(
1 +

a

Γ(α− β)
tα−β

)
≥ 1

Γ(1 + α− n)

(
−M1

(t− t0)n−α
+

c5
α− n+ 1

(t− t0)
α−n+1

)
,

which gives

x∗(t) ≥
1

Γ(1+α−n)

(
−M1

(t−t0)n−α + c5
α−n+1(t− t0)

α−n+1
)

1 + a
Γ(α−β) t

α−β
, ∀t > t0,

and thus x∗(t) → ∞ as t → ∞. In particular, it follows that

lim sup
t→∞

x(t) = ∞.

230
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Lemma 5.7. Suppose that (G1), (G2), (H), (K) are true. The following statements hold.231

(i) If n is odd, all eventually positive solutions of (61) satisfy

(−1)i+1yi(t) > 0, i = 1, 2, 3, . . . , n, for t large enough. (75)

(ii) If n is even, all eventually positive solutions of (61) satisfy

(−1)iyi(t) > 0, i = 1, 2, 3, . . . , n, for t large enough, (76)

or

y1(t) > 0, y2(t) > 0 and (−1)iyi(t) > 0, i = 3, . . . , n, for t large enough. (77)

Proof. Let x(·) be an eventually positive solution of (61). By Lemma 5.3, there is a T > 0 such
that y′n(t) < 0 and yi, i = 1, 2, 3, . . . , n, are strictly monotonic on [T,∞). From this, we can find
t0 > T with y′n(t) < 0 and yi(·), i = 1, 2, 3, . . . , n, do not change sign on [t0,∞). We first point
out that if there exits k ∈ {2, 3, . . . , n} satisfying yk−1(t)yk(t) > 0 for all t ≥ t0, then

yi(t)yi+1(t) > 0, i = 1, 2, . . . , k − 1, t ≥ t0.

Indeed, without loss of generality, we assume yk−1(t) > 0, yk(t) > 0 for all t ≥ t0. By induction,
we only need to prove yk−2(t) > 0 for all t ≥ t0. Due to y′k−1(t) = yk(t) > 0 for all t ≥ t0, the
function yk−1(·) is positive and strictly increasing on [t0,∞). This implies that

yk−1(t) ≥ M3, t ≥ t1,

for some M3 > 0 and t1 > t0 and thus

yk−2(t) =

∫ t

t1

yk−1(s)ds+ yk−2(t1) ≥ M3(t− t1) + yk−2(t1), ∀t > t1. (78)

From (78), yk−2(t) > 0 for all t >
M3t1−yk−2(t1)

M3
which together the fact xk−2(·) does not change232

sign on [t0,∞) gives yk−2(t) > 0 for all t ≥ t0.233

Case I: there exits k ∈ {2, 3, . . . , n} satisfying yk−1(t)yk(t) > 0 for all t ≥ t0. In this case, only234

the following possibilities occur.235

(i) If k = n, then

yi(t) > 0, t ≥ t0, i = 1, 2, . . . , n, (79)

or

yi(t) < 0, t ≥ t0, i = 1, 2, . . . , n. (80)

(ii) If 2 ≤ k ≤ n− 1, then for t ≥ t0,

yi(t) > 0, i = 1, 2, . . . , k, yi(t)yi+1(t) < 0, i = k, . . . , n− 1, (81)

or

yi(t) < 0, i = 1, 2, . . . , k, yi(t)yi+1(t) < 0, i = k, . . . , n− 1. (82)
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Case II: there is not k ∈ {2, 3, . . . , n} satisfying yk−1(t)yk(t) > 0 for all t ≥ t0. It is easy to236

check that then the following statement is true.237

(iii)

(−1)iyi(t) > 0, t ≥ t0, i = 1, 2, . . . , n, (83)

or

(−1)i+1yi(t) > 0, t ≥ t0, i = 1, 2, . . . , n. (84)

