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Abstract. Many models in data science or mechanical engineering can be rep-

resented as a real algebraic set, leading to the need to solve the problem of finding

the nearest point. For example, in the field of computer vision, the problem of

determining a point in space when knowing its image from two cameras with the

positions of the two cameras and a given shooting angle. This problem would

be easy if the information obtained was absolutely accurate but in reality it is

not. Therefore, the problem is to find a point in space that is most compatible

with the information obtained from the cameras. This is the nearest problem

mentioned above. Here, the Euclidean distance degree (EDD) is a measure to

determine the computational complexity of this problem (read more[7]). The

author of the [1] paper gave a meaningful result for the EDD of the hyperplane

f = 0 in 2022. The main purpose of this note is to study the case that the

manifold is defined by two polynomials f1(x) = f2(x) = 0. We show that the

Euclidean distance degree of this variety is not greater than the mixed volume

of Newton polytopes of the associated Lagrange multiplier equations.

1. Introduction

The nearest point problem for points in the Euclidean plane was among the first
geometric problems that were treated at the origins of the systematic study of the
computational complexity of geometric algorithms.

Nearest point problem: In Rn given the algebraic set X and a point u, find a point
x of X that minimizes the squared Euclidean distance function du(x) = Σ (xi − ui)

2

from the given point u.

Algebraic varieties are the central objects of study in algebraic geometry, a
sub-field of mathematics. Classically, an algebraic variety is defined as the set of
solutions of a system of polynomial equations over the real or complex numbers.
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Specifically, an algebraic varieties is a set defined by:

M = {x ∈ Rn : P1(x) = ... = Pn(x) = 0} ,

where P1, .., Pn are polynomials.

Example 1.1. Here are some examples of algebraic manifolds:

M =
{
m ∈ R : 5m3 + 6m3 + 12m+ 8 = 0

}
.

N =
{
(n1, n2, n3) : n

2
1 − 2n2

2 + 5 = 0, n2
1 + n3 = 0

}
⊂ R3.

Below is the definition of a submanifold in Rn.

Definition 1.2. A subset M ⊂ Rn is called a k-dimensional submanifold if for
every p ∈ M there exists a diffeomorphism Φ : U → V between open subsets of
Rn such that p ∈ U and

Φ(M ∩ U) =
(
Rk × {0}

)
∩ V

Example 1.3. Example of a sub-manifold of Rn:

Figure 1. One-dimensional manifold
x2

2
+

y2

9
= 1.

Definition 1.4. Let M ⊂ Rn be a k-dimensional submanifold and p ∈ M . A
vector v ∈ Rn is called a tangent vector to M at p if there exist an ϵ > 0 and a
smooth curve γ : (−ϵ, ϵ) → M such that
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γ(0) = p, γ′(0) = v

where γ′ is the calculus derivative of γ (or more precisely, the derivative of
ι ◦ γ : (−ϵ, ϵ) → Rn, where ι : M → Rn is the inclusion map).
The set TpM of all tangent vectors to M at p is called the tangent space to M at
p.

Definition 1.5. The differential of the map f at point x0 is the map

df(p) : TpM → Tf(p)N

v 7→ df(p)(v)

is defined as follows: if v is a tangent vector to the curve γ(t) at γ (t0) = p then
df(p)(v) is a tangent vector to the curve f(γ(t)) at f(p) = f (γ (t0)).

Definition 1.6. Given an open set M ⊂ Rn and a smooth map f : M → Rm, a
point p ∈ M is called a critical point for f if the derivative dfp : Rn → Rm is not
surjective. The image of a critical point under f is called the critical value.

Sard’s theorem says that the set of critical values of f has measure zero.

Therefore, one approach to solving the distance function optimization problem
mentioned in the introduction is to find and check all critical points of fp.

Initially, we construct the Lagrange equation for the case of a manifold defined
by two polynomials and show that the EDD corresponds to the number of solutions
of the Lagrange equation. The final task is to determine the number of solutions
of this Lagrange equation, using Bernstein’s theorems to prove that the EDD of
this manifold approximates the mixing volume (MV) of Newton polytopes.

The Newton polytope and the mixing volume are defined as follows:

Definition 1.7. Let f ∈ C [x1, x2, . . . , xn] be polynomials with the support A ⊂
Nn, such that

f(x) =
∑
a∈A

cax
a, (ca ∈ C) .

