
Stability criteria for rough systems

Luu Hoang Duc∗, Phan Thanh Hong †, Nguyen Dinh Cong‡

In memory of Björn Schmalfuß

Abstract

We propose a quantitative direct method of proving the local stability for the trivial solution
of a rough differential equation and of its regular discretization scheme. Using Doss-Sussmann
technique and stopping time analysis, we prove that the trivial solution of the rough system is
exponentially stable as long as the noise is small. The same conclusions hold for the regular
discretization scheme with small noise and small step size. Our results are significantly stronger
than [20, Theorem 14] and [22, Theorem 18] and can be applied to non-flat bounded or linear
noises.

Keywords: stochastic differential equations (SDE), Young integral, rough path theory, rough
differential equations, exponential stability.

1 Introduction

This paper deals with the local asymptotic stability criteria for rough differential equations of the
form

dy = f(y)dt+ g(y)dx, (1.1)

or in the integral form

yt = y0 +

∫ t

0
f(yu)du+

∫ t

0
g(yu)dxu, t ∈ [0, T ]. (1.2)

Equation (1.1) can be viewed as a controlled differential equation driven by rough path x ∈
Cν([0, T ],Rm) in the sense of Lyons [26], [27]. As such, system (1.1) appears as a pathwise ap-
proach to solve a stochastic differential equation which is driven by a certain Hölder noise Xt. In
this paper, we would like to approach system (1.1) and interpret the second integral as a rough
integral in the sense of Gubinelli [23], and consider ν ∈ (13 , 1] for simplicity of presentation (see a
detailed description in Section 6).

Under certain assumptions imposed on its coefficient functions, a rough differential equation
will have the property of the local existence, uniqueness and continuation of solution given initial
conditions, see e.g. [23] or [17] for a version without drift coefficient function, and [32] for a full
version using p - variation norms. Moreover, with a stronger assumption on the coefficient functions
a rough differential equation will have global solutions which exists on the whole time interval [0,∞).
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This gives rise to the recent interest in investigation of qualitative properties of rough differential
equation with a view to the parallel in the well developed and well known qualitative theory of
ordinary differential equations.

The topic of asymptotic stability for path-wise solution of (1.1) is studied in [15, 14, 12] for
which the noise is assumed to be fractional Brownian motion [28] (i.e. a family of BH = {BH

t }t∈R
with continuous sample paths and E∥BH

t − BH
s ∥ = |t − s|2H for all t, s ∈ R) with small intensity.

In addition, the topic of local stability is studied in [20, Theorem 14] and in [22, Theorem 18] for
local versions on a small neighborhood B(0, ρ) of the trivial solution, using the cutoff technique and
fractional calculus, and under the assumption that g(x) is rather flat, i.e. g(0) = Dyg(0) = 0 for the
Young differential equations and g(0) = Dyg(0) = Dyyg(0) = 0 for the rough differential equations.
A related topic is random attractors for the random dynamical system generated from (1.1) and its
discretization, which is investigated in many works, see e.g. [19], [11], [10], [8] and the references
therein.

In this paper we are interested in the Lyapunov asymptotic stability of the rough differential
equation (1.1) near an equilibrium point (the origin). Since the stability is a local property of the
equation, it is natural to restrict our investigation and impose conditions on the equation only in
a neighborhood of the origin. Throughout the paper, we will assume that there exist a positive
constant ϵ0 > 0 such that in the ball B(0, ϵ0) := {y ∈ Rd : ∥y∥ ≤ ϵ0} ⊂ Rd the following conditions
are satisfied

(Hf ) in the ball B(0, ϵ0) the coefficient function f : Rd → Rd of (1.1) is locally Lipschitz
continuous which can be decomposed into

f(y) = Df(0)y +H(y), ∀y ∈ B(0, ϵ0), (1.3)

where Df(0) ∈ Rd×d is a matrix which admits all eigenvalues of negative real parts. Meanwhile,
H : Rd → Rd is the non-linear part satisfying: there exist positive constants CH , LH ,m > 0 such
that

∥H(y)∥ ≤ CH∥y∥1+m, ∥H(y)−H(z)∥ ≤ LH∥y − z∥ ∀y, z ∈ B(0, ϵ0), (1.4)

(Hg) in the ball B(0, ϵ0) the coefficient function g : B(0, ϵ0) → L(Rm,Rd) of the equation (1.1)
belongs to C3(B(0, ϵ0),L(Rm,Rd)); we denote

Cg := max
{
∥g∥∞,B(0,ϵ0), ∥Dg∥∞,B(0,ϵ0), ∥D

2g∥∞,B(0,ϵ0)

}
, (1.5)

C∗
g := max

{
Cg,

√
∥g∥∞,B(0,ϵ0) · ∥D3g∥∞,B(0,ϵ0)

}
. (1.6)

(HX) for a given ν ∈ (13 ,
1
2), x ∈ Cν(R,Rm) - the space of all Hölder continuous paths such

that x is a realization of a stochastic process Xt(ω) with stationary increments and that x can be
lifted into a realized component x = (x,X) of a stochastic process (x·(ω),X·,·(ω)) with stationary
increments. Moreover the estimate

E
(
∥xs,t∥p + ∥Xs,t∥q

)
≤ CT,ν |t− s|pν , ∀s, t ∈ [0, T ], (1.7)

holds for any [0, T ] ⊂ [,∞), with pν ≥ 1, q = p
2 and some constant CT,ν .

Concerning the assumption (HX), for instance, given ν̄ ∈ (13 , 1], the path xmight be a realization
of a Rm-valued centered Gaussian process satisfying: there exists for any T > 0 a constant CT such
that for all p ≥ 1

ν̄
E∥Xt −Xs∥p ≤ CT |t− s|pν̄ , ∀s, t ∈ [0, T ]. (1.8)
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By Kolmogorov theorem, for any ν ∈ (0, ν̄) and any interval [0, T ] almost all realization of X will
be in Cν([0, T ]). Such a stochastic process, in particular, can be a fractional Brownian motion BH

with Hurst exponent H ∈ (13 , 1).
Assumptions (Hf ), (Hg), (HX) are sufficient to prove the existence and uniqueness of the

solution of (1.1) defined for any initial value y0 ∈ B(0, ϵ0) and on a finite or infinite time interval, as
well as the continuity of the solution semi-flow and the generation of a continuous random dynamical
system, see e.g. [32, Theorem 4.3], [2], [11] and [10].

In this paper, we will always assume that f(0) = 0 and g(0) = 0. System (1.1) then admits an
equilibrium which is the trivial solution. Our aim is to obtain the stability of the system (1.1) in the
neighborhood of the origin (an equilibrium). For this we need to show that the solutions starting
near to 0 are not exploded, i.e. it can be extended to all the time t > 0, and the requirement of the
stability are met.

Note that the condition (Hf ) assures that the ”unperturbed” ODE ẏ = f(y) is exponentially
stable (see Perko [31, Theorem 1, p. 130], Chicone [6, Theorem 2.77, p. 183]). We will show that
in the rough path setting, considering the rough path integral as a perturbation of this ODE, the
system (1.1) remains exponentially stable provided the perturbation is small. Roughly speaking,
our main results can be formulated as follows.

Main results. Assume that f(0) = 0 and g(0) = 0 so that zero is the trivial solution of (1.1),
and conditions (Hf ), (Hg), (HX) hold such that the generated Wiener shift is ergodic. Then there
exists C0 > 0 depending only on f such that for any 0 < Cg < C0, the trivial solution of (1.1)
is exponentially stable almost surely. The same conclusion holds for the regular discretized system,
provided that the step size is sufficiently small.

Our approach to deal with this problem is first to impose an additional global conditions on f
and g to get a global continuous random dynamical system generated by the solutions of (1.1), and
then to apply our stopping time technique to get the local stability of the trivial solution for the
global system. Finally, we use the extension technique in [16] to prove that such global assumptions
on f, g are feasible but do not change the local dynamics of the system around the trivial solution,
hence they can all be relaxed.

Our method applies the direct method of Lyapunov, which aims to estimate the norm growth
(or a Lyapunov-type function) of the solution in discrete intervals. For the continuous time set,
this technique is feasible thanks to the Doss-Sussmann technique to transform the rough differential
equation on each stopping time interval to an ordinary differential equation which can be seen
as a non-autonomous perturbation of the unperturbed ODE. The tricky part is proving stability,
which means one needs to control the norm growth of the solution less than a parameter ϵ on
each stopping time interval. The exponential attractivity is then an indirect consequence of the
Birkhoff’s ergodic theorem (via Lemma 3.1), provided that the generated Wiener-shift is ergodic
(this holds for fractional Brownian motions, see Lemma 6.2 in Section 6). It is important to note
that one can develop a direct argument for the local system without extending it to the global one,
by taking care of the time for a solution to exit the local regime of the trivial solution. The results
in Theorem 4.2 and Theorem 4.3 are significantly stronger than [20, Theorem 14] and [22, Theorem
18] and can be applied to non-flat bounded or linear noises (see Remark 4.4).

The situation is rather complicated for the discretized system of (1.1), because the Doss-
Sussmann transformation fails to control the solution norm to be sufficiently small in the discrete
time set, and in general the solution can exit the local regime of the trivial solution right after
one discrete time step. Thus similar to the continuous time case, we need first to extend the lo-
cal system to a global one and then to apply the coupling technique to compare solutions of the
rough difference equation and its unperturbed system. A sufficient condition is the integrability of
solution, which is straightforward for Young equations but not trivial for the rough case under the
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p-variation norm. To overcome this difficulty, we develop further in Section 3 the stopping time
technique, which was studied e.g. in [5], [15], [7] for continuous time sets and recently in [8] for
discrete time sets, to estimate the norm growth of the solution on each stopping time interval and
then to control the initial value y0 inside a random radius ball, leading to the local exponential
stability as in the continuous time case. The stability criteria in Theorem 5.1 and Theorem 5.2 are
new, where the choice of Cg and step size ∆ are independent and pathwise free.

When the assumption on ergodicity of the generated Wiener shift is relaxed, the ergodic Birkhoff
theorem is still applicable in estimating stopping times, but results in random variable limits. In
this case, all conclusions in the main theorems still hold almost surely, but all the stability criteria
and parameters would be path dependent.

Our method still works for a lower regularity coefficient ν ≤ 1
3 , although the computation would

be rather complicated. Moreover, it could also be applied in case f also depends on time, i.e. f(y)
is replaced by f(t, y).

We close the introduction part with a counter example that choosing a large Cg might break
the stability.

