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Abstract The Volterra integral equation associated with autonomous Caputo
fractional differential equation (FDE) of order α ∈ (0, 1) in Rd was shown by
the authors [4] to generate a semi-group on the space C of continuous functions
f : R+ → Rd with the topology uniform convergence on compact subsets. It
serves as a semi-dynamical system for the Caputo FDE when restricted to
initial functions f(t) ≡ idx0

for x0 ∈ Rd. Here it is shown that this semi-
dynamical system has a global Caputo attractor in C, which is closed, bounded,
invariant and attracts constant initial functions, when the vector field function
in the Caputo FDE satisfies a dissipativity condition as well as a local Lipschitz
condition.

Keywords Caputo fractional differential equations · dissipativity condition ·
Caputo semi-group · absorbing sets · global attractor

Mathematics Subject Classification (2010) 26A33 · 34K05 · 34K25 ·
34K18 · 34K12 · 34K16

1 Introduction

Consider an autonomous Caputo fractional differential equation (FDE) of or-
der α ∈ (0, 1) in Rd

CDα
0+x(t) = g(x(t)), (1.1)

where g : Rd → Rd is Lipschitz continuous and satisfies a growth bound. The
Caputo FDE (1.1) with the initial condition x(0) = x0 is essentially equivalent
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to the integral equation

x(t) = x0 +
1

Γ (α)

∫ t

0

(t− s)α−1g(x(s))ds. (1.2)

The solutions of such equations are nonlocal. Hence cannot generate a
semi-group on the space Rd. This means, in particular, that without a semi-
dynamical system on Rd, there can be no attractor on Rd. Nevertheless, when
the vector field g satisfies a dissipative condition, they do have omega limit
sets in Rd, which attract all future dynamics.

Let C be the space of continuous functions f : R+ → Rd with the topology
uniform convergence on compact subsets, which is metrized by the metric

ρ(f, h) :=

∞∑
n=1

1

2n
ρn(f, h), where ρn(f, h) :=

supt∈[0,n] ∥f(t)− h(t)∥
1 + supt∈[0,n] ∥f(t)− h(t)∥

.

(1.3)
Define the operators Tt : C → C, t ∈ R+, by

(Ttf)(θ) = f(t+ θ) +
1

Γ (α)

∫ t

0

(t+ θ − s)α−1g(xf (s)) ds, θ ∈ R+, (1.4)

where xf is a solution of the singular Volterra integral equation for this f , i.e.,

xf (t) = f(t) +
1

Γ (α)

∫ t

0

(t− s)α−1g(xf (s)) ds. (1.5)

Doan & Kloeden [4] that the operators Tt, t ∈ R+, form a semi-group on the
space C. This semi-group represents the Caputo FDE (1.1) as an autonomous
semi-dynamical system on the space C, when the f are restricted the identity
functions f(t) ≡ idx0

for x0 ∈ Rd.
The aim is this paper is to show that when the vector field g has a dis-

sipativity property then this Caputo semi-group does have a global Caputo
attractor in a Banach subspace Cα of C. This “attractor” is somewhat un-
usual in that it attracts only a restricted class of initial values and must be
defined directly in terms of an omega limit set in Cα, which results in some
unconventional properties.

The relationship with the omega limit set in Rd will also be shown.

2 Dissipative vector fields

Tuan & Trinh [11, Theorem 2] showed that the solutions of the Caputo FDE
(1.1) satisfy

CDα
0+∥x(t)∥2 ≤ 2

〈
x(t),CDα

0+x(t)
〉
.

Hence, if the vector field g of (1.1) satisfies the dissipativity condition

⟨x, g(x)⟩ ≤ a− b∥x∥2, (2.1)
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where a, b > 0, then along the solutions of (1.1)

CDα
0+∥x(t)∥2 ≤ 2 ⟨x(t), g(x(t))⟩ ≤ 2a− 2b∥x(t)∥2.