Then, the Newton polytope of f is defined as the convex hull of the set {a ∈ Nn : ca ̸= 0}
in Rn.

Definition 1.8. Let K1, K2, . . . , Kr be convex sets in Rn and consider the function
f (λ1, . . . , λr) = Voln (λ1K1 + · · ·+ λrKr) , λi ≥ 0 where Voln stands for the n-
dimensional volume with its argument being the Minkowski sum of the convex
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sets Ki. Then f is a homogeneous polynomial of degree n, so it can be written as

f (λ1, . . . , λr) =
r∑

j1,··· ,jn=1

V (Kj1 , . . . , Kjn)λj1 · · ·λjn ,

where the functions V are symmetric. For a function with a particular index
j ∈ {1, . . . , r}n, the coefficient V (Kj1 , . . . , Kjn) is called the mixing volume of
Kj1 , . . . , Kjn .

Below, we study the distance function from a given point to an algebraic varieties
and the problem of counting the number of critical points of that function.

2. Definition of Euclidean distance degree

Definition 2.1. Let u = (u1, u2, . . . , un) be a point in the Euclidean space Rn.
Let X be an algebraic variety in Rn, with x = (x1, x2, . . . , xn) ∈ X, consider the
function fu : Rn → R defined by

fu(x) =
∑

(xi − ui)
2 .

Then, for a general point u , the distance function fu|X : X → R (the function
fu on X) has a finite number of critical points. The number of complex critical
points does not depend on the general point u and is called the Euclidean distance
degree of the set X, denoted by EDD(X).

Example 2.2. Consider

X = VR
(
x2
1x

2
2 − 3x2

1 − 3x2
2 + 5

)
⊂ R2,

and the point p(0.025, 0.2) has 12 critical points of the distance function fp|X .
Therefore, the Euclidean distance degree of X is 12.

Figure 2. EDD(X) = 12.
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The relationship between the number of roots of a polynomial system and the
mixing volume is given by Bernstein’s theorem below.

Theorem 2.3 (see [2, 3]). Let h1, . . . , hm ∈ C [x1, . . . , xm] be m polynomials with
Newton polytopes H1, . . . , Hm. Let #VC× (h1, . . . , hm) be the number of solutions
of h1 = · · · = hm = 0 in (C×)

m
, computed by their algebraic multiples. Bernstein’s

theorem states that

#VC× (h1, . . . , hm) ≤ MV (H1, . . . , Hm)

and equality occurs when hi are general polynomials.

Note that a general polynomial means that the coefficients of the polynomial
are general to fix its Newton polytope.

We also have another theorem of Bernstein.

Theorem 2.4 (xem [2, 3]). Let H = (h1, . . . , hm) be a system of Laurent polyno-
mials with variables x1, . . . , xc. For each 1 ≤ i ≤ m, let Hi be the support of hi

and Hi = conv (Hi) be its Newton polytope. Then,

#VC× (h1, . . . , hm) < MV (H1, . . . , Hm)

if there exists 0 ̸= w ∈ Zm such that the facial system Hw := ((h1)w , . . . , (hm)w) has
a solution in (C×)

m
. On the other hand, #VC× (h1, . . . , hm) is equal to MV (H1, . . . , Hm).

3. Euclidean distance degree of the curve in C3

In this paper, differentiable varieties are considered as sub-manifolds of RN .

Let f1, f2 ∈ R [x1, x2, x3] be two polynomials such thatM = {x ∈ R3 : f1(x) = f2(x) = 0}
is a differentiable variety. We consider:

φ : M → R
x 7→ ∥x− u∥2,

with ∥x− u∥2 being the Euclidean norm.

Since the set of nearest points lies in the set of critical points of the function
φ, the number of critical points is considered to be the complexity of the nearest
point problem. This implies that EDD(M) is equal to the number of complex
solutions of the following system of equations:{

f1(x) = f2(x) = 0,

dxφ = 0
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where dxφ : TxM → Tφ(x)R is a tangent map (or a differential of the map φ) and
x is a critical point.

Assume that x = (x1, x2, x3) is a critical point if

⟨∇fi(x), v⟩ = 0(i = 1, 2) ⇔ ⟨∇φ(x), v⟩ = 0.

