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Abstract5

This paper studies the asymptotic stability of non-commensurate fractional-6

order neutral differential systems with constant delays. To do this, we propose7

a modified Mikhailov stability criterion. Our work not only generalizes the existing8

results in the literature but also provides a rigorous mathematical basis for the9

frequency domain analysis method concerning fractional-order systems with delays.10
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validity of the obtained result.12
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1 Introduction17

Consider the system

d

dt
x(t) = Ax(t), t > 0, (1)

x(0) = x0 ∈ Rd, (2)

where A is a real matrix of size d × d. This system is called asymptotically stable if for18

any x0 ∈ Rd, the solution Φ(·; 0, x0) of the initial value problem (1)–(2) satisfies19

lim
t→∞

∥Φ(t; 0, x0)∥ = 0,
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here ∥·∥ is an arbitrary norm on Rd. By the final value theorem for Laplace transforms, it20

is known that the system (1) is asymptotically stable if and only if its characteristic poly-21

nomial has only zeros with negative real parts. From this observation, an important task22

arose in the study of the asymptotic behavior of solutions of continuous-time dynamical23

systems: set a criterion to check whether a polynomial with real coefficients24

p(s) = sn + an−1s
n−1 + · · · + a0

has roots only in the left open half of the complex plane or not. E.J. Routh and A. Hurwitz25

independently derived an equivalence criterion for stability using an algebraic procedure.26

They provided necessary and sufficient conditions for all roots of the polynomial p to lie in27

the left half plane without needing to determine them (see [10]). However, when the degree28

of p is large, applying the Routh–Hurwitz criterion will be difficult (one has to calculate a29

lot of determinants of large matrices). Therefore, geometric methods were developed. H.30

Nyquist [19] and A.V. Mikhailov [18] given graphical solutions in the frequency domain. It31

is worth noting that Nyquist and Mikhailov-style graphical techniques can also be applied32

to time-delay systems, see, e.g., [16, 6].33

In the past three decades, fractional calculus has become an active research area. One34

of the main reasons is that it provides an excellent instrument for describing memory35

and hereditary properties of real-world processes. This is an advantage over classical36

differential models in which such effects are neglected. The nterested reader can find37

updated applications of fractional calculus in the monographs [4, 5, 20, 23, 24].38

Many tools have been developed to investigate the asymptotic behavior of solutions to39

fractional dynamical systems up to now: Lyapunov-type first and second methods, gen-40

eralized comparison principle, and modified frequency domain analysis. Depending on41

the specific situation, each approach has different strengths and weaknesses. Within the42

scope of the current paper, we limit our attention to the fourth topic mentioned above.43

Below, we briefly list notable papers based on frequency domain analysis.44

In [25], the authors prove that the fractional transfer function45

H(s) =
1

sνn + an−1sνn−1 + · · · + a1sν1 + a0

has the same poles as a closed-loop system H̃(s) that the open-loop is46

HOL =
an−1

sνn−νn−1
+

an−2

sνn−νn−2
+ · · · +

a0
sνn

.

Then, under the method based on Nyquist’s theorem, they have given Routh-like stability47

conditions for fractional order systems involving a maximum of two fractional derivatives.48

Unfortunately, for higher numbers of differential operators, this method is unsuitable for49

its numerical implementation. J. Sabatier et al. [21] have presented another realization of50

the fractional system recursively defined and involves nested closed loops. By exploiting51

Cauchy’s argument principle on a frequency range, the numerical limitation in [25] is52

removed (however, no formal proof is shown in [21]). In [14], E. Ivanova et al. studied a53

second-order fractional transfer function in the form54

G(s) =
1

( s
ω0

)2 + 2ξ( s
ω0

)ν + 1
,
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here ν ∈ [0, 2], ξ ∈ R, and ω0 is a parameter related to the physical properties of the sys-55

tem. Using a simplified Nyquist criterion applied on a Nichols chart of the corresponding56

open-loop transfer function, they establish several stability and resonance conditions in57

the form of a pseudo-damping factor and a fractional differentiation order. After that, the58

approach in [14] has been successfully extended in [29] for a non-commensurate elemen-59

tary fractional-order system without delay and in [30] for a non-commensurate elementary60

fractional-order delay system.61

Although there have been some works on frequency domain analysis criteria have ap-62

peared. Until [7, 8] (on commensurate fractional systems with and without delays) and63

then [22] (on non-commensurate fractional systems without delays), it seems that no fun-64

damental and systematic contributions to this research direction have been announced.65

The fractional neutral delay differential equations (FNDDEs) have received considerable66

attention in recent years. In [1], the authors proved the existence of at least one solution of67

FNDDEs. In [28], a new Halanay-type inequality was derived to describe the behavior of68

solutions of FNDDEs. In [2], the robust stability of a class of FNDDEs with uncertainty69

and input saturation is discussed. After that, in [26], an analysis of the asymptotical70

stability for some scalar linear FNDDEs has been introduced.71

As a continuation of the studies on FNDDEs mentioned above, inspired by [7, 22, 8], we
focus on the following non-commensurate fractional-order neutral differential system with
constant delays:

CDα̂
0+ (x(t) + Ax(t− τ)) = B0x(t) +B1x(t− γ), t > 0, (3)

where α̂ = (α1, . . . , αd) ∈ (0, 1]d is a multi-index,

CDα̂
0+x(t) =

(
CDα1

0+x1(t), . . . ,
C Dαi

0+xi(t), . . . ,
CDαd

0+xd(t)
)T

with CDαi

0+xi(t) is the Caputo fractional derivative of the order αi, A,B0, B1 are real72

matrices of size d× d, τ, γ are positive constant delays.73

Our aim in this paper is to build a rigorous mathematical basis for the modified Mikhailov74

curve method to study the asymptotic stability of the system (3). It is a development of75

previous results on frequency domain analysis approaches for continuous-time dynamical76

systems.77

The organization of the paper is the following. In section 2, we introduce the necessary78

preparatory knowledge for further analysis in the following section. The main contribu-79

tion is the modified Mikhailov stability criterion for fractional semi-polynomials stated80

in Section 3. Then, a detailed comparison of our result with those published in the lit-81

erature is mentioned in Remarks 3.9, 3.10, 3.11. As a consequence of the main result, a82

three-step scheme for checking the asymptotic stability of the system (3) is established in83

Subsection 3.3. Finally, specific examples and numerical illustrations have been provided84

to demonstrate the correctness of the obtained theoretical results.85

To conclude this part, we present some notations used throughout the rest of the paper.86

Let Z, Z≥0, R, R≥0, and R+ be the set of integers, non-negative integers, real, non-87

negative real, and positive real numbers, respectively. For a vector x = (x1, · · · , xd) ∈ Rd,88

3



we define the norm ∥x∥ := max{|x1|, |x2|, · · · , |xd|} and xT is its transpose. Denote C89

as the set of complex numbers. For any z ∈ C, let ℜz, ℑz be its real and imaginary90

part. Set C∗ := C \ {0}, C≥0 := {z ∈ C : ℜz ≥ 0}, and C+ := {z ∈ C : ℜz > 0}.91

For any a, b ∈ R, a < b, the space of all continuous functions (continuously differentiable92

functions) ξ : [a, b] → Rd is denoted by C([a, b];Rd) (C1([a, b];Rd)).93

2 Preliminaries94

For α ∈ (0, 1] and J = [0, T ] or J = [0,∞), the Riemann-Liouville fractional integral of a
function f : J → R is defined by

Iα0+x(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1x(s) ds, t ∈ J,

and its Caputo fractional derivative of the order α ∈ (0, 1) as

CDα
0+x(t) :=

d

dt
I1−α
0+ (f(t) − f(0)), t ∈ J \ {0},

where Γ(·) is the Gamma function and d
dt

is the first derivative, see. e.g., [15, Chapters 295

and 3] or [27].96

Let d ∈ N, α̂ = (α1, α2, . . . , αd) ∈ (0, 1]d be a multi-index and x = (x1, . . . , xd)
T with

xi : J → R, i = 1, . . . , d, be a vector valued function. Then, we denote

CDα̂
0+x(t) :=

(
CDα1

0+x1(t), . . . ,
CDαn

0+xd(t)
)T
.

We consider the following non-commensurate fractional neutral differential system with
constant delays:

CDα̂
0+ (x(t) + Ax(t− τ)) = f(t, x(t), x(t− γ)), t ∈ (0, T ], (4)

where α̂ = (α1, . . . , αd) ∈ (0, 1]d is a multi-index, A = (aij)d×d ∈ Rd×d, τ, γ are positive
constant delays, f = (f1, · · · , fd)T with fi : [0, T ]×Rd×Rd → R is a continuous function.
For each i = 1, . . . , d, assume that fi satisfies the Lipschitz condition

|fi(t, x, y) − fi(t, x̃, y)| ≤ Li(t, y)∥x− x̃∥, (5)

for all t ∈ [0, T ], x, x̃, y ∈ Rd. Here, Li : [0, T ] × Rd → R≥0 is a continuous function.97

For ν := max{τ, γ}, we take the initial condition of the system (4) as below98

x = ϕ ∈ C1([−ν, 0];Rd). (6)

Definition 2.1. A function x ∈ C([−ν, T ];Rd) is said to be a solution of the system (4)99

with the initial condition (6) if for any t ∈ (0, T ], we have100

CDα̂
0+ (x(t) + Ax(t− τ)) = f(t, x(t), x(t− γ)).