It then follows [9] that these solutions satisfy the inequality

∥x(t, x0)∥2 ≤ ∥x0∥2Eα(−2btα) +
a

b
(1− Eα(−2btα)) , (2.2)

where Eα is the Mittag-Leffler function [3,7] defined by

Eα(τ) =

∞∑
k=0

τk

Γ (kα+ 1)

with α > 0.
It follows from this inequality that ∥x(t, x0)∥ ≤ R for all t ≥ 0 when

∥x0∥ ≤ R and R2 ≥ a
b .

1

It was also shown in [9] that the set

B∗ :=
{
x ∈ Rd : ∥x∥2 ≥ 1 +

a

b
=: R2

∗

}
is a positive invariant absorbing set for the solutions of the Caputo FDE (1.1).
In particular, there exists TR ≥ 0 such that ∥x(t, x0)∥ ∈ B∗, i.e., ∥x(t, x0)∥ ≤
R∗ for all t ≥ TR and ∥x0∥ ≤ R.

Since the absorbing set B∗ is compact in Rd, the corresponding omega limit
set

Ω∗ = {y ∈ Rd : ∃ {x0,n}n∈N bnded, tn → ∞ such that x(tn, x0,n) → y}

is a nonempty compact subset of B∗. Moreover, it attracts all of the future
dynamics of the Caputo FDE (1.1) and contains all of the steady state solu-
tions.

In general, ΩB∗ cannot be considered as the attractor of the autonomous
Caputo FDE (1.1), since the corresponding semi-dynamical system is defined
on the function metric space (C, ρ) and not on Rd. Nevertheless, it will seen
below that ΩB∗ represents the observable part (in Rd) of an attractor A in C
of this Caputo semi-dynamical system and, essentially, determines it.

3 Attractors of semi-dynamical systems

The theory of autonomous semi-dynamical systems [8,10] implies the existence
of a global attractor of a semi-dynamical system under appropriate assump-
tions.

1 This implies the existence and uniqueness of solutions of the Caputo FDE (1.1) when
the vector field g is continuously differentiable, hence locally Lipschitz, and satisfies the
dissipativity condition (2.1). See [9].
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Theorem 1 Suppose that the semi-dynamical system {ϕt, t ∈ R+} on a Ba-
nach space X has a closed and bounded positively invariant absorbing set B
in X and is asymptotically compact. Then the semi-dynamical system {ϕt, t ∈
R+} has a global attractor given by

A =
⋂
t≥0

ϕt(B).

Unfortunately, this theorem cannot be applied to the Caputo semi-group
{Tt, t ∈ R+} here since the attracting property is restricted to constant initial
functions f(t) ≡ idx0

corresponding to initial values x0 ∈ Rd. An alternative
approach will be used below.

Another difficulty is how to apply the dissipativity condition (2.1) to the
vector field g inside the integral equations (1.4) defining the Caputo semi-
group for θ > 0 to establish the existence of an absorbing set in the space C.
In fact this can be circumvented.

Restricting to constant initial functions f(t) ≡ idx0 corresponding to initial
values x0 ∈ Rd, the dissipativity condition (2.1) can be used in the case θ =
0, which corresponds to the Caputo FDE (1.1) with the initial condition x(0)
= x0, using the inequality (2.2), and leads to

x(t, x0) ∈ B∗ ⇔ ∥x∥ ≤
√
1 +

a

b
=: R∗, t ≥ TR, ∥x0∥ ≤ R (3.1)

for all R ≥ R2
∗.

These bounds can then be used to estimate the integrals for the integral
equations (1.4) with θ > 0. Essentially, the integral equations (1.4) have a
skew-product like structure with the solution of

x(t, x0) = x0 +
1

Γ (α)

∫ t

0

(t− s)α−1g(x(s, x0)) ds (3.2)

inserted into

(Ttidx0)(θ) = x0 +
1

Γ (α)

∫ t

0

(t+ θ − s)α−1g(x(s, x0)) ds, θ > 0. (3.3)

Note that for θ = 0

(Ttidx0)(0) = x(t, x0), t ≥ 0.