This implies that there exist λ1, λ2 ∈ C such that

∇φ(x) = λ1 · ∇f1(x) + λ2 · ∇f2(x).

Thus, the critical points x must satisfy

u− x = λ1 · ∇f1(x) + λ2 · ∇f2(x).

The Lagrange multiplier below is a system of five polynomial equations with five
variables (λ1, λ2, x1, x2, x3) :

Lf1,f2,u(λ, x) := {f1(x) = f2(x) = 0 and u− x = λ1 · ∇f1(x) + λ2 · ∇f2(x)},

where λ1, λ2 are auxiliary variables.

Next, consider the number of solutions to Lf1,f2,u(λ, x) = 0. For u general, this
number is called the Euclidean distance degree of the manifold

M =
{
x ∈ C3 : f1(x) = f2(x) = 0

}
.

Thus, EDD(M) := the number of solutions to Lf1,f2,u(λ, x) = 0 in C5.
Here, ”general” means for all u outside some algebraic set, that is, outside the set
of measure zero.

Theorem 3.1. Let
∑

:=
{
(aα1 , . . . , aαN

, x1, . . . , xn) ∈ CN × (C×)
n}

. Let Ω be

the set of critical points of the function p : Σ → CN . If f (aα1 , . . . , aαN
) ∈ Ω then

p(−1)(0) has no critical points in (C×)
n
.

Proof. Suppose p (x1, x2, . . . , xn) =
∑

i=1,...,N aαi
xαi is a polynomial.

If {aαi
} is general, then the roots of the polynomial p(x) lie in (C×)

n
:

{
x ∈

(
C×)n : ∂1p(x) = . . . = ∂np(x) = p(x) = 0

}
.

Consider the equation ∑
i=1,...,N

aαi
xαi = 0,

the equation has a solution because clearly
∑

i=1,...,N aαi
xαi is an exponential func-

tion, xi ∈ (C×)
n
and

∑
i=1,...,N aαi

xαi has partial derivatives so
∑

i=1,...,N aαi
xαi is
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smooth.
Let π be a map:

π :
∑

→ CN

(aα1 , . . . , aαN
, x1, . . . , xn) 7→ (aα1 , . . . , aαN

)

then

dπ : TxΣ → C
v = φ′(t)

∣∣
t=0

7→ π (φ′(t)) = 0.

We write ∑
:=

{
(aα1 , . . . , aαN

, x1, . . . , xn) ∈ CN ×
(
C×)n} .

We have ∑
(x) =

∑
(φ(t)),

then

d
∑

(x) = d
∑

(φ(t)) = 0.

Let x be the critical point, then

⟨∇Σ(x), v⟩ = 0 and ⟨∇π(x), v⟩ = 0.

Therefore,

∑
=

(a, x) ∈ CN ×
(
C×)n : rank


xα1 . . . xαN ∂p

∂x1
. . . ∂p

∂xn

1 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
0 . . . 1 0 . . . 0

 = 1


=

{
(a, x) ∈ CN ×

(
C×)n :

∂p

∂xi

= 0

}
.

Thus, (aα1 , . . . , aαN
) is a critical value if and only if p(−1)(0) has no critical points

in (C×)
n
. □

Let f1, f2 ∈ C [x1, . . . , xm] be polynomials with support H ⊂ Nn, which is
the set of exponents of the monomials f1, f2. Suppose that 0 ∈ H . We write
∂iH ⊂ Nn as the support of the partial derivatives ∂if1 and ∂if2. For w ∈ Zn, the
linear function x 7→ w · x takes on minimum values on H and on ∂iH ,

h∗ = hw(H ) := mina∈H w · a and h∗
i = hw (∂iH ) := mina∈∂iH w · a.
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Since 0 ∈ H , we have h∗ ≤ 0. Furthermore, if h∗ = 0 and if there exists a ∈ H
with ai > 0, then wi ≥ 0. The subsets of H and ∂iH for which the linear function
x 7→ w · x is minimal are their faces tangent to w,

Hw := {a ∈ H | w · a = h∗} and (∂iH )w := {a ∈ ∂iH | w · a = h∗
i } .