Furthermore, x(t) = ϕ(t), ∀t ∈ [−ν, 0].101
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Using the same arguments as in the proof of [15, Lemma 6.2], we obtain the following102

lemma.103

Lemma 2.2. For an initial condition ϕ ∈ C1([−ν, 0];Rd), a function x ∈ C([−ν, T ];Rd)
is a solution of the system (4) with the initial condition (6) if and only if it is a solution
of the following delay integral system

xi(t) = ϕi(0) +
d∑

j=1

aijϕj(−τ) −
d∑

j=1

aijxj(t− τ)

+
1

Γ(αi)

∫ t

0

(t− s)αi−1fi(s, x(s), x(s− γ))ds, t ∈ (0, T ], i = 1, . . . , d, (7)

and satisfies x(t) = ϕ(t) on [−ν, 0].104

With the help of Lemma 2.2 and a slight modification of the arguments in the proof of105

[26, Theorem 3.1], we receive a result on the existence of a unique solution of the system106

(4).107

Theorem 2.3. Assume that the condition (5) holds. Then, for each initial condition108

ϕ ∈ C1([−ν, 0];Rd), the system (4) has a unique solution on [−ν, T ].109

Corollary 2.4. Consider the system (4) on [0,∞). Assume the condition (5) holds.110

Then, the system (4) with the initial condition (6) has a unique global solution on [0,∞).111

Proof. The proof of this corollary is similar to [26, Corollary 3.2] and thus we omit it.112

We now discuss the exponential boundedness of solutions to the following system:

CDα̂
0+ (x(t) + Ax(t− τ)) = f(t, x(t), x(t− γ)), t > 0, (8)

x(t) = ϕ(t), t ∈ [−ν, 0], (9)

here f = (f1, . . . , fd)
T and for each i = 1, . . . , d, fi : [0,∞)×Rd×Rd → R is a continuous113

function such that the following conditions are true.114

(F1) There exists a positive constant L such that115

|fi(t, x, y) − fi(t, x̃, ỹ)| ≤ L (∥x− x̃∥ + ∥y − ỹ∥) , (10)

for all t ∈ [0,∞), i = 1, . . . , d, x, y, x̃, ỹ ∈ Rd.116

(F2) There exists a positive constant λ > 1 such that

max
i∈{1,...,d}

sup
t≥0

∫ t

0
(t− s)αi−1|fi(s, 0, 0)|ds

eλt
< +∞. (11)

Theorem 2.5. Assume that (F1) and (F2) are true. Then, the unique global solution117

Φ(·, ϕ) of the initial value problem (8)–(9) is exponentially bounded. More precisely, there118

is a positive constant M such that119

∥Φ(·, ϕ)∥ ≤M exp (λt), t ≥ 0.
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Proof. The proof of this theorem is easily obtained by modifying the arguments in the120

proof of [26, Theorem 4.1].121

Denote by L the Laplace transform, it is well known that

L
(
CDα

0+x(·)
)

(s) = sαX(s) − sα−1x(0), (12)

and

L (x(· − τ) (s) = e−sτX(s) + e−sτ

∫ 0

−τ

e−sux(u)du, (13)

where α ∈ (0, 1], τ > 0 and X(·) is the Laplace transform of x(·).122

Theorem 2.6. ([15, Theorem D.13, p. 232]) Assume that L(f) does not have any singu-123

larities in the closed right half-plane C≥0 except for possibly a simple pole at the origin.124

Then, limx→∞ f(x) = lims→0+ sL(f)(s).125

Theorem 2.7. (Rouché’s Theorem, see, e.g., [9, Theorem 8.18]) Let U be a bounded open126

subset of C, f, g continuous on U∪∂U and holomorphic in U . Suppose that |g(s)| < |f(s)|127

on ∂U . Then, counting multiplicities, the functions f and f + g have the same number128

[which is finite] of zeros in U .129

3 The asymptotic behavior of solutions to noncom-130

mensurate fractional neutral differential system with131

delays132

For any initial condition ϕ ∈ C1([−ν, 0];Rd), we consider the following non-commensurate
fractional neutral differential system with constant delays

CDα̂
0+ (x(t) + Ax(t− τ)) = B0x(t) +B1x(t− γ), t > 0, (14)

with the initial condition

x(t) = ϕ(t), t ∈ [−ν, 0], (15)

where α̂ = (α1, . . . , αd) ∈ (0, 1]d is a multi-index, A = (aij)d×d and Bl = (b
(l)
ij )d×d, l ∈133

{0, 1} are real matrices.134

In this section, we will present a theoretical basis of the modified Mikhailov curve method135

to study the asymptotic stability of the system (14).136

3.1 The characteristic polynomial of the system (14)137

Due to Theorem 2.3 and Theorem 2.5, the system (14)–(15) has a unique global solution
Φ(·, ϕ) on [−ν,∞). Moreover, this solution is exponentially bounded. Taking the Laplace
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transform on both the sides of (14) and paying attention to the facts (12), (13), we see
that

(sα̂I)X(s) − (sα̂−1I)x(0) + (sα̂I)

(
A

(
e−τsX(s) + e−τs

∫ 0

−τ

e−suϕ(u)du

))
−
(
sα̂−1I

)
Aϕ(−τ) = B0X(s) +B1

(
e−γsX(s) + e−γs

∫ 0

−γ

e−suϕ(u)du

)
,

where I is the identity matrix of size d, sα̂I = diag(sα1 , . . . , sαd),

sα̂−1I = diag(sα1−1, . . . , sαd−1),

X(s) = (X1(s), . . . , Xd(s))
T with Xi(s) = L{xi(·)} (s) and∫ 0

−t

e−suϕ(u)du =

(∫ 0

−t

e−suϕ1(u)du, . . . ,

∫ 0

−t

e−suϕd(u)du

)T

, t ∈ [−ν, 0].

Hence, the characteristic polynomial of (14) is

Q(s) := det
(
sα̂I + e−τs(sα̂I)A−B0 − e−γsB1

)
. (16)

Our first task in this section is to expand Q in formal monomials of the forms sαi1 · · · sαir ,
where 1 ≤ r ≤ d, 1 ≤ i1 < · · · < ir ≤ d. Put

C(s) :=
(
sα̂I + e−τs(sα̂I)A−B0 − e−γsB1

)
. (17)

The element in the i-th row and j-th column of the matrix C(s) is

cij(s) :=

{
sαi − sαiaiie

−τs − b
(0)
ii − b

(1)
ii e

−γs if j = i,

−sαiaije
−τs − b

(0)
ij − b

(1)
ij e

−γs if j ̸= j.
(18)

Define

pij(s) :=

{
1 − aiie

−τs if j = i,

−aije−τs if j ̸= i,

qij(s) := −b(0)ij − b
(1)
ij e

−γs, (19)

for 1 ≤ i, j ≤ d. Then, the matrix C(s) is rewritten as

C(s) =


sα1p11(s) + q11(s) sα1p12(s) + q12(s) · · · sα1p1d(s) + q1d(s)
sα2p21(s) + q21(s) sα2p22(s) + q22(s) · · · sα2p2d(s) + q2d(s)

· · · · · · . . . · · ·
sαdpd1(s) + qd1(s) sα2pd2(s) + qd2(s) · · · sαdpdd(s) + qdd(s)

 . (20)

Since pij(s) and qij(s) do not contain the components sα1 , . . . , sαd , 1 ≤ i, j ≤ d, Q(s) =
detC(s) is equal to the sum of the forms sαi1

+···+αirhi1,i2,··· ,ir(s), where 1 ≤ i1 < · · · < ir ≤
d, 0 ≤ r ≤ d, hi1,...,ir(s) do not contain the monomials sα1 , . . . , sαd and depend only on the
functions pij, qij, 1 ≤ i, j ≤ d. For simplicity we take the convention αi1 + · · · + αir = 0
when r = 0. Let 0 = β0 < β1 < · · · < βN = α1 + · · · + αd be distinct elements of the set
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{αi1 + · · · + αir : 0 ≤ r ≤ d, 1 ≤ i1 < · · · < ir ≤ d}. Here, for convenience, we call an
index tuple of length βj as a tuple {αil}kl=1, 1 ≤ i1 < · · · < ik ≤ d with