Example 1.1 Consider the Itô stochastic differential equation

d
( y1
y2

)
=
( y1(µ− y21 − y22)
y2(µ− y21 − y22)

)
dt+

( 0 σ
−σ 0

)( y1
y2

)
dBt (1.9)

or in short dy = f(y)dt+g(y)dBt, where B is a scalar standard Brownian motion will all realization
in Cν for ν ∈ (13 ,

1
2); and µ, σ are real constants. We omit the issue of existence and uniqueness

of the solution of equation (1.9), noting that it can be solved either in the Itô sense using polar
coordinates y1 = r sinα, y2 = r cosα or in the pathwise sense as a rough differential equation (see
e.g. [11, Theorem 2.1] and [10, Theorem 5.1]). In particular, one can apply Itô formula to check
that

d∥y∥2 =
[
2⟨y, f(y)⟩+ ∥g(y)∥2

]
dt+ 2⟨y, g(y)⟩dBt =

(
2µ+ σ2 − 2∥y∥2

)
∥y∥2dt.

In other words, η = ∥y∥2 is the solution of the ordinary differential equation

d

dt
η = η(2µ+ σ2 − 2η). (1.10)

Clearly, zero is the trivial solution of (1.9). For σ = 0 and µ < 0, system (1.9) is an ordinary
differential equation, which admits zero as an globally asymptotically stable solution. However,
when σ > 0 large enough such that σ2 +2µ > 0, then the zero solution of (1.10) becomes unstable.
In other words, the zero solution of (1.9) will break its stability when perturbed by the linear noise
for σ large enough.

2 Rough differential equations, local solutions and their extension

The existence and uniqueness theorem for system (1.1) is first proved in [32], where the solution is
understood in the sense of Friz &Victoir [18]. Using rough path integrals, we interpret the rough
differential equation (1.1) by writing it in the integral form

yt = ya +

∫ t

a
f(ys)ds+

∫ t

a
g(ys)dxs, ∀t ∈ [a, b], (2.1)
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for any interval [a, b] and an initial value ya ∈ Rd. Then we search for a solution in the Gubinelli
sense, and solve for a path y which is controlled by x. We refer to [13] and Section 6 for definitions
of variation and Hölder norms, Gubinelli rough integrals for controlled rough paths.

The solution of (1.1) with the initial value y0 ∈ B(0, ϵ0) is understood in the pathwise sense,
under the assumptions (Hf )-(Hg). To apply the arguments in [13], we provide an indirect argument
to first extend the local domain B(0, ϵ0) to the whole Rd, and then to apply available results for
global solutions. To do that, in the rest of this section (and sometimes later, we will say explicitly
if it is a case) we assume the following global condition of f and g.

(H∗
f ) f satisfies (Hf ) and, moreover the decomposition (1.3) holds for all y ∈ Rd with H being

globally Lipschitz continuous

∃L̂H > 0 : ∥H(y)−H(z)∥ ≤ L̂H∥y − z∥, ∀y, z ∈ Rd; (2.2)

(H∗
g) g is in C3

b (Rd,L(Rm,Rd)) where we define

Ĉg := max
{
∥g∥∞,Rd , ∥Dg∥∞,Rd , ∥D2

g∥∞,Rd ,
√

∥g∥∞,Rd · ∥D3g∥∞,Rd

}
(2.3)

Note that from [13, Theorem 3.4], the global solution ϕ·(x, ϕa) of the pure rough differential
equation

dϕu = g(ϕu)dxu, u ∈ [a, b], ϕa ∈ Rd (2.4)

is C1 w.r.t. ϕa, and
∂ϕ
∂ϕa

(·,x, ϕa) is the solution of the linearized system

dξu = Dg(ϕu(x, ϕs))ξudxu, u ∈ [a, b], ξa = Id, (2.5)

where Id ∈ Rd×d denotes the identity matrix. The idea is then to prove the existence and uniqueness
of the global solution on each small interval [τk, τk+1] between two consecutive stopping times, and
then concatenate to obtain the conclusion on any interval. The Doss-Sussmann technique used in
[13, Theorem 3.7] and [32] ensures that, by a transformation yt = ϕt(x, zt) there is an one-to-one
correspondence between a solution yt of (1.1) on a certain interval [0, τ ] and a solution zt of the
associate ordinary differential equation

żt =
[∂ϕ
∂z

(t,x, zt)
]−1

f(ϕt(x, zt)), t ∈ [0, τ ], z0 = y0. (2.6)

The parameter τ > 0 can be chosen such that

16CpĈg |||x|||p−var,[0,τ ] ≤ λ, for some λ ∈ (0, 1), (2.7)

where |||x|||p−var,[a,b] is defined in (6.4), Ĉg is defined in (2.3), and Cp is defined in (6.11).
The following result is a direct consequence of [11, Proposition 2.1] and [10, Proposition 2.3],

which shows solution norm estimates for equation (2.4). The proof will be omitted here due to
similarity.

Proposition 2.1 Let ϕt be the solutions of (2.4). Assume (H∗
g), and g(0) = 0. Then for any

interval [a, b] such that 16CpĈg |||x|||p−var,[a,b] ≤ 1, the following estimates hold

i) |||ϕ|||p−var,[a,b] ≤ 8CpĈg |||x|||p−var,[a,b]min {∥ϕa∥, 1} ; (2.8)

ii)
∥∥∥ ∂ϕ
∂ϕa

(t,x, ϕa)− I
∥∥∥,∥∥∥[ ∂ϕ

∂ϕa
(t,x, ϕa)

]−1
− I
∥∥∥ ≤ 16CpĈg |||x|||p−var,[a,b] . (2.9)
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Note that all the above arguments might fail to be applied if we work directly with the local
solution for y0 ∈ B(0, ϵ0). This is because at stopping time interval [τk, τk+1] the Doss-Sussmann
transformation yt = ϕt(x, zt) that starts from yτk ∈ B(0, ϵ0) might exit B(0, ϵ0) soon before τk+1.
Hence in general it would be rather technical to estimate the exit time of the local solution from
B(0, ϵ0).

Next, to apply (H∗
f ) and (H∗

g) for a global solution on Rd, we first need to recall a result on

extension of differentiable functions on Rd. Namely, we have the following lemma which is a direct
corollary of a theorem by C. Fefferman [16, Theorem 1].

Lemma 2.2 There exists a positive constant c∗3 ≥ 1 depending only on the dimensions m and
d (independent from ϵ0) such that any function g : B(0, ϵ0) → L(Rm,Rd) which is in the class
C3(B(0, ϵ0)) can be extended to a function g∗ : Rd → L(Rm,Rd) of the class C3(Rd) with bounded
derivatives up to order 3, and the following inequality holds

∥g∗∥C3(Rd) ≤ c∗3∥g∥C3(B(0,ϵ0)).

A similar extension result for the case of locally Lipschitz continuous functions f,H also holds (see
[3, Theorem 1.53, p. 54])

Lemma 2.3 There exists a positive constant c∗1 ≥ 1 depending only on the dimension d (indepen-
dent from ϵ0) such that any function h : B(0, ϵ0) → Rd which is Lipschitz in the ball B(0, ϵ0) with
Lipschitz constant Lh(B(0, ϵ0)) can be extended to a globally Lipschitz function h̄ : Rd → Rd with a
Lipschitz constant Lh̄(Rd) and the following inequality holds

Lh̄(R
d) ≤ c∗1Lh(B(0, ϵ0)).

Put
c∗ := max{c∗1, c∗3} ≥ 1, (2.10)

to be the universal constant that can serve for both estimations of smooth and Lipschitz extensions
above. Hence, there are new functions

f∗ : Rd → Rd, g∗ : Rd → L(Rm,Rd),

such that f∗, g∗ are the extensions of f, g from B(0, ϵ0) to Rd provided by Lemma 2.2 and Lemma
2.3, i.e. f∗, g∗ coincide with f, g in B(0, ϵ0) respectively. Hence, we have

Cg ≤ C∗
g ≤ Ĉg∗ ≤ c∗C∗

g , L̂H ≤ c∗LH . (2.11)

Consider the equation
dyt = f∗(yt)dt+ g∗(yt)dxt, (2.12)

It is easily seen that the functions f∗, g∗ satisfy the strong assumptions (H∗
f∗)-(H∗

g∗)-(2.11) as well as
the original assumptions (Hf∗)-(Hg∗). Therefore, there exists a unique global solution for equation
(2.12) due to the choice of f∗, g∗. In particular, for any given solution yt(x, y0) with y0 ∈ B(0, ϵ0)
there exists a time

τ(x, y0) := sup{t > 0 : ys(x, y0) ∈ B(0, ϵ0) ∀s ∈ [0, t]} > 0, (2.13)

such that all solution norm estimates can be computed via f, g (instead of f∗, g∗) during the time
interval [0, τ(x, y0)).
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3 Stopping time analysis

3.1 Stopping times for the continuous time case

The construction of a greedy sequence of stopping times in [5] is now used in many recent results, see
e.g. [7, 15, 13, 11, 32]. Namely, for any fixed γ ∈ (0, 1) the sequence of stopping times {τi(γ,x)}i∈N
is defined by

τ0 = 0, τi+1 := inf
{
t > τi : |||x|||p−var,[τi,t]

= γ
}
. (3.1)

For a fixed closed interval I ⊂ [0,∞), we define another sequence of stopping times {τ∗i (γ,x, I)}i∈N
by

τ∗0 = min I, τ∗i+1 := inf
{
t > τ∗i : |||x|||p−var,[τi,t]

= γ
}
∧max I. (3.2)

Define N∗(γ,x, I) := sup{i ∈ N : τ∗i < max I}+ 1. It is easy to show a rough estimate

N∗(γ,x, I) ≤ 1 +
1

γp
|||x|||pp−var,I . (3.3)

In fact, it is proved in [5] that eN
∗(γ,x,I) is integrable for Gaussian rough paths.

Denote θ the Wiener-type shift in the probability space Ω := C 0,α
0 (R, T 2

1 (Rm)) (see (6.6) in
Subsection 6.2). Throughout this paper, we will assume that θ is ergodic. In case θ is not ergodic,
one can use the ergodic decomposition theorem [33, Theorem 3.2, p. 19] to reduce the problem to
the ergodic case.

The following lemma is reformulated from [15, Theorem 14] for the stopping times defined in
the p-variation norm. To make the presentation self-contained, we are going to give a short and
direct proof here.

Lemma 3.1 Given the greedy sequence of stopping time (3.1), the following estimate

lim inf
n→∞

τn
n

≥ 1

EN∗(γ,x, [0, 1])
(3.4)

holds almost surely.

