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A DIRICHLET TYPE PROBLEM FOR NON-PLURIPOLAR COMPLEX
MONGE-AMPÈRE EQUATIONS

THAI DUONG DO1, HOANG-SON DO2, VAN TU LE3, NGOC THANH CONG PHAM4

ABSTRACT. In this paper, we study a Dirichlet type problem for the non-pluripolar complex
Monge - Ampère equation with prescribed singularity on a bounded domain of Cn. We provide
a local version for an existence and uniqueness theorem proved by Darvas, Di Nezza and Lu in
[11]. Our work also extends a result of Åhag, Cegrell, Czyż and Pham in [2].
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1. INTRODUCTION

Let Ω be a bounded domain in Cn. For each smooth plurisubharmonic function u on Ω, the
complex Monge-Ampère operator of u is defined by

(ddcu)n =Cn det(Hu)dV,

where Hu is the complex Hessian of u, dV is the standard volume form and Cn > 0 is a constant
depending only on n.

Bedford and Taylor [3, 4] have extended the concept of the complex Monge-Ampère operator
for bounded plurisubharmonic function, whereby (ddcu)n is a Radon measure satisfying the
following property: If u j is a sequence of smooth plurisubharmonic functions decreasing to
u then (ddcu j)

n converges weakly to (ddcu)n. The set D(Ω) of plurisubharmonic functions
whose Monge-Ampère operator can be defined as above is called the domain of definition of
Monge-Ampère operator. The characteristics of the domain of definition of Monge-Ampère
operator were studied by Cegrell [9] and Blocki [6].
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In [5], Bedford and Taylor have studied the plurifine topology, which was first introduced by
Fuglede in [14] as the weakest topology in which all plurisubharmonic functions are continu-
ous, and defined the non-pluripolar complex Monge-Ampère measure (also known as “the non-
pluripolar part of Monge-Ampère operator”) for every plurisubharmonic function. If u is a neg-
ative plurisubharmonic function then its non-pluripolar Monge-Ampère measure NP(ddcu)n is
defined as the limit of the sequence of measures 1{u>−M}(ddc max{u,−M})n as M→ ∞. This
measure is a Borel measure which puts no mass on pluripolar subsets and may have a locally
unbounded mass. If u is a negative plurisubharmonic function belonging to the domain of the
complex Monge-Ampère operator then NP(ddcu)n = 1{u>−∞}(ddcu)n (see [8]).

The idea behind the definition of the non-pluripolar complex Monge-Ampère measure in
the local setting has been adapted to the case of Kähler manifold [15, 7]. Consider a complex
compact Kähler manifold (X ,ω) and let θ be a closed smooth real (1,1)-form on X such that
its cohomology class is big. In [7], Boucksom, Eyssidieux, Guedj and Zeriahi have defined the
non-pluripolar complex Monge-Ampère measure (θ + ddcu)n for every θ -plurisubharmonic
function u. In [10, 11], Darvas, Di Nezza and Lu have studied the complex Monge-Ampère
equation with prescribed singularity type:{

(θ +ddcu)n = f ωn,

[u] = [φ ],
(1.1)

where φ is a given θ -plurisubharmonic function and f ≥ 0 is a Lp function (p > 1) satisfying∫
X f ωn =

∫
X θ n

φ
> 0. They have introduced the notion of the model potential, the model-type

singularity and shown that this equation is well-posed only for potentials φ with model type
singularities, i.e., [φ ] = [Pθ [φ ]], where

Pθ [φ ] = (sup{ψ ∈ PSH(X ,θ) : ψ ≤ 0,ψ ≤ φ +O(1)})∗.
They have also emphasized that requiring φ to be a model potential is not only sufficient,
but also a necessary condition for the solvability of (1.1) for every choice of f . Furthermore,
Darvas, Di Nezza and Lu have shown the existence and uniqueness (up to a constant) of solution
to the following problem, which is a general form of (1.1) (see [11, Theorem 4.7]):{

(θ +ddcu)n = µ,

Pθ [u] = φ ,
(1.2)

where φ = Pθ [φ ] is a model θ -plurisubharmonic function and µ is a non-pluripolar positive
Radon measure on X satisfying

∫
X θ n

φ
=
∫

X dµ > 0. Here, we say that a measure µ is non-
pluripolar if it vanishes on every pluripolar set.

Inspired of [11], we say that a function u ∈ PSH−(Ω) is model if u = P[u], where

P[u] =
(

sup{v ∈ PSH−(Ω) : v≤ u+O(1) on Ω, liminf
Ω\N3z→ξ0

(u(z)−v(z))≥ 0 ∀ξ0 ∈ ∂Ω}
)∗
,

and N = {u = −∞}. A negative plurisubharmonic function φ is model iff NP(ddcφ)n = 0.
Moreover, if u is a negative plurisubharmonic function then the smallest model plurisubhar-
monic majorant of u is P[u]. We refer the reader to Theorem 5.4 below for more details.

In this paper, we study the existence and uniqueness of solution to the following Dirichlet
type problem for the non-pluripolar Monge-Ampère equation{

NP(ddcu)n = µ,

P[u] = φ ,
(1.3)

where µ is a non-pluripolar positive Borel measure on Ω and φ is a model plurisubharmonic
function on Ω.
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Denote by NNP(Ω) (or NNP for short) the set of negative plurisubharmonic functions u on
Ω with smallest model plurisubharmonic majorant identically zero (i.e., P[u] = 0). The main
result of this paper is as follows:

Theorem 1.1. Assume that there exists v ∈ PSH−(Ω) such that NP(ddcv)n ≥ µ and P[v] = φ .
Denote

S = {w ∈ PSH−(Ω) : w≤ φ ,NP(ddcw)n ≥ µ}.

Then uS := (sup{w : w ∈ S})∗ is a solution of the problem (1.3). Moreover, if there exists
ψ ∈NNP such that NP(ddcψ)n ≥ µ then uS is the unique solution of (1.3).

In the case where Ω is hyperconvex, Cegrell has shown that if µ is a non-pluripolar positive
Radon measure on Ω with µ(Ω) < ∞ then there exists a unique function u ∈ F satisfying
(ddcu)n = µ (see [9, Lemma 5.14]). Here, the class F is defined as in [9, Definition 4.6].
Actually, F (Ω) is the set of all the functions in D(Ω) with smallest maximal plurisubharmonic
majorant identically zero and with finite total Monge-Ampère mass (see, for example, [13, page
17]). By Remark 5.5 below, if u ∈F and (ddcu)n vanishes on pluripolar sets then u ∈NNP.

Using Theorem 1.1 and [9, Lemma 5.14], we obtain immediately the following result which
can be seen as a local version of [11, Theorem 4.7]:

Corollary 1.2. Assume that Ω is hyperconvex and µ is a non-pluripolar positive Radon mea-
sure on Ω satisfying µ(Ω)< ∞. Then, there exists a unique plurisubharmonic function u satis-
fying (1.3). Moreover, φ + v≤ u≤ φ for some v ∈F a(Ω).