Based on Lemma 5.4, the possibilities (80) and (82) do not happen. According to Lemma 5.5238

and Lemma 5.6, the possibility (79) also does not happen.239

Next, if yn(t) < 0 for all t ≥ t0, by the same argument as in the proof of (78), we claim that240

yn−1(t) < 0 for all t ≥ t0. Thus, the possibilities (81), (83) and (84) occur if and only if yn(t) > 0241

for all t ≥ 0.242

Consider (81). It follows from Lemma 5.5 and Lemma 5.6 that k = 2. Hence, y1(t), y2(t) > 0,243

(−1)iyi(t) > 0 for all t ≥ t0, i = 3, . . . , n. This combines with yn(t) > 0, t > t0 yields (−1)n > 0244

and thus n is even. The statement (77) is checked.245

Concerning with (83), since yn(t) > 0 for t ≥ t0, it implies that n is even and thus the assertion246

(76) is true.247

For the case (84), it is obvious that n is odd. The assertion (75) is verified.248

Lemma 5.8. Let x(·) be an eventually positive solution of (61). Assume that one of the249

following assumptions is true.250

(i) For all i = 1, 2, 3, . . . , n,

(−1)i+1yi(t) > 0 for t large enough.

(ii) For all i = 1, 2, 3 . . . , n,
(−1)iyi(t) > 0 for t large enough,

(iii) y1(·) is bounded. Moreover,

y1(t) > 0, y2(t) > 0 and (−1)iyi(t) > 0, i = 3, . . . , n, for t large enough.

Then,
x(t) = O(tα−n) as t → ∞.

Proof. (a) Suppose that the assumption (i) is true. There exists a t0 > 0 such that

x(t) > 0, y1(t) > 0, y2(t) < 0, t ≥ t0.

From (63) and Lemma 2.3, it leads to

CDn−α
0+

y1(t) = x(t) + aIα−β
0+

x(t), ∀t > 0. (85)
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Taking M :=
∫ t0
0 |x(s)|ds. For t > t0, we have

x(t) + aIα−β
0+

x(t) = x(t) +
a

Γ(α− β)

∫ t

0
(t− s)α−β−1x(s)ds

≥ x(t) +
a

Γ(α− β)

∫ t0

0
(t− s)α−β−1x(s)ds

≥ x(t)− a

Γ(α− β)
(t− t0)

α−β−1

∫ t0

0
|x(s)|ds

= x(t)− aM

Γ(α− β)
(t− t0)

α−β−1. (86)

Define M1 :=
∫ t0
0 |y2(s)|ds. Due to y1(·) ∈ AC[0,∞), it follows from Lemma 2.2 that, for t > t0,

CDn−α
0+

y1(t) =
1

Γ(1 + α− n)

∫ t

0

y′1(s)

(t− s)n−α
ds

=
1

Γ(1 + α− n)

∫ t0

0

y2(s)

(t− s)n−α
ds+

1

Γ(1 + α− n)

∫ t

t0

y2(s)

(t− s)n−α
ds

≤ 1

Γ(1 + α− n)

1

(t− t0)n−α

∫ t0

0
|y2(s)|ds

=
M1

Γ(1 + α− n)

1

(t− t0)n−α
. (87)

Combining (85)–(87), we get

x(t)− aM

Γ(α− β)
(t− t0)

α−β−1 ≤ M1

Γ(1 + α− n)

1

(t− t0)n−α
, ∀t > t0.

This means that251

x(t) ≤ aM

Γ(α− β)
(t− t0)

α−β−1 +
M1

Γ(1 + α− n)

1

(t− t0)n−α
, ∀t > t0. (88)

Notice that β + 1 − α > n − α, from (88), we conclude that there are constants M2 > 0 and252

t1 > t0 such that253

x(t) ≤ M2

tn−α
, ∀t > t2. (89)

(b) Suppose that the assumption (ii) is true. We can find t0 > 0 so that

x(t) > 0, y1(t) < 0, y2(t) > 0, y3(t) < 0, ∀t ≥ t0.

