A DIRICHLET TYPE PROBLEM FOR NON-PLURIPOLAR COMPLEX
MONGE-AMPERE EQUATIONS
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ABSTRACT. In this paper, we study a Dirichlet type problem for the non-pluripolar complex
Monge - Ampere equation with prescribed singularity on a bounded domain of C*. We provide
a local version for an existence and uniqueness theorem proved by Darvas, Di Nezza and Lu in
[[L1]. Our work also extends a result of Ahag, Cegrell, Czyz and Pham in [2].
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1. INTRODUCTION

Let Q be a bounded domain in C”. For each smooth plurisubharmonic function u# on Q, the
complex Monge-Ampere operator of u is defined by

(ddu)" = C, det(Hu)dV,

where Hu is the complex Hessian of u, dV is the standard volume form and C,, > 0 is a constant
depending only on n.

Bedford and Taylor [3} 4] have extended the concept of the complex Monge-Ampere operator
for bounded plurisubharmonic function, whereby (dd“u)" is a Radon measure satisfying the
following property: If u; is a sequence of smooth plurisubharmonic functions decreasing to
u then (ddu;)" converges weakly to (ddu)". The set Z(Q) of plurisubharmonic functions
whose Monge-Ampere operator can be defined as above is called the domain of definition of
Monge-Ampere operator. The characteristics of the domain of definition of Monge-Ampere
operator were studied by Cegrell [9] and Blocki [6].
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In [5]], Bedford and Taylor have studied the plurifine topology, which was first introduced by
Fuglede in [[14] as the weakest topology in which all plurisubharmonic functions are continu-
ous, and defined the non-pluripolar complex Monge-Ampere measure (also known as “the non-
pluripolar part of Monge-Ampere operator”) for every plurisubharmonic function. If  is a neg-
ative plurisubharmonic function then its non-pluripolar Monge-Ampeére measure NP(ddu)" is
defined as the limit of the sequence of measures 1y, _y (dd“max{u, —M})" as M — 0. This
measure is a Borel measure which puts no mass on pluripolar subsets and may have a locally
unbounded mass. If u is a negative plurisubharmonic function belonging to the domain of the
complex Monge-Ampere operator then NP(dd“u)" = 1, ., (dd“u)" (see [8]).

The idea behind the definition of the non-pluripolar complex Monge-Ampere measure in
the local setting has been adapted to the case of Kéhler manifold [[15}[7]. Consider a complex
compact Kihler manifold (X, ®) and let 6 be a closed smooth real (1, 1)-form on X such that
its cohomology class is big. In [[7], Boucksom, Eyssidieux, Guedj and Zeriahi have defined the
non-pluripolar complex Monge-Ampere measure (6 + dd“u)" for every O-plurisubharmonic
function u. In [10, [11]], Darvas, Di Nezza and Lu have studied the complex Monge-Ampere
equation with prescribed singularity type:

(6 +ddu)" = fo",
[u] =191,

where ¢ is a given O-plurisubharmonic function and f > 0 is a L? function (p > 1) satisfying

Jx fo"= [y 65 > 0. They have introduced the notion of the model potential, the model-type

singularity and shown that this equation is well-posed only for potentials ¢ with model type
singularities, i.e., [¢] = [Pg[¢]], where

Po[¢] = (sup{y € PSH(X,6) : y <0,y < ¢ +O(1)})".

They have also emphasized that requiring ¢ to be a model potential is not only sufficient,
but also a necessary condition for the solvability of (I.T]) for every choice of f. Furthermore,
Darvas, Di Nezza and Lu have shown the existence and uniqueness (up to a constant) of solution
to the following problem, which is a general form of (I.1)) (see [[11, Theorem 4.7]):

(i .

(1.1

PQ[”] :(p?

where ¢ = Py[¢] is a model O-plurisubharmonic function and u is a non-pluripolar positive
Radon measure on X satisfying [y 95)’ = [ydu > 0. Here, we say that a measure U is non-
pluripolar if it vanishes on every pluripolar set.