Proof: For each j denote by N(γ,x, [j, j + 1)) the number of stopping times τk in [j, j + 1).
Since the minimal stopping time τ in I is bigger than min I = τ∗0 (γ,x, I) and the maximal stopping
time τ in I is less than max I = τ∗N∗(γ,x,I)(γ,x, I), it follows that

N∗(γ,x, I) ≥ N(γ,x, [min I,max I)). (3.5)

Denote by ⌊τk⌋ the integer part of τk, then τk < ⌊τk⌋ + 1. As a result, the number of positive
stopping times in the interval [0, τk] (which is k) is less than or equal to the one in the interval
[0, ⌊τk⌋+ 1). As a result,

τk
k

≥ ⌊τk⌋
N (γ,x, [0, ⌊τk⌋+ 1))

.

On the other hand, by definition of N and N∗ and inequality (3.5),

N(γ,x, [0, ⌊τk⌋+ 1)) ≤
⌊τk⌋∑
j=0

N(γ,x, [j, j + 1))

≤
⌊τk⌋∑
j=0

N∗(γ,x, [j, j + 1]) =

⌊τk⌋∑
j=0

N∗(γ,x(θjω), [0, 1]),
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where the last equality is due to (6.7). Hence,

τk
k

≥ ⌊τk⌋∑⌊τk⌋
j=0 N

∗(γ,x(θjω), [0, 1])
≥

⌊τk⌋
⌊τk⌋+1

1
⌊τk⌋+1

∑⌊τk⌋
j=0 N

∗(γ,x(θjω), [0, 1])
. (3.6)

By applying the Birkhoff ergodic theorem to the last right hand side of (3.6), where τk → ∞ as
k → ∞, the numerator tends to one while the denominator converges to EN∗(γ,x(·), [0, 1]). This
proves (3.4).

Lemma 3.2 For every a, b ∈ R, a ≤ b, the following estimate holds

γN∗(γ,x(·), [a, b]) ≥ |||x(·)|||p−var,[a,b] . (3.7)

As a consequence,
γEN∗(γ,x(·), [a, b]) ≥ E |||x(·)|||p−var,[a,b] . (3.8)

Proof: Indeed, it follows from [7, Lemma 2.1] that

|||x|||pp−var,[a,b] = |||x|||pp−var,[τ∗0 ,τ
∗
N∗(γ,x,[a,b])]

≤
[
N∗(γ,x, [a, b])

]p−1
N∗(γ,x,[a,b])∑

j=1

|||x|||pp−var,[τ∗j−1,τ
∗
j ]

≤
[
N∗(γ,x, [a, b])

]p−1[
N∗(γ,x, [a, b])

]
γp

≤
[
N∗(γ,x, [a, b])

]p
γp

or equivalently
γN∗(γ,x, [a, b]) ≥ |||x|||p−var,[a,b] .

Taking the expectation to both sides of the above inequality, we obtain (3.8).

Lemma 3.3 The following estimate holds for any n ≥ 1 and any sequence t0 < t1 < . . . < tn

n−1∑
j=0

N∗(γ,x, [tj , tj+1]) ≤ N∗(γ,x, [t0, tn]) + n. (3.9)

Proof: By definition, on [tj , tj+1] there are at least N
∗(γ,x, [tj , tj+1])− 1 consecutive stopping

time intervals on which the p-variation norm of x is γ. As a result, on the interval [t0, tn] there

are at least
∑n−1

j=0

(
N∗(γ,x, [tj , tj+1])− 1

)
disjoint stopping time intervals on which the p-variation

norm of x is γ. This proves (3.9).

3.2 Stopping times for discrete time sets

For investigation of discrete time systems arising from Euler scheme applied to the rough equation
(1.1) we modify the stopping time technique to the discrete framework. In the discrete time setting
we will use more complicated control than the control function ∥x∥pp−var,[s,t] used in the continuous-
time setting above. More precisely, given a finite sequence of controls ω·,· ∈ S associated with
parameters βω ∈ (0, 1], we would like to construct a version of greedy sequence of (discrete-time)
stopping times similar to that in [8].
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For our rough equations, we consider S = {ω(1), ω(2), ω(3)}, ω(1)
s,t = L̂f (t − s), β1 = 1, ω

(2)
s,t =

Ĉp
g |||x|||pp,Π[s,t] , β2 =

1
p and ω

(3)
s,t = Ĉp

g |||X|||qq,Π[s,t] , β3 =
1
q = 2

p . Here L̂f := ∥Df(0)∥+ L̂H is the global

Lipschitz constant of f on Rd.
Let 0 = t0 < t1 < t2 < · · · be an increase sequence which tends to infinity. Given a fixed γ > 0,

assign the starting time τΠ0 = 0. For each n ∈ N, assume τΠn = tk is determined. Then one can
define τΠn+1 by the following rule:

• if
∑

ω∈S ω
βω
tk,tk+1

> γ then set τΠn+1 := tk+1;

• else set τΠn+1 := sup{tl > τk :
∑

ω∈S ω
βω
tk,tl

≤ γ}.

Similar to the continuous case, for a given closed interval [a, b] ⊂ R, and Π[a, b] = {ti : 0 ≤ i ≤
K, a = t∗0 < t∗1 < . . . < t∗K = b} be an arbitrary finite partition of [a, b]. Given a fixed γ > 0, assign
the starting time τΠ0 = a. For each m, assume τΠ∗

n = t∗k is determined. Then τΠ∗
n+1 is determined by

the rule:

• if
∑

ω∈S ω
βω

t∗k,t
∗
k+1

> γ then set τΠ∗
n+1 := t∗k+1;

• else set τΠ∗
n+1 := sup{t∗l ∈ (t∗k, b] :

∑
ω∈S ω

βω

t∗k,t
∗
l
≤ γ}.

A detour to the continuous case: Note that for the continuous-time case treated above, based
on the set of controls S, one can replace the control x in (3.1), (3.2) by S to construct the sequences
τSk from 0 and τS∗k from a on given [a, b] in a similar manner. Denote by N∗

S(γ,x, [a, b]) the number
of τS∗k on [a, b]. Then, due to the choice of the controls ω(i) (i = 1, 2, 3), similar to (3.3) we have
(see for instance [7, Lemma 2.6])

N∗
S(γ,x, [a, b]) < 1 +

1

γp
4p−1

[
L̂p
f (b− a)p + Ĉp

g |||x|||
p
p,Π[a,b] + Ĉp

g |||X|||
p/2
p/2,Π[a,b]

]
. (3.10)

Furthermore, similar to Lemma 3.1, we have

lim inf
n→∞

τSn
n

≥ 1

EN∗
S(γ,x, [0, 1])

(3.11)

almost surely.
Now back to the discrete setting, define N∗(γ,x,Π[a, b]) to be the number of times τΠ∗

n in [a, b].
In the following Lemma we relate the sequence of discrete stopping times to the continuous one.

Lemma 3.4

N∗(γ,x,Π[a, b]) ≤ 2N∗
S(γ,x, [a, b]), (3.12)

lim inf
n→∞

τΠn (γ,x)

n
≥ lim inf

n→∞

1

2

τSn (γ,x)

n
. (3.13)

Proof:
Observe from the definitions of τΠ∗

m (γ,x,Π[a, b]) for the discrete time set Π[a, b] and τSi (γ,x, [a, b])
(with the same set S of controls but for the continuous time set [a, b]) that, between two consecutive
stopping times τSi (γ,x, [a, b]), τ

S
i+1(γ,x, [a, b]) there are at most two stopping times τΠm(γ,x,Π[a, b]).

As a result,
N∗(γ,x,Π[a, b]) ≤ 2N∗

S(γ,x, [a, b]).
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Another consequence is that τΠ2m(γ,x), τΠ2m+1(γ,x) ≥ τSm(γ,x) (otherwise there exist two con-
secutive stopping times τSi (γ,x), τ

S
i+1(γ,x) between which there are more than two stopping times

τΠm(γ,x)). Therefore, it is easy to check that

lim inf
m→∞

τΠm(γ,x)

m
≥ lim inf

m→∞

1

2

τSm(γ,x)

m
.

The lemma is proved.

4 Local stability for rough differential equations

We give the definition on asymptotic/exponential stability of the trivial solution (cf. [6] and [31]
for the ODE case, and [22, Definition 8] for the rough differential equation case).

Definition 4.1 (A) Stability: The trivial solution of equation (1.1) is called stable, if for any ε > 0
there exists a positive random variable r = r(x) > 0 such that for any initial value ∥y0∥ < r(x)
the solution yt of (1.1) starting from y0 exists on the whole half line t ∈ [0,∞) and the following
inequality holds

sup
t≥0

∥yt∥ < ε.

(B) Attractivity: the trivial solution is called attractive, if there exists a positive random variable
r(x) > 0 such that any solution yt of (1.1) with ∥y0∥ < r(x) exists on the whole half line t ∈ [0,∞)
and satisfies

lim
t→∞

∥yt∥ = 0. (4.1)

(C) Asymptotic stability: The trivial solution of equation (1.1) is called asymptotically stable, if it
is stable and attractive.
(D) Exponential stability: The trivial solution of equation (1.1) is called exponentially stable, if it is
stable and there exist two positive random variables r(x) > 0 and α(x) > 0 and a positive constant
µ > 0 such that for any initial value y0 satisfying ∥y0∥ < r(x) the solution of equation (1.1) starting
from y0 exists on the whole half line 0 ≤ t <∞ and the following inequality

∥yt∥ ≤ α(x)e−µt

holds for all t ≥ 0.

It is easily seen that, like the case of ordinary differential equations, exponential stability implies
asymptotic stability, and the asymptotic stability implies stability; but the inverse direction is not
true.