For technical reasons to be revealed in the proofs below a subspace of
the space C will be used with a weighted norm characterising uniform con-
vergence on bounded intervals. In particular, consider the weighted norm on
C([0,∞),Rd) defined

∥f∥α := ∥f(0)∥+
∞∑

N=1

1

2NNα
∥f∥N ,
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where

∥f∥N := sup
t∈[N−1,N ]

∥f(t)∥, N = 1, 2, · · · .

Let Cα be the subspace of C([0,∞),Rd) consisting of functions f with ∥f∥α <
∞. Then (Cα, ∥ · ∥α) is a Banach space and the (Tt, t ≥ 0, form a semi-group
on Cα.

Theorem 2 Suppose that the vector field g is locally Lipschitz and satisfies
the uniform dissipativity condition (2.1). Then the semi-group {Tt}t∈R+ on the
space Cα corresponding to the integral equations (1.5) has an attracting set A
⊂ Cα, which is closed, bounded and invariant, and attracts bounded subsets of
constant initial value functions f(t) ≡ idx0

corresponding to initial values x0

∈ Rd. In particular

A =
⋃

D⊂Rd
bnded

⋂
t≥s

⋃
s≥0

Ts(idD),

where idD := {idx0
∈ Cα : x0 ∈ D}.

The set A will be called the Caputo attractor. It is a bounded as a subset of
the bounded absorbing set B∗ (see below) and contains the bounded functions
f(t) ≡ idx̄, where g(x̄) =0, i.e., a steady state solution the Caputo FDE (1.1).
It contains no other constant functions.

The proof of the existence of the attractor in Theorem 2 is given in remain-
ing sections of the paper. Let x(t, x0) be the solution of the Caputo FDE (1.1)
satisfying the dissipativity condition (2.1) with the initial condition x(0, x0)
= x0. This solution satisfies the bounds (3.1) and the following bounds hold:

BR := sup
t≥0,∥x0∥≤R

∥x(t, x0)∥ < ∞, Bg
R := sup

∥x∥≤BR

∥g(x)∥ < ∞,

where the continuity of the vector field g has been used in the second bound.
These are valid for R = R∗ provided t ≥ TR.

It will be shown that the semi-group {Tt}t∈R+ is asymptotically compact
and that the closed and bounded subset B∗ of Cα defined by

B∗ :=

{
χ ∈ Cα : ∥χ∥α ≤ 2R∗ +

Bg
R∗

αΓ (α)
=: R̂∗

}
absorbs under the operators Tt bounded sets of constant initial data functions
∥idx0

∥α ≤ ∥x0∥ ≤ R in the time t ≥ TR.

Note that the absorbing set B∗ and omega limit set ΩB∗ in Rd satisfy

B∗ =
{
χ(0) ∈ Rd : χ ∈ B∗} , ΩB∗ =

{
χ(0) ∈ Rd : χ ∈ A

}
.
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4 Proof of Theorem 2

The proof requires some basic lemmas including the following elementary
lemma. The proof is given here for completeness.

Lemma 1 [6, Lemma 3.1] Let θ > 0. The function rθ(t) := (t + θ)α − tα,
t ≥ 0, is monotonically decreasing from the maximum value θα. In particular,
0 < rθ(t) ≤ θα for all t ≥ 0.

Proof Note that rθ(0) = θα and that the derivative r′θ(t) =
1
α

(
(t+ θ)α−1 − tα−1

)
< 0 with r′θ(t) → 0− as t → ∞. 2

The next result restates the Hölder continuity of solutions [6, Lemma 3.5]
in the dissipative case considered here.

Lemma 2 The solution of the integral equation (1.1) is Hölder continuous
with exponent α. In particular,

∥x(t+ θ, x0)− x(t, x0)∥ ≤
Bg

R∗

αΓ (α)
θα

for ∥x0∥ ≤ R and t ≥ TR.