Furthermore, y2(·) is strictly decreasing on [t0,∞). Thus,

−y1(t0) > y1(t)− y1(t0) =

∫ t

t0

y2(s)ds ≥ y2(t)(t− t0), ∀t > t0,

which implies

y2(t) ≤
−y1(t0)

t− t0
, ∀t > t0. (90)
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Now, for t > 2t0, we obtain the following estimates

CDn−α
0+

y1(t) =
1

Γ(1 + α− n)

∫ t

0

y2(s)

(t− s)n−α
ds

=
1

Γ(1 + α− n)

(∫ t0

0

y2(s)

(t− s)n−α
ds+

∫ t/2

t0

y2(s)

(t− s)n−α
ds+

∫ t

t/2

y2(s)

(t− s)n−α
ds

)

≤ 1

Γ(1 + α− n)

(
1

(t− t0)n−α

∫ t0

0
|y2(s)|ds+

(
2

t

)n−α ∫ t/2

t0

y2(s)ds+ I(t)

)

=
1

Γ(1 + α− n)

(
M1

(t− t0)n−α
+

(
2

t

)n−α

(y1(t/2)− y1(t0)) + I(t)

)

≤ 1

Γ(1 + α− n)

(
M1

(t− t0)n−α
− y1(t0)

(
2

t

)n−α

+ I(t)

)
, (91)

where I(t) :=
∫ t
t/2

x2(s)
(t−s)n−αds. By (90),

I(t) =

∫ t

t/2

y2(s)

(t− s)n−α
ds ≤

∫ t

t/2

−y1(t0)

(s− t0)(t− s)n−α
ds

≤ −y1(t0)

t/2− t0

1

α− n+ 1

(
t

2

)α−n+1

, ∀t > 2t0. (92)

According to (91) and (92), there are M3 > 0 and t2 > 2t0 satisfying

CDn−α
0+

y1(t) ≤
M3

tn−α
, ∀t > t2,

which together with (86) leads to

x(t) ≤ aM

Γ(α− β)
(t− t0)

α−β−1 +
M3

tn−α
, ∀t > t2,

and thus254

x(t) = O(tα−n) as t → ∞. (93)

(c) Suppose that the assumption (iii) is true. There exits t0 > 0 with

x(t) > 0, y1(t) > 0, y2(t) > 0, y3(t) < 0, t ≥ t0.

Due to y1(·) is bounded, there is a M4 > 0 so that y1(t) < M4 for all t ≥ t0. By the fact y2(·) is
positive and decreasing on [t0,∞), we see

M4 > y1(t)− y1(t0) =

∫ t

t0

y2(s)ds ≥ y2(t)(t− t0), ∀t > t0,

which shows that

y2(t) ≤
M4

t− t0
, ∀t > t0.

Repeated the arguments as in (b) enables us to claim255

x(t) = O(tα−n) as t → ∞. (94)

In short, based on (89), (93) and (94), we conclude that

x(t) = O(tα−n) as t → ∞.

The proof is complete.256
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Lemma 5.9. Suppose that (G1), (G2), (G3), (H), (K) are true. Let n be even and x(·) be an257

eventually positive solution of (61) satisfying (77). Then the limit limt→∞ y1(t) is finite.258

Proof. It follows from the assumptions of the lemma that there is a t0 > 0 such that x(t) > 0,
y1(t) > 0, y2(t) > 0, (−1)iyi(t) > 0, i = 3, . . . , n, f(x(t)) > 0, q(t) ≥ c3 > 0 and g(t) ≥ c4t

n−β−σ

for all t ≥ t0. From the arguments in the proof of Lemma 5.5, we can find a t1 > t0 with

y′n(t) < −q(t)f(x(t)), ∀t > t1,

which implies

1

(n− 2)!

∫ t

t1

(s− t1)
n−2q(s)f(x(s))ds <

−1

(n− 2)!

∫ t

t1

(s− t1)
n−2y′n(s)ds

=
−(t− t1)

n−2

(n− 2)!
yn(t) +

1

(n− 3)!