Now we show that given the assumptions (1.3) and (1.4) it is enough to prove the conclusions
of our theorems under a stronger condition that matrix Df(0) ∈ Rd×d satisfies

∃λf > 0 : ⟨y,Df(0)y⟩ ≤ −λf∥y∥2, ∀y ∈ Rd. (4.2)

Indeed, for any matrix Df(0) with negative real part eigenvalues, there exists a positive definite
symmetric matrix Q = M2 (M is positive definite symmetric matrix) which is the solution of the
matrix equation

Df(0)TQ+QDf(0) = −I
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where I ∈ Rd×d is the identity matrix [4, Chapter 2 & Chapter 5]. We then introduce the (invertible)
transformation ξ =My under which the transformed system has the form

dξ =Mdy = Mf(y)dt+Mg(y)dx

= Mf(M−1ξ)dt+Mg(M−1ξ)dx

=
[
MDf(0)M−1ξ +MH(M−1ξ)

]
dt+Mg(M−1ξ)dx

= [DF (0)ξ +K(ξ)]dt+G(ξ)dx.

where F (ξ) = DF (0)ξ + K(ξ) satisfies the same condition of negative real part eigenvalues and
condition (1.4) with different constant CK and the same constant m. Moreover,

⟨ξ,MDf(0)M−1ξ⟩ = ⟨MM−1ξ,MDf(0)M−1ξ⟩

=
1

2

(
⟨M−1ξ,M2Df(0)M−1ξ⟩+ ⟨Df(0)TM2M−1ξ,M−1ξ⟩

)
=

1

2
⟨M−1ξ,

[
QDf(0) +Df(0)TQ

]
M−1ξ⟩

= −1

2
∥M−1ξ∥2 ≤ − 1

2∥M∥2
∥ξ∥2

which has the form of (4.2). Hence (1.3) and (1.4) lead to (4.2) upto a linear transformation.
We emphasize here that Lemma 3.1 holds only almost surely w.r.t. ω ∈ Ω under the assumption

that the Wiener-shift θ in Subsection 6.2 is ergodic. From now on, we will only work with a
realization x ∈ Cν of the stochastic process Xt satisfying assumption (HX), such that x can be
lifted into a rough path x. For a little abuse of notation, we only mention the dependence of x in
the proof, without addressing that x = x(ω) = (x(ω),X(ω)) for almost surely ω ∈ Ω.

Now we are in a position to prove our first main result.

Theorem 4.2 Assume (HX) for the noise, (Hf ), (4.2) for the drift and (Hg) for the diffusion

with f(0) = 0, g(0) = 0 so that zero is the trivial solution of (2.4). If there exists a λ̂ ∈ (0, 1) such
that

λf > ∥Df(0)∥λ̂(2 + λ̂) + CH(1 + λ̂)2+mϵm0 + λ̂(1 + λ̂)EN∗(
λ̂

16Cpc∗C∗
g

,x(·), [0, 1]) (4.3)

then the trivial solution of (1.1) is exponentially stable almost surely.

Proof: First, we assume (H∗
f ) and (H∗

g) to prove the theorem under additional assumptions
on f and g to make the solutions of the equation (1.1) exist on the whole half line 0 ≤ t < ∞,
hence (1.1) generate a global random dynamical system, see e.g. [32, Theorem 4.3], [11] and [10].
Moreover, we assume additionally that the constant Ĉg defined by (2.3) satisfies the inequality

Ĉg ≤ c∗C∗
g . (4.4)

We assume that g ̸≡ 0, because otherwise we have nothing to prove in Theorem 4.2. By (4.4)

we have 0 < Ĉg ≤ c∗C∗
g < ∞. Therefore, for λ := λ̂

Ĉg

c∗C∗
g
we have 0 < λ ≤ λ̂ ≤ 1 and due to (4.3)

the following inequality is satisfied

λf > ∥Df(0)∥λ(2 + λ) + CH(1 + λ)2+mϵm0 + λ(1 + λ)EN∗(
λ

16CpĈg

,x(·), [0, 1]). (4.5)
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Now, choose and fix a τ satisfying (2.7) (such a τ obviously exists), we follow Section 2, relate the
solution yt of (1.1) to the solution zt of the ordinary differential equation (2.6) via transformation
yt = ϕt(x, zt), where ϕ·(x, ϕa) is solution of the pure rough differential equation (2.4). To estimate
the solution norm growth, assign

ηt := yt − zt, and ψt :=
[∂ϕ
∂z

(t,x, zt)
]−1

− I, ∀t ∈ [0, τ ],

and one rewrites the transformed system (2.6) in the form

żt = (I + ψt)f(zt + ηt) = (I + ψt)
[
Df(0)(zt + ηt) +H(zt + ηt)

]
, t ∈ [0, τ ], z0 = y0. (4.6)

Introduce the Lyapunov function V (z) = ∥z∥2 and fix an ϵ ∈ (0, ϵ0). Since λ and τ satisfy (2.7),
one deduces from Proposition 2.1 that ∥ψt∥ ≤ λ and ∥ηt∥ ≤ λ∥zt∥ for all t ∈ [0, τ ]. It follows from
(4.6) that

d

2dt
V (zt) = ⟨zt, Df(0)zt⟩+ ⟨zt, Df(0)ηt⟩+ ⟨zt, ψtDf(0)(zt + ηt)⟩ (4.7)

+ ⟨zt, (I + ψt)H(zt + ηt)⟩
≤ −λf∥zt∥2 + ∥Df(0)∥∥zt∥∥ηt∥+ ∥ψt∥∥Df(0)∥∥zt∥∥zt + ηt∥

+ (1 + ∥ψt∥)∥zt∥∥H(zt + ηt)∥
≤ −λf∥zt∥2 + ∥Df(0)∥λ(2 + λ)∥zt∥2 + CH(1 + λ)2+m∥zt∥2+m

≤ −
[
λf − ∥Df(0)∥λ(2 + λ)− CH(1 + λ)2+m∥zt∥m

]
∥zt∥2,

where the last two inequalities of (4.7) hold as long as (1 + λ)∥zt∥ ≤ ϵ < ϵ0 in order to apply (1.4).
Due to (4.3), λ and ϵ satisfy

κ = κ(λ, ϵ) := λf − ∥Df(0)∥λ(2 + λ)− CH(1 + λ)2+mϵm > 0. (4.8)

As a result, given ∥z0∥ ≤ ϵ
1+λ , define τ∗ := sup{t ∈ [0, τ ] : ∥zs∥ ≤ ϵ

1+λ ∀0 ≤ s ≤ t}, then
∥zτ∗∥ ≤ ϵ

1+λ and it follows from (4.7) and (4.8) that

d

dt
V (z) ≤ −2κV (z), t ∈ [0, τ∗].

In particular, V (zτ∗) ≤ V (z0) exp{−2κτ∗} = V (y0) exp{−2κτ∗} < V (z0) or ∥zτ∗∥ < ∥z0∥ ≤ ϵ
1+λ ,

thus zt can still be extended into the right hand side of τ∗ until its norm hits ϵ
1+λ . Due to its

definition, τ∗ = τ . In other words, provided that ∥y0∥ ≤ ϵ
1+λ , we have just proved that

∥yt∥ = ∥zt + ηt∥ ≤ (1 + λ)∥zt∥
≤ ∥y0∥(1 + λ) exp{−κt}
≤ ∥y0∥ exp{−κt+ λ}, ∀t ∈ [0, τ ]. (4.9)

Next, construct the greedy sequence of stopping times (3.1) on [0,∞) where γ = λ
16CpC∗

g
. One

can then prove similarly that: whenever ∥yτn∥ ≤ ϵ
1+λ then

∥yt∥ ≤ ∥yτn∥(1 + λ) exp{−κ(t− τn)} ≤ ∥yτn∥ exp{−κ(t− τn) + λ} (4.10)

for all t ∈ [τn, τn+1], n ∈ N. By induction,

∥yτn∥ ≤ ∥y0∥ exp{−κτn + nλ} ∧ ϵ

1 + λ
, ∀n ∈ N.
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Thus, in order for yτn to satisfies yτn ≤ ϵ
1+λ , it is sufficient that

∥y0∥ exp{−κτn + nλ} ≤ ϵ

1 + λ
, ∀n ∈ N,

or
∥y0∥ ≤ R(x) :=

ϵ

1 + λ
inf
{
exp{κτn(x)− nλ} : n ∈ N

}
. (4.11)

We show that R(x) defined in (4.11) is a positive random variable. Indeed, by Lemma 3.1, there
exists a positive random variable M(x) such that

inf{τn
n

: n ≥M(x)} > 1

(1 + λ)C1
, where C1 := EN∗(

λ

16CpĈg

,x(·), [0, 1]). (4.12)

As a result,

ϵ ≥ R(x) ≥ ϵ

1 + λ
exp

{
min

0≤n<M(x)

(
κτn − nλ

)∧
inf

n≥M(x)
n
( κ

(1 + λ)C1
− λ

)}
.

It follows from (4.5) and (4.8) that
κ > λ(1 + λ)C1.

Hence, taking into account that κτ0 − 0λ = 0, it follows that

ϵ ≥ R(x) =
ϵ

1 + λ
exp

{
min

0≤n<M(x)

(
κτn − nλ

)}
. (4.13)

As such, the right hand side of (4.13) is positive and thus R(x) defined in (4.11) is a positive
random variable. All in all, there exists a random neighborhood B(0, R(x)) of zero such that
whenever ∥y0∥ ≤ R(x) then ∥yτn∥ ≤ ϵ

1+λ for all n ∈ N and then ∥yt∥ ≤ ϵ for all t ≥ 0 due
to (4.10). Since the conclusion holds for any fixed ϵ ≤ ϵ0, this proves stability. Moreover, since
sup{ n

τn
: n ≥M(x)} < (1 + λ)C1 for n ≥M(x),

∥yτn∥ ≤ ∥y0∥ exp
{
− τn

(
κ− λ

n

τn

)}
≤ ∥y0∥ exp

{
−
(
κ− λ(1 + λ)C1

)
τn

}
.

Put
µ := κ− λ(1 + λ)C1,

we have 0 < µ < κ. Using (4.10), and taking into account that ∥y0∥ ≤ ϵ
1+λ , we obtain that

∥yt∥ ≤ ∥y0∥(1 + λ)e−κ(t−τn)e−µτn ≤ ϵe−µt for all t ∈ [τn, τn+1], n ≥M(x).

Therefore, since ∥yt∥ ≤ ϵ for all t ≥ 0, provided the initial value ∥y0∥ ≤ R(x), we have

∥yt∥ ≤ α(x) exp(−µt) for all t ≥ 0,

where
α(x) := ϵ exp

{(
κ− λ(1 + λ)C1

)
τM(x)

}
= ϵ exp{µτM(x)} > 0

is a positive random variable. This proves the exponential stability of the zero solution of (1.1)
under the additional assumptions (H∗

f )-(H
∗
g)-(4.4).

