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Abstract The Volterra integral equation associated with autonomous Caputo
fractional differential equation (FDE) of order o € (0,1) in R? was shown by
the authors [4] to generate a semi-group on the space € of continuous functions
f: RTY — R? with the topology uniform convergence on compact subsets. It
serves as a semi-dynamical system for the Caputo FDE when restricted to
initial functions f(t) = id,, for o € R? Here it is shown that this semi-
dynamical system has a global Caputo attractor in €, which is closed, bounded,
invariant and attracts constant initial functions, when the vector field function
in the Caputo FDE satisfies a dissipativity condition as well as a local Lipschitz
condition.
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1 Introduction

Consider an autonomous Caputo fractional differential equation (FDE) of or-
der a € (0,1) in R?

“Dgx(t) = gla(1)), (1.1)
where g : R? — R% is Lipschitz continuous and satisfies a growth bound. The
Caputo FDE (1.1)) with the initial condition 2(0) = xq is essentially equivalent
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to the integral equation

1 ! a—1
x(t) = xo + F(oz)/o (t—s)*""g(z(s))ds. (1.2)

The solutions of such equations are nonlocal. Hence cannot generate a
semi-group on the space R?. This means, in particular, that without a semi-
dynamical system on R¢, there can be no attractor on R?. Nevertheless, when
the vector field g satisfies a dissipative condition, they do have omega limit
sets in R?, which attract all future dynamics.

Let € be the space of continuous functions f : Rt — R? with the topology
uniform convergence on compact subsets, which is metrized by the metric

SuPseo,n) |1/ () — h(®)]l
1+ supiepo ) 1/ (8) = A

=1
Z 27 7 a Where pn(f’ ) .
Define the operators T; : € — €, t € RT, by

(T:f)(0) = f(t+0) + F(la)/o (t+6—s5)* tg(zp(s)) ds, 0 eRT, (1.4)

where x ¢ is a solution of the singular Volterra integral equation for this f, i.e.,

1 t
zy(t) = f(t) + m/o (t—s)* g(zy(s)) ds. (1.5)
Doan & Kloeden [4] that the operators T, t € RT, form a semi-group on the
space €. This semi-group represents the Caputo FDE as an autonomous
semi-dynamical system on the space €, when the f are restricted the identity
functions f(t) = id,, for zo € R%

The aim is this paper is to show that when the vector field g has a dis-
sipativity property then this Caputo semi-group does have a global Caputo
attractor in a Banach subspace &€, of €. This “attractor” is somewhat un-
usual in that it attracts only a restricted class of initial values and must be
defined directly in terms of an omega limit set in €,, which results in some
unconventional properties.

The relationship with the omega limit set in R? will also be shown.

2 Dissipative vector fields

Tuan & Trinh [I1, Theorem 2] showed that the solutions of the Caputo FDE

(1.1)) satisfy
DG, |lo(t H2 < 2.(a(t),“Dg, a(1))

Hence, if the vector field g of (| satisfies the dissipativity condition

(@,9(x)) < a—0|z]? (2.1)
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where a,b > 0, then along the solutions of (1.1
“Deille®)* < 2 (2(t), 9(x(t))) < 2a — 2b]lx(1)]|*.
It then follows [9] that these solutions satisfy the inequality
l(t, z0)|I* < [|zol|* Ba(—26t) + % (1= Ea(=2bt%)), (2.2)

where E, is the Mittag-Leffler function [3l[7] defined by

Ea(T):kZ:%m

with o > 0.

It follows from this inequality that ||z(t,zo)|| < R for all ¢ > 0 when
lzoll < R and R? > 4.1

It was also shown in [9] that the set

a
B* = {x eR: ol 2145 = Rz}
is a positive invariant absorbing set for the solutions of the Caputo FDE (|1.1)).
In particular, there exists T > 0 such that ||x(¢,z0)|| € B*, i.e., ||z(t, 20| <
R* for all t > Tg and ||zo|| < R.
Since the absorbing set B* is compact in R?, the corresponding omega limit
set

2" ={y € R? : 3{x0,5}nen bnded, t,, — oo such that z(t,,zo,n) = y}

is a nonempty compact subset of B*. Moreover, it attracts all of the future
dynamics of the Caputo FDE and contains all of the steady state solu-
tions.

In general, {23+ cannot be considered as the attractor of the autonomous
Caputo FDE , since the corresponding semi-dynamical system is defined
on the function metric space (€, p) and not on R?. Nevertheless, it will seen
below that {25« represents the observable part (in R?) of an attractor 2 in €
of this Caputo semi-dynamical system and, essentially, determines it.