Inspired of [11]], we say that a function u € PSH™ (Q) is model if u = P[u], where

Plu] = (sup{v€PSH (Q): v<u+O0(1) on Q, liminf (u(z)—v(z))>0VE € 89})*,

Q\N>z—&

and N = {u = —e}. A negative plurisubharmonic function ¢ is model iff NP(dd“¢9)" = 0.
Moreover, if u is a negative plurisubharmonic function then the smallest model plurisubhar-
monic majorant of u is P[u]. We refer the reader to Theorem 5.4]below for more details.

In this paper, we study the existence and uniqueness of solution to the following Dirichlet
type problem for the non-pluripolar Monge-Ampere equation

NP(ddu)" = u,
Plu] = ¢,

where [l is a non-pluripolar positive Borel measure on Q and ¢ is a model plurisubharmonic
function on Q.

(1.3)
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Denote by Ayp(Q) (or Ayp for short) the set of negative plurisubharmonic functions u on
Q with smallest model plurisubharmonic majorant identically zero (i.e., P[u] = 0). The main
result of this paper is as follows:

Theorem 1.1. Assume that there exists v € PSH™ () such that NP(dd®v)" > u and P[v| = ¢.
Denote

S={wePSH (Q):w< ¢,NP(dd“w)" > u}.

Then ug := (sup{w : w € S})* is a solution of the problem (1.3). Moreover, if there exists
Y € ANp such that NP(ddy)" > U then ug is the unique solution of (1.3).

In the case where Q is hyperconvex, Cegrell has shown that if ¢ is a non-pluripolar positive
Radon measure on Q with u(Q) < oo then there exists a unique function u € % satisfying
(ddu)" = p (see [9, Lemma 5.14]). Here, the class .% is defined as in [9, Definition 4.6].
Actually, .7 (Q) is the set of all the functions in Z(Q) with smallest maximal plurisubharmonic
majorant identically zero and with finite total Monge-Ampere mass (see, for example, [[13, page
17]). By Remark [5.5|below, if u € % and (ddu)" vanishes on pluripolar sets then u € 4{p.

Using Theorem|[I.1]and [9, Lemma 5.14], we obtain immediately the following result which
can be seen as a local version of [11, Theorem 4.7]:

Corollary 1.2. Assume that Q is hyperconvex and L is a non-pluripolar positive Radon mea-
sure on Q satisfying [L(Q) < co. Then, there exists a unique plurisubharmonic function u satis-
fying (L.3). Moreover,  +v < u < @ for some v € F*(Q).

For every H € PSH™ (Q2), we denote
Avp(H) ={w € PSH™ (Q) : there exists v € Ayp such that v+ H <w < H},

and
NYH)={w e PSH (Q) : there exists v € .4 such thatv+ H <w < H},

where ./ is the set of functions v € Z(Q) with smallest maximal plurisubharmonic majorant
identically zero and with (dd“v)" vanishes on pluripolar sets. It is easy to check that 4% C
Mp. The following result, which has been proven first by Ahag-Cegrell-Czyz-Pham, can be
considered as a corollary of Theorem 1.1}

Corollary 1.3. [2, Theorem 3.7] Assume that | is a non-negative measure defined on € by
1= (dd@)" for some ¢ € N Then, for every H € 2(Q) with (dd°H)" < U, there exists a
unique function u € N *(H) such that (dd“u)" = 1 on Q.

The paper is organized as follows. In Section [2] we recall auxiliary facts about the plurifine
topology and the non-pluripolar Monge-Ampere measure. In Sections [3] and 4] we introduce
some important tools for the proof of the existence of solution to (I.3). In Section[5] we prove
two Xing-type comparison principles and some related results. Theorem |(1.1|and Corollary
are proved in Section [6]

2. PRELIMINARIES

In this section, we recall some basic concepts and properties about the plurifine topology and

the non-pluripolar Monge-Ampere measure. The reader can find more details in [J5].
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2.1. The plurifine topology. The plurifine topology on an open set Q in C" is the smallest
topology on Q for which all the plurisubharmonic functions are continuous. A basis Z of the
plurifine topology on €2 consists of the sets of the following form:

Un{u>0}
where U is an open subset in Q, u € PSH(U).
The plurifine topology has the following quasi-Lindel6f property:

Theorem 2.1. [5, Theorem 2.7] An arbitrary union of plurifine open subsets differs from a
countable subunion by at most a pluripolar set.