For every H ∈ PSH−(Ω), we denote

NNP(H) = {w ∈ PSH−(Ω) : there exists v ∈NNP such that v+H ≤ w≤ H},

and

N a(H) = {w ∈ PSH−(Ω) : there exists v ∈N a such that v+H ≤ w≤ H},

where N a is the set of functions v ∈D(Ω) with smallest maximal plurisubharmonic majorant
identically zero and with (ddcv)n vanishes on pluripolar sets. It is easy to check that N a ⊂
NNP. The following result, which has been proven first by Åhag-Cegrell-Czyż-Pham, can be
considered as a corollary of Theorem 1.1:

Corollary 1.3. [2, Theorem 3.7] Assume that µ is a non-negative measure defined on Ω by
µ = (ddcϕ)n for some ϕ ∈N a. Then, for every H ∈ D(Ω) with (ddcH)n ≤ µ , there exists a
unique function u ∈N a(H) such that (ddcu)n = µ on Ω.

The paper is organized as follows. In Section 2, we recall auxiliary facts about the plurifine
topology and the non-pluripolar Monge-Ampère measure. In Sections 3 and 4, we introduce
some important tools for the proof of the existence of solution to (1.3). In Section 5, we prove
two Xing-type comparison principles and some related results. Theorem 1.1 and Corollary 1.3
are proved in Section 6.

2. PRELIMINARIES

In this section, we recall some basic concepts and properties about the plurifine topology and
the non-pluripolar Monge-Ampère measure. The reader can find more details in [5].
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2.1. The plurifine topology. The plurifine topology on an open set Ω in C
n is the smallest

topology on Ω for which all the plurisubharmonic functions are continuous. A basis B of the
plurifine topology on Ω consists of the sets of the following form:

U ∩{u > 0}
where U is an open subset in Ω, u ∈ PSH(U).

The plurifine topology has the following quasi-Lindelöf property:

Theorem 2.1. [5, Theorem 2.7] An arbitrary union of plurifine open subsets differs from a
countable subunion by at most a pluripolar set.

By the quasi-Lindelöf property, one get the following lemma:

Lemma 2.2. Let O be a plurifine open subset of Ω. Then there exists a decreasing sequence
{Vl}l of open subsets of Ω such that Vl contains O for every l and ∩∞

l=1Vl \O is a pluripolar
set.

Proof. Since we can write O = ∪{Oi ∈B, i ∈ I}, it follows from Theorem 2.1 that there exist
a sequence {O j} j ⊂B and a pluripolar set N such that

O = ∪∞
j=1O j∪N. (2.1)

By the definition of B, for each j, there exist an open subset U j of Ω and a plurisubharmonic
function u j ∈ PSH(U j) such that

O j = {z ∈U j : u j(z)> 0}.
Since u j is quasi-continuous on U j, for every l ∈ Z+, there exists an open subset Wj,l of U j

such that Cap(Wj,l,U j) < 2−1−l− j and u j ∈ C(U j \Wj,l). By Tietze’s theorem, we can find a
continuous extension f j,l of u j on U j. Set

Vj,l =
∞⋃

s=l

Wj,s. (2.2)

Then, the sequence {Vj,l}l is decreasing and

Cap(Vj,l,U j)≤
∞

∑
s=l

Cap(Wj,s,U j)≤
∞

∑
s=l

1
21+s+ j = 2− j−l

∞

∑
s=1

1
2s = 2− j−l. (2.3)

Observe that

O j∪Vj,l =Vj,l ∪{z ∈U j : u j(z)> 0}
=Vj,l ∪{z ∈U j \Vj,l : u j(z)> 0}
=Vj,l ∪{z ∈U j \Vj,l : f j,l(z)> 0}
=Vj,l ∪{z ∈U j : f j,l(z)> 0},

which implies that O j∪Vj,l is open.
Let u ∈ PSH−(Ω) such that

N ⊂ {u =−∞}. (2.4)
For each l ∈ Z+, we denote Nl = {u <−l}. We have Nl is open and

lim
l→∞

Cap(Nl,Ω) = 0. (2.5)

Now, for every l ∈ Z+, we define

Vl = Nl ∪∞
j=1 (O j∪Vj,l).
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Then {Vl}l is a decreasing sequence of open sets. By (2.1) and (2.4), ∩∞
l=1Vl contains O .

Moreover, by (2.3), for every l0 ∈ Z+, we have

Cap(∩∞
l=1Vl \O,Ω)≤ Cap(Vl0 \O,Ω)≤ Cap(Nl0 ∪

∞
j=1 Vj,l0,Ω)

≤ Cap(Nl0 ,Ω)+
∞

∑
j=1

Cap(Vj,l0,Ω)

≤ Cap(Nl0 ,Ω)+
∞

∑
j=1

Cap(Vj,l0,U j)

≤ Cap(Nl0 ,Ω)+
∞

∑
j=1

2−(l0+ j)

= Cap(Nl0 ,Ω)+2−l0.

Letting l0→ ∞ and using (2.5), we obtain

Cap(∩∞
l=1Vl \O,Ω) = 0.

Hence ∩∞
l=1Vl \O is a pluripolar set.

The proof is completed. �

2.2. The non-pluripolar complex Monge-Ampère measure. We recall the definition of the
non-pluripolar complex Monge-Ampère measures.

Definition 2.3. [5] If u ∈ PSH(Ω) then the non-pluripolar complex Monge-Ampère measure of
u is the measure NP(ddcu)n satisfying∫

E

NP(ddcu)n = lim
j→∞

∫
E∩{u>− j}

(ddc max{u,− j})n ,

for every Borel set E ⊂Ω.

Remark 2.4. i. If E ⊂ {u >−k}, then it follows from [5, Corollary 4.3] that∫
E

(ddc max{u,− j})n =
∫
E

(ddc max{u,−k})n, for every j ≥ k.

In particular,∫
E∩{u>−k}

NP(ddcu)n =
∫

E∩{u>−k}

(ddc max{u,−k})n,

for every k > 0 and for every Borel set E ⊂Ω.
ii. NP(ddcu)n vanishes on every pluripolar sets.

iii. If Ω is the open unit ball and u is defined by

u(z) = (− log |z1|)1/n (|z2|2 + ...+ |zn|2−1),

then NP(ddcu)n is not locally finite (see [16]).

The following results are classical. We present the proof here for the convenience of the
reader.

Lemma 2.5. Let u,v∈PSH−(Ω) and µ be a positive Borel measure that vanishes on pluripolar
sets. If NP(ddcu)n ≥ µ,NP(ddcv)n ≥ µ then NP(ddc max{u,v})n ≥ µ.
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Proof. Since µ is Borel which does not charge the set {u+ v = −∞}, we only need to show
that ∫

E

NP(ddc max{u,v})n ≥
∫
E

dµ,

for every Borel set E ⊂ {u+v >−∞}. Note that E =
⋃
j≥1

E j where E j = E∩{u+v >− j}. We

will show that ∫
E j0

NP(ddc max{u,v})n ≥
∫

E j0

dµ,

for every j0 ≥ 1.
Since max{u,v} ≥min{u,v} ≥ u+ v, we have

E j0 ⊂ {u+ v >− j0} ⊂ {u >− j}∩{v >− j} ⊂ {max{u,v}>− j},
for every j > j0. Hence, by Definition 2.3 and Remark 2.4 (i), we have∫