3 Attractors of semi-dynamical systems

The theory of autonomous semi-dynamical systems [8[10] implies the existence
of a global attractor of a semi-dynamical system under appropriate assump-
tions.

1 This implies the existence and uniqueness of solutions of the Caputo FDE (1.1)) when
the vector field g is continuously differentiable, hence locally Lipschitz, and satisfies the
dissipativity condition (2.1)). See [9].
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Theorem 1 Suppose that the semi-dynamical system {¢:,t € RT} on a Ba-
nach space X has a closed and bounded positively invariant absorbing set B
in X and is asymptotically compact. Then the semi-dynamical system {¢¢,t €
R*} has a global attractor given by

A= ﬂ ¢t(8)~

t>0

Unfortunately, this theorem cannot be applied to the Caputo semi-group
{T},t € R"} here since the attracting property is restricted to constant initial
functions f(t) = id,, corresponding to initial values zo € R%. An alternative
approach will be used below.

Another difficulty is how to apply the dissipativity condition to the
vector field g inside the integral equations defining the Caputo semi-
group for 8 > 0 to establish the existence of an absorbing set in the space €.
In fact this can be circumvented.

Restricting to constant initial functions f(t) = id,, corresponding to initial
values 2o € R?, the dissipativity condition (2.I)) can be used in the case 6 =
0, which corresponds to the Caputo FDE ith the initial condition x(0)
= x0, using the inequality , and leads to

o(t,z0) € B & |zf| < (/1+ % = R., t>Tp |zl <R (3.1)

for all R > Rf.

These bounds can then be used to estimate the integrals for the integral
equations with 8 > 0. Essentially, the integral equations have a
skew-product like structure with the solution of

x(t,xo) = xo + F(la)/o (t— s)aflg(x(s,xo)) ds (3.2)

inserted into
1 t
(Tyidy,)(0) = vo + —— / (t+0— )" tg(x(s,x0)) ds, 6>0. (3.3)
I'(a) Jo
Note that for 6 = 0

(Tyidy, ) (0) = x(t, ), t>0.

For technical reasons to be revealed in the proofs below a subspace of
the space € will be used with a weighted norm characterising uniform con-
vergence on bounded intervals. In particular, consider the weighted norm on
¢([0,00), R?) defined

1
[ flla := [IF(O)[| + szzl Wllfllzv,
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where

[fllv = sup [f@OI, N=1,2,---.
te[N—1,N]

Let €, be the subspace of €([0, ), RY) consisting of functions f with || f||s <
o0. Then (€4, || - |lo) is & Banach space and the (T3, ¢t > 0, form a semi-group
on €,.

Theorem 2 Suppose that the vector field g is locally Lipschitz and satisfies
the uniform dissipativity condition . Then the semi-group {T;}icr+ on the
space &, corresponding to the integral equations has an attracting set A
C @€, which is closed, bounded and invariant, and attracts bounded subsets of
constant initial value functions f(t) = id, corresponding to initial values xg

€ R%. In particular
A = U ﬂ U Ts(idD>7

Dcrd t>55>0
bnded

where idp = {idy, € €, : zo € D}.

The set 2 will be called the Caputo attractor. It is a bounded as a subset of
the bounded absorbing set B* (see below) and contains the bounded functions
f(t) = idz, where g(T) =0, i.e., a steady state solution the Caputo FDE .
It contains no other constant functions.

The proof of the existence of the attractor in Theorem [2|is given in remain-
ing sections of the paper. Let (¢, xo) be the solution of the Caputo FDE (1.1)
satisfying the dissipativity condition (2.1)) with the initial condition z(0,z¢)
= x9. This solution satisfies the boun and the following bounds hold:

Br:== sup |az(t,m)||<oco,  Bhi= sup |g(x)] < oo,
t>0,||zo||<R lz|<Br

where the continuity of the vector field g has been used in the second bound.
These are valid for R = R, provided ¢t > Tg.

It will be shown that the semi-group {7;};cr+ is asymptotically compact
and that the closed and bounded subset B* of €, defined by

By
Y= a - o < 2R, — =: R,
B {XEQ x|l R, + ol () R }

absorbs under the operators T; bounded sets of constant initial data functions
lidzolla < |lzo]l < R in the time ¢t > Tg.

Note that the absorbing set B* and omega limit set 23~ in R? satisfy

B* = {x(0) e R? : y € B*}, Qs = {x(0) eR? : x e A}.
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4 Proof of Theorem [2]

The proof requires some basic lemmas including the following elementary
lemma. The proof is given here for completeness.

Lemma 1 [6, Lemma 3.1] Let 6 > 0. The function ro(t) := (t + 6)* — ¢,
t > 0, is monotonically decreasing from the mazimum value 0%. In particular,
0 < ro(t) < 0% for allt > 0.