Finally we show that we can relax our arguments from the additional assumptions (H∗
f )-(H

∗
g)-

(4.4). Given the equation (1.1) on B(0, ϵ0), we follow the extension process in Section 2 to extend
f, g on B(0, ϵ0) to f

∗, g∗ on Rd. Then consider equation (2.12)

dyt = f∗(yt)dt+ g∗(yt)dxt,
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It is easily seen that the functions f∗, g∗ satisfy the strong assumptions (H∗
f∗)-(H∗

g∗)-(2.11) as well
as the original assumptions (Hf∗)-(Hg∗). Therefore, the foregoing arguments are applicable to this
equation (2.12) due to the choice of f∗, g∗, implying that the trivial solution of equation (2.12)
is exponentially stable. That is, there exist two positive random variables ϵ0 > ϵ ≥ R∗(x) > 0,
α∗(x) > 0 and a positive constant µ such that if ∥y0∥ ≤ R∗(x) then the solution yt of (2.12), starting
from y0, satisfies ∥yt∥ ≤ ϵ < ϵ0 and

∥yt∥ ≤ α∗(x) exp(−µt), ∀t ≥ 0. (4.14)

We notice here that since f∗ = f and g∗ = g on B(0, ϵ0) the quantities ∥Df(0)∥, CH , λf , C
∗
g defined

for the equation (1.1) coincide with their counterparts defined for (2.12).
For any initial value ∥y0∥ ≤ R∗(x) ≤ ϵ < ϵ0 the solution yt of the equation (2.12), starting

from y0, satisfies ∥yt∥ ≤ ϵ for all t ≥ 0, hence it is the solution of (1.1) starting from y0 because
(1.1) coincides with (2.12) for all those solutions. Therefore, for any initial value y0 satisfying
∥y0∥ ≤ R∗(x) the solution yt of (1.1) starting from y0 satisfies ∥yt∥ ≤ ϵ and (4.14) for all t ≥ 0.
This implies that the equation (1.1) is exponential stable. The proof is complete.

Theorem 4.3 Assume that f(0) = 0 and g(0) = 0 so that zero is the trivial solution of (1.1), and
the conditions (Hf ), (Hg), (HX) hold. Then there exists C0 > 0 depending only on f such that if
0 < Cg < C0 the trivial solution of (1.1) is exponentially stable almost surely.

Proof: We apply the Theorem 4.2 to prove this theorem. Note that from the condition (Hf ) we
have (1.3), (1.4) and as shown above we can also have (4.2) by a linear transformation. Therefore,
for simplicity we assume that (4.2) holds.

To prove our theorem we will use the criterion of stability provided by Theorem 4.2.
First observe that there exists a small positive number C0 ∈ (0, 1) (dependent on f but not on

g) such that
λf
4

≥ ∥Df(0)∥C0(2 + C0) + (1 + C0)C0EN∗(
1

16Cpc∗
,x(·), [0, 1]), (4.15)

(because the right hand side of the above inequality is a continuous increasing function of non-
negative C0 and vanishes at 0). We will show that this constant C0 furnishes the conclusion of the
theorem. To this end, let g is such that 0 < Cg < C0 we will show below by an application of
Theorem 4.2 that (1.1) is exponentially stable.

It is easily seen that there exists a small positive number ϵ1 ∈ (0, 1) such that

CH(1 + C0)
2+mϵm1 ≤

λf
4
, (4.16)

and

ϵ1 ≤ min{ C0

1 + ∥D3g∥∞,B(0,ϵ0)
, 1, ϵ0}. (4.17)

Then B(0, ϵ1) ⊂ B(0, ϵ0) and we have

∥Dig∥∞,B(0,ϵ1) ≤ ∥Dig∥∞,B(0,ϵ0) for i = 0, 1, 2, 3. (4.18)

Since ∥Dg∥∞,B(0,ϵ1) ≤ C0 and g(0) = 0 we have ∥g∥∞,B(0,ϵ1) ≤ C0ϵ1. Hence

∥g∥∞,B(0,ϵ1)∥D
3g∥∞,B(0,ϵ1) ≤ C0ϵ1∥D3g∥∞,B(0,ϵ1) < C2

0 . (4.19)
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We notice that if we restrict the consideration of (1.1) on the ball B(0, ϵ1) instead of the ball
B(0, ϵ0) then the stability criterion (4.3) provided by Theorem 4.2 now read

λf > ∥Df(0)∥λ̂(2 + λ̂) + CH(1 + λ̂)2+mϵm1 + λ̂(1 + λ̂)EN∗(
λ̂

16Cpc∗C̃∗
g

,x(·), [0, 1]), (4.20)

where C̃∗
g is the counterpart of C∗

g computed in the ball B(0, ϵ1). By virtue of (4.18), (4.19), (1.5)
and (1.6) we have

C̃∗
g ≤ max{Cg, C0} ≤ C0. (4.21)

Now we show that if we choose λ̂ = C̃∗
g then the inequality (4.20) is satisfied. Indeed, by the choice

of λ̂ and (4.21), (4.15) we have

λf
4

≥ ∥Df(0)∥λ̂(2 + λ̂) + λ̂(1 + λ̂)EN∗(
λ̂

16Cpc∗C̃∗
g

,x(·), [0, 1]).

This together with (4.16) imply (4.20). Therefore, Theorem 4.2 is applicable and leads to the
exponential stability for system (1.1).

Remark 4.4 (i) Theorem 4.3 implies the result in [22, Theorem 17]. Indeed, if g ∈ C3 and g(0) =
0, Dg(0) = 0, D2g(0) = 0 then by restricting consideration to a smaller ball B(0, ϵ1) ⊂ B(0, ϵ0) we
may make Cg small enough to satisfy the assumptions of Theorem 4.3 implying that the equation
is exponentially stable. On the other hand, in the case g is a linear map, g = Cy, C ∈ Rd×m

with ∥C∥ < C0, (1.1) is exponentially stable by Theorem 4.3. However, condition Dg(0) = 0 in
[22, Theorem 17] is not satisfied so that [22, Theorem 17] is not applicable. Thus, Theorem 4.3 is
significantly stronger than [22, Theorem 17].

(ii) We notice that the derivative of order 3 of g does not affect the local exponential stability
of (1.1). An interesting example is the one-dimensional case with g = C1y + C2y

2 + C3y
3, where

C1, C2, C3 are constants. By Theorem 4.3 if C1, C2 are small enough then (1.1) is exponentially
stable for any C3 (provided other assumptions on f, g are satisfied).

(iii) Criterion (4.3) can be relaxed to

λf > ∥Df(0)∥λ̂(2 + λ̂) + CH(1 + λ̂)2+mϵm0 + λ̂(1 + λ̂)EN∗(
λ̂

16CpC∗
g

,x(·), [0, 1]) (4.22)

without constant c∗. The reason is that all the arguments in the proof of Theorem 4.2 are applied
in the local regime B(0, ϵ0) where f

∗, g∗ coincide with f, g. Hence condition (4.15) in Theorem 4.3
can also be relaxed without c∗. However, the difference between the criteria are small and only
upto constant c∗ that happens in controlling the number of stopping time N∗, hence is negligible.
We will see in the next section that the direct arguments for the local system fails to be applied for
the discretization scheme of system (1.1), because at each time step there is a possibility that the
solution can exit B(0, ϵ0), making it difficult to construct a sequence of stopping time τn as seen
in Theorem 4.2. For that reason, we prefer to maintain the strategy to study the local stability of
system (1.1) and its discretization scheme via the extended system (2.12), that helps us simplify
the arguments of the proofs.
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5 Local stability for discrete rough systems

In this section, we consider the discretization scheme of system (1.1), i.e. the explicit Euler scheme
for the regular grid with step size ∆ > 0, i.e. Π = {tk := k∆}k∈N and

y∆0 ∈ Rd,

y∆tk+1
= y∆tk + f(y∆tk)∆ + g(y∆tk)xtk,tk+1

+Dg(y∆tk)g(y
∆
tk
)Xtk,tk+1

, k ∈ N.
(5.1)

The global dynamics of the discrete system (5.1) has been studied recently in [10], [8], which show
that there is a similarity in asymptotic behavior of the continuous system (1.1) and its discretization
(5.1). Note that we can not apply the Doss-Sussmann technique for the rough difference equation,
simply because it is difficult to control the solution growth in a smooth way for the discrete time set.
Instead, we will couple the discrete system (5.1) with its unperturbed discrete system and control
the difference of the two trajectories.

Here in our local setting, the global arguments in [8] can not be applied because one needs to
control at each discrete time step the solution to stay inside the ball B(0, ϵ0) to prove the local
stability (the notion of stability of discrete systems is an obvious modification of the one for the
continuous-time case). By extending the local system from B(0, ϵ0) to Rd, we can prove the following
results.

Theorem 5.1 Assume (Hf ) for the noise, (Hf ), (4.2) for the drift and (Hg) with f(0) = 0, g(0) =
0. Assume further that there exist ∆ > 0 and λ ∈ (0, 12), γ

∗ ∈ (0, 1) such that

1

2∆
> λf >

1

2
CHϵ

m
0 +

1

2
(∥Df(0)∥+ LHc

∗)2∆ (5.2)

+ (3Cp + 2e
1
2 )c∗Cgγ

∗
[
EN∗(γ∗,x(·), [0, 1]) + EN∗

S(λ,x(·), [0, 1])
]
.

Then the trivial solution of system (5.1) is exponentially stable almost surely.

Proof: We will do in a similar manner as in the proof of Theorem 4.2. At first, we assume
global conditions of f, g as in (H∗

f )-(H
∗
g). Moreover, we assume additionally that the constants Ĉg

defined by (2.3) and L̂H defined by (2.2) satisfy the inequality

Ĉg ≤ c∗Cg, L̂H ≤ c∗LH . (5.3)

Due to the assumption (H∗
f ) the function f is global Lipschitz continuous with constant L̂f =

∥Df(0)∥+ L̂H . From (5.2), by virtue of (5.3) we have

1

2∆
> λf >

1

2
CHϵ

m
0 +

1

2
L̂2
f∆ (5.4)

+ (3Cp + 2e
1
2 )Ĉgγ

∗
[
EN∗(γ∗,x(·), [0, 1]) + EN∗

S(λ,x(·), [0, 1])
]
.