E j0

NP(ddcw)n =
∫

E j0

(
ddc max{w,− j}

)n
, (2.6)

for w ∈ {u,v,max{u,v}} and for every j > j0.
Denote u j = max{u,− j}, v j = max{v,− j} and φ j = max{max{u,v},− j}. Observe that

φ j = max{u j,v j}. By applying [12, Proposition 11.9] (see also [18, Proposition 4.3]), we have

(ddc
φ j)

n ≥ 1{u j≥v j}(ddcu j)
n +1{u j<v j}(ddcv j)

n. (2.7)

Note E j0 ∩{u j ≥ v j} = E j0 ∩{u ≥ v} and E j0 ∩{u j < v j} = E j0 ∩{u < v} for every j > j0.
Hence, it follows from (2.7) that∫

E j0

(ddc
φ j)

n ≥
∫

E j0∩{u≥v}

(ddcu j)
n +

∫
E j0∩{u<v}

(ddcv j)
n, (2.8)

for every j > j0.
Combining (2.6) and (2.8), we get∫

E j0

NP(ddc max{u,v})n ≥
∫

E j0∩{u≥v}

NP(ddcu)n +
∫

E j0∩{u<v}

NP(ddcv)n.

Thus, by the facts NP(ddcu)n ≥ µ and NP(ddcv)n ≥ µ , we have∫
E j0

NP(ddc max{u,v})n ≥
∫

E j0

dµ.

Letting j0→ ∞, we obtain ∫
E

NP(ddc max{u,v})n ≥
∫
E

dµ.

The proof is completed. �

Lemma 2.6. Let u,v ∈ PSH−(Ω). Then NP(ddc(u+ v))n ≥ NP(ddcu)n +NP(ddcv)n.

Proof. We need to show that∫
E

NP(ddc(u+ v))n ≥
∫
E

NP(ddcu)n +
∫
E

NP(ddcv)n,
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for every Borel set E ⊂ Ω\{u+ v =−∞}. For j0 ∈ Z+, we denote E j0 = E ∩{u+ v >− j0}.
Note that

E j0 ⊂ {u+ v >− j} ⊂ {u >− j}∩{v >− j}, (2.9)
for every j > j0. Hence, by Definition 2.3 and Remark 2.4 (i), we have∫

E j0

NP(ddcw)n =
∫

E j0

(
ddc max{w,− j}

)n
, (2.10)

for w ∈ {u,v,u+ v} and for every j > j0.
Denote u j = max{u,− j}, v j = max{v,− j} and φ j = max{u+v,− j}. For every z∈ {u+v >
− j}, we have u j(z) = u(z), v j(z) = v(z) and φ j(z) = u(z)+ v(z). Hence

φ j = u j + v j,

on the plurifine open set {u+ v >− j}. Hence, it follows from [5, Corollary 4.3] that

(ddc
φ j)

n|{u+v>− j} = (ddc(u j + v j))
n|{u+v>− j} ≥

(
(ddcu j)

n +(ddcv j)
n
)
|{u+v>− j}. (2.11)

Combining (2.9), (2.10) and (2.11), we have∫
E j0

NP(ddc(u+ v))n =
∫

E j0

(ddc
φ j)

n

≥
∫

E j0

(ddcu j)
n +

∫
E j0

(ddcv j)
n

=
∫

E j0

NP(ddcu)n +
∫

E j0

NP(ddcv)n,

for every j > j0.
Letting j0→ ∞, we obtain∫

E

NP(ddc(u+ v))n ≥
∫
E

NP(ddcu)n +
∫
E

NP(ddcv)n.

The proof is completed. �

3. STABILITY OF SUBSOLUTIONS AND SUPERSOLUTIONS

The goal of this section is to prove Lemmas 3.2 and 3.3 which are important tools for the
proof of the main theorem. First, we need the following lemma:

Lemma 3.1. Let u,u j ( j ∈Z+) be negative plurisubharmonic functions on Ω such that {u j} j≥1
is monotone and u=(lim j→∞ u j)

∗. Assume f , f j are bounded, quasi-continuous on Ω satisfying
0≤ f , f j ≤ 1, f j converges monotonically to f quasi-everywhere. Suppose that { f 6= 0}⊂ {u≥
−M} and { f j 6= 0} ⊂ {u j ≥−M} for every j, where M > 0 is a constant. Then f jNP(ddcu j)

n

converges weakly to f NP(ddcu)n as j→ ∞.

Proof. By the definition, we have

1{u>−M−1}NP(ddcu)n = 1{u>−M−1}(ddc max{u,−k})n,

for every k ≥M+1. Since { f 6= 0} ⊂ {u >−M−1}, it follows that

f NP(ddcu)n = f (ddc max{u,−M−1})n. (3.1)

Similar, we also have

f jNP(ddcu j)
n = f j(ddc max{u j,−M−1})n for every j. (3.2)
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Since u j converges monotonically to u, we have (ddc max{u j,−M−1})n converges weakly to
(ddc max{u,−M−1})n as j→ ∞. Hence, it follows from [5, Theorem 3.2(4⇒ 3)] that

f j(ddc max{u j,−M−1})n w→ f (ddc max{u,−M−1})n. (3.3)

Combining (3.1), (3.2) and (3.3), we get

f jNP(ddcu j)
n w→ f NP(ddcu)n,

as desired. �

Lemma 3.2. Let u j be a monotone sequence of negative plurisubharmonic functions on Ω and
let µ be a positive Borel measure on Ω such that NP(ddcu j)

n ≥ µ for every j ∈ Z+. Assume

that u :=
(

lim
j→∞

u j

)∗
is not identically −∞. Then NP(ddcu)n ≥ µ .

Proof. We give the proof for the case where (u j) j is increasing. The case of decreasing se-
quence is similar and we leave it for the readers.

For each k ∈ Z+, we denote

fk = min{max{u1 + k+1,0},1} .
Then 0 ≤ fk ≤ 1, fk|{u1≥−k} = 1, fk|{u1≤−k−1} = 0 and fk is continuous in plurifine topology.
Since u1 ≤ u2 ≤ ...≤ uk ≤ ...≤ u, we have { fk 6= 0} ⊂ {u j >−k−1}∩{u >−k−1} for every
j. Hence, it follows from Lemma 3.1 that fkNP(ddcu j)

n converges weakly to fkNP(ddcu)n as
j→ ∞. Then, by the assumption NP(ddcu j)

n ≥ µ , we have

fkNP(ddcu)n ≥ fkµ.

Letting k→ ∞, we get
NP(ddcu)n ≥ 1{u1>−∞}µ. (3.4)

Moreover, the assumption NP(ddcu j)
n ≥ µ implies that µ vanishes on pluripolar sets. In par-

ticular,
µ = 1{u1>−∞}µ. (3.5)

Combining (3.4) and (3.5), we obtain

NP(ddcu)n ≥ µ.

The proof is completed. �

Lemma 3.3. Let u j be a monotone sequence of negative plurisubharmonic functions on Ω such

that u :=
(

lim
j→∞

u j

)∗
is not identically −∞. Let µ be a positive Borel measure on Ω. Assume

that there exists a plurifine open subset U of Ω such that

1U NP(ddcu j)
n ≤ µ,

for every j. Then
1U NP(ddcu)n ≤ µ.