∑k
l=1 αil = βj. It

is easy to check that Q has the form

Q(s) =
N∑
j=0

hj(s)z
βj , (21)

where hj(s) are functions that do not contain the components sα1 , . . . , sαd and only depend138

on the functions pmn(s), qmn(s), 1 ≤ m,n ≤ d.139

From a definition of the determinant, we have140

Q(s) =
∑
σ∈Sd

sgn(σ)
d∏

i=1

(sαipiσ(i)(s) + qiσ(i)(s)), (22)

here Sd is the symmetric group on the set {1, . . . , d} and sgn(σ) is the signature of the141

permutation σ.142

First, we express h0(s) (the term that does not contain any components of the forms
sαi , i = 1, . . . , d). From (22),

h0(s) =
∑
σ∈Sd

sgn(σ)
d∏

i=1

qiσ(i)

= det(−B0 − e−γsB1)

=
d∑

k=0

ake
−kγs, (23)

where ak ∈ R, k = 0, 1, · · · , d, are coefficients that depend only on the elements of the143

matrices B0, B1.144

Next, for 1 ≤ j ≤ N − 1, we will determine hj(s). Suppose βj = αi1 +αi2 + · · ·+αir with145

1 ≤ i1 < · · · < ir ≤ d and 1 ≤ r < d . We first describe the components of Q that contain146

only elements of the form sαi1 · · · sαir (we consider sαi as formal variables and therefore147

sαi1sαi2 ̸= sαi2sαi1 for i1, i2 ∈ {1, . . . , d}). By (22), the component containing only the148

monomial sαi1 · · · sαir in Q is149

∑
σ∈Sd

sgn(σ)
r∏

k=1

d∏
l=1,l ̸=i1,...,ir

pikσ(ik)qlσ(l).

It is worth noting that
∏r

k=1 pikσ(ik) =
∑r

m=0 cme
−mτs, where cm, m = 0, 1, . . . , r, are con-150

stants that depend only on the elements of the matrix A. Meanwhile,
∏d

l=1,l ̸=i1,...,ir
qlσ(l) =151 ∑d−r

n=0 dne
−nγs, where dn, n = 0, 1, . . . , d−r, are constants that depend only on the elements152

of the matrices B0, B1. Combining the above observations, we obtain the representation153

of hj as154

hj(s) =
∑

0≤m≤r,0≤n≤d−r

gm,ne
−(mτ+nγ)s, (24)
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where gm,n, 0 ≤ m ≤ r, 0 ≤ n ≤ d − r, are constants that depend on the elements of155

the matrices A, B0, B1, r ∈ {1, . . . , d − 1} is the number of elements in an index tuple156

of length βj. Let pj be the number of distinct elements of the set {mτ + nγ : 0 ≤ m ≤157

r, 0 ≤ n ≤ d − r} such that there exists an index tuple of length βj with r elements (we158

call this set as Mj). Then, hj has another representation as follows159

hj(s) =

pj∑
k=0

ckje
−τkjs, (25)

where τkj ∈ Mj. Finally, consider j = N . It is not difficult to see that the coefficient of160

the highest-order term of Q is161

∑
σ∈Sd

sgn(σ)
d∏

k=1

pkσ(k)(s) =
d∑

k=0

bke
−kτs, (26)

here bi, 0 < i ≤ d, depends only on the elements of the matrix A and b0 = 1. It implies
from (23), (25) and (26) that

Q(s) =
N∑
j=0

(
pj∑
k=0

ckje
−τkjs

)
sβj , (27)

here τkj ≥ 0, 0 ≤ j ≤ N , 0 ≤ k ≤ pj. In particular, p0 = pN = d, βN = α1 +α2 + · · ·+αd,162

τk0 = kγ, k = 0, 1, . . . , d, τkN = kτ , k = 0, 1, . . . , d, and c0N = 1.163

Define i0 := max{i ∈ {1, . . . , d} : ciN ̸= 0}. We obtain a simple relation between the164

positions of the zeros of the characteristic polynomial Q and its coefficients.165

Proposition 3.1. Consider the characteristic polynomial Q as in (27). If
∑d

k=0 ck0 < 0166

or |ci0N | > 1, then Q has at least one zero point in the open right half of the complex167

plane.168

Proof. (i) Suppose that
∑d

k=0 ck0 < 0. Due to Q(0) =
∑d

k=0 ck0, hence Q(0) < 0. On the
other hand, from (27), we derive

Q(s) =
N−1∑
j=0

(
pj∑
k=0

ckje
−τkjs

)
sβj +

(
d∑

k=0

ckNe
−kτs

)
sβN , (28)

where c0N = 1. Notice that lim|s|→∞,s∈R+

∑d
k=0 ckNe

−kτs = c0N = 1, and lim|s|→∞,s∈R+ s
βN =169

+∞, we conclude170

lim
|s|→∞,s∈R+

Q(s) = +∞.

Hence, Q has at least one positive root.171

172

(ii) Suppose that ci0N > 1. Using (27), we write

Q(s) = (1 +
d∑

k=1

ckNe
−kτs)sβN +

N−1∑
j=0

(
pj∑
k=0

ckje
−τkjs

)
sβj . (29)
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From the representation of Q above, we see that s ̸= 0 is a solution of Q if and only if it
is also a solution of the following polynomial:

P (s) := 1 +
d∑

k=1

ckNe
−kτs +

n−1∑
j=0

(
pj∑
k=0

ckje
−τkjs

)
sβj−βn . (30)

Take

f(s) : = 1 +
d∑

k=1

ckNe
−kτs

= 1 +

i0∑
k=1

ckNe
−kτs, (31)

and

g(s) :=
N−1∑
j=0

(
pj∑
k=0

ckje
−τkjs

)
sβj−βN . (32)

by the change of variables u = e−τs, f is a polynomial of degree i0 concerning the variable173

u. Therefore, the equation f(u) = 0 has i0 solutions as u1, . . . , ui0 . Moreover, these174

solutions satisfy
∏i0

i=1 |ui| = 1
|ci0N | < 1. It implies that there is a solution ui with |ui| < 1,175

and thus there is at least one solution s of the equation f(s) = 0 with ℜs > 0. Let s0 be176

a zero point of f satisfying ℜs0 > 0. It is easy to check that {s0k}k∈Z≥0
with z0k = s0± i2kπ

τ
177

are also the solutions of this polynomial. Due to the nature of f , we can find δ > 0 small178

enough such that for every z ∈ Sδ(s
0
k), k ∈ Z≥0, the distance from z to all the zero points179

of f is larger or equal to δ, here Sδ(s
0
k) is the circle with the center at s0k and the radius δ180

(in this way, s0k is the only zero point of f in Sδ(s
0
k) and Sδ(s

0
k) is completely in the open181

right half plane). By [17, Lemma 1, p. 268], there exists m(δ) > 0 such that182

|f(z)| ≥ m(δ), ∀z ∈ Sδ(s
0
k), ∀k ∈ Z≥0.

By virtue of the facts that lim|s|→∞,s∈R+ |sβj−βN | = 0 for all j = 0, 1, . . . , N − 1,

|
pj∑
k=0

ckje
−τkjs| ≤

pj∑
k=0

|ckj|

for all s ∈ C+, j = 0, 1, . . . , N − 1, there is an index k0 large enough so that183

|g(z)| ≤ m(δ)/2, ∀z ∈ Sδ(s
0
k0

).

Thus, |f(z)| > |g(z)| for all z ∈ Sδ(s
0
k0

). Following from Rouché’s theorem (Theorem 2.7),184

Q has exactly one zero point in Sδ(s
0
k0

). The proof is complete.185

Remark 3.2. Consider the system (14). Suppose that α̂ = (1, . . . , 1)T, B0 = B1 = 0. By186

[3, Theorem 5.2], the system is asymptotically stable if and only if187

sup{ℜs : det(I + e−τsA) = 0} < 0.

This implies that a necessary condition for the stability of (14) is188

d∑
k=1

|ckN | < 1.
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Remark 3.3. Consider the case d = 1, A = −1, and B = B1 = 0. The characteristic func-189

tion of (14) becomes Q(s) = (1 + e−τs) sα. Excluding the origin point, this characteristic190

polynomial has only purely imaginary roots. Choosing the initial condition ϕ = λ ̸= 0,191

then the equation (14) has the solution x(t) = λ for all t ≥ 0. This means that the trivial192

solution is not asymptotically stable.193

Remark 3.4. Consider the system (14) in the case d = 1, τ = γ, |A| > 1, B0 < 0,194

|B1| < |B0|. Then, we have Q(s) = sα + Asαe−τs − B0 − B1e
−τs and thus c11 = A,195

c00 = −B0, c10 = −B1. In [26], the authors have proven if |c11| > 1, c00 > 0, and196

|c10| < |c00| then Q has at least one root in the open right half plane.197

3.2 Modified Mikhailov stability criterion for the characteristic198

function Q199

We begin this subsection by recalling some basic knowledge of complex analysis.200

Proposition 3.5. ([13, Proposion A.2.3] Given an arbitrary interval I ⊂ R and a con-
tinuous function γ : I → C∗, there exists a continuous function θ : I → R such that

γ(t) = |γ(t)|eiθ(t) = eln |γ(t)|+iθ(t), t ∈ I. (33)