For each τ ∈ Π fixed, we would like to compare the solution of this difference equation (5.1)
with the unperturbed difference equation

z0 = y∆τ , ztk+1
= ztk + f(ztk)∆, ∀tk ≥ τ. (5.5)

We would like to study the dynamics of this difference equation (5.5). Due to the global Lipschitz
continuity of f , for any s, t ∈ Π, t ≥ s ≥ τ ,

∥zs,t∥ ≤
∑

s≤tk<t

∥f(ztk)∥∆ ≤ L̂f∥z∥∞,Π[s,t](t− s);
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which implies

∥z∥p−var,Π[s,t] ≤ ∥zs∥+ L̂f∥z∥∞,Π[s,t](t− s) ≤
[
1 + L̂f (t− s)

]
∥z∥∞,Π[s,t]. (5.6)

On the other hand, by using Lyapunov function V (z) = ∥z∥2 and applying the same arguments as
the ones in Theorem 4.2, we obtain for any ∥ztk∥ ≤ ϵ ≤ ϵ0

∥ztk+1
∥2 = ∥ztk∥

2 + 2⟨ztk , f(ztk)⟩∆+ ∥f(ztk)∥
2∆2

≤ ∥ztk∥
2 − 2λf∆∥ztk∥

2 + CHϵ
m∆∥ztk∥

2 + L̂2
f∆

2∥ztk∥
2

≤ ∥ztk∥
2
[
1−

(
2λf − CHϵ

m − L̂2
f∆
)
∆
]

≤ ∥ztk∥
2(1− 2κ∆) ≤ ∥ztk∥

2 exp{−2κ∆},

where one deduces from (5.4) that

κ := λf − 1

2
CHϵ

m − 1

2
L̂2
f∆ ∈ (0,

1

2∆
). (5.7)

As a result, we can prove by induction that,

if ∥z0∥ ≤ ϵ then ∥zt∥ ≤ ∥z0∥(1− κt) ≤ ∥z0∥ exp{−κt} < ϵ, ∀t ∈ Π. (5.8)

Next, define htk = y∆tk − ztk for all tk ≥ τ , then by definition hτ = 0 and for all tk ≥ τ

htk+1
= htk + [f(htk + ztk)− f(ztk)]∆

+g(htk + ztk)xtk,tk+1
+Dg(htk + ztk)g(htk + ztk)Xtk,tk+1

.

Define Rh
s,t := hs,t− g(hs+ zs)xs,t for all s ≤ t. We then apply the discrete sewing lemma [23, 8] for

Fs,t = g(hs + zs)xs,t +Dg(hs + zs)g(hs + zs)Xs,t

for all s, t ∈ Π, t ≥ s ≥ τ and similar estimates to [8, Theorem 3.3], to obtain

∥h,Rh∥p−var,Π[s,t] (5.9)

≤ ∥hs∥+ Cp

[
Ĉg |||x|||p−var,Π[s,t] + Ĉ2

g |||X|||p−var,Π[s,t]

]
∥z∥p−var,Π[s,t]

+Cp

[
L̂f (t− s) + Ĉg |||x|||p−var,Π[s,t] + Ĉ2

g |||X|||p−var,Π[s,t]

]
∥h,Rh∥p−var,Π[s,t].

We now apply (5.9) for s = τ = τ∆n , t = τ∆n+1 where τ∆n , τ
∆
n+1 are the stopping times defined in

Section 3.2 for λ ∈ (0, 12). Then hτ∆n = 0. Consider two cases:

Case 1: If Cp

[
L̂f (τ

∆
n+1 − τ∆n ) + Ĉg |||x|||p−var,Π[τ∆n ,τ∆n+1]

+ Ĉ2
g |||X|||q−var,Π[τ∆n ,τ∆n+1]

]
≤ λ, then (5.9)

yields

∥h∥∞,Π[τ∆n ,τ∆n+1]

≤ ∥h,Rh∥p−var,Π[τ∆n ,τ∆n+1]

≤ λ∥h,Rh∥p−var,Π[τ∆n ,τ∆n+1]
+ CpĈg |||x|||p−var,Π[τ∆n ,τ∆n+1]

∥z∥p−var,Π[τ∆n ,τ∆n+1]

≤ λ∥h,Rh∥p−var,Π[τ∆n ,τ∆n+1]

+CpĈg |||x|||p−var,Π[τ∆n ,τ∆n+1]

[
1 + L̂f (τ

∆
n+1 − τ∆n )

]
∥z∥∞,Π[τ∆n ,τ∆n+1]

≤ λ∥h,Rh∥p−var,Π[τ∆n ,τ∆n+1]
+ (1 + λ)CpĈg |||x|||p−var,Π[τ∆n ,τ∆n+1]

∥z∥∞,Π[τ∆n ,τ∆n+1]
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which yields

∥h∥∞,Π[τ∆n ,τ∆n+1]
≤ ∥h,Rh∥p−var,Π[τ∆n ,τ∆n+1]

≤
CpĈg |||x|||p−var,Π[τ∆n ,τ∆n+1]

(1 + λ)

1− λ
∥z∥∞,Π[τ∆n ,τ∆n+1]

≤ 3CpĈg |||x|||p−var,Π[τ∆n ,τ∆n+1]
∥z∥∞,Π[τ∆n ,τ∆n+1]

where the last inequality holds due to λ ∈ (0, 12). As a result, whenever ∥y∆
τ∆n

∥ = ∥zτ∆n ∥ ≤ ϵ
1+3λ , we

obtain from (5.8)

∥y∆t ∥ ≤ ∥zt∥+ 3CpĈg |||x|||p−var,Π[τ∆n ,τ∆n+1]
∥z∥∞,Π[τ∆n ,τ∆n+1]

(5.10)

≤ ∥zτ∆n ∥
[
exp{−κ(t− τ∆n )}

(
1 + 3CpĈg |||x|||p−var,Π[τ∆n ,τ∆n+1]

) ]
≤ ∥y∆τ∆n ∥(1 + 3λ) ≤ ϵ, ∀t ∈ Π[τ∆n , τ

∆
n+1].

In particular

∥y∆
τ∆n+1

∥ ≤ ∥y∆τ∆n ∥
[
1− κ(τ∆n+1 − τ∆n ) + 3CpĈg |||x|||p−var,Π[τ∆n ,τ∆n+1]

]
≤ ∥y∆τ∆n ∥ exp{−κ(τ∆n+1 − τ∆n ) + 3CpĈg |||x|||p−var,Π[τ∆n ,τ∆n+1]

}.

By applying Lemma 3.2 for a certain γ∗ > 0 fixed, one obtains

∥y∆
τ∆n+1

∥ ≤ ∥y∆τ∆n ∥ exp{−κ(τ∆n+1 − τ∆n ) + 3CpĈgγ
∗N∗(γ∗,x, [τ∆n , τ

∆
n+1])}. (5.11)

Case 2: If Cp

[
L̂f (τ

∆
n+1 − τ∆n ) + Ĉg |||x|||p−var,Π[τ∆n ,τ∆n+1]

+ Ĉ2
g |||X|||q−var,Π[τ∆n ,τ∆n+1]

]
≥ λ so that

τ∆n , τ
∆
n+1 are two consecutive times in Π. Construct the sequence of stopping times τi(

λ
CpĈg

,x, [τ∆n , τ
∆
n+1])

for continuous time interval [τ∆n , τ
∆
n+1], thus

∥hτ∆n+1
∥ ≤ ∥zτ∆n ∥

(
Ĉg∥xτ∆n ,τ∆n+1

∥+ Ĉ2
g∥Xτ∆n ,τ∆n+1

∥
)
.

Then it follows from (5.8) and the fact that τ∆n+1 = τ∆n +∆ in this case, that

∥y∆
τ∆n+1

∥ ≤ ∥zτ∆n+1
∥+ ∥zτ∆n ∥

[
Ĉg∥xτ∆n ,τ∆n+1

∥+ Ĉ2
g∥Xτ∆n ,τ∆n+1

∥
]

≤ ∥y∆τ∆n ∥
[
1− κ(τ∆n+1 − τ∆n ) + Ĉg∥xτ∆n ,τ∆n+1

∥+ Ĉ2
g∥Xτ∆n ,τ∆n+1

∥
]

(5.12)

Note that κ(τ∆n+1 − τ∆n ) = κ∆ < 1
2 , we now apply inequality 1− u+ v ≤ e−u(1 + euv) to (5.12) to

obtain

∥y∆
τ∆n+1

∥ ≤ ∥y∆τ∆n ∥ exp
{
− κ(τ∆n+1 − τ∆n )

}
[
1 + exp

{
κ(τ∆n+1 − τ∆n )

}(
Ĉg∥xτ∆n ,τ∆n+1

∥+ Ĉ2
g∥Xτ∆n ,τ∆n+1

∥
)]

≤ ∥y∆τ∆n ∥ exp
{
− κ(τ∆n+1 − τ∆n )

}
[
1 + eκ∆

(
Ĉg∥xτ∆n ,τ∆n+1

∥+ Ĉ2
g∥Xτ∆n ,τ∆n+1

∥
)]
. (5.13)
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Again we apply Lemma 3.2 so that for a certain γ∗ > 0,

1 + eκ∆
(
Ĉg∥xτ∆n ,τ∆n+1

∥+ Ĉ2
g∥Xτ∆n ,τ∆n+1

∥
)

≤ 1 + eκ∆Ĉg |||x|||p−var,[τ∆n ,τ∆n+1]
+ eκ∆Ĉ2

g |||x|||
2
p−var,[τ∆n ,τ∆n+1]

≤ 1 + eκ∆Ĉgγ
∗N∗(γ∗,x, [τ∆n , τ

∆
n+1])

+eκ∆Ĉ2
g (γ

∗)2
[
N∗(γ∗,x, [τ∆n , τ

∆
n+1])

]2
≤ 1 + eκ∆Ĉgγ

∗N∗(γ∗,x, [τ∆n , τ
∆
n+1]) + [eκ∆Ĉgγ

∗]2
[
N∗(γ∗,x, [τ∆n , τ

∆
n+1])

]2
≤ exp

{
2e

1
2 Ĉgγ

∗N∗(γ∗,x, [τ∆n , τ
∆
n+1])

}
,

where the last inequality is due to the fact that 1+u+u2 ≤ e2u, ∀u ≥ 0. Hence (5.13) has the form

∥y∆
τ∆n+1

∥ ≤ ∥y∆τ∆n ∥ exp
{
− κ(τ∆n+1 − τ∆n ) + 2e

1
2 Ĉgγ

∗N∗(γ∗,x, [τ∆n , τ
∆
n+1])

}
. (5.14)

Combining (5.11) and (5.14) and setting

C = 3Cp + 2e
1
2

yields for any n ∈ N

∥y∆
τ∆n+1

∥ ≤ ∥y∆τ∆n ∥ exp
{
− κ(τ∆n+1 − τ∆n ) + CĈgγ

∗N∗(γ∗,x, [τ∆n , τ
∆
n+1])

}
provided that ∥y∆

τ∆n
∥ ≤ ϵ

1+3λ . One can then prove by induction that for any n ≥ 1

∥y∆τ∆n ∥ ≤ ∥y∆0 ∥ exp
{
− κτ∆n + CĈgγ

∗
n−1∑
j=0

N∗(γ∗,x, [τ∆j , τ
∆
j+1])