Lemma 3.2. For each 1 ≤ i ≤ n and w ∈ Zn, we have h∗
i ≥ h∗−wi. If ∂i (fw) = 0,

then ∂i (fw) = (∂if)w and h∗
i = h∗ − wi .

Proof. See [1]. □

Lemma 3.3. Let w ∈ Zn, we have

h∗ · fw =
n∑

i=1

wixi∂i (fw) .

Proof. See [1]. □

Theorem 3.4. Let f1, f2 ∈ R [x1, x2, x3] be two polynomials. If H is the support
of the polynomials f1, f2 containing 0 , then

EDD (f1, f2) ≤ MV (P1, P2, P1′ , P2′ , P3′) ,

where P1, P2 are Newton polytopes of f1, f2 and Pi′ are Newton polytopes of u−xi−
λ1∂if1 − λ2∂if2 with i = 1, 2, 3.

Proof. Suppose that u ∈ Cn\N(f1, f2) is general, with

N (f1, f2) :=
{
x ∈ C3 | f1 = f2 = 0

}
.

By Bernstein’s Theorem, the Lagrange equation system Lf1,f2,u(λ, x) = 0 has

MV (P1, P2, P1′ , P2′ , P3′) solutions in (C×)
5
. We need to prove that the Lagrange

system has no solutions outside (C×)
5
, which means that all solutions of Lf1,f2,u(λ, x) =

0 must lie inside (C×)
5
.

Consider

S :=
{
(u, λ, x) ∈ C3

u × C2
λ × C3

x | Lf1,f2,u = 0
}

is an affine manifold.
Recall that f1 = f2 = 0 are equations in Lf1,f2,u(λ, x) = 0, let XC = N(f1, f2) be
a complex curve.
Let x ∈ XC and denote h the projection from S to XC. The fiber h−1(x) on x is{

(u, λ) ∈ C3
u × C2

λ | u− x = λ1 · ∇f1(x) + λ2 · ∇f2(x)
}
.

It is easy to see that the fiber h−1(x) is homomorphic to C2
h, showing that S

h−→ C3
u

is C2-bundle and dimS = 3.
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Consider the projection from S to C3
u as dominant. By Sard’s theorem, the

general fiber has dimension 3−3 = 0 and is smooth. It means that when u ∈ C3
u is

general, the system Lf1,f2,u(λ, x) = 0 has finite solutions, i.e. is Lf1,f2,u(λ, x) = 0
has finite critical points and the number of critical points does not depend on u.

Since Lf1,f2,u(λ, x) = 0 has a finite number of critical points in (C×)
5
, on the

other hand, according to Theorem 2.4 when m = 5, the number of solutions of
f1 = f2 = 0 in (C×)

5
is always less than or equal to MV (Q1, Q2, Q3, Q4, Q5). So

the number of critical points of the Lagrange system Lf1,f2,u(λ, x) = 0 is less than
or equal to MV (P1, P2, P1′ , P2′ , P3′). □

Theorem 3.5. If f1, f2 are general with support H , such that 0 ∈ H and u ∈ C3

are general. For any nonzero w ∈ Z5, the facial system (Lf1,f2,u)w has no solution

in (C×)
5
.

Proof. Fix

0 ̸= w = (v1, v2, w1, w2, w3) ∈ Z5.

The initial coordinates of w are v ∈ Z2. It has index 0 and corresponds to the
variable λ ∈ Z2. The first two functions of the facial system (Lf1,f2,u)w are f1w
and f2w.
The remaining functions depend on w as follows.
Let

(
hj
)∗

:= min{w · a | a ∈ H , j = 1, 2}

and

(
hj
i

)∗
:= min {w · a | a ∈ ∂iH ; i = 1, 2, 3; j = 1, 2} .