Proof. We give the proof for the case where (u j) j is decreasing. The case of increasing se-
quence is similar and we leave it for the readers.

By the quasi-Lindelöf property of plurifine topology (see Theorem 2.1) and by the fact that
B is a basis of plurifine topology, the problem is reduced to the case U ∈B, i.e.,

U = {z ∈V : v(z)> 0},
where V is an open subset of Ω and v is a plurisubharmonic function on V .
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Let χ ∈Cc(V ) and denote

gχ,k = χ max{min{4kv−2k,1},0},

for every k ∈ Z+. We have gχ,k is a quasi continuous function on Ω.
Denote

fk = min{max{u+ k+1,0},1} .
Then 0≤ fk ≤ 1, fk|{u≥−k} = 1, fk|{u≤−k−1} = 0 and fk is quasi-continuous. Since u1 ≥ u2 ≥
... ≥ uk ≥ ... ≥ u, we have { fk 6= 0} ⊂ {u j > −k− 1} ∩ {u > −k− 1} for every j. Hence,
it follows from Lemma 3.1 that fkgχ,kNP(ddcu j)

n converges weakly to fkgχ,kNP(ddcu)n as
j→∞. Moreover, since suppgχ,k ⊂U and 0≤ fk,gχ,k ≤ 1, we have fkgχ,kNP(ddcu j)

n ≤ µ for
every j. Then

fkgχ,kNP(ddcu)n ≤ µ.

Letting k→ ∞ and χ ↗ 1V , we get

1U NP(ddcu)n ≤ µ.

The proof is completed. �

4. AN ENVELOPE OF PLURISUBHARMONIC FUNCTIONS

The main result of this section is as follows:

Theorem 4.1. Let µ be a positive Borel measure on Ω and let U ⊂ Ω be a plurifine open set
such that

NP(ddc
ϕ)n ≥ 1U µ,

for some ϕ ∈ PSH−(Ω). Denote

u =
(
sup{w ∈ PSH−(Ω) : w≤ H on Ω\U,NP(ddcw)n ≥ 1U µ}

)∗
,

where H is a negative plurisubharmonic function on Ω. Then 1U NP(ddcu)n = 1U µ.

In order to prove the above theorem, we need the following lemmas:

Lemma 4.2. Let S be a family of negative plurisubharmonic functions on Ω and let µ be a
positive Borel measure on Ω such that NP(ddcw)n ≥ µ for every w ∈ S. Denote

uS = (sup{w : w ∈ S})∗ .

Then NP(ddcuS)
n ≥ µ .

Proof. By Choquet’s lemma [17, Lemma 2.3.4], there exists a sequence {u j} j∈Z+ ⊂ S such that

uS =
(
sup{u j : j ∈ Z+}

)∗
.

For every j ∈ Z+, we denote
v j = max{u1,u2, ...,u j}.

Then {v j} is an increasing sequence and uS = (lim j→∞ v j)
∗. Moreover, it follows from Lemma

2.5 that for every j ∈ Z+,
NP(ddcv j)

n ≥ µ.

Hence, by Lemma 3.2, we have
NP(ddcuS)

n ≥ µ.

�
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Lemma 4.3. Let S be a family of negative plurisubharmonic functions on Ω. Assume that there
exist a set W ⊂Ω and a function H : W → R such that w|W ≤ H for every w ∈ S. Put

uS = (sup{w : w ∈ S})∗.

Then, there exists a pluripolar set N ⊂Ω such that uS ≤ H on W \N.

Proof. Set vS = sup{w : w ∈ S}. Since negligible sets are pluripolar, we have {uS > vS} is
pluripolar. By Josefson’s theorem, there exists ψ ∈ PSH−(Ω) such that {uS > vS} ⊂ {ψ =
−∞}. Therefore, for all ε > 0,

uS + εψ ≤ vS.

Since vS ≤ H on W , it follows that uS + εψ ≤ H on W . Letting ε ↘ 0, we get uS ≤ H on
W \{ψ =−∞}.

The proof is completed. �

Lemma 4.4. Let u be a bounded, negative plurisubharmonic function on Ω and let DbΩ be an
open ball. Denote by uD the smallest maximal plurisubharmonic majorant of u in D. Assume
that µ is a non-pluripolar positive Radon measure on D such that µ(D) < +∞. Then, there
exists v ∈ F (D,uD) such that (ddcv)n = µ . Here, F (D,uD) is the set of plurisubharmonic
functions ϕ on D satisfying uD +w≤ ϕ ≤ uD for some w ∈F (D).

Proof. This lemma is an immediate corollary of [2, Theorem 3.7]. Here we will give a proof
that does not use [2, Theorem 3.7].

Let u j be a sequence of smooth plurisubharmonic functions decreasing to u on a neighbor-
hood V of D. It is classical that for every j, there exists a unique maximal plurisubharmonic
function u j,D on D such that limD3z→z0 u j,D(z) = u j(z0) for every z0 ∈ ∂D. It is easy to check
that u j,D is decreasing to uD as j→ ∞.

By [1, Theorem 3.4], there exists a unique v j ∈F (D,u j,D) such that (ddcv j)
n = µ . More-

over, it follows from the comparison principle [1, Theorem 3.2] that v j is a decreasing sequence
and

v0 +u j,D ≤ v j ≤ u j,D,

where v0 is the unique function in F (D) satisfying (ddcv0)
n = µ . Denote v = lim j→∞ v j. We

have v0 ≤ uD ≤ v≤ uD and (ddcv)n = µ .
This finishes the proof. �

Now we begin to prove Theorem 4.1. We first consider the case where H is bounded and
µ(Ω)<+∞.

Theorem 4.5. Let µ be a non-pluripolar positive Radon measure on Ω such that µ(Ω)<+∞.
Let U be a plurifine open subset of Ω and H ∈ L∞(Ω). Denote

u =
(

sup{w ∈ PSH−(Ω) : w≤ H on Ω\U,NP(ddcw)n ≥ 1U µ}
)∗

.

Then u ∈D(Ω) and 1U(ddcu)n = 1U µ.

Proof. We first show that u is well-defined, i.e., the family

S := {w ∈ PSH−(Ω) : w≤ H on Ω\U,NP(ddcw)n ≥ 1U µ}

is non-empty.
Let D b Ω be an open ball. By [9, Theorem 5.14], there exists ϕ ∈ F (D) such that

(ddcϕ)n = 1U µ. Put M =− infΩ H. We have ϕ|Ω−M ∈ S. Hence, u is well-defined. Moreover,
since ϕ ∈F (D) and ϕ|Ω−M ≤ u, we have u ∈D(Ω).
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It remains to show that 1U(ddcu)n = 1U µ . We first consider the case where U is open in
the usual topology. In this case, we only need to show that 1B(ddcu)n = 1Bµ for any open ball
BbU .

Since µ(Ω)< ∞, without loss of generality, we can assume that µ(∂B) = 0. Set

uB =
(

sup{w ∈ PSH−(Ω) : w≤ u on Ω\B}
)∗

.

Then, uB is maximal on B. In particular, 1B(ddcuB)
n = 0 ≤ 1Bµ. By Lemma 4.4, there exists

wB ∈N (B,uB) such that
(ddcwB)

n = 1Bµ.