∫ t

t1

(s− t1)
n−3y′n−1(s)ds

=
−(t− t1)

n−2

(n− 2)!
yn(t) +

(t− t1)
n−3

(n− 3)!
yn−1(t)−

1

(n− 4)!

∫ t

t1

(s− t1)
n−4y′n−2(s)ds.

We continue in this fashion to obtain

1

(n− 2)!

∫ t

t1

(s− t1)
n−2q(s)f(x(s))ds <

−1

(n− 2)!

∫ t

t1

(s− t1)
n−2y′n(s)ds

=
−(t− t1)

n−2

(n− 2)!
yn(t) +

(t− t1)
n−3

(n− 3)!
yn−1(t) + · · ·+ t− t1

1!
x3(t)−

∫ t

t1

y′2(s)ds

=
−(t− t1)

n−2

(n− 2)!
yn(t) +

(t− t1)
n−3

(n− 3)!
yn−1(t) + · · ·+ t− t1

1!
y3(t) + y2(t1)− y2(t)

=
n−2∑
k=0

(−1)k+1(t− t1)
k

k!
yk+2(t) + y2(t1), t > t1. (95)

Because (−1)k+1yk+2(t) = −(−1)k+2yk+2(t) < 0 for t ≥ t0, k = 0, 1, . . . , n − 2, we have
(−1)k+1(t−t1)k

k! yk+2(t) ≤ 0 for t ≥ t1, k = 0, 1, . . . , n− 2. This combines with (95) leads to

y2(t1) >
1

(n− 2)!

∫ t

t1

(s− t1)
n−2q(s)f(x(s))ds ≥ c3

(n− 2)!

∫ t

t1

(s− t1)
n−2f(x(s))ds, ∀t > t1.

Letting t → ∞ yields ∫ ∞

t1

(s− t1)
n−2f(x(s))ds <

(n− 2)!y2(t1)

c3
< ∞.

Choosing M1 > 0 with

(t− t1)
n−2f(x(t)) ≤ M1, ∀t ≥ t1.

It deduces from (G2) that x(t) < 1 for all t > t2 :=
(
M1
c1

) 1
n−2

+ t1. This together with (G3)

gives

x(t) ≤
(
M1

c2

) 1
µ 1

(t− t1)
n−2
µ

, ∀t > t2,
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where µ ∈
(
0, n−2

n−β

)
. Hence, there is a t3 > t2 with

x(t) ≤ 1

tn−β
, t ≥ t3.

Put M2 :=
∫ t3
0 |x(s)|ds. For t > t3, then

x(t) + aIα−β
0+

x(t) ≤ 1

tn−β
+

a

Γ(α− β)

∫ t3

0
(t− s)α−β−1x(s)ds

+
a

Γ(α− β)

∫ t

t3

(t− s)α−β−1x(s)ds

≤ 1

tn−β
+

a

Γ(α− β)
(t− t3)

α−β−1

∫ t3

0
|x(s)|ds

+
a

Γ(α− β)

∫ t

t3

(t− s)α−β−1sβ−nds

≤ 1

tn−β
+

aM2

Γ(α− β)
(t− t3)

α−β−1 +
a

Γ(α− β)

∫ t

0
(t− s)α−β−1sβ−nds

=
1

tn−β
+

aM2

Γ(α− β)
(t− t3)

α−β−1

+
a

Γ(α− β)

∫ 1

0
tα−β−1(1− u)α−β−1tβ−nuβ−ntdu

= tβ−n +
aM2

Γ(α− β)
(t− t3)

α−β−1 +
aΓ(β − n+ 1)

Γ(α− n+ 1)
tα−n.