Proof Let t ≥ 0 and θ > 0. Then, subtracting the integral expressions (1.2)
for the solutions x(t+ θ, x0) and x(t, x0) gives

x(t+ θ, x0)− x(t, x0) =
1

Γ (α)

∫ t+θ

0

(t+ θ − τ)α−1g(x(τ, x0)) dτ

− 1

Γ (α)

∫ t

0

(t− τ)α−1g(x(τ, x0)) dτ,

=
1

Γ (α)

∫ t+θ

t

(t+ θ − τ)α−1g(x(τ, x0)) dτ

+
1

Γ (α)

∫ t

0

(
(t+ θ − τ)α−1 − (t− τ)α−1

)
g(x(τ, x0)) dτ,

Then∥∥∥∥∥
∫ t+θ

t

(t+ θ − τ)α−1g(x(τ, x0)) dτ

∥∥∥∥∥ ≤
∫ t+θ

t

(t+ θ − τ)α−1 ∥g(x(τ, x0))∥ dτ

≤ Bg
R

∫ t+θ

t

(t+ θ − τ)α−1dτ ≤
Bg

R

α
θα.

Similarly,∥∥∥∥∫ t

0

(
(t+ θ − τ)α−1 − (t− τ)α−1

)
g(x(τ, x0)) dτ

∥∥∥∥ ≤
Bg

R

α

(
(t+ θ)α − tα − θα

)
.
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Thus,

∥x(t+ θ, x0)− x(t, x0)∥ ≤
Bg

R

αΓ (α)

(
(t+ θ)α − tα

)
≤

Bg
R

αΓ (α)
θα

for all t ≥ 0, see Lemma 1 above.
Thus the solution x(t, x0) is Hölder continuous with exponent α. For t ≥

TR, the constant Bg
R can be replaced by Bg

R∗
. 2

4.1 Growth bounded

Lemma 3

∥(Ttidx0,n
)(θ)∥ ≤

Bg
R∗

αΓ (α)
θα +R∗, t ≥ TR, ∥x0,n∥ ≤ R. (4.1)

Proof It follows from (3.2) that

x(t+ θ, x0,n) = x0,n +
1

Γ (α)

∫ t+θ

0

(t+ θ − s)α−1g(x(s, x0,n)) ds.

Hence

x(t+ θ, x0,n) = x0,n +
1

Γ (α)

∫ t+θ

0

(t+ θ − s)α−1g(x(s, x0,n)) ds

= x0,n +
1

Γ (α)

∫ t

0

(t+ θ − s)α−1g(x(s, x0,n)) ds

+
1

Γ (α)

∫ t+θ

t

(t+ θ − s)α−1g(x(s, x0,n)) ds

= (Ttidx0,n
)(θ) +

1

Γ (α)

∫ t+θ

t

(t+ θ − s)α−1g(x(s, x0,n)) ds.

It follows that

∥x(t+ θ, x0,n)− (Ttidx0,n)(θ)∥ =
1

Γ (α)
∥
∫ t+θ

t

(t+ θ − s)α−1g(x(s, x0,n)) ds∥

≤ 1

Γ (α)
Bg

R

∣∣∣ ∫ t+θ

t

(t+ θ − s)α−1ds
∣∣∣ ≤ Bg

R

αΓ (α)
θα,

i.e.,

∥x(t+ θ, x0,n)− (Ttidx0,n
)(θ)∥ ≤

Bg
R

αΓ (α)
θα, t ≥ 0. (4.2)

Hence

∥(Ttidx0,n
)(θ)∥ ≤

Bg
R

αΓ (α)
θα + ∥x(t+ θ, x0,n)∥ ≤

Bg
R

αΓ (α)
θα +R.