}
. (5.15)

By applying (3.9) in Lemma 3.3 to (5.15), we finally obtain

∥y∆τ∆n ∥ ≤ ∥y∆0 ∥ exp
{
− κτ∆n + CĈgγ

∗
[
N∗(γ∗,x, [τ∆0 , τ

∆
n ]) + n

]}
. (5.16)

Hence, in order for ∥y∆
τ∆n

∥ ≤ ϵ
1+3λ for any n ∈ N it suffices if one chooses y∆0 so that

∥y∆0 ∥ ≤ R∆(x)

:=
ϵ

1 + 3λ
inf
n≥1

exp
{
κτ∆n − CĈgγ

∗N∗(γ∗,x, [0, τ∆n ])− CĈgγ
∗n
}

=
ϵ

1 + 3λ
inf
n≥1

exp τ∆n

{
κ− CĈgγ

∗ n

τ∆n
− CĈgγ

∗N
∗(γ∗,x, [0, τ∆n ])

τ∆n

}
. (5.17)

Denote τn(γ
∗,x) the maximal stopping time that is less than τ∆n . By (3.4) in Lemma 3.1

lim sup
n→∞

N∗(γ∗,x, [0, τ∆n ])

τ∆n
≤ lim sup

n→∞

n+ 1

τn
≤ EN∗(γ∗,x(·), [0, 1]) (5.18)

Mean while, applying (3.13) and (3.11) for γ := λ yields

lim sup
n→∞

CĈgγ
∗ n

τ∆n
≤ CĈgγ

∗

lim inf
n→∞

τSn
2n

≤ 2CĈgγ
∗EN∗

S(λ,x(·), [0, 1]) a.s.
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Since λ ∈ (0, 12) and γ∗ ∈ (0, 1) satisfy (5.4), and by assumption Ĉg ≤ c∗Cg, we can use the same
arguments as in the proof of Theorem 4.2 to prove that R∆(x) defined in (5.17) is a random variable
which is positive almost surely. We has proved that if ∥y0∥ ≤ R∆(x) then ∥y∆

τ∆n
∥ ≤ ϵ

1+3λ for all

n, and using (5.10) we have ∥yt∥ ≤ ϵ for all t ∈ Π. Moreover (5.15), (5.10) and (5.4) yield the
exponential convergence of y∆tk to zero as k → ∞. Thus, exponential stability of the trivial solution
of (5.1) is proved.

Finally, following the same way as in the proof of Theorem 4.2 we use extension techniques to
relax the proof from the additionally required strong global conditions (H∗

f )-(H
∗
g)-(5.3). Namely,

by virtue of Lemma 2.2 and Lemma 2.3 we can find extensions g∗ of g and H∗ of H respectively
from B(0, ϵ0) to the whole space Rd. Put

f∗(y) := Df(0)y +H∗(y), ∀y ∈ Rd,

according to (1.3). Then for the difference equation of type (5.1) in which f, g are replaced by f∗, g∗

defined in Theorem 4.2 respectively, i.e.

y∆0 ∈ Rd,

y∆tk+1
= y∆tk + f∗(y∆tk)∆ + g∗(y∆tk)xtk,tk+1

+Dg∗(y∆tk)g
∗(y∆tk)Xtk,tk+1

, k ∈ N.
(5.19)

the criterion (5.2) for the pair f∗, g∗ as well as the strong additional global conditions (H∗
f∗)-(H∗

g∗)-
(5.3) are satisfied. Therefore, the foregoing arguments are applicable to (5.19), yielding exponential
stability of the trivial solution of (5.19). Moreover, since inside the ball B(0, ϵ) the equation (5.19)
coincides with the equation (5.1), the same arguments as in the proof of Theorem 4.2 show that the
trivial solution of (5.1) is exponentially stable. The proof is completed.

Theorem 5.2 Assume (HX) for the noise, (Hf ) for the drift and (Hg) for the diffusion with
f(0) = 0, g(0) = 0. Then there exists ∆0 > 0, C0 > 0 depending only on f such that for any
0 < ∆ < ∆0, 0 < Cg < C0, the trivial solution of (5.1) is exponentially stable almost surely.

Proof: We apply the criterion of exponential stability given in Theorem 5.1 to prove this
theorem. Similar to the continuous case in Section 4 we have (4.2) by a linear transformation.
Therefore, for simplicity we assume that (4.2) holds.

At first, we note that once given (5.1) on B(0, ϵ0), we may consider (5.1) on a smaller ball
B(0, ϵ1) with 0 < ϵ1 ≤ ϵ0, and on B(0, ϵ1) the corresponding parameters CH , LH , Cg are not bigger
than their counterparts defined on B(0, ϵ0). Therefore, we may apply Theorem 5.1 to (5.1) with
the change of ϵ0 to ϵ1 in the criterion (5.2), that means the criterion (5.2) now becomes a new (and
better) criterion

1

2∆
> λf >

1

2
CHϵ

m
1 +

1

2
(∥Df(0)∥+ LHc

∗)2∆ (5.20)

+(3Cp + 2e
1
2 )c∗Cgγ

∗
[
EN∗(γ∗,x(·), [0, 1]) + EN∗

S(λ,x(·), [0, 1])
]
.

Choose and fix 0 < ϵ1 < ϵ0 such that

CHϵ
m
1 <

1

2
λf . (5.21)

We fix ∆0 = min{ 1
2λf

,
λf

(∥Df(0)∥+LHc∗)2 }. At this position, one can assign γ∗ = 1
2 , λ := 1

3 and

choose C0 ∈ (0, 13) from criterion (5.20) and inequality (5.21) such that

λf
4
>

1

2
(3Cp + 2e

1
2 )c∗C0

[
EN∗(

1

2
,x(·), [0, 1]) + EN∗

S(
1

3
,x(·), [0, 1])

]
.
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This is possible, because we can estimate the two expectations

EN∗(
1

2
,x(·), [0, 1]) ≤ 1 + 2pE |||x(·)|||pp,[0,1] =: C1;

EN∗
S(

1

3
,x(·), [0, 1]) ≤ 1 +

(∥Df(0)∥+ LH

λ

)p
+
(Cg

λ

)pE |||x(·)|||pp,[0,1] +
Cp
g

λp
E |||X(·)|||qq,[0,1]

≤ 1 + 3p(∥Df(0)∥+ LH)p + E |||x(·)|||pp,[0,1] =: C2

by the quantities which are independent of Cg. We then determine C0 as follows

C0 := min
{1
4
,

λf

2c∗(3Cp + 2e
1
2 )(C1 + C2)

}
.

It is easily seen that with such choice of ∆0 and C0 if 0 < ∆ ≤ ∆0 and 0 < Cg ≤ C0 then
the criterion (5.20) is satisfied, hence Theorem 5.1 is applicable to (5.1) implying that (5.1) is
exponentially stable. The proof is complete.

Remark 5.3 (i). We notice that the arguments in the proof of Theorems 4.2, 4.3, 5.1, 5.2 are
conducted for one fixed specific path x = x(ω) for which inequality (3.4) in Lemma 3.1 holds.
Those ω form a set of full measure Ω′ ⊂ Ω.

(ii). If one deals with non ergodic cases, one can use the ergodic decomposition theorem [33,
Theorem 3.2, p. 19] and have the conclusion of local stability for each ergodic component of Ω.
Otherwise, the ergodic Birkhoff theorem is still applicable, but the right hand side of (3.4) and
(3.11) would be random variables. As a result, the right hand side of criteria (4.3) and (5.2) are
path dependent, which implies that λ̂ and λ are also chosen to be path dependent. In this case, C0

in Theorem 4.3 and 5.2 is also path dependent.

6 Appendix

6.1 Rough paths

Let us briefly present the concept of rough paths in the simplest form, following [17] and [26].
For any finite dimensional vector space W , denote by C([a, b],W ) the space of all continuous

paths y : [a, b] → W equipped with the sup norm ∥ · ∥∞,[a,b] given by ∥y∥∞,[a,b] = supt∈[a,b] ∥yt∥,
where ∥ · ∥ is the norm in W . We write ys,t := yt − ys. For p ≥ 1, denote by Cp−var([a, b],W ) ⊂
C([a, b],W ) the space of all continuous paths y : [a, b] → W of finite p-variation |||y|||p−var,[a,b] :=(
supΠ([a,b])

∑n
i=1 ∥yti,ti+1∥p

)1/p
< ∞, where the supremum is taken over the whole class of finite

partitions of [a, b].
Also for each 0 < α < 1, we denote by Cα([a, b],W ) the space of Hölder continuous functions

with exponent α on [a, b] equipped with the norm

∥y∥α,[a,b] := ∥ya∥+ |||y|||α,[a,b] , where |||y|||α,[a,b] := sup
s,t∈[a,b], s<t

∥ys,t∥
(t− s)α

<∞. (6.1)

For α ∈ (13 ,
1
2), a couple x = (x,X) ∈ Rm ⊕ (Rm ⊗ Rm), where x ∈ Cα([a, b],Rm) and

X ∈ C2α([a, b]2,Rm ⊗ Rm)

:=

{
X ∈ C([a, b]2,Rm ⊗ Rm) : sup

s,t∈[a,b], s<t

∥Xs,t∥
|t− s|2α

<∞

}
,
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is called a rough path if it satisfies Chen’s relation

Xs,t − Xs,u − Xu,t = xs,u ⊗ xu,t, ∀a ≤ s ≤ u ≤ t ≤ b. (6.2)

We introduce the rough path semi-norm

|||x|||α,[a,b] := |||x|||α,[a,b] + |||X|||
1
2

2α,[a,b]2
, (6.3)

where |||X|||2α,[a,b]2 := sup
s,t∈[a,b];s<t

∥Xs,t∥
|t− s|2α

<∞.

Throughout this paper, we will fix parameters 1
3 < α < ν < 1

2 and p = 1
α so that Cα([a, b],W ) ⊂

Cp−var([a, b],W ). We also set q = p
2 and consider the p−var semi-norm

|||x|||p−var,[a,b] :=
(
|||x|||pp−var,[a,b] + |||X|||q

q−var,[a,b]2

) 1
p
,

|||X|||q−var,[a,b]2 :=

(
sup

Π([a,b])

n∑
i=1

∥Xti,ti+1∥q
)1/q

,

(6.4)

where the supremum is taken over the whole class of finite partitions Π([a, b]) of [a, b].