Moreover, the function θ is differentiable at each point t ∈ I where γ is differentiable.201

Definition 3.6. ([13, Definition A.2.4]) Given an arbitrary interval I ⊂ R and a contin-
uous function γ : I → C∗, any continuous function θ : I → R satisfying (33) is called
an argument function of the complex curve γ. In this case, we write arg γ(·) = θ(·). If
I = [a, b], the net change of the argument of γ(t) as t moves from a to b is given by

∆ arg γ(t)
∣∣
I

= ∆ arg γ(t)
∣∣b
a

= θ(b) − θ(a). (34)

If I = [0,∞), then the change of the argument of γ as t move from 0 to ∞ is defined by

∆ arg γ(t)
∣∣
I

= ∆ arg γ(t)
∣∣∞
0

= lim
k→∞

∆ arg γ(t)
∣∣k
0

= lim
k→∞

θ(k) − θ(0). (35)

If γ : [a, b] → C is a closed curve and c ∈ C \ γ([a, b]), then the winding number of the202

point c with respect to the closed curve γ is defined by203

w(γ, c) = (2π)−1(ψ(b) − ψ(a)) = (2π)−1∆ arg(γ(t) − c)
∣∣b
a
, (36)

where ψ is any argument function of the closed curve t 7→ γ(t) − c.204

Theorem 3.7. (Argument principle, see, e.g., [9, Corollary 9.15]) Let C be a simple closed205

curve, oriented in c counterclockwise direction, f is analytic on and inside C, except for206

(possibly) some finite poles inside (not on) C and some zeros inside (not on) C. Then,207

w(f(C), 0) = Z − P , where w(f(C), 0) is the winding number of f(C) around 0, i.e., the208

total number of times that the curve f(C) encircles the point 0 in the positive direction209

and Z, P are the number of zeros and poles of f inside C, respectively.210
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Figure 1: The modified Nyquist contour.

Let Ω be an open subset of C and a given holomorphic function f : Ω → C. Suppose
that α : I = [a, b] ⊆ R → Ω is an oriented complex curve that does not pass through any
zero point of the function f . From the definition above, we see that the change of the
argument of f along the curve α equals the change of the function γ : I → C∗ given by
γ(t) = f(α(t)) as t moves from a to b. More precisely, we have

∆ arg f(s)
∣∣
α

= ∆ arg γ(t)
∣∣
I
. (37)

In particular, for the case when α : [0,∞) → C given by α(t) = it, t ≥ 0 and f(iω) ̸= 0
for all ω ∈ [0,∞), we obtain

∆ arg f(s)
∣∣
α

= ∆ arg f(iω)
∣∣∞
0
. (38)

As shown in (27), the characteristic function Q of the system (14) has the form211

Q(s) =
N∑
j=0

(
pj∑
k=0

ckje
−τkjs

)
sβj .

From Proposition 3.1 and Remarks 3.2, 3.3, 3.3, to establish an asymptotic stability212

criterion for the system (14), it is natural and necessary to add the following assumptions:213

d∑
k=1

|ckN | < 1,
d∑

k=0

ck0 > 0. (39)

For any ϵ ∈ (0, R), we define the modified Nyquist curve Cϵ,R = C1
ϵ,R ∪ C2

ϵ,R ∪ C3
ϵ,R ∪ C4

ϵ,R214
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with215

C1
ϵ,R :=

{
s = Reiφ : φ ∈ [−π

2
,
π

2
]
}
,

C2
ϵ,R := {s = iω : ω ∈ [R, ϵ]} ,

C3
ϵ,R :=

{
s = ϵeiφ : φ ∈ [

π

2
,−π

2
]
}
,

C4
ϵ,R := {s = iω : ω ∈ [−ϵ,−R]} ,

(40)

Let Ωϵ,R be the bounded domain surrounded by the curve Cϵ,R.216

Our main contribution to the current work is the result below.217

Theorem 3.8. (Modified Mikhailov stability criterion) Consider the characteristic func-
tion Q as in (27). Assume that the condition (39) holds and Q(iω) ̸= 0 for all ω ∈ (0,∞).
Then, all zero points of Q lie in the open left half of the complex plane if and only if

βN
π

2
− Θ ≤ ∆ argQ(iω)

∣∣∞
0

≤ βN
π

2
+ Θ, (41)

where βN = α1 + · · · + αd, Θ = arcsin
(∑d

k=1 |ckN |
)
.218

Proof. First, we see that

Q(s) =

(
c0N +

d∑
k=1

ckNe
−kτs +

N−1∑
j=0

(
pj∑
k=0

ckje
−τkjs

)
sβj−βN

)
sβN

= (1 +H(s) +K(s))sβN , (42)

where H(s) =
∑d

k=1 ckNe
−kτs, and K(s) =

∑N−1
j=0

(∑pj
k=0 ckje

−τkjs
)
sβj−βN . Since βj < βN

for all j = 1, . . . , N − 1, and τkj ≥ 0 for all k = 0, 1, . . . , pj, j = 0, 1, . . . , N − 1, we have

lim
|s|→∞, s∈C+

|K(s)| = 0. (43)

On the other hand,

|H(s)| ≤
d∑

k=1

|ckN |e−kτℜs ≤
d∑

k=1

|ckN | < 1, ∀s ∈ C+. (44)

By the condition (39), we see that Q(0) > 0. Moreover, we can find ϵ1 > 0 such that219

Q(s) ̸= 0 for all s ∈ C, |s| ≤ ϵ1. From the fact that lim|s|→∞,s∈C+ |Q(s)| = ∞, there is an220

R1 > ϵ1 so that its every zero point located in the open right half of the complex plane is221

in the domain {z ∈ C≥0 : |z| ≤ R1}. Since M = {z ∈ C≥0 : ϵ1 ≤ |s| ≤ R1} is a compact222

set in C and Q is analytic in M , Q has only at most r zero points in M . It follows that Q223

only has a finite number of zero points on the open right half of the complex plane, and224

these points must belong to the domain M .225

Due to lim|s|→∞, s∈C+ |K(s)| = 0, we can choose ϵ small enough and Rϵ large enough so226

that the contour Cϵ,Rϵ defined as (40) does not hit the zero points of Q. Furthermore, the227

following facts are verified:228
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• 0 < ϵ < min{ϵ1, 1 −
∑d

k=1 |ckN |};229

• |K(s)| < ϵ, ∀s ∈ C+, |s| ≥ Rϵ;230

• Rϵ > R1;231

• Rϵ → ∞ as ϵ→ 0.232

Since Q is analytic on Ω̄ϵ,Rϵ and there is no zero point on Cϵ,Rϵ , according to (36), (37)
and Theorem 3.7, we have

∆ argQ(s)
∣∣
Cϵ,Rϵ

= 2π(Z − P ) = 2rπ, (45)

which implies that

∆ argQ(s)
∣∣
C1

ϵ,Rϵ

+ ∆ argQ(s)
∣∣
C2

ϵ,Rϵ

+ ∆ argQ(s)
∣∣
C3

ϵ,Rϵ

+ ∆ argQ(s)
∣∣
C4

ϵ,Rϵ

= 2rπ. (46)

Due to the fact that Q(s) = Q(s) for all s ∈ C, we see that

∆ argQ(s)
∣∣
C2

ϵ,Rϵ

= ∆ argQ(s)
∣∣
C4

ϵ,Rϵ

, (47)

this means that

∆ argQ(s)
∣∣
C2

ϵ,Rϵ

+ ∆ argQ(s)
∣∣
C4

ϵ,Rϵ

= 2∆ argQ(s)
∣∣
C2

ϵ,Rϵ

= −2∆ argQ(iω)
∣∣Rϵ

ϵ
. (48)

Notice that, for ϵ chosen as above, (1 + H(s) + K(s) lies entirely within the circle with
center 1 and radius

∑d
k=1 |ckN | + ϵ for all s ∈ C1

ϵ,Rϵ
. On the other hand, this circle does

not surround the origin, so the curve {1+H(s)+K(s) : s ∈ C1
ϵ,Rϵ

} also does not surround
the origin. Thus,

∆ arg(1+H(s) +G(s))
∣∣
C1

ϵ,Rϵ

= arg(1 +H(Rei
π
2 ) +G(Rei

π
2 ))

− arg(1 +H(Re−iπ
2 ) +G(Re−iπ

2 )) = 2 arg(1 +H(Rei
π
2 ) +G(Rei

π
2 )). (49)

In addition, for all s ∈ C1
ϵ,Rϵ

, 1 + H(s) + K(s) is in the cone with the vertex being the
origin and two edges being tangents going from the origin to the circle with center 1 of
radius

∑d
k=1 |ckN | + ϵ, the following estimate is true

− arcsin

(
d∑

k=1

|ckN | + ϵ

)
≤ arg (1 +H(s) +K(s)) ≤ arcsin

(
d∑

k=1

|ckN | + ϵ

)
. (50)