Note that these estimates are uniform in t ≥ 0.
Then, using the fact that ∥x(t, x0,n)∥ ∈ B∗, i.e., ∥x(t, x0,n)∥ ≤ R∗, for all

t ≥ TR and ∥x0,n∥ ≤ R, gives the sharper the inequality (4.1). 2
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It follows from (4.1) that

∥(Ttidx0,n)(θ)∥ ≤
Bg

R∗

αΓ (α)
Nα +R∗, t ≥ TR, 0 ≤ θ ≤ N. (4.3)

4.2 Boundedness of θ-derivatives

The integrand in the integral∫ t

0

(t+ θ − s)α−1 ds, θ > 0,

is non-singular, so the integral is in fact a classical Riemann integral. Hence
we can different by the parameter θ to obtain

d

dθ

∫ t

0

(t+ θ − s)α−1 ds = (α− 1)

∫ t

0

(t+ θ − s)α−2 ds = θα−1 − (t+ θ)α−1.

Similarly

d

dθ

∫ t

0

(t+ θ− s)α−1g(x(s, x0,n)) ds = (α− 1)

∫ t

0

(t+ θ− s)α−2g(x(s, x0,n)) ds.

Lemma 4 ∥∥∥ d

dθ
(Ttidx0,n

)(θ)
∥∥∥ ≤

Bg
R

Γ (α)

1

θ1−α
(4.4)

for all t ≥ 0, ∥x0,n∥ ≤ R and θ > 0.

Proof

∥∥∥ d

dθ

∫ t

0

(t+ θ − s)α−1g(x(s, x0,n)) ds
∥∥∥ = (1− α)

∥∥∥∫ t

0

(t+ θ − s)α−2g(x(s, x0,n)) ds
∥∥∥

≤ (1− α)Bg
R

∣∣∣∣∫ t

0

(t+ θ − s)α−2 ds

∣∣∣∣
≤ Bg

R

(
θα−1 − (t+ θ)α−1

)
.

This gives∥∥∥ d

dθ
(Ttidx0,n

)(θ)
∥∥∥ ≤

Bg
R

Γ (α)

(
θα−1 − (t+ θ)α−1

)
≤

Bg
R

Γ (α)

1

θ1−α

for all t ≥ 0 and θ > 0. 2
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4.3 Applying Ascoli’s theorem

Write χn(t, θ) := (Ttidx0,n)(θ), so χn(0, θ) := x0,n. By estimate (4.3),

∥χn(t, θ)∥ ≤
Bg

R∗

αΓ (α)
Nα +R∗, (4.5)

uniformly in θ ∈ [0, N ] for all N > 0 and t ≥ TR.

In addition, by estimate (4.4)∥∥∥ d

dθ
χn(t, θ)

∥∥∥ ≤
Bg

R

Γ (α)

1

θ1−α
, t ≥ TR,

so for any 0 < ε ≪ 1, ∥∥∥ d

dθ
χn(t, θ)

∥∥∥ ≤
Bg

R

Γ (α)

1

ε1−α

uniformly in θ ∈ [ε,∞) for all t ≥ TR. The χn(t, ·) are thus equi-Lipschitz
uniformly in θ ∈ [ε,∞) for all t ≥ 0.

This means the Ascoli theorem can be applied on each interval of the form
[ε,N ], i.e., in the space C([ε,N ],Rd) of continuous functions f : [ε,N ]) → Rd.
Thus there are (sub)sequences tn → ∞ and a function χ∗ ∈ C([ε,N ],Rd) osuch
that

χn(θ) := χn(tn, θ) → χ∗(θ), tn → ∞,

uniformly in θ ∈ [ε,N ] for each N ∈ N.
Set ε = N−1. By increasing N , the interval [N−1, N ] and using a diagonal

subsequence it follows that χ∗(θ) is defined for all θ > 0.