By the quasi-Lindel6f property, one get the following lemma:

Lemma 2.2. Let O be a plurifine open subset of Q. Then there exists a decreasing sequence
{Vi}1 of open subsets of Q such that V| contains O for every | and N |V, \ O is a pluripolar
set.

Proof. Since we can write & = U{0; € A,i € I}, it follows from Theorem [2.1|that there exist
asequence {0;}; C % and a pluripolar set N such that

0 =UZ,0;UN. 2.1)

By the definition of ., for each j, there exist an open subset U; of Q and a plurisubharmonic
function u; € PSH(U;) such that

Oj={z€U;: uj(z) >0}
Since u; is quasi-continuous on Uj, for every [ € Z*, there exists an open subset W;; of U

such that Cap(W;,;,U;) < 2717'~/ and u; € C(U; \ W;,). By Tietze’s theorem, we can find a
continuous extension f;; of u; on U;. Set

Vii=UWjs. (2.2)

Then, the sequence {V;;}, is decreasing and

o)

(<< 1 B
Cap(V;,Uj) < ¥ Cap(Wj,Uj) < Z ST - ’Z =2 2.3)
s=I

Observe that
OjuVi; =V U{zeU;: uj(z) >0}
=V U{zeU;\Vj;: uj(z) >0}
=V U{ze€Uj\Vj;: fji(z) >0}
=V U{z€Uj: fiu(z) >0},

which implies that &; UV;; is open.
Let u € PSH™ (Q) such that

N C {u = —oo}. (2.4)
For each [ € Z*, we denote N; = {u < —I}. We have N, is open and
llim Cap(N;,Q) =0. (2.5)
—>00

Now, for every [ € Z", we define

Vi=NUT, (0;UV)).
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Then {V;}, is a decreasing sequence of open sets. By (2.1) and (2.4), N> ,V; contains 0.
Moreover, by (2.3)), for every Iy € Z ", we have

Cap(MiZ;Vi\ 0,Q) < Cap(Vj, \ 0,Q) < Cap(N;, U7 Vj 4, Q)

< Cap(N;,, Q) + Z Cap(V;j), Q)
j=1

< Cap(Ny,, Q)+ Y Cap(V;;,,U))
=1

< Cap(Ny,, Q) + Z 7~ (lo+J)
Jj=1

= Cap(N;,, Q) +27h.
Letting Iy — oo and using (2.5)), we obtain
Cap(N”. i\ 0,2) =0.
Hence N> ,V; \ € is a pluripolar set.
The proof is completed. U

2.2. The non-pluripolar complex Monge-Ampeére measure. We recall the definition of the
non-pluripolar complex Monge-Ampere measures.

Definition 2.3. [3] If u € PSH(Q) then the non-pluripolar complex Monge-Ampére measure of
u is the measure NP(dd“u)" satisfying

/ NP(dd‘u)" = lim / (dd“max{u,—j})",
—»00
E / En{u>—j}

for every Borel set E C Q.

Remark 2.4. i. If E C {u > —k}, then it follows from |5, Corollary 4.3] that
/ (dd® max{u, —j})" = / (dd® max{u, —k})", for every j > k.
E E
In particular,
/ NP(ddu)" = / (dd® max{u,—k})",
En{u>—k}
En{u>—k}

for every k > 0 and for every Borel set E C Q.
ii. NP(dd“u)" vanishes on every pluripolar sets.
iii. If Q is the open unit ball and u is defined by
u(z) = (~loglai) " (Jeaf* 4. 4 |zl — 1),
then NP(ddu)" is not locally finite (see [16]]).

The following results are classical. We present the proof here for the convenience of the
reader.