Here, the notation wB ∈ N (B,uB) means that there exists a function ψ ∈ N (B) ( N (B)
is the set of functions belonging in D(B) with smallest maximal plurisubharmonic majorant
identically zero) such that

uB +ψ ≤ wB ≤ uB on B.
By Lemma 4.2, we have (ddcu)n ≥ 1U µ . Then, it follows from the comparison principle [2,

Theorem 3.1] (see also [2, Corollary 3.2]) that u|B ≤ wB. On the other hand, for every z0 ∈ ∂B,
we have

limsup
B3z→z0

wB(z)≤ limsup
B3z→z0

uB(z) = limsup
U\B3z→z0

uB(z) = limsup
U\B3z→z0

u(z) = u(z0).

Hence, the function

uB :=

{
u on Ω\B,
wB on B,

is plurisubharmonic on Ω. Moreover,

(ddcuB)
n ≥ 1B(ddcwB)

n +1Ω\B̄(ddcu)n ≥ 1U\∂Bµ = 1U µ.

Hence, uB ∈ S. Consequently, uB ≤ u on Ω. Recall that wB ≥ u on B, thus uB ≥ u on Ω. Then
uB = u on Ω and it follows that

(ddcu)n|B = (ddcuB)
n|B = (ddcwB)

n = 1Bµ.

Now, we consider the general case where U is plurifine open. By Lemma 2.2, there exists a
decreasing sequence of open subset U j of Ω such that U ⊂

⋂
j≥1

U j and
⋂
j≥1

U j \U is pluripolar.

For every j, we denote

S j = {w ∈ PSH−(Ω) : w≤ H on Ω\U j,NP(ddcw)n ≥ 1U µ},
and

u j =
(
sup{w : w ∈ S j}

)∗
.

By using the case where U is open, we have u j ∈D(Ω) and

1U j(ddcu j)
n = 1U µ. (4.1)

Since U ⊂U j+1 ⊂U j for every j, we have u j is a decreasing sequence and u j ≥ u for every j.
Hence

ū := lim
j→∞

u j ≥ u. (4.2)

Moreover, using (4.1) and applying Lemmas 3.2 and 3.3 (replace µ by 1U µ), we get

1U(ddcū)n = 1U µ. (4.3)

It remains to show that u = ū. By Lemma 4.3, for every j, there exists a pluripolar set N j such
that u j ≤ H on Ω \ (U j ∪N j). Denote N = ∪∞

j=1N j. We have N is pluripolar and ū ≤ H on
11



Ω\ (U ∪N). By Josefson’s theorem, there exists a negative plurisubharmonic function ψ on Ω

such that N ⊂ {ψ =−∞}. Then, we have ū+ εψ ≤ H on Ω\U and, by Lemma 2.6,

NP(ddcū+ εψ)n ≥ (ddcū)n ≥ 1U µ.

Hence ū+ εψ ∈ S for every ε > 0. As a consequence, we have

u≥
(

limsup
ε→0

(ū+ εψ)

)∗
= ū (4.4)

Combining (4.2) and (4.4), we get ū = u. Therefore, by (4.3), we obtain 1U(ddcu)n = 1U µ .
The proof is completed. �

End of the proof of Theorem 4.1. For every j,k ∈ Z+, we denote

U j = {z ∈U : d(z,∂Ω)> 2− j,ϕ(z)>−2 j},
and

Hk = max{H,−k}.
We also define

u j,k =
(
sup{w ∈ PSH−(Ω) : w≤ Hk on Ω\U,NP(ddcw)n ≥ 1U j µ}

)∗
,

and
u j =

(
sup{w ∈ PSH−(Ω) : w≤ H on Ω\U,NP(ddcw)n ≥ 1U j µ}

)∗
.

It is clear that the sequence {u j,k}k∈Z+ is decreasing for every j and

u j,k ≥ u j, (4.5)

for every j,k. The assumption NP(ddcφ)n ≥ 1U µ implies that
∫

U j
dµ < ∞. It follows from

Theorem 4.5 that
1U NP(ddcu j,k)

n = 1U j µ,

for every j,k. Letting k→ ∞ and using Lemmas 3.2 and 3.3, we get

1U NP(ddcū j)
n = 1U j µ, (4.6)

where ū j = limk→∞ u j,k.
Now we will prove ū j = u j. By Lemma 4.3, for every k, there exists a pluripolar set N j,k such

that u j,k ≤ Hk on Ω\ (U ∪N j,k). Denote N j = ∪∞
k=1N j,k. We have N j is pluripolar and ū j ≤ H

on Ω\ (U ∪N j). By Josefson’s theorem, there exists a negative plurisubharmonic function ψ j
on Ω such that N ⊂ {ψ j =−∞}. Then, we have ū+ εψ j ≤ H on Ω\U and, by Lemma 2.6,

NP(ddcū j + εψ j)
n ≥ NP(ddcū j)

n ≥ 1U j µ.

By the definition of u j, we have ū j + εψ j ≤ u j for every ε > 0. Hence

ū j =

(
lim
ε→0

(ū j + εψ j)

)∗
≤ u j. (4.7)

Combining (4.5) and (4.7), we get ū j = u j. Then, by (4.6), we have

1U NP(ddcu j)
n = 1U j µ.

Letting j→ ∞ and using Lemmas 3.2 and 3.3, we get 1U j0
NP(ddcū)n = 1U j0

µ for every j0 ∈
Z
+, where ū = lim j→∞ u j. By the same argument as above, we also have ū = u. Hence

1U j0
NP(ddcu)n = 1U j0

µ, (4.8)

for every j0 ∈ Z+. Observe that ∪∞
j0=1U j0 =U \{φ =−∞} and µ({φ =−∞}) = 0. Hence, by

using (4.8) and letting j0→ ∞, we have

1U NP(ddcu)n = 1U µ.
12



This finishes the proof. �

The following result is a corollary of Theorem 4.1 and Lemma 3.3:

Proposition 4.6. Let u ∈ PSH−(Ω). Then there exists ū ∈ PSH−(Ω) such that u ≤ ū ≤ P[u]
and NP(ddcū)n = 0. In particular, if u is model then NP(ddcu)n = 0.

Proof. For every j ∈ Z+, we denote

Vj = {z ∈Ω : d(z,∂Ω)> 2− j, u(z)>−2 j},
and

u j =
(
sup
{

v ∈ PSH(Ω) : v≤ u on Ω\Vj
})∗

.

By using Theorem 4.1, we have 1V jNP(ddcu j)
n = 0 for every j. Then, it follows from Lemma

3.3 that 1V jNP(ddcū)n = 0 for every j, where ū = (lim j→∞ u j)
∗. Since ∪∞

j=1Vj = Ω\{u =−∞}
and NP(ddcū)n vanishes on pluripolar sets, it follows that

NP(ddcū)n = 0.

Moreover, since u≤ u j ≤ P[u] for every j, we also have u≤ ū≤ P[u].
The proof is completed. �

5. XING-TYPE COMPARISON PRINCIPLES

In [19], Xing provided a strong comparison principle for bounded plurisubharmonic func-
tions. Xing’s theorem then has been generalized by Nguyen-Pham [18] and by Åhag-Cegrell-
Czyż-Pham [2]. In this section, we introduce two new Xing-type theorems (Theorems 5.1 and
5.6) and some applications.