By combining (42), (49) and (50), it deduces that

∆ arg sβN
∣∣
C1

ϵ,Rϵ

− 2 arcsin

(
d∑

k=1

|ckN | + ϵ

)
≤ ∆ argQ(s)

∣∣
C1

ϵ,Rϵ

≤ ∆ arg sβN
∣∣
C1

ϵ,Rϵ

+ 2 arcsin

(
d∑

k=1

|ckN | + ϵ

)
. (51)
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From this, we obtain

βNπ − 2 arcsin

(
d∑

k=1

|ckN | + ϵ

)
≤ ∆ argQ(s)

∣∣
C1

ϵ,Rϵ

≤ βNπ + 2 arcsin

(
d∑

k=1

|ckN | + ϵ

)
, (52)

where 0 < ϵ < 1 −
∑d

k=1 |akN |. Now, using the fact that Q(0) =
∑d

k=0 ck0 > 0 and that233

Q, ℜQ are continuous at the origin, there exists a constant ϵ0 ∈ (0, 1−
∑d

k=1 |ckN |) small234

enough to satisfy the estimates below.235

(a) |Q(s) −Q(0)| ≤ 1
2

∑d
k=0 ck0 for all |s| ≤ ϵ0.236

(b) ℜQ(s) ≥ 1
2

∑d
k=0 ck0 > 0 for all |s| ≤ ϵ0.237

Following from (a), for all ϵ ∈ (0, ϵ0), Q(C3
ϵ,Rϵ

) lies completely within the circle with

center
∑d

k=0 c0k, radius 1
2

∑d
k=0 c0k. Therefore, Q(C3

ϵ,R) does not surround the origin for
all ϵ ∈ (0, ϵ0). Hence,

∆ argQ(s)
∣∣
C3

ϵ,R
= argQ(ϵei

−π
2 ) − argQ(ϵei

π
2 ) = −2 argQ(ϵei

π
2 ), ∀ϵ ∈ (0, ϵ0). (53)

By (b), we have ℜQ(ϵei
π
2 ) > 0 for all ϵ ∈ (0, ϵ0). Thus,

argQ(ϵei
π
2 ) = arctan

(
ℑQ(ϵei

π
2 )

ℜQ(ϵei
π
2 )

)
, ∀ϵ ∈ (0, ϵ0). (54)

From (53) and (54), then

∆ argQ(s)
∣∣
C3

ϵ,Rϵ

= −2 arctan

(
ℑQ(ϵei

π
2 )

ℜQ(ϵei
π
2 )

)
, ∀ϵ ∈ (0, ϵ0),

which together with (46), (48), (52) leads to

βNπ − 2 arcsin

(
d∑

k=1

|ckN | + ϵ

)
≤ 2∆ argQ(iω)

∣∣Rϵ

ϵ
+ 2 arctan

(
ℑQ(ϵei

π
2 )

ℜQ(ϵei
π
2 )

)
+ 2rπ

≤ βNπ + 2 arcsin

(
d∑

k=1

|ckN | + ϵ

)
.

Let ϵ→ 0 and note that Rϵ → ∞ as ϵ→ 0, we get the inequalities

βN
π

2
− arcsin

(
d∑

k=1

|ckN |

)
≤ ∆ argQ(iω)

∣∣∞
0

+ rπ ≤ βN
π

2
+ arcsin

(
d∑

k=1

|ckN |

)
. (55)

It is worth noting that 0 ≤
∑d

k=1 |ckN | < 1 and thus 0 ≤ arcsin
(∑d

k=1 |ckN |
)
< π

2
. From238

(55), the desired assertion (41) is satisfied if and only if r = 0. The proof is complete.239
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Figure 2: The contour γ.

Remark 3.9. Consider the system (14) when A = 0. From the observations above, we
have ckN = 0 for k = 1, . . . , d. Therefore, Θ = 0 and the condition (41) in Theorem 3.8
becomes

∆ argQ(iω)
∣∣∞
0

= βN
π

2
.

Thus, with the added assumption B1 = 0, we get again Theorem 3 in the paper [22].240

Remark 3.10. Although the statement of [22, Theorem 3] is correct, the proof of this241

result seems incomplete. Indeed, because the contour γ (see Figure 2) passes through242

the origin, the characteristic polynomial p is not analytic on this curve. Therefore, using243

Cauchy’s argument principle as the author did is not legal. To fill the gap, we suggest244

replacing γ by the contour Cϵ,R defined in Theorem 3.8 above (see Figure 1).245

Remark 3.11. In [7, 8], the authors developed modified Mikhailov criteria to study the246

asymptotic stability property for fractional differential systems both in the case of delays247

and without delays. To prove the proposed main results, they applied the transformation248

λ = sα to the characteristic polynomial f , here α is the order of the basic fractional-order249

derivative of the system (the orders of other fractional order derivatives appearing in the250

system are multiples of α). In our opinion, this is probably the reason the approach in the251

mentioned articles does not apply to non-commensurate fractional differential systems.252
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3.3 An approach to analysis the stability of the system (14) and253

simulation examples254

We propose a 3-step scheme to check the stability of the system (14) as follows:255

Step 1: Calculating the characteristic polynomial Q;256

Step 2: Using Theorem 3.8 to check the position of zero points of Q;257

Step 3: Based on the Final Value Theorem 2.6 to conclude the stability of the system.258

In the above approach, Step 2 is the most difficult to implement. Therefore, to help the259

reader easily visualize the role and validity of the proposed theoretical results, we give260

some specific examples and numerical simulations in which we calculate the argument of261

Mikhailov curves.262

Example 3.12. Consider the equation

CDα̂
0+ (x(t) + Ax(t− 1)) = B0x(t) +B1x(t− 2), t > 0, (56)

where α̂ = (1/2, π
6
, 1√

3
),

A =

−0.3 −0.3 −0.2
0.3 −0.2 0.3
−0.2 −0.1 0.2

 , B0 =

−5 −1 −2
−3 −5 −4
−1 −2 −5

 , B1 =

 1 1 −3
1.5 −2 −1
−1 1.5 1

 .

The characteristic polynomial Q(s) of (56) is described explicitly as

Q(s) =s1.6009(1 − 0.3e−s + 0.04e−2s + 0.053e−3s) + s1.1009(5 + 0.1e−s − 1.31e−2s

+ 0.9e−3s − 0.08e−4s) + s1.0774(5 + 0.8e−s + 1.86e−2s − 0.55e−3s − 0.29e−4s)

+ s1.0236(5 − 2.9e−s − 0.32e−2s + 1.15e−3s − 0.325e−4s) + s0.5774(22 + 7e−s

+ 9.5e−2s + 5.8e−3s − 3.5e−4s + 1.05e−5s) + s0.5236(23 − 7.6e−s − 15e−2s

+ 8.55e−3s − 2e−4s − 2e−5s) + s0.5(17 − 2e−s + 9e−2s − 4.45e−3s − 0.5e−4s

+ 0.25e−5s) + (76 + 28.5e−2s − 70.5e−4s + 1.75e−6s). (57)

From (57), we have N = 7,
∑3

k=1 |ckN | = 0.393 < 1 and
∑3

k=0 ck0 = 76+28.5−70+1.75 =
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36.35 > 0. Furthermore, Θ = arcsin(
∑3

k=1 |ckN |) ≈
π

7.7783
. Let s = iω, 0 ≤ ω <∞, then

Q(iω) = ω1.6009(−0.8098 + i0.5866)[1 − 0.3(cosω − i sinω) + 0.04(cos(2ω) − i sin(2ω))

+ 0.053(cos(3ω) − i sin(3ω))] + ω1.1009(−0.1578 + i0.9875)[5 + 0.1(cosω − i sinω)

− 1.31(cos(2ω) − i sin(2ω)) + 0.9(cos(3ω) − i sin(3ω)) − 0.08(cos(4ω) − i sin(4ω))]

+ ω1.0774(−0.1213 + i0.9926)[5 + 0.8(cosω − i sinω) + 1.86(cos(2ω) − i sin(2ω))

− 0.55(cos(3ω) − i sin(3ω)) − 0.29(cos(4ω) − i sin(4ω))] + ω1.0236(−0.0371

+ i0.9993)[5 − 2.9(cosω − i sinω) − 0.32(cos(2ω) − i sin(2ω)) + 1.15(cos(3ω)

− i sin(3ω)) − 0.325(cos(4ω) − i sin(4ω))] + ω0.5774(0.6161 + i0.7876)[22 + 7(cosω

− i sinω) + 9.5(cos(2ω) − i sin(2ω)) + 5.8(cos(3ω) − i sin(3ω)) − 3.5(cos(4ω)

− i sin(4ω)) + 1.05(cos(5ω) − i sin(5ω))] + ω0.5236(0.6804 + i0.7328)[23 − 7.6(cosω

− i sinω) − 15(cos(2ω) − i sin(2ω)) + 8.55(cos(3ω) − i sin(3ω)) − 2(cos(4ω)

− i sin(4ω)) − 2(cos(5ω) − i sin(5ω))] + ω0.5(0.7071 + i0.7071)[17 − 2(cosω − i sinω)

+ 9(cos(2ω) − i sin(2ω)) − 4.45(cos(3ω) − i sin(3ω)) − 0.5(cos(4ω) − i sin(4ω))

+ 0.25(cos(5ω) − i sin(5ω))] + [76 + 28.5(cos(2ω) − i sin(2ω)) − 70.5(cos(4ω)

− i sin(4ω)) + 1.75(cos(6ω) − i sin(6ω))].