Proof Note that rg(0) = 6 and that the derivative rj(t) = L ((t 4+ 6)*~! — ¢t*~1)
< 0 with ry(t) = 0~ as t — oo. 0

The next result restates the Hélder continuity of solutions [6l Lemma 3.5]
in the dissipative case considered here.

Lemma 2 The solution of the integral equation (L.1|) is Hélder continuous
with exponent a. In particular,

5
_ < o
lx(t+ 0, z0) — x(t, z0)|| < aF(a)9

for ||zoll < R and t > Th.
Proof Let t > 0 and 6 > 0. Then, subtracting the integral expressions (1.2))

for the solutions z(t + 6, x0) and z(t, zq) gives

t+6
x(t+0,z0) — x(t,z0) = F(loz)/o (t+0—7)*tg(x(r,z0)) dr

1 ‘ a—1
7 | =P satra) ar

1 t+6 -
= F(a)/t t+6—71)""g(z(r,x0)) dr

Then

t+6 t+6
/t (t+0 - 1) Lg(a(r,z0)) dr|| < / (t+0— 1) g(a(r, z0))]| dr

t4+60 Bg
< Bf%/ (t+ 6 — 1) ldr < Z2g°,
t «

Similarly,

g

/Ot ((t +0—7) " —(t— T)O‘_l)g(x(T, xg)) dr|| < %((t—i—e)a —t% — 9“).
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Thus,

g

(t+0)7 1) < Oﬁ—éz)e“

BY
_ < R
lz(t +0,20) — x(t,z0)|| < al(o)

for all ¢ > 0, see Lemma [l| above.
Thus the solution x(t,z¢) is Holder continuous with exponent «. For ¢ >
TR, the constant B can be replaced by B, . O

4.1 Growth bounded
Lemma 3
B
Tvidy, )(O)|| < —L= 0% + R.., t>Tg,||lzon| < R. 41
I(Tiid O € ZHest+ R £ T | (1)
Proof 1t follows from (3.2) that

t+0
x(t+ 6,20, :xo,n—l—i/ t—i—@—so‘_lgscs,xo,n ds.
( ) o 0= a0,
Hence

1 t+6
t+60,20,) =Ton+ —— t4+60—s)>1 ,To.n)) d
0+ 000,) = a0t s [ (0= 9" gla(s,m,)) ds

t4+60
— (Tyidy, )(0) + ﬁ /t (t 40— )L g(x(s, 20.0)) ds.

It follows that

. I o
o+ 0.0, = (Tidsy JO = Fos] [ (040 =9 gfa(s.m0,.) ds]
t
1o [ 4 B,
_ e < e
_—F(Q)BR‘/t (t-+0 =) ~ds| < 0",
ie.,
BY,
— (Tyi < —Lf 9> t>o. .
ot +0.20,) = (Tidy O < RS0, 120 (42)
Hence

BY BY
Tyidy, ,)(0)] < —=2—0~ t+0,10,)| < —L0* +R.
[Ty, YO < SRt + ot + .20, < 72567 +
Note that these estimates are uniform in ¢ > 0.
Then, using the fact that ||z(¢,z0.,)| € B*, ie., [|x(t,z0,n)] < R, for all
t > Tg and ||zo,,|| < R, gives the sharper the inequality (4.1)). O
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It follows from (4.1]) that

BQ
Tyi < B o . >Tr 0<6<N. 4.
[(Tyidz,, )(0)] < ol () +Re, 12T, 0<6< (4.3)

4.2 Boundedness of #-derivatives

The integrand in the integral

¢
/(t—i—&—s)o‘*l ds, 6>0,
0

is non-singular, so the integral is in fact a classical Riemann integral. Hence
we can different by the parameter 6 to obtain

¢ ¢
i/ (t+6—s5)>"" ds:(a—l)/ (t+60—5)>"2ds=0"""—(t+0)"
de Jo 0

Similarly

d t t

o7 ; (t+0— s)aflg(x(s,xoﬁn)) ds = (a— 1)/0 (t+0— s)a*2g(x(s,xo7n)) ds.

Lemma 4

d
. < )
| & Tiid, . )(0)| (44)
forallt > 0, ||zon|| < R and 6 > 0.

Proof

ot [ e 51 tatats,mo)) s = (1= | [ 040 - ) 2gtots.m0.0) s

t
§(1fa)B%/(t+975)0‘72 ds
0

<BL (07— (t+0)*7").