4.4 Continuity of χ∗(θ) at θ = 0

It follows from Lemma 2 and the dissipativity condition that

∥x(t+ θ, x0,n)− x(t, x0,n)∥ ≤
Bg

R

αΓ (α)
θα,

for all t ≥ 0 and θ ≥ 0. Let tn ≥ TR. Then

∥x(tn + θ, x0,n)− x(tn, x0,n)∥ ≤
Bg

R∗

αΓ (α)
θα,

for all θ ≥ 0.
For each θ > 0 there is a convergent subsequence (of the subsequence used

above to obtain χ∗) such that limits exist and satisfy

∥x∗(θ)− x∗∥ ≤
Bg

R∗

αΓ (α)
θα,
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It is also clear from estimate (4.2) that

∥x∗(θ)− χ∗(θ)∥ ≤
Bg

R∗

αΓ (α)
θα, θ ≥ 0.

Thus

∥χ∗(θ)− x∗∥ ≤ ∥χ∗(θ)− x∗(θ)∥+ ∥x∗ − x∗(θ)∥

≤
2Bg

R∗

αΓ (α)
θα → 0 as θ → 0.

Summarising,

Lemma 5 χ∗ ∈ Cα([0,∞),Rd).

Thus the operator (Ttidx0,n
)(·) is asymptotically compact on bounded in-

tervals, i.e., for every sequence tn → ∞ and ∥x0,n∥ ≤ R and there is a subse-
quence tn → ∞ such that χn(tn, ·) = (Ttnidx0,n

)(·) → χ∗(·) ∈ Cα([0,∞),Rd).

4.5 Estimates in the weighted norm

In terms of the weighted norm ∥ · ∥α on Cα, the bound (4.5) becomes

∥χ(t, ·)∥α = ∥χn(t, 0)∥+
∞∑

N=1

1

2NNα
∥χn(t, θ)∥N ,

≤ R∗ +

∞∑
N=1

1

2NNα

(
Bg

R∗

αΓ (α)
Nα +R∗

)
for all t ≥ TR. Hence

∥χn(t, ·)∥α ≤ R∗

(
1 +

∞∑
N=1

1

2NNα

)
+

Bg
R∗

αΓ (α)

∞∑
N=1

1

2N
≤ 2R∗ +

Bg
R∗

αΓ (α)
=: R̂∗

for all t ≥ TR.

4.6 Absorbing set and global attractor

The existence of an absorbing set and an attractor will now be established in
the space Cα on which (Ttidx0

)(·), t ≥ 0, forms a semi-group.

Define the closed and bounded subset B∗ of Cα by

B∗ :=

{
χ ∈ Cα : ∥χ∥α ≤ 2R∗ +

Bg
R∗

αΓ (α)
=: R̂∗

}
.
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This set an absorbing set for the Caputo semi-group (Ttidx0)(·) in Cα, i.e., it
absorbs bounded sets of constant initial data ∥idx0∥α ≤ 2∥x0∥ ≤ 2R in time
t ≥ TR. Moreover, the semi-group is asymptotically compact.

Hence, the set A given in Theorem 2 is a nonempty, closed and bounded
subset of B∗ and attracts the Caputo semi-group Tt(·) for all constant initial
value functions idx0

.

It remains to show that the set A is invariant under the semi-group Tt(·).
First let f ∈ A. Then there is a bounded sequence {x0,n}n∈N and tn → ∞
such that Ttnidx0,n → f . Let τ > 0 be arbitrary. Then, using the semi-group
property and continuity,

Tτ+tnidx0,n = Tτ (Ttnidx0,n) → Tτf,

which means that TτA ⊂ A. Alternatively, write tn = τ + sn. Then

Ttnidx0,n = Tτ+snidx0,n = Tτ (Tsnidx0,n) → Tτf,

By asymptotic compactness, Tsnidx0,n
→ g (or a subsequence thereof). Hence,

by continuity Tτ (Tsnidx0,n
) → Tτg. But Ttnidx0,n

→ f , so Tτg = f . Hence, A
⊂ TτA. Together A = TτA.

This completes the proof of Theorem 2.
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