Theorem 5.1. Let u,v ∈ PSH−(Ω) such that
i, liminf

Ω\N3z→ξ0
(u(z)− v(z))≥ 0 for every ξ0 ∈ ∂Ω, where N = {v =−∞};

ii, v≤ u+O(1) on Ω.
Let w j ∈ PSH(Ω, [−1,0]), j = 1, ...,n, and denote T = ddcw1∧ ...∧ddcwn. Then

1
n!

∫
{u<v}

(v−u)nT +
∫

{u<v}

(−w1)NP(ddcv)n ≤
∫

{u<v}

(−w1)NP(ddcu)n. (5.1)

Moreover, if NP(ddcu)n ≤ NP(ddcv)n +µ for some positive Borel measure µ then
1
n!

∫
{u<v}

(v−u)nT ≤
∫

{u<v}

(−w1)dµ. (5.2)

Proof. For each M > 0, we denote

uM = max{u,−M} and vM = max{v,−M}.
By the assumption (i), we have

liminf
Ω\N3z→ξ0

(uM(z)− (1+ ε)vM(z))≥ liminf
Ω\N3z→ξ0

(uM(z)− vM(z))≥ 0,

for every ξ0 ∈ ∂Ω and M ∈ Z+. Hence, by using [18, Theorem 4.9] (observe that, in this
theorem, the condition Ω is hyperconvex is not necessary), we have

1
n!

∫
EM

((1+ ε)vM−uM− ε)nT ≤
∫

EM

(−w1)((ddcuM)n− (ddc((1+ ε)vM))n) , (5.3)

where EM = {uM < (1+ ε)vM− ε}bΩ.
13



Note that if z ∈ EM then v(z)>− M
1+ε

and v(z)> (1+ ε)v(z)> uM(z)≥ u(z). Moreover, by
the assumption (ii), there exists K > 1 such that v≤ u+K. Hence, we have

EM ⊂
{

v >− M
1+ ε

}
∩{u < v} ⊂ {u >−M}∩{u < v},

for every M ≥ (1+ε)K
ε

. In particular,

1EM(ddcuM)n = 1EM NP(ddcu)n ≤ 1{u<v}NP(ddcu)n,

for every M ≥ (1+ε)K
ε

. Hence,∫
EM

(−w1)(ddcuM)n ≤
∫

{u<v}

(−w1)NP(ddcu)n, (5.4)

for M� 1.
By the fact EM ⊂ {v >−M}, we also have∫

EM

(−w1)(ddc((1+ ε)vM))n =
∫

EM

(−w1)NP(ddc(1+ ε)v)n ≥
∫

EM

(−w1)NP(ddcv)n. (5.5)

Combining (5.3), (5.4) and (5.5), we get

1
n!

∫
EM

((1+ ε)vM−uM− ε)nT +
∫

EM

(−w1)NP(ddcv)n ≤
∫

{u<v}

(−w1)NP(ddcu)n,

for every M� 1.
Letting M → ∞ and using the monotone convergence theorem (observer that {1EM((1 +

ε)vM−uM− ε)n}M∈Z+ is an increasing sequence), we have
1
n!

∫
{u<(1+ε)v−ε}

((1+ε)v−u−ε)nT +
∫

{u<(1+ε)v−ε}

(−w1)NP(ddcv)n ≤
∫

{u<v}

(−w1)NP(ddcu)n.

Letting ε ↘ 0, we obtain the inequality (5.1).
It remains to prove (5.2). For every M ≥ (1+ε)K

ε
, by the fact EM ⊂ {u >−M}∩{v >−M},

we have

((ddcuM)n− (ddc((1+ ε)vM))n) |EM = (NP(ddcu)n−NP(ddc((1+ ε)v))n)|EM ≤ µ|EM .

Hence, it follows from (5.3) that
1
n!

∫
EM

((1+ ε)vM−uM− ε)nT ≤
∫

EM

(−w1)dµ,

for every M� 1. Letting M→ ∞, we get
1
n!

∫
{u<(1+ε)v−ε}

((1+ ε)v−u− ε)nT ≤
∫

{u<(1+ε)v−ε}

(−w1)dµ.

Letting ε ↘ 0, we obtain (5.2). This finishes the proof. �

Corollary 5.2. Let u,v ∈ PSH−(Ω) such that
i, liminf

Ω\N3z→ξ0
(u(z)− v(z))≥ 0 for every ξ0 ∈ ∂Ω, where N = {v =−∞};

ii, v≤ u+O(1) on Ω.
If NP(ddcu)n ≤ NP(ddcv)n then u≥ v.

14



Proof. By the last assertion of Theorem 5.1, we have∫
{u<v}

(v−u)n(ddcw)n = 0,

for every w ∈ PSH(Ω, [−1,0]). It follows that v≤ u a.e., and thus v≤ u everywhere in Ω. �

Corollary 5.3. If u ∈ PSH−(Ω) and NP(ddcu)n = 0 then u is model.

Proof. Let v ∈ PSH−(Ω) such that v≤ u+O(1) on Ω and liminf
Ω\N3z→ξ0

(u(z)−v(z))≥ 0 for every

ξ0 ∈ ∂Ω, where N = {u =−∞} ⊂ {v =−∞}. For ε > 0, we denote

vε(z) = v(z)+ ε(‖z‖2−M),

where M = sup
Ω

‖z‖2. Then vε ∈ PSH−(Ω), vε ≤ u+O(1) on Ω and liminf
Ω\N3z→ξ0

(u(z)−vε(z)≥ 0

for every ξ0 ∈ ∂Ω. It follows from Corollary 5.2 that u ≥ vε for every ε > 0. Letting ε → 0,
we obtain u ≥ v. Taking the supremum over all such v and taking the upper semi-continuous
regularization yields u ≥ P[u] almost everywhere in Ω, hence u ≥ P[u] everywhere in Ω. It is
clear that u≤ P[u]. Therefore u = P[u], which means u is model, as desired. �

Theorem 5.4. Suppose u ∈ PSH−(Ω). Then
(i) P[u] is a model plurisubharmonic function;

(ii) u is model iff NP(ddcu)n = 0.

Proof. (ii) is an immediate corollary of Proposition 4.6 and Corollary 5.3. It remains to prove
(i).

By Proposition 4.6, there exists ū ∈ PSH−(Ω) such that u ≤ ū ≤ P[u] and NP(ddcū)n = 0.
Then, by Corollary 5.3, we have ū is model and it follows that

u≤ ū = P[ū]≤ P[u].

Moreover, the condition u≤ ū implies that P[u]≤ P[ū]. Hence

ū = P[ū] = P[u].

Thus, P[u] is model. �

Remark 5.5. (i) If u is a negative maximal plurisubharmonic function then it follows di-
rectly from the definitions that u is model. However, the converse is not true. For
example, u = log |z| is a model plurisubharmonic function which is not maximal on the
unit ball.