This gives

| 5T 0)] < fof;) (7=t o) < PR

forallt > 0 and 6 > 0. O
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4.3 Applying Ascoli’s theorem

Write X, (t,0) := (Tyids,, )(0), 50 Xn(0,0) := xq . By estimate (4.3)),

BQ
< B o * 4.
ben(t:0)]| < SHESN + R, (45)

uniformly in 6 € [0, N] for all N > 0 and ¢t > Tg.

In addition, by estimate (4.4)

d BY
TnAn t70 H < 4 ’ t>T ’
HdGX GO = Froygiar 12 Tr
so for any 0 < € < 1,
d BY 1
- < R _ -
Hd@x”(t’Q)H = T(a)el@

uniformly in 6 € [e,00) for all ¢t > Tg. The x,(t,-) are thus equi-Lipschitz
uniformly in 6 € [e,00) for all ¢ > 0.

This means the Ascoli theorem can be applied on each interval of the form
[e, N], i.e., in the space €([e, N],R?) of continuous functions f : [, N]) — R%.
Thus there are (sub)sequences ¢, — oo and a function x* € &([g, N], R?) osuch
that

Xn(0) = Xn(tn,0) = x*(0), tn — oo,

uniformly in 6 € [g, N] for each N € N.

Set ¢ = N~!. By increasing IV, the interval [N~!, N| and using a diagonal
subsequence it follows that x*() is defined for all 6 > 0.

4.4 Continuity of x*(#) at =0

It follows from Lemma [2] and the dissipativity condition that

Bg
t+0,20,) — 2(t,v0)| < —=2<0°,
||'/E( + 7‘%'07 ) J"( .'L'07 )” — O[F(Of)
forallt > 0 and 6 > 0. Let t,, > Tg. Then
BR., e

It + 0, 20,0) = altnsw00)ll € Srt50
for all 6 > 0.

For each 6 > 0 there is a convergent subsequence (of the subsequence used
above to obtain x*) such that limits exist and satisfy

g

(0 | < BR* 0>
Jo°(0) o] < s
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It is also clear from estimate (4.2) that

g

* * BR* «a
[z7(6) — x"(0)]| < 0

al'(a) 7 020
Thus
IX*(0) — ™[] < [IX*(0) =" (O)]| + [|l=™ — z™(0)]]
R
< aF(o:)aa —0 asf—0.
Summarising,

Lemma 5 x* € €,([0,00),R9).

Thus the operator (Tyid,, ,)(+) is asymptotically compact on bounded in-
tervals, i.e., for every sequence t,, — oo and ||zo|| < R and there is a subse-
quence t, — oo such that xn(tn, ") = (1}, idg,,, ) (-) = x*(-) € €4 ([0,00),RY).

4.5 Estimates in the weighted norm

In terms of the weighted norm || - ||o on €4, the bound (4.5) becomes

=1
Ix( e = lIxa(t, 0)]] + Z W"Xﬂ(t79)||Na
N=1

oo 1 B%
< R, — = N“+ R,
- +NZ:1 2N Ne (aF(a) + )

for all t > Tg. Hence

=1 =1 .
Ixn(t; o < R <1+ > 2NNQ> ol (o) > oy S2Rot ops = R

N=1

for all t > Tg.

4.6 Absorbing set and global attractor
The existence of an absorbing set and an attractor will now be established in
the space €, on which (Tyidy,)(:), t > 0, forms a semi-group.
Define the closed and bounded subset B* of €, by
g

B
* = ¢, o < 2R* BT —. R*}.
3= {xe e Il <20 + s )
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This set an absorbing set for the Caputo semi-group (T3id,,)(+) in €4, i.e., it
absorbs bounded sets of constant initial data ||idy,|o < 2|20l < 2R in time
t > Tr. Moreover, the semi-group is asymptotically compact.

Hence, the set 2 given in Theorem [2[is a nonempty, closed and bounded
subset of B* and attracts the Caputo semi-group 73(-) for all constant initial

value functions idg, .

It remains to show that the set 2 is invariant under the semi-group T3(-).
First let f € 2. Then there is a bounded sequence {zg }nen and ¢, — oo
such that T}, idy,, — f. Let 7 > 0 be arbitrary. Then, using the semi-group
property and continuity,

TT+tnidz0,n =T (Ttnidxf),n) - Trf»
which means that 7,20 C 2. Alternatively, write t,, = 7 + s,,. Then
Ty, idy, ,, = Tris,idy, ,, = Tr(Ts, ids, ) = Tr f,

By asymptotic compactness, T id,, , — g (or a subsequence thereof). Hence,
by continuity 7% (T, idy, ) — Trg. But Ty id., ,, — f,so Trg = f. Hence, 2
C T 2. Together 2 = T, 2.

This completes the proof of Theorem
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