Set

h1(ω) : = ℜ(Q(iω)) = ω1.6009(−0.8098 + 0.2429 cosω − 0.176 sinω − 0.0324 cos(2ω)

+ 0.0235 sin(2ω) − 0.0429 cos(3ω) + 0.0311 sin(3ω)) + ω1.1009(−0.789 − 0.0158 cosω

+ 0.0988 sinω + 0.2067 cos(2ω) − 1.2936 sin(2ω) − 0.142 cos(3ω) + 0.8888 sin(3ω)

+ 0.0126 cos(4ω) − 0.0790 sin(4ω)) + ω1.0774(−0.6065 − 0.097 cosω + 0.7941 sinω

− 0.2256 cos(2ω) + 1.8462 sin(2ω) + 0.0667 cos(3ω) − 0.5459 sin(3ω)

+ 0.0352 cos(4ω) − 0.2879 sin(4ω)) + ω1.0236(−0.1855 + 0.1076 cosω − 2.898 sinω

+ 0.0119 cos(2ω) − 0.3198 sin(2ω) − 0.0427 cos(3ω) + 1.1492 sin(3ω)

+ 0.0121 cos(4ω) − 0.3248 sin(4ω)) + ω0.5774(13.5542 + 4.3127 cosω + 5.5132 sinω

+ 5.8529 cos(2ω) + 7.4822 sin(2ω) + 3.5734 cos(3ω) + 4.5681 sin(3ω)

− 2.1564 cos(4ω) − 2.7566 sin(4ω) + 0.6469 cos(5ω) + 0.827 sin(5ω)) + ω0.5236×
× (15.6492 − 5.171 cosω − 5.5693 sinω − 10.206 cos(2ω) − 10.992 sin(2ω)

+ 5.8174 cos(3ω) + 6.2654 sin(3ω) − 1.3608 cos(4ω) − 1.4656 sin(4ω)

− 1.3608 cos(5ω) − 1.4656 sin(5ω)) + ω0.5(12.0207 − 1.4142 cosω − 1.4142 sinω

+ 6.3639 cos(2ω) + 6.3639 sin(2ω) − 3.1466 cos(3ω) − 3.1466 sin(3ω)

− 0.3535 cos(4ω) − 0.3535 sin(4ω) + 0.1768 cos(5ω) + 0.1768 sin(5ω)) + (76

+ 28.5 cos(2ω) − 70.5 cos(4ω) + 1.75 cos(6ω)),
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and

h2(ω) : = ℑ(Q(iω)) = ω1.6009(0.5866 − 0.176 cosω − 0.2429 sinω + 0.0235 cos(2ω)

+ 0.0324 sin(2ω) + 0.0311 cos(3ω) + 0.0429 sin(3ω)) + ω1.1009(4.9375 + 0.0988 cosω

+ 0.0158 sinω − 1.2936 cos(2ω) − 0.2067 sin(2ω) + 0.8888 cos(3ω) + 0.1420 sin(3ω)

− 0.0790 cos(4ω) − 0.0126 sin(4ω)) + ω1.0774(4.9630 + 0.7941 cosω + 0.097 sinω

+ 1.8462 cos(2ω) + 0.2256 sin(2ω) − 0.5459 cos(3ω) − 0.0667 sin(3ω)

− 0.2879 cos(4ω) − 0.0352 sin(4ω)) + ω1.0236(4.9965 − 2.898 cosω − 0.1076 sinω

− 0.3198 cos(2ω) − 0.0119 sin(2ω) + 1.1492 cos(3ω) + 0.0427 sin(3ω)

− 0.3248 cos(4ω) − 0.0121 sin(4ω)) + ω0.5774(17.3272 + 5.5132 cosω − 4.3127 sinω

+ 7.4822 cos(2ω) − 5.8529 sin(2ω) + 4.5681 cos(3ω) − 3.5734 sin(3ω)

− 2.7566 cos(4ω) + 2.1564 sin(4ω) + 0.8270 cos(5ω) − 0.6469 sin(5ω)) + ω0.5236×
× (16.8544 − 5.5693 cosω + 5.1710 sinω − 10.992 cos(2ω) + 10.206 sin(2ω)

+ 6.2654 cos(3ω) − 5.8174 sin(3ω) − 1.4656 cos(4ω) + 1.3608 sin(4ω)

− 1.4656 cos(5ω) + 1.3608 sin(5ω)) + ω0.5(12.0207 − 1.4142 cosω + 1.4142 sinω

+ 6.3639 cos(2ω) − 6.3639 sin(2ω) − 3.1466 cos(3ω) + 3.1466 sin(3ω)

− 0.3535 cos(4ω) + 0.3535 sin(4ω) + 0.1768 cos(5ω) − 0.1768 sin(5ω))

+ (−28.5 sin(2ω) + 70.5 sin(4ω) − 1.75 sin(6ω)).

Using the bisection method, we find the approximating solutions of the equation h2(ω) = 0
in the interval (0,∞) within the accuracy of 10−4 as

ω1 ≈ 0.8552, ω2 ≈ 1.3653.

The approximating solutions of the equation h1(ω) = 0 in the interval (0,∞) within the
accuracy of 10−4 are

ω3 ≈ 1.5205, ω4 ≈ 1.6258, ω5 ≈ 7.7438, ω6 ≈ 8.0205,

ω7 ≈ 13.9262, ω8 ≈ 14.4442, ω9 ≈ 20.1282, ω10 ≈ 20.8463,

ω11 ≈ 26.3392, ω12 ≈ 27.2404, ω13 ≈ 28.2071, ω14 ≈ 28.7303,

ω15 ≈ 32.5544, ω16 ≈ 33.6355, ω17 ≈ 34.3693, ω18 ≈ 35.144,

ω19 ≈ 38.7704, ω20 ≈ 40.0454, ω21 ≈ 40.5307, ω22 ≈ 41.5325,

ω23 ≈ 44.9837, ω24 ≈ 47.9089, ω25 ≈ 49.083, ω26 ≈ 49.4637,

ω27 ≈ 50.489, ω28 ≈ 51.1893, ω29 ≈ 54.2795, ω30 ≈ 55.1944,

ω31 ≈ 56.9355, ω32 ≈ 57.3742, ω33 ≈ 60.649, ω34 ≈ 61.3807,

ω35 ≈ 67.023, ω36 ≈ 67.5768, ω37 ≈ 73.4152, ω38 ≈ 73.76.

From this, we write263

∆argQ(iω)
∣∣∞
0

= ∆argQ(iω)
∣∣ω1

0
+

37∑
j=1

∆argQ(iω)
∣∣ωj+1

ωj
+ ∆argQ(iω)

∣∣∞
ω38
. (58)

On the interval (0, ω1), it is easy to check that h1(ω) > 0 and h2(ω) > 0. Hence, Q(iω)
starts from the point (35.75, 0), moves in the open part of the first quadrant, and returns

19



0 5 10 15 20 25 30 35 40 45 50

x

-400

-300

-200

-100

0

100

200

300

(a) The graph on the interval from 0 to 50.

50 55 60 65 70 75 80 85 90 95 100

x

-2000

-1500

-1000

-500

0

(b) The graph on the interval from 50 to 100.

100 110 120 130 140 150 160 170 180 190 200

x

-6000

-5000

-4000

-3000

-2000

-1000

0

(c) The graph on the interval from 100 to 200.