10 T. T. PHAM

There are fifteen cases for these remaining functions, which are
(ui − xi − λ1∂if1 − λ2∂if2)w =

−xi if wi < 0, v1 + (h1
i )

∗
< wi, v2 + (h2

i )
∗
< wi, (3.1)

ui if wi > 0, v1 + (h1
i )

∗
> 0, v2 + (h2

i )
∗
> 0, (3.2)

(−λ1∂if1)w if v1 + (h1
i )

∗
< 0 and v2 + (h2

i )
∗
and wi, (3.3)

(−λ2∂if2)w if v2 + (h2
i )

∗
< 0 and v1 + (h1

i )
∗
and wi, (3.4)

ui − xi if wi = 0 < v1 + (h1
i )

∗
and v2 + (h2

i )
∗
, (3.5)

−xi − (λ1∂if1)w if wi = v1 + (h1
i )

∗
< 0 and v2 + (h2

i )
∗
, (3.6)

(−λ1∂if1 − λ2∂if2)w if v1 + (h1
i )

∗
= v2 + (h2

i )
∗
< 0 and wi, (3.7)

ui − (λ1∂if1)w if v1 + (h1
i )

∗
= 0 < wi and v2 + (h2

i )
∗
, (3.8)

ui − (λ2∂if2)w if v2 + (h2
i )

∗
= 0 < wi and v1 + (h1

i )
∗
, (3.9)

−xi − (λ2∂if2)w if v2 + (h2
i )

∗
= wi < 0 and v1 + (h1

i )
∗
, (3.10)

ui − xi − (λ1∂if1)w if wi = v1 + (h1
i )

∗
= 0 < v2 + (h2

i )
∗
, (3.11)

ui − xi − (λ2∂if2)w if wi = v2 + (h2
i )

∗
= 0 < v1 + (h1

i )
∗
, (3.12)

−xi − (λ1∂if1 + λ2∂if2)w if wi = v2 + (h2
i )

∗
= v1 + (h1

i )
∗
< 0, (3.13)

ui − (λ1∂if1 + λ2∂if2)w if v2 + (h2
i )

∗
= v1 + (h1

i )
∗
= 0 < wi, (3.14)

ui − xi − (λ1∂if1 + λ2∂if2)w if wi = v2 + (h2
i )

∗
= v1 + (h1

i )
∗
= 0. (3.15)

Note that if one of the polynomials (ui − xi − λ1∂if1 − λ2∂if2)w is a monomial

then (Lf1,f2,u)w has no solution in (C×)
3
.

Given the subset I ⊂ {1, 2, 3} and the vector u ∈ C3, let uI := {ui | i ∈ I}.
We denote wI for w ∈ Z3 and xI for the variables x ∈ C3 and denote CI for the
corresponding subspace of C3.

Case 1.
Suppose that ∂if1w = 0 and ∂if2w = 0 for all 1 ≤ i ≤ 3. Since 0 ∈ H , f1w, f2w are
constant terms of general f1, f2 and the facial system (Lf1,f2,u)w has no solutions.
Suppose that I ⊔ J = {1, 2, 3} with I ̸= ∅ such that ∂if1w ̸= 0, ∂if2w ̸= 0 for i ∈ I
and ∂jf1w = ∂jf2w = 0 for j ∈ J .
Since j ∈ J , ∂jf1w = ∂jf2w = 0. If a ∈ Hw, then aJ = 0. Hence f1w, f2w are
polynomials with only the variables xI , i.e. f1w, f2w ∈ C [xI ] or

(Lf1,f2,u)w =

{
−xi = 0
ui = 0

,

has no solution in (C×)
5
.
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Case 2.
Suppose that for i ∈ I, wi ≥ 0 means that wI ≥ 0. This implies that wI = 0. To
prove this, suppose a ∈ Hw. We see that aJ = 0. We have

0 ≥ h∗ = w · a = wI · aI ⩾ 0.

Thus h∗ = wI · aI = 0 means that 0 ∈ Hw. Let i ∈ I. Since ∂if1w ̸= 0 and
∂if2w ̸= 0, there exists some a ∈ Hw with ai > 0. Since wI ·an = 0 for all a ∈ Hw,
we have wi = 0.
Since wi = 0, (Lf1,f2,u)w includes the equations (3.3), (3.4), (3.5), (3.8), (3.9),
(3.11), (3.12), (3.14), (3.15). We consider the three cases vk < 0, vk > 0, vk = 0
with k = 1, 2.

Case 2.1.
Suppose that vk < 0 and (λ1, λ2, x1, x2, x3) ∈ (C×)

5
is a solution of (Lf1,f2,u)w. We

have ui − xi = 0 for all i ∈ I, we conclude that xI = uI . Since f1w, f2w ∈ C[xI ]
are general with support Hw and u1, u2 are also general, we do not have f1 (uI) =
f2 (uI) = 0. Therefore (Lf1,f2,u)w has no solution when vk < 0.