(ii) Let u ∈ PSH−(Ω)∩D(Ω) such that (ddcu)n vanishes on pluripolar sets. If v ≥ u is a
model plurisubharmonic function then it follows from [6, Theorem 1.2] and [2, Lemma
4.1] that v ∈ D(Ω) and (ddcv)n vanishes on pluripolar sets. Hence, by Theorem 5.4,
we have (ddcv)n = 0, i.e., v is maximal. Consequently, if Ω is a hyperconvex domain
then

{w ∈F (Ω) : (ddcw)n vanishes on pluripolar sets} ⊂NNP(Ω).

Theorem 5.6. Let u,v,H ∈PSH−(Ω) such that u∈NNP(H) and v≤H. Assume w j ∈PSH(Ω, [−1,0]),
j = 1, ...,n, and denote T = ddcw1∧ ...∧ddcwn. Then

1
n!

∫
{u<v}

(v−u)nT +
∫

{u<v}

(−w1)NP(ddcv)n ≤
∫

{u<v}

(−w1)NP(ddcu)n.
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Moreover, if NP(ddcu)n ≤ NP(ddcv)n +µ for some positive Borel measure µ then

1
n!

∫
{u<v}

(v−u)nT ≤
∫

{u<v}

(−w1)dµ.

Proof. We will use the same idea as in the proof of [2, Theorem 3.1]. Recall that

NNP(H) = {w ∈ PSH−(Ω) : there exists v ∈NNP such that v+H ≤ w≤ H},

where NNP is the set of negative plurisubharmonic functions u satisfying P[u] = 0.
Let ϕ ∈NNP such that H ≥ u≥ H +ϕ . For every j ∈ Z+, we denote

Vj = {z ∈Ω : d(z,∂Ω)> 2− j, ϕ(z)>−2 j, H(z)>−2 j},

and
ϕ j = (sup{ψ ∈ PSH−(Ω) : ψ ≤ ϕ on Ω\Vj})∗.

Since v≤ H, we have, for every j ∈ Z+,

u≥ H +ϕ = H +ϕ j ≥ ϕ j + v on Ω\Vj, (5.6)

which implies
liminf

Ω\N3z→∂Ω

[u− (ϕ j + v)]≥ 0, (5.7)

where N = {u =−∞} ⊂ {ϕ + v =−∞}. We also have,

u≥ H +ϕ ≥−2 j+1 ≥ (ϕ j + v)−2 j+1 on Vj. (5.8)

By the inequalities (5.6) and (5.8), we have

ϕ j + v− ε ≤ u+2 j+1 on Ω. (5.9)

By using the inequalities (5.7) and (5.9), and applying Theorem 5.1, we have

1
n!

∫
{u<ϕ j+v}

(ϕ j + v−u)nT+
∫

{u<ϕ j+v}

(−w1)NP(ddc(ϕ j + v))n

≤
∫

{u<ϕ j+v}

(−w1)NP(ddcu)n.

Hence, by Lemma 2.6, we obtain

1
n!

∫
{u<ϕ j+v}

(ϕ j + v−u)nT +
∫

{u<ϕ j+v}

(−w1)NP(ddcv)n ≤
∫

{u<ϕ j+v}

(−w1)NP(ddcu)n.

Then, by the monotone convergence theorem, we have

1
n!

∫
{u< lim

j→∞
ϕ j+v}

( lim
j→∞

ϕ j + v−u)nT+
∫

{u< lim
j→∞

ϕ j+v}

(−w1)NP(ddcv)n

≤
∫

{u< lim
j→∞

ϕ j+v}

(−w1)NP(ddcu)n.

By the same argument as in the proof of Proposition 4.6, we have NP(ddc( lim
j→∞

ϕ j)
∗)n = 0,

and then it follows from Corollary 5.3 that ( lim
j→∞

ϕ j)
∗ is model. Hence, by the condition ϕ ∈
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NNP and the fact ϕ ≤ ϕ j for every j, we have ( lim
j→∞

ϕ j)
∗ = 0 and hence lim

j→∞
ϕ j = 0 outside a

pluripolar set. It thus follows that
1
n!

∫
{u<v}

(v−u)nT +
∫

{u<v}

(−w1)NP(ddcv)n ≤
∫

{u<v}

(−w1)NP(ddcu)n.

Now, assume that NP(ddcu)n ≤ NP(ddcv)n + µ . Since NP(ddcv)n ≤ NP(ddc(ϕ j + v))n, we
have NP(ddcu)n ≤NP(ddc(ϕ j + v))n+µ . By using the inequalities (5.7) and (5.9), and apply-
ing Theorem 5.1, we have

1
n!

∫
{u<ϕ j+v}

(ϕ j + v−u)nT ≤
∫

{u<ϕ j+v}

(−w1)dµ.

Letting j→ ∞ and using the fact ( lim
j→∞

ϕ j)
∗ = 0, we obtain

1
n!

∫
{u<v}

(v−u)nT ≤
∫

{u<v}

(−w1)dµ.

The proof is completed. �

Similar to Corollary 5.2, we have the following result:

Corollary 5.7. Let H ∈ PSH−(Ω) and u,v ∈NNP(H). Assume that NP(ddcu)n ≥ NP(ddcv)n.
Then u≤ v.

6. PROOFS OF THEOREM 1.1 AND COROLLARY 1.3

6.1. Proof of Theorem 1.1. For the reader’s convenience, we recall the statement of Theorem
1.1.

Theorem 6.1. Assume that there exists v ∈ PSH−(Ω) such that NP(ddcv)n ≥ µ and P[v] = φ .
Denote

S = {w ∈ PSH−(Ω) : w≤ φ ,NP(ddcw)n ≥ µ}.
Then uS := (sup{w : w ∈ S})∗ is a solution of the problem{

NP(ddcu)n = µ,

P[u] = φ ,
(6.1)

Moreover, if there exists ψ ∈NNP such that NP(ddcψ)n ≥ µ then uS is the unique solution of
(6.1).

Proof. By the assumption, we have v ≤ uS ≤ φ and P[v] = φ . Therefore, P[uS] = φ . We need
to show that NP(ddcuS)

n = µ .
For every j ≥ 1, we denote

Ω j = {z ∈Ω : d(z,∂Ω)> 2− j},
and

U j = {z ∈Ω j : v+φ >−2 j}.
We also define

S j,k = {w ∈ PSH−(Ω) : w≤ φ on Ω\Uk,NP(ddcw)n ≥ 1U j µ},
for all k, j ≥ 1. It is easy to see that v ∈ S j,k, hence u j,k := (sup{w ∈ S j,k})∗ is well-defined.
Since S⊂ S j,k, we also have

uS ≤ u j,k (6.2)
17



Recall that

P[φ ] =
(

sup{w∈PSH−(Ω) : w≤ φ +O(1) on Ω, liminf
Ω\{φ=−∞}3z→ξ

(φ(z)−w(z))≥ 0∀ξ ∈ ∂Ω}
)∗

.

By the definition of S j,k, we have u j,k ≤ φ on Ω \Uk and φ ≥ v+ φ ≥ −2k on Uk. Hence,
φ +O(1)≥ u j,k on Ω and liminf

Ω\{φ=−∞}3z→ξ

(φ(z)−u j,k(z))≥ 0 for all ξ ∈ ∂Ω. Consequently, we

have, u j,k ≤ P[φ ]. Since φ is model, it follows that

u j,k ≤ φ ,∀k, j ≥ 1. (6.3)

Moreover, it follows from Theorem 4.1 that

1UkNP(ddcu j,k)
n = 1Uk(1U j µ) = 1U j µ, (6.4)

for every k ≥ j ≥ 1.
Note that if j1 ≤ j2 and k1 ≥ k2 then S j1,k1 ≤ S j2,k2 . Hence

u j1,k1 ≤ u j2,k2, ∀ j1 ≤ j2,k1 ≥ k2. (6.5)

Put
u j = ( lim

k→∞
u j,k)

∗.