Figure 3: The graph of h1(ω) on the interval [0, 200].
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Figure 4: The graph of h2(ω) on the interval [0, 100].
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to intersect the real axis at (180.4078, 0) as the variable ω increases from 0 to ω1. This
implies that ∆argQ(iω)

∣∣ω1

0
= 0. Similarly, we have ∆argQ(iω)

∣∣ω2

ω1
= 0. On (ω2, ω3),

then h1(ω) > 0, h2(ω) > 0, and thus Q(iω) starts from (28.2422, 0) then moves in the
open part of the first quadrant and intersect the imaginary axis at (0, 61.0713) as ω
increases from ω2 to ω3. Hence, ∆argQ(iω)

∣∣ω3

ω2
= π

2
. On (ω3, ω4), due to h1(ω) < 0 and

h2(ω) > 0, Q(iω) moves in the open part of the second quadrant and returns to intersect
the imaginary axis at (0, 108.7798) as the variable ω increases from ω3 to ω4. This leads
to that ∆argQ(iω)

∣∣ω4

ω3
= 0. Using the same arguments, the assertion ∆argQ(iω)

∣∣ωj+1

ωj
= 0,

j = 4, · · · , 37, is also true. From these facts, we receive

∆argQ(iω)
∣∣ω1

0
+

37∑
j=1

∆argQ(iω)
∣∣ωj+1

ωj
=
π

2
. (59)

We now focus on the case ω ∈ (ω38,∞). Noting that h1(ω) < 0 and h2(ω) > 0 for
all ω > ω38. Thus, Q(iω) moves from (0, 2.5815 × 103) to the open part of the second
quadrant as ω increases from ω38 to +∞. On the other hand,

−1.1399 < −0.8098 + 0.2429 cosω − 0.176 sinω − 0.0324 cos(2ω)

+ 0.0235 sin(2ω) − 0.0429 cos(3ω) + 0.0311 sin(3ω) < −0.5861,

and

0.2701 < 0.5866 − 0.176 cosω − 0.2429 sinω + 0.0235 cos(2ω)

+ 0.0324 sin(2ω) + 0.0311 cos(3ω) + 0.0429 sin(3ω) < 0.8315.

for all ω > ω38. Thus, for ω > ω38, then

−1.4186 <
h4(ω)

h3(ω)
< −0.2369,

where h3(ω) = −0.8098 + 0.2429 cosω − 0.176 sinω − 0.0324 cos(2ω) + 0.0235 sin(2ω) −
0.0429 cos(3ω)+0.0311 sin(3ω), h4(ω) = 0.5866−0.176 cosω−0.2429 sinω+0.0235 cos(2ω)+
0.0324 sin(2ω) + 0.0311 cos(3ω) + 0.0429 sin(3ω). Let ω > 0 be large enough, with the
help of the obtained calculations, the following estimate holds

π − π

3.2835
< argQ(iω) < π − π

13.5058
.

This reduces that
π

5.1165
< ∆ argQ(iω)

∣∣∞
ω38

<
π

2.3477
,

which together with (58) shows that

π

1.438
< ∆ argQ(iω)

∣∣∞
0
<

π

1.08
.

As shown above,

(α1 + α2 + α3)
π

2
− Θ ≈ π

1.4883
,

and
(α1 + α2 + α3)

π

2
+ Θ ≈ π

1.0764
,
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Figure 5: Orbits of the solution of the system (56) with the initial condition x(t) =

(2t2 + 2.5,−t+ 2, 4t− 1)
T

on the interval [−2, 0].

by combining the observations above, we obtain

(α1 + α2 + α3)
π

2
− Θ < ∆ argQ(iω)

∣∣∞
0
< (α1 + α2 + α3)

π

2
+ Θ.

Following from Theorem 3.8 and Theorem 2.6, the system (56) is asymptotically stable.264

In Figure 5, we depict the asymptotic behavior of its solution with the initial condition265

x(t) = (2t2 + 2.5,−t+ 2, 4t− 1)
T

, ∀t ∈ [−2, 0].266

Example 3.13. Consider the system

CDα̂
0+ (x(t) + Ax(t− 1)) = B0x(t) +B1x(t− 2), t > 0, (60)

where α̂ = (3/4, π
4
, 2√

5
), and

A =

−0.3 −0.3 −0.2
0.3 −0.2 0.3
−0.2 −0.1 0.2

 , B0 =

−5 −1 −2
−3 −5 −4
−1 −2 −5

 , B1 =

 1 1 −3
1.5 −2 −1
−1 1.5 1

 .
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Then, its characteristic polynomial is

Q(s) = s2.4298(1 − 0.3e−s + 0.04e−2s + 0.053e−3s) + s1.6798(5 + 0.1e−s − 1.31e−2s

+ 0.9e−3s − 0.08e−4s) + s1.6444(5 + 0.8e−s + 1.86e−2s − 0.55e−3s − 0.29e−4s)

+ s1.5354(5 − 2.9e−s − 0.32e−2s + 1.15e−3s − 0.325e−4s) + s0.8944(22 + 7e−s

+ 9.5e−2s + 5.8e−3s − 3.5e−4s + 1.05e−5s) + s0.7854(23 − 7.6e−s − 15e−2s

+ 8.55e−3s − 2e−4s − 2e−5s) + s0.75(17 − 2e−s + 9e−2s − 4.45e−3s − 0.5e−4s

+ 0.25e−5s) + (76 + 28.5e−2s − 70.5e−4s + 1.75e−6s).

Thus, in this case, we have N = 7,
∑3

k=1 |ckN | = 0.393 < 1 and
∑3

k=0 ck0 = 76 + 28.5 −
70.5 + 1.75 = 35.75 > 0. Moreover, Θ = arcsin(

∑3
k=1 |ckN |) ≈ π

7.7783
. Take s = iω,

0 ≤ ω <∞, we see that

Q(iω) = ω2.4298(−0.7806 − i0.625)[1 − 0.3(cosω − i sinω) + 0.04(cos(2ω) − i sin(2ω))

+ 0.053(cos(3ω) − i sin(3ω))] + ω1.6798(−0.8762 + i0.428)[5 + 0.1(cosω − i sinω)

− 1.31(cos(2ω) − i sin(2ω)) + 0.9(cos(3ω) − i sin(3ω)) − 0.08(cos(4ω) − i sin(4ω))]

+ ω1.6444(−0.848 + i0.53)[5 + 0.8(cosω − i sinω) + 1.86(cos(2ω) − i sin(2ω))

− 0.55(cos(3ω) − i sin(3ω)) − 0.29(cos(4ω) − i sin(4ω))] + ω1.5354(−0.7453

+ i0.6667)[5 − 2.9(cosω − i sinω) − 0.32(cos(2ω) − i sin(2ω)) + 1.15(cos(3ω)

− i sin(3ω)) − 0.325(cos(4ω) − i sin(4ω))] + ω0.8944(0.1651 + i0.9863)[22 + 7(cosω

− i sinω) + 9.5(cos(2ω) − i sin(2ω)) + 5.8(cos(3ω) − i sin(3ω)) − 3.5(cos(4ω)

− i sin(4ω)) + 1.05(cos(5ω) − i sin(5ω))] + ω0.7854(0.3307 + i0.9437)[23 − 7.6(cosω

− i sinω) − 15(cos(2ω) − i sin(2ω)) + 8.55(cos(3ω) − i sin(3ω)) − 2(cos(4ω)

− i sin(4ω)) − 2(cos(5ω) − i sin(5ω))] + ω0.75(0.3827 + i0.9239)[17 − 2(cosω − i sinω)

+ 9(cos(2ω) − i sin(2ω)) − 4.45(cos(3ω) − i sin(3ω)) − 0.5(cos(4ω) − i sin(4ω))

+ 0.25(cos(5ω) − i sin(5ω))] + [76 + 28.5(cos(2ω) − i sin(2ω)) − 70.5(cos(4ω)

− i sin(4ω)) + 1.75(cos(6ω) − i sin(6ω))].
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Put

h1(ω) : = ℜQ(iω) = ω2.4298(−0.7806 + 0.2342 cosω + 0.1875 sinω − 0.0312 cos(2ω)

− 0.025 sin(2ω) − 0.0414 cos(3ω) − 0.0331 sin(3ω)) + ω1.6798(−4.381

− 0.0876 cosω + 0.0482 sinω + 1.1478 cos(2ω) − 0.6314 sin(2ω) − 0.7886 cos(3ω)

+ 0.4338 sin(3ω) + 0.07 cos(4ω) − 0.0386 sin(4ω)) + ω1.6444(−4.24 − 0.6784 cosω

+ 0.424 sinω − 1.5773 cos(2ω) + 0.9858 sin(2ω) + 0.4664 cos(3ω) − 0.2915 sin(3ω)

+ 0.2459 cos(4ω) − 0.1537 sin(4ω)) + ω1.5354(−3.7265 + 2.1614 cosω − 1.9334 sinω

+ 0.2385 cos(2ω) − 0.2133 sin(2ω) − 0.8571 cos(3ω) + 0.7667 sin(3ω)

+ 0.2422 cos(4ω) + 0.2167 sin(4ω)) + ω0.8944(3.6322 + 1.1557 cosω + 6.9041 sinω

+ 1.5685 cos(2ω) + 9.3699 sin(2ω) + 0.9576 cos(3ω) + 5.7205 sin(3ω) − 0.5779 cos(4ω)

− 3.4521 sin(4ω) + 0.1734 cos(5ω) + 1.0356 sin(5ω)) + ω0.7854(7.6061 − 2.5133 cosω

− 7.1721 sinω − 4.9605 cos(2ω) − 14.1555 sin(2ω) + 2.8275 cos(3ω) + 8.0686 sin(3ω)

− 0.6614 cos(4ω) − 1.8874 sin(4ω) − 0.6614 cos(5ω) − 1.8874 sin(5ω)) + ω0.75×
× (6.5059 − 0.7654 cosω − 1.8478 sinω + 3.4443 cos(2ω) + 8.3151 sin(2ω)