Lemma 2.5. Let u,v € PSH™ (Q) and U be a positive Borel measure that vanishes on pluripolar
sets. If NP(ddu)" > p,NP(ddv)" > u then NP(dd“ max{u,v})" > u.
5



Proof. Since u is Borel which does not charge the set {u +v = —oo}, we only need to show
that

/NP dd‘ max{u,v})" /du,

for every Borel set E C {u+v > —co}. Note that E = U E where E; =EN{u+v>—j}. We

will show that

/NP (dd° max{u,v})" /du,

Ej,

for every jo > 1.
Since max{u,v} > min{u,v} > u+v, we have

Ej C{utv>—jot C{u>—jtn{v>—j} C {max{u,v} > —j},
for every j > jo. Hence, by Definition [2.3|and Remark [2.4] (i), we have

/ NP(dd“w)" — / (da max{w, —j})", 2.6)

Ej, Ej,

for w € {u,v,max{u,v}} and for every j > jo.
Denote u; = max{u,—j}, v; = max{v,—j} and ¢; = max{max{u,v},—;}. Observe that
¢; = max{u;,v;}. By applying [12, Proposition 11.9] (see also [18} Proposition 4.3]), we have

(@d9;)" = Loy 3 (dd uj)" + Ly <y ) (dd V)" 2.7)
Note EjyN{u;j >v;} =Ej,N{u>v}and E;;N{u;j <v;} = Ej,N{u < v} for every j > jo.
Hence, it follows from (2.7) that
/ (dd°9;)" > / (ddCu;)" + / (dd°v,)", 2.8)
Ej, Ejoﬂ{uZV} E_,-Oﬂ{u<v}

for every j > jo.
Combining (2.6) and (2.8)), we get

/ NP(dd® max{u, v})" > / NP(dd“u)" + / NP(ddv)".
Ej, Ej,n{u>v} Ej,n{u<v}
Thus, by the facts NP(ddu)" > p and NP(dd°v)" > u, we have
/NP dd‘ max{u,v})" /d[.L

Ej,

Letting jo — o, we obtain
/NP (dd° max{u,v})" /d/.t

The proof is completed. 0
Lemma 2.6. Let u,v € PSH (Q). Then NP(dd‘(u+v))" > NP(dd“u)" + NP(ddv)".
Proof. We need to show that

/ NP(dd" (u+v))" = / NP(dd‘u)" + / NP(dd“v)",

E
6



for every Borel set E C Q\ {u+v = —eo}. For jo € Z*, we denote Ejy = EN{u+v > —jo}.
Note that

Ej,C{utv>—jtC{u>—jIn{v>—j}, (2.9)
for every j > jo. Hence, by Definition [2.3|and Remark [2.4] (i), we have
n
/ NP(ddw)" = / (dd"max{w, - j}) , (2.10)
Ej Ejy

for w € {u,v,u+v} and for every j > jo.
Denote u; = max{u, —j}, v; = max{v,—j} and ¢; = max{u+v,—j}. Forevery z € {u+v >
—j}. we have u;(z) = u(z), vj(z) = v(z) and ¢;(z) = u(z) +v(z). Hence

0j =uj+vj,
on the plurifine open set {u#+v > — j}. Hence, it follows from [5, Corollary 4.3] that
(ddc¢j)n‘{u+v>*j} = (ddc(uj +vj))n’{u+v>fj} > ((ddcuj)n + (ddcvj)n> ‘{u+v>*_i}' (2.11)
Combining (2.9), (2.10) and (2.11)), we have
/ NP(dd“ (u+v))" = / (dd“¢;)"

E;j E;

0 0

> / (ddu;)" + [ (ddv;)"

Ej Ejo

_ [ NP(ddu)" + / NP(ddv)",

Ej, Ej,

for every j > jo.
Letting jy — oo, we obtain
/ NP(dd“ (u+v))" > / NP(dd“u)" + / NP(dd“v)".
E E E
The proof is completed. U

3. STABILITY OF SUBSOLUTIONS AND SUPERSOLUTIONS

The goal of this section is to prove Lemmas [3.2] and [3.3] which are important tools for the
proof of the main theorem. First, we need the following lemma:

Lemma 3.1. Let u,u; (j € Z) be negative plurisubharmonic functions on Q such that {u;} j>
is monotone and u = (lim . u;)*. Assume f, f; are bounded, quasi-continuous on Q satisfying
0 < f,fj <1, fj converges monotonically to f quasi-everywhere. Suppose that {f #0} C {u >
—M} and {f; # 0} C {uj > —M} for every j, where M > 0 is a constant. Then f;NP(dd“u;)"
converges weakly to fNP(dd“u)" as j — oo.
Proof. By the definition, we have