Example 6.1 (i), Let B = {Bt : t ∈ Rm} be a Brownian motion. Define

BItô
0,t :=

∫ t

0
B0,r ⊗ dBr ∈ Rm ⊗ Rm = Rm×m,

where the stochastic integral is understood in the Itô sense. We consider continuous versions of Bt

and BItô
0,t and define

BItô
s,t := BItô

0,t − BItô
0,s −Bs ⊗Bs,t,

which is continuous in (s, t) and satisfies Chen’s relation (6.2). By the additivity of the Itô integral

BItô
s,t =

∫ t

s
Bs,t ⊗ dBr.

By the Kolmogorov criterion, there is a version of (B,BItô) which is in C α(I,Rm) for all α ∈ (13 ,
1
2).

Note that by Itô formula

Sym(BItô
s,t ) =

1

2
Bs,t ⊗Bs,t −

1

2
Im(t− s).

Define

BStrat
s,t := BItô

s,t +
1

2
Im(t− s), then Sym(BStrat

s,t ) =
1

2
Bs,t ⊗Bs,t,

which implies that (B,BStrat) ∈ C α
g (I,Rm) for all α ∈ (13 ,

1
2). Moreover

BStrat
s,t =

∫ t

s
Bs,r ⊗ dBr.

where the integral is in the Stratonovich sense. It is then easy to check that both BItô and BStrat

satisfy Chen’s relation (6.2).
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(ii) When X = BH is a scalar fractional Brownian motion, we define the stochastic integral∫
yδBH in the sense of Skorohod-Wick-Itô by using the Wick product as in [30, Chapter 5]. Then

by using the Wick-Itô formula [30] for the Skorohod-Wick-Itô integral

f(BH
t )− f(BH

s ) =

∫ t

s
Hu2H−1f ′′(BH

u )du+

∫ t

s
f ′(BH

u )δBH
u (6.5)

for any function f ∈ C2, we can compute explicitly

Xs,t :=

∫ t

s
BH

s,uδB
H
u =

1

2
(BH

s,t)
2 − 1

2

(
t2H − s2H

)
,

In general, X can also be defined for a scalar centered Gaussian process of the formXt =
∫ t
0 K(t, s)dBs

where B is a standard Brownian motion, and K(t, s) is a square integrable kernel. In particular,
the stochastic integral

∫
δX can be computed as the limit of Riemann sums defined w.r.t. the Wick

product [1]. As such Xs,t :=
∫ t
s Xs,uδXu can be computed explicitly and satisfies Chen’s relation

(6.2).
The reader is also referred to [17, Chapter 10] for a detailed construction of X of a multi-

dimensional Gaussian process X = (Xi)
m
i=1 with mutually independent components.

6.2 Probabilistic settings

Following [10], denote by T 2
1 (Rm) = 1⊕ Rm ⊕ (Rm ⊗ Rm) the set with the tensor product

(1, g1, g2)⊗ (1, h1, h2) = (1, g1 + h1, g1 ⊗ h1 + g2 + h2),

for all g = (1, g1, g2),h = (1, h1, h2) ∈ T 2
1 (Rm). Then (T 2

1 (Rm),⊗) is a topological group with unit
element 1 = (1, 0, 0) and g−1 = (1,−g1, g1 ⊗ g1 − g2).

Given α ∈ (13 , ν), denote by C 0,α(I, T 2
1 (Rm)) the closure of C∞(I, T 2

1 (Rm)) in the Hölder space

C α(I, T 2
1 (Rm)), and by C 0,α

0 (R, T 2
1 (Rm)) the space of all paths g : R → T 2

1 (Rm)) such that g|I ∈
C 0,α(I, T 2

1 (Rm)) for each compact interval I ⊂ R containing 0. Then C 0,α
0 (R, T 2

1 (Rm)) is equipped
with the compact open topology given by the α-Hölder norm (6.1), i.e the topology generated by
the metric

dα(g,h) :=
∑
k≥1

1

2k
(∥g − h∥α,[−k,k] ∧ 1).

Let us consider a stochastic process X̄ defined on a probability space (Ω̄, F̄ , P̄) with real-
izations in (C 0,α

0 (R, T 2
1 (Rm)),F). Assume further that X̄ has stationary increments. Assign

Ω := C 0,α
0 (R, T 2

1 (Rm)) and equip it with the Borel σ-algebra F and let P be the law of X̄. Denote
by θ the Wiener-type shift

(θtω)· = ω−1
t ⊗ ωt+·, ∀t ∈ R, ω ∈ C 0,α

0 (R, T 2
1 (Rm)), (6.6)

and define the so-called diagonal process X : R×Ω → T 2
1 (Rm),Xt(ω) = ωt for all t ∈ R, ω ∈ Ω. Due

to the stationarity of X̄, it can be proved that θ is invariant under P, then forming a continuous (and
thus measurable) dynamical system on (Ω,F ,P) [2, Theorem 5]. Moreover, X forms an α-rough
path cocycle, namely, X·(ω) ∈ C 0,α

0 (R, T 2
1 (Rm)) for every ω ∈ Ω, which satisfies the cocycle relation:

Xt+s(ω) = Xs(ω)⊗Xt(θsω),∀ω ∈ Ω, t, s ∈ R,
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in the sense that Xs,s+t = Xt(θsω) with the increment notation Xs,s+t := X−1
s ⊗ Xs+t. It is

important to note that the two-parameter flow property

Xs,u ⊗Xu,t = Xs,t,∀s, t ∈ R

is equivalent to the fact that Xt(ω) = (1,xt(ω)) = (1, xt(ω),X0,t(ω)), where x·(ω) : R → Rm and
X·,·(ω) : I

2 → Rm ⊗ Rm are random functions satisfying Chen’s relation relation (6.2).
As pointed out in [11, Remark 1] and due to [2, Corollary 9], the above construction is possible

for Xt to be a continuous, centered Gaussian process with stationary increments and independent
components, satisfying: there exists for any T > 0 a constant CT such that for all p ≥ 1

ν̄ , E∥Xt −
Xs∥p ≤ CT |t − s|pν for all s, t ∈ [0, T ]. Then X can be chosen to be the natural lift of X in the
sense of Friz-Victoir [18, Chapter 15] with sample paths in the space C0,α

0 (R, T 2
1 (Rm)), for a certain

α ∈ (0, ν). In particular, the Wiener shift (6.6) implies that

|||x(θhω)|||p−var,[s,t] = |||x(ω)|||p−var,[s+h,t+h] ;

N[s,t](x(θhω)) = N[s+h,t+h](x(ω)).
(6.7)

As said above, in this paper, we need an assumption on ergodicity of θ. It is known (see [21,
Lemma 3]) that if X is a m-dimensional fractional Brownian motion with mutual independent
components, we have the ergodicity of θ.

Lemma 6.2 Assume that X = BH , then θ is ergodic.

Proof: We sketch out a short proof here. For H = 1
2 , the canonical process w.r.t. the Wiener

measure P 1
2
and Wiener shift θ∗tω· = ωt+· − ω· on Ω∗ = C0

0 (R,R) is ergodic. By [21], the Wiener

shift ηtx· = xt+· − xt is ergodic on Ω′ = C0,α(R,Rm) w.r.t. PH = BHP 1
2
. Because of [17, Theorem

10.4], there exists a full measure subset Ω1 ⊂ Ω′ such that ω = (1, x,X) ∈ Ω for any x ∈ Ω1.
Moreover, by [18, Theorem 15.42, 15.45], one can choose this full measure subset Ω1 such that it
satisfies the piece-wise linear approximations (mollifier approximation). Then consider the natural
lift S on smooth paths

S(x)s,t = (1, xs,t,

∫ t

s
xs,rdxr), (6.8)

which can be extended to Ω1 such that S : Ω1 → Ω. One can now apply the arguments in [2] to
conclude that there exists a metric dynamical system (Ω̂, F̂ , P̂, θ̂) such that Ω̂ ⊂ Ω and P̂ = PH ◦S−1.
Furthermore,

θtS(x) = lim
n→∞

θ̂tS(x(n)) = lim
n→∞

S(ηtx(n)) = S(ηtx). (6.9)

Since η is ergodic, it follows from [21, Lemma 3] that θ is also ergodic.

6.3 Gubinelli’s rough path integrals

Following Gubinelli [23], a rough path integral can be defined for a continuous path y ∈ Cα([a, b],W )
which is controlled by x ∈ Cα([a, b],Rm) in the sense that, there exists a couple (y′, Ry) with
y′ ∈ Cα([a, b],L(Rm,W )), Ry ∈ C2α([a, b]2,W ) such that

ys,t = y′sxs,t +Ry
s,t, ∀a ≤ s ≤ t ≤ b. (6.10)

y′ is called the Gubinelli derivative of y.
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Denote by D2α
x ([a, b]) the space of all the couples (y, y′) controlled by x. Then for a fixed rough

path x = (x,X) and any controlled rough path (y, y′) ∈ D2α
x ([a, b]), the integral

∫ t
s yudxu can be

defined as the limit of the Darboux sum∫ t

s
yudxu := lim

|Π|→0

∑
[u,v]∈Π

(
yu ⊗ xu,v + y′uXu,v

)
where the limit is taken on all finite partitions Π of [a, b] with |Π| := max

[u,v]∈Π
|v−u|. Moreover, there

exists a constant Cp > 1 independent of x and (y, y′) such that∥∥∥∫ t

s
yudxu − ys ⊗ xs,t − y′sXs,t

∥∥∥
≤Cp

(
|||x|||p−var,[s,t] |||R

y|||q−var,[s,t]2 +
∣∣∣∣∣∣y′∣∣∣∣∣∣

p−var,[s,t]
|||X|||q−var,[s,t]2

)
.

(6.11)

6.4 Stochastic integrals as rough integrals

In general, a Gubinell rough integral
∫
ydx is defined in the pathwise sense with respect to a driving

path x, yet we can compare it to classical stochastic integrals in some special cases. Namely, let B
be a m-dimensional Brownian motion which is enhanced to an Itô rough path (B(ω),BItô(ω)) ∈ C α

for any α ∈ (13 ,
1
2) a.s. Assume (y(ω), y′(ω)) ∈ D2α

B(ω) a.s. Then the rough integral∫
I
yrdB

Itô
r = lim

|Π|→0

∑
[u,v]∈Π

(
yuBu,v + y′uBItô

u,v

)
exists a.s. If y, y′ are adapted, then a.s.

∫
I yrd

Itô
r =

∫
I yrdBr where the latter is the Itô integral.

The same conclusions also hold for (B,BStrat) and the corresponding Stratonovich integral (see e.g.
[17]).
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