From this there exist M3 > 0 and t4 > t3 satisfying

CDn−α
0+

y1(t) = x(t) + aIα−β
0+

x(t) ≤ M3t
α−n, ∀t ≥ t4. (96)

Notice that for t > t4,

CDn−α
0+

y1(t) =
1

Γ(α− n+ 1)

∫ t

0

y′1(s)

(t− s)n−α
ds

=
1

Γ(α− n+ 1)

∫ t4

0

y2(s)

(t− s)n−α
ds+

1

Γ(α− n+ 1)

∫ t

t4

y′1(s)

(t− s)n−α
ds

≥ 1

Γ(α− n+ 1)

−1

(t− t4)n−α

∫ t4

0
|y2(s)|ds

+
1

Γ(α− n+ 1)

1

(t− t4)n−α
(y1(t)− y1(t4))

=
y1(t)− y1(t4)−M4

Γ(α− n+ 1)

1

(t− t4)n−α
, (97)

where M4 :=
∫ t4
0 |x2(s)|ds. From (96) and (97), it follows259

M3 ≥
y1(t)− y1(t4)−M4

Γ(α− n+ 1)

tn−α

(t− t4)n−α
, ∀t > t4. (98)

Due to y1(·) is positive and increasing on [t0,∞). From (98), we conclude that the limit260

limt→∞ y1(t) exists and is finite.261

We can now prove the main results of this part.262
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Proof of Theorem 5.1. Let x(·) be a non-oscillatory solution of the initial value problem (61)–
(62). Without loss of generality, we assume that x(·) is eventually positive. From Lemma 5.7,
x(·) satisfies (75). Applying Lemma 5.8, we conclude

x(t) = O(tα−n) as t → ∞.

263

Proof of Theorem 5.2. Let x(·) be a non-oscillatory solution of the initial value problem (61)–
(62). Without loss of generality, we assume that x(·) is eventually positive. Lemma 5.7 shows
that x(·) satisfies (76) or (77). Applying Lemma 5.8 and Lemma 5.9, we conclude that

x(t) = O(tα−n) as t → ∞.
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[2] M. Bartušek and Z. Došlá, Oscillation of higher-order fractional differential equations. Frac-269

tional Calculus and Applied Analysis, 26 (2023), pp. 336–350.270

[3] N.D. Cong, Semigroup property of fractional differential operators and its applications. Dis-271

crete and Continuous Dynamical Systems - Series B, 28 (2023), pp. 1–19.272

[4] G. Devillanova and G.C. Marano, A free fractional viscous oscillator as a forced standard273

damped vibration. Fractional Calculus and Applied Analysis, 19 (2016), pp. 319–356.274

[5] K. Diethelm, The Analysis of Fractional Differential Equations. An application-oriented275

exposition using differential operators of Caputo type. Lecture Notes in Mathematics 2004.276

Berlin: Springer, 2010.277

[6] U. Elias, Oscillation Theory of Two-Term Differential Equations. Kluwer Acad. Publ., Dor-278

drecht, 1997.279

[7] S.R. Grace, R.P. Agarwal, P.J.I. Wong, and A. Zafer, On the oscillation of fractional differ-280

ential equations. Fractional Calculus and Applied Analysis, 15 (2012), pp. 222–231.281

[8] S.R. Grace, On the oscillatory behavior of solutions of nonlinear fractional differential equa-282

tions. Applied Mathematics and Computation, 266 (2015), pp. 259–266.283

[9] I.T. Kiguradze and T.A. Chanturiya, Asymptotic Properties of Solutions of Nonautonomous284

Ordinary Differential Equations. Kluwer Acad. Publ., Dordrecht, 1993.285

[10] D.G. Ky, L.V. Thinh, H.T. Tuan, Existence, uniqueness and asymptotic behavior of so-286

lutions to two-term fractional differential equations. Communications in Nonlinear Science287

and Numerical Simulation, 115 (2022), 106751.288

[11] C.A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations. Math-289

ematics in Science and Engineering 48. Academic Press, New York–London, 1968.290

35



[12] J.S.W. Wong, A second-order nonlinear oscillation. Funkcial. Ekvac., 11 (1968), pp. 207–291

234.292

[13] G. Vainikko, Which functions are fractionally differentiable? Z. Anal. Anwend., 35 (2016),293

no. 4, pp. 465–487.294

36