Case 2.2.
Assume that vk > 0. Then the subsystem of (Lf1,f2,u)w includes f1w, f2w and the
equations with indices in I are{

f1w = −λ1∂i (f1w) = 0

f2w = −λ2∂i (f2w) = 0
, with i ∈ I. (3.16)

Since f1w, f2w ∈ C[xI ], the system (3.16) implies the hypersurface V(C×)If1,2w ⊂
(C×)

I
is singular. However, since f1w, f2w is general, V(C×)I (f1,2w) must be smooth.

Therefore (Lf1,f2,u)w has no solution when vk > 0.

Case 2.3.
When vk = 0, the subsystem of (Lf1,f2,u)w includes f1w, f2w and the equations with
index I:

ui − xi − λ1∂i (f1w)− λ2∂i (f2w) = 0 with i ∈ I.

This is the system (Lf1,f2,u)w in Cλ × CI for the critical points of the Euclidean
distance from uI ∈ CI to VCI (f1,2w) ⊂ CI . Therefore (Lf1,f2,u)w is triangular,
indeed:
Since ∂jf1w = ∂jf2w = 0 with j ∈ J , the remaining equations do not depend on uI

and f1w, f2w.
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Since (h1)
∗
= (h2)

∗
= 0, if a ∈ H \Hw, then w · a > 0. If a ∈ gw, then aj = 0

for j ∈ J we have defined h∗
j = min {w · a | a ∈ ∂jH }. Furthermore, if a ∈ ∂jH

then a+ ej ∈ H , it follows that a+ ej ∈ H \Hw.

We consider

w · (a+ ej) > 0

⇒w · a+ w · ej > 0

⇒w · a > −wj,

it follows that h∗
j > −wj.

When wj ⩾ 0 for all j ∈ J , we obtain h∗
j > 0 for all j ∈ J .

Therefore, the equations (3.8), (3.9), (3.11), (3.12), (3.14), (3.15) do not occur
because of the contradiction with vk +

(
hk
j

)∗
= 0 and vk = 0 with k = 1, 2.

Case 3.
Let i ∈ I be an index with wi < 0. Suppose that the facial system (Lf1,f2,u)w has
a solution; so the equation (3.1) of (u1 − xi − λ1∂if1 − λ2∂1f2)w does not occur.
Thus, one of the following four equations is possible

(u1 − xi − λ1∂if1 − λ2∂if2)w ,

=


−xi − (λ1∂if1)w if wi = v1 + (h1

i )
∗
< 0,

−xi − (λ2∂if2)w if wi = v2 + (h2
i )

∗
< 0,

(−λ1∂if1 − λ2f2)w if v1 + (h1
i )

∗
= v2 + (h2

i )
∗
< 0 and wi,

−xi − (λ1∂1f1 + λ2∂2f2)w if wi = v1 + (h1
i )

∗
= v2 + (h2

i )
∗
< 0.

Since wi > 0, (
h1
i

)∗ ≤ wi + v1 < v1 and
(
h2
i

)∗ ≤ wi + v2 < v2.

By Lemma 3.2, we have(
h1
)∗

=
(
h1
i

)∗
+ wi ≤ 2wi + v1 < v1

and (
h2
)∗

=
(
h2
i

)∗
+ wi ≤ 2wi + v2 < v2.

For each i ∈ I, we have {
(h1

i )
∗
= (h1)

∗ − wi < v1 − wi,
(h2

i )
∗
= (h2)

∗ − wiv2 − wi.

So (
h2
i

)∗
=

(
h2
)∗ − wi < v2 − wi.
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If wi ≥ 0, then (
h1
i

)∗
< v1,

(
h2
i

)∗
< v2.

Therefore, only one of the four equations is possible for i ∈ I.
That is

(Lf1,f2,u)w =



−xi − (λ1∂if1)w if (h1)
∗
= 2wi + v1 and wi < 0,

−xi − (λ2∂if2)w if (h2)
∗
= 2wi + v2 and wi < 0,

(−λ1∂if1 − λ2∂if2)w if

{
(h1)

∗ − wi < min {v1, wi + v1} ,
(h2)

∗ − wi < min {v2, wi + v2} ,
−x1 − (λ1∂if1 + λ2∂i∂2)w if (h1)

∗
= (h2)

∗
and wi < 0.