− 1.703 cos(3ω) − 4.1114 sin(3ω) − 0.1914 cos(4ω) − 0.462 sin(4ω) + 0.0957×
× cos(5ω) + 0.231 sin(5ω)) + 76 + 28.5 cos(2ω) − 70.5 cos(4ω) + 1.75 cos(6ω),

and

h2(ω) : = ℑQ(iω) = ω2.4298(−0.625 + 0.1875 cosω − 0.2342 sinω − 0.025 cos(2ω)

+ 0.0312 sin(2ω) − 0.0331 cos(3ω) + 0.0414 sin(3ω)) + ω1.6798(2.41

+ 0.0482 cosω + 0.0876 sinω − 0.6314 cos(2ω) − 1.1478 sin(2ω) + 0.4338 cos(3ω)

+ 0.7886 sin(3ω) − 0.0386 cos(4ω) − 0.07 sin(4ω)) + ω1.6444(2.65 + 0.424 cosω

+ 0.6784 sinω + 0.9858 cos(2ω) + 1.5773 sin(2ω) − 0.2915 cos(3ω) − 0.4664 sin(3ω)

− 0.1537 cos(4ω) − 0.2459 sin(4ω)) + ω1.5354(3.3335 − 1.9334 cosω − 2.1614 sinω

− 0.2133 cos(2ω) − 0.2385 sin(2ω) + 0.7667 cos(3ω) + 0.8571 sin(3ω)

− 0.2167 cos(4ω) + 0.2422 sin(4ω)) + ω0.8944(21.6986 + 6.9041 cosω − 1.1557 sinω

+ 9.3699 cos(2ω) − 1.5685 sin(2ω) + 5.7205 cos(3ω) − 0.9576 sin(3ω) − 3.4521 cos(4ω)

+ 0.5779 sin(4ω) + 1.0356 cos(5ω) − 0.1734 sin(5ω)) + ω0.7854(21.7051 − 7.1721 cosω

+ 2.5133 sinω − 14.1555 cos(2ω) + 4.9605 sin(2ω) + 8.0686 cos(3ω) − 2.8275 sin(3ω)

− 1.8874 cos(4ω) + 0.6614 sin(4ω) − 1.8874 cos(5ω) + 0.6614 sin(5ω)) + ω0.75×
× (15.7063 − 1.8478 cosω + 0.7654 sinω + 8.3151 cos(2ω) − 3.4443 sin(2ω)

− 4.1114 cos(3ω) + 1.703 sin(3ω) − 0.462 cos(4ω) + 0.1914 sin(4ω) + 0.231×
× cos(5ω) − 0.0957 sin(5ω)) − 28.5 sin(2ω) + 70.5 sin(4ω) − 1.75 sin(6ω).

By the bisection method, the approximating solutions of the equation h2(ω) = 0 in the
interval (0,∞) within the accuracy of 10−4 are

ω1 ≈ 0.8843, ω3 ≈ 1.3525, ω8 ≈ 26.2244, ω9 ≈ 27.1831, ω10 ≈ 27.9934, ω11 ≈ 28.4585,

ω12 ≈ 32.3448, ω13 ≈ 35.0607, ω14 ≈ 38.4778, ω15 ≈ 41.5478, ω16 ≈ 44.5826, ω17 ≈ 47.9995,

ω18 ≈ 49.75, ω19 ≈ 54.4327, ω20 ≈ 55.8006. ω21 ≈ 60.8561, ω22 ≈ 61.9218, ω23 ≈ 67.2784,

ω24 ≈ 68.0627, ω25 ≈ 73.7181. ω26 ≈ 74.1942. (61)
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Figure 6: The graph of h2(ω) on the interval [0, 100].
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Figure 7: The graph of h1(ω) on the interval [0, 50].
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Similarly, we can find the approximating solutions of the equation h1(ω) = 0 in the
interval (0,∞) within the accuracy of 10−4 as follows:

ω2 ≈ 1.3411, ω4 ≈ 1.9059, ω5 ≈ 3.0547, ω6 ≈ 3.6175, ω7 ≈ 4.3204. (62)

From (61)–(62), we obtain267

∆argQ(iω)
∣∣∞
0

= ∆argQ(iω)
∣∣ω1

0
+

25∑
j=1

∆argQ(iω)
∣∣ωj+1

ωj
+ ∆argQ(iω)

∣∣∞
ω26
. (63)

On the interval (0, ω1), h1(ω) > 0 and h2(ω) > 0, hence Q(iω) starts from the point268

(35.75, 0), moves in the open part of the first quadrant and then returns to intersect the269

real axis at (149.3315, 0) when ω increases from 0 to ω1. This implies that ∆argQ(iω)
∣∣ω1

0
=270

0. Since h1(ω) > 0 and h2(ω) < 0 on (ω1, ω2), we observe that Q(iω) initiates at271

(149.3315, 0), moves in the open part of the fourth quadrant, and intersects the imag-272

inary axis at (0,−3.3034) in this interval. Thus, ∆argQ(iω)
∣∣ω2

ω1
= −π

2
. On the inter-273

val (ω2, ω3), h1(ω) < 0 and h2(ω) < 0, the graph of Q(iω) will change as follows: it274

enters the open part of the third quadrant from the point (0,−3.3034) and intersect275

the real axis at (−3.7729, 0). Based on this fact, ∆argQ(iω)
∣∣ω3

ω2
= −π

2
. Similarly, we276

conclude ∆argQ(iω)
∣∣ω4

ω3
= −π

2
, ∆argQ(iω)

∣∣ωj+1

ωj
= 0, j = 4, 5, 6, ∆argQ(iω)

∣∣ω8

ω7
= π

2
,277

∆argQ(iω)
∣∣ωj+1

ωj
= 0, j = 8, 9, . . . , 25, and thus278

∆argQ(iω)
∣∣ω1

0
+

25∑
j=1

∆argQ(iω)
∣∣ωj+1

ωj
= −π. (64)

We now focus on the case ω ∈ (ω26,∞). Notice that h1(ω) < 0 and h2(ω) < 0 for all
ω ∈ (ω26,∞). It implies that Q(iω) initiates at (−39599.2692, 0) and stays in the open
part of the third quadrant. Furthermore, for ω > ω26, then

−1.1137 < −0.7806 + 0.2342 cosω + 0.1875 sinω − 0.0312 cos(2ω)

− 0.025 sin(2ω) − 0.0414 cos(3ω) − 0.0331 sin(3ω) < −0.4621, (65)

and

−0.9693 < −0.625 + 0.1875 cosω − 0.2342 sinω − 0.025 cos(2ω)

+ 0.0312 sin(2ω) − 0.0331 cos(3ω) + 0.0414 sin(3ω) < −0.2911. (66)

From (65)–(66), for all ω > ω26, we have

0.2613 <
h4(ω)

h3(ω)
< 2.0976,

here h3(ω) = −0.7806 + 0.2342 cosω + 0.1875 sinω − 0.0312 cos(2ω) − 0.025 sin(2ω) −
0.0414 cos(3ω) − 0.0331 sin(3ω), and h4(ω) = −0.625 + 0.1875 cosω − 0.2342 sinω −
0.025 cos(2ω) + 0.0312 sin(2ω) − 0.0331 cos(3ω) + 0.0414 sin(3ω). Thus, for ω > ω26 large
enough,

0.2613 <
h2(ω)

h1(ω)
< 2.0976,
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and

0.2556 < arctan

(
h2(ω)

h1(ω)

)
< 1.1259.

Due to argQ(iω) = arctan h2(ω)
h1(ω)

− π for ω > ω9, we see that

π

12.2911
− π < argQ(iω) <

π

2.7902
− π.

It means that

π

12.2911
< ∆ argQ(iω)

∣∣∞
ω26

<
π

2.7902
,

which together with (63)–(64) lead to that279

− π

1.0886
< ∆ argQ(iω)

∣∣∞
0
< − π

1.5585
.

Combining (3.13) with the following estimate

(α1 + α2 + α3)
π

2
− Θ ≈ π

0.9205
,

we obtain
∆ argQ(iω)

∣∣∞
0
< (α1 + α2 + α3)

π

2
− Θ.

By Theorem 3.8, the system (60) is not stable. In Figure 8, we simulate the orbits of280

the solution with the initial condition x(t) = (0.1t2 + 0.1,−0.1t+ 0.1, 0.2t− 0.1)T on the281

interval [−2, 0].282

4 Conclusions283

In this paper, we study non-commensurate fractional-order neutral differential systems284

with delays by the modified frequency domain analysis. In particular, we have established285

a new Mikhailov stability criterion. To do this, we have used Rouché’s theorem and the286

argument principle from complex analysis. Then, based on the obtained result, we have287

proposed a three-step scheme to check the asymptotic stability of the solutions of these288

systems.289
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[4] D. Bǎleanu and A.M. Lopes, Handbook of Fractional Calculus with Applications:298

Applications in Engineering, Life and Social Sciences, Part A. Berlin, Boston: De299

Gruyter, 2019.300
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