It follows from (6.2) and (6.3) that
uS ≤ u j ≤ φ . (6.6)

In particular, u j 6=−∞. By using (6.4) and applying Lemmas 3.2 and 3.3, we get

1U jNP(ddcu j)
n = 1U j µ,∀ j ≥ 1. (6.7)

It follows from (6.5) that (u j) j≥1 is a decreasing sequence. Set

u = lim
j→∞

u j.

By (6.6), we have
uS ≤ ū≤ φ . (6.8)

By using (6.7) and applying Lemmas 3.2 and 3.3, we deduce that

1U j0
NP(ddcu)n = 1U j0

µ,

for every j0 ≥ 0. Letting j0→ ∞, we obtain

1 ⋃
j≥1

U jNP(ddcu)n = 1 ⋃
j≥1

U j µ. (6.9)

By definition, Ω\
⋃
j≥1

U j = {v+φ =−∞} is a pluripolar set. Therefore, (6.9) implies that

NP(ddcu)n = µ.

This combined with (6.8) gives

uS ≤ ū≤ (sup{w ∈ PSH−(Ω) : w≤ φ ,NP(ddcw)n ≥ µ})∗ = uS.

Hence, uS = ū and NP(ddcuS)
n = µ . Thus, uS is a solution of (6.1).

Now, assume that there exists ψ ∈NNP and NP(ddcψ)n ≥ µ. We need to show that uS is the
unique solution of the problem (6.1). Note that v :=ψ+φ satisfies the conditions NP(ddcv)n≥
NP(ddcψ)n ≥ µ and P[v] = φ . Hence uS is a solution (6.1) satisfying

φ +ψ ≤ uS ≤ φ .

In particular uS ∈NNP(φ).
Let u be an arbitrary solution of (6.1). We will show that u ∈NNP(φ).
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Denote
Vj = {z ∈Ω j,u>−2 j},

and
u j =

(
sup{w ∈ PSH−(Ω) : w≤ u on Ω\Vj}

)∗
.

By the same argument as in the proof of Proposition 4.6, we have(
lim
j→∞

u j

)∗
= P[u] = φ . (6.10)

It is easy to see that
u≤ u j, (6.11)

on Ω. Moreover, u j +ψ satisfying the conditions
• u j +ψ ≤ u j = u on Ω\Vj;
• u j +ψ ≤ u j ≤ u+2 j on Vj;
• NP(ddc(u j +ψ))n ≥ NP(ddcψ)n ≥ µ.

Then, it follows from Corollary 5.2 that

u j +ψ ≤ u. (6.12)

Combining (6.10), (6.11) and (6.12), we get

φ +ψ =

(
lim
j→∞

(u j +ψ)

)∗
≤ u≤

(
lim
j→∞

u j

)∗
= φ .

In particular, u ∈NNP(φ). By Corollary 5.7, we have u = uS. Thus, uS is the unique solution
of (6.1).

This finishes the proof. �

6.2. Proof of Corollary 1.3. In order to prove Corollary 1.3, we need the following lemma:

Lemma 6.2. Let u,v,h ∈ D(Ω) such that u+ v ≤ h. Assume that (ddcu)n and (ddcv)n vanish
on pluripolar sets. Then (ddch)n vanishes on pluripolar set.

Proof. Since the problem is local, we can assume that Ω is hyperconvex and u,v,h are negative.
In particular, u,v,h ∈ E (Ω) (see [9, Theorem 4.5] and [6, Theorem 1.2]). Replacing Ω by a
relative compact subset of Ω, we can also assume that

∫
Ω
(ddcw)n < ∞ for w = u,v,h.

Let A ⊂ Ω be a pluripolar set. By [2, Lemma 4.4] and by the assumption
∫

A(ddcu)n =∫
A(ddcv)n = 0, we have∫

A
(ddcu)k∧ (ddcv)n−k ≤

(∫
A
(ddcu)n

)k/n

∧
(∫

A
(ddcv)n

)(n−k)/n

= 0,

for every k = 0,1, ...,n. Therefore,∫
A
(ddc(u+ v))n =

n

∑
k=0

(
n
k

)∫
A
(ddcu)k∧ (ddcv)n−k = 0.

Since A is arbitrary, we have (ddc(u+ v))n vanishes on every pluripolar set. Thus, it follows
from [2, Lemma 4.1] that (ddch)n vanishes on pluripolar sets. �

Now we begin to prove Corollary 1.3. We recall its statement for the reader’s convenience.

Corollary 6.3. Assume that µ is a non-negative measure defined on Ω by µ = (ddcϕ)n for
some ϕ ∈N a(Ω). Then, for every H ∈D(Ω) with (ddcH)n≤ µ , there exists a unique function
u ∈N a(H) such that (ddcu)n = µ on Ω.
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Proof. Put φ = P[H] and u = (sup{w : w ∈ S})∗, where

S = {w ∈ PSH−(Ω) : P[w] = φ ,(ddcw)n ≥ µ}.

Since φ +ϕ ∈ S, we have

u≥ φ +ϕ ≥ H +ϕ. (6.13)

By the definitions of N a and NNP, we have N a ⊂NNP. In particular, ϕ ∈NNP. Then, it
follows from Theorem 1.1 that u is the unique solution to the problem{

NP(ddcw)n = µ,

P[w] = φ .
(6.14)

Moreover, it follows from [6, Theorem 1.2] and Lemma 6.2 that u ∈ D(Ω) and (ddcu)n van-
ishes on pluripolar sets. Hence, we have

(ddcu)n = µ. (6.15)

Denote ν = (ddcH)n. Then H is a solution of the problem{
NP(ddcw)n = ν ,

P[w] = φ .
(6.16)

Moreover, by Theorem 1.1, the problem (6.16) has a unique solution. Hence

H =
(
sup{w ∈ PSH−(Ω) : P[w] = φ ,(ddcw)n ≥ ν}

)∗ ≥ u. (6.17)

Combining (6.13) and (6.17), we get u ∈N a(H). This combined with (6.15) gives that u is a
solution of the problem {

w ∈N a(H),

(ddcw)n = µ.
(6.18)

It remains to show the uniqueness of solution of the problem (6.18). Assume that v is a solution
of (6.18). Then there exists ψ ∈N a such that

H +ψ ≤ v≤ H.

Since N a ⊂NNP, it follows that

P[H] = P[H]+P[ψ]≤ P[H +ψ]≤ P[v]≤ P[H].

Then P[v] = P[H] = φ . Moreover, since µ = (ddcϕ)n vanishes on pluripolar sets, the condition
(ddcv)n = µ implies that NP(ddcv)n = µ . Hence, v is a solution of the problem (6.14). By the
uniqueness of solution of (6.14), we have v = u. Thus, u is the unique solution of (6.18).

The proof is completed. �
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