(3.17)

This case further divides I into sets L and M , where

L :=
{
l ∈ I |

(
h1
)∗ − w ≤ min {v1, w + v1} ,

(
h2
)∗ − w < min {v2, wl + v2}

}
and

M :=
{
m ∈ I |

(
h1
)∗

= 2wm + v1,
(
h2
)∗

= 2wm + v2 and wm < 0
}
.

For l ∈ L, we have

λ1∂lf1w + λ2∂lf2w = 0.

It follows that for m ∈ M , we have
λ1∂mf1 + λ2∂mf2w = −xm, ∂mf1w =

−xm

λ1

,

∂mf2w =
−xm

λ2

.

For M = ∅, then L = I and the subsystem of (Lf1,f2,u)w includes f1w, f2w and the
equation (3.13) has no solution as we have seen.
For M ̸= ∅, let w′ := min {wi | i ∈ I} then w′ < 0. Furthermore, from the system
(3.17), if m ∈ M then we have

wm =
1

2

(
h1
)∗ − v1 =

1

2

(
h2
)∗ − v2.

Thus, wm = w′, for each m ∈ M .
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Suppose that (λ1, λ2, x1, x2, x3) is a solution of (Lf1,f2,u)w.
By Lemma 3.3, we obtain:(

h1
)∗ · f1w(x) = ∑

i∈I

wixi∂i (f1w) (x) =
−1

λ1

w′
∑
m∈M

x2
m,

(
h2
)∗ · f2w(x) = ∑

i∈I

wixi∂i (f2w)x =
−1

λ2

w′
∑

x2
m.

Because (
h1
)∗

f1w(x) = 0 =
(
h2
)∗

f2w(x)

so we have

− 1

λ1

w′
∑
m∈M

x2
m = − 1

λ2

w′
∑
m∈M

x2
m = 0.

Since

λ1 ̸= 0, λ2 ̸= 0 and w′ ̸= 0

we have ∑
m∈M

x2
m = 0.

Let Q be this quadratic form. Then point xI lies on both (f1w, f2w) and V(Q).
Since

∂lf1w (xI) = ∂lf2w (xI) = ∂lQ = 0,

with l ∈ L and {
2∂mf1w (xI) = λ1∂mQ
2∂mf2w (xI) = λ2∂mQ, for m ∈ M

so we see that the hypersurfaces do not intersect at xI . But this contradicts
f1w, f2w which is general. Therefore, there is no solution for the facial system
(Lf1,f2,u)w = 0. □

Theorem 3.6. Let f1, f2 ∈ R [x1, x2, x3] be two polynomials . If the support H of
the polynomials f1, f2 contain 0 and f1, f2 are general and u ∈ C3 is also general,
then

EDD (f1, f2) = MV (P1, P2, P1′ , P2′ , P3′) ,

where P1, P2 are the Newton polytopes of f1, f2 and Pi′ are the Newton polytopes of

ui − xi − λ1∂if1 − λ2∂if2,

with i = 1, 2, 3.
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Proof. Since
Lf1,f2,u(λ, x) = 0

has finite critical points and lies in (C×)
5
, by Theorem 2.3 whenm = 5, the number

of critical points of Lf1,f2,u(λ, x) = 0 is less than or equal toMV (P1, P2, P1′ , P2′ , P3′).

We use Theorem 2.4 when
G = Lf1,f2,u

and
m = 5.

This shows that for two general polynomials f1, f2 all the solutions of Lf1,f2,u(λ, x) =

0 lies in (C×)
5
.

However, by Theorem 3.5, the facial system Lf1,f2,u(λ, x) = 0 has no solution in

(C×)
5
. In this case, the number of critical points of the system Lf1,f2,u(λ, x) = 0

is MV (P1, P2, P1′ , P2′ , P3′) .
While the number of solutions of the system Lf1,f2,u(λ, x) = 0 is equal to the
Euclidean distance degree, we obtain

EDD (f1, f2) = MV (P1, P2, P
′
1, P

′
2, P

′
3) .

□
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