1oy 1yNP(ddu)" =1~y 1y (dd max{u, —k})",
for every k > M+ 1. Since {f # 0} C {u > —M — 1}, it follows that

fNP(ddu)" = f(dd° max{u,—M —1})". (3.1

Similar, we also have

fiNP(dd“u;)" = fj(dd“max{u;,—M —1})" for every j. (3.2)

7



Since u; converges monotonically to u, we have (dd“max{u;,—M — 1})" converges weakly to
(dd°max{u,—M — 1})" as j — oo. Hence, it follows from [5, Theorem 3.2(4 = 3)] that

fi(dd“max{u;,—M —1})" > f(dd° max{u,—M — 1})". (3.3)

Combining (3.1), (3.2)) and (3.3)), we get

fiNP(dd“u;)" > fNP(dd“u)",
as desired. U
Lemma 3.2. Let u; be a monotone sequence of negative plurisubharmonic functions on Q and
let W be a positive Borel measure on Q such that NP(ddu;)" > p for every j € 7. Assume
that u .= < lim uj>* is not identically —eo. Then NP(dd“u)" > u.

jeo

Proof. We give the proof for the case where (u); is increasing. The case of decreasing se-
quence is similar and we leave it for the readers.
For each k € Z T, we denote

fr = min{max{u; +k+1,0},1}.
Then 0 < fi <1, filfu, >~y = 1o fil{u,<—k—1y = 0 and f; is continuous in plurifine topology.
Since u; <up <...<u <..<u,wehave {fy #0} C {u; > —k—1}N{u> —k—1} for every
j. Hence, it follows from Lemma [3.1] that fiNP(ddu;)" converges weakly to fyNP(dd‘u)" as
J — oo. Then, by the assumption NP(dd“u;)" > u, we have
kaP(dch)n > fk[,L

Letting kK — oo, we get

NP(ddCu)n > ]l{ul>,‘x,},u. (3.4)

Moreover, the assumption NP(dd“u;)" > u implies that u vanishes on pluripolar sets. In par-
ticular,

T TS (3.5)
Combining (3.4) and (3.5)), we obtain

NP(dd‘u)" > p.
The proof is completed. O

Lemma 3.3. Let uj be a monotone sequence of negative plurisubharmonic functions on  such

*

that u := ( lim u j) is not identically —oo. Let L be a positive Borel measure on Q. Assume
J—reo

that there exists a plurifine open subset U of Q such that

1yNP(ddu;)" < u,
for every j. Then
1yNP(ddu)" < u.

Proof. We give the proof for the case where (u;); is decreasing. The case of increasing se-
quence is similar and we leave it for the readers.

By the quasi-Lindelof property of plurifine topology (see Theorem [2.1)) and by the fact that
2 is a basis of plurifine topology, the problem is reduced to the case U € 4, i.e.,

U={zeV:v(z) >0},

where V is an open subset of € and v is a plurisubharmonic function on V.
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Let x € C.(V) and denote
Syk= )(max{min{4kv — 2k, 1},0},

for every k € Z*. We have g, 4 is a quasi continuous function on Q.
Denote

fr = min{max{u+k+1,0},1}.
Then 0 < f;, <1, fkl{uZ—k} =1, fk|{u§—k—l} = 0 and f} is quasi-continuous. Since u; > upy >
. >ug > ... >u, we have {fy # 0} C {u; > —k—1}N{u > —k— 1} for every j. Hence,
it follows from Lemma (3.1 that fig, «NP(dd“u;)" converges weakly to fig, (NP(ddu)" as
Jj — oo. Moreover, since suppg, x C U and 0 < fi, g, x < 1, we have fig, (NP (ddu;)" < u for
every j. Then

Ji8x ksNP(ddu)" < p.
Letting k — o and y " 1y, we get
1yNP(ddu)" < u.
The proof is completed. U

4. AN ENVELOPE OF PLURISUBHARMONIC FUNCTIONS

The main result of this section is as follows:

Theorem 4.1. Let 1 be a positive Borel measure on Q and let U C Q be a plurifine open set
such that

NP(dd“9)" > 1yH,
for some @ € PSH™ (Q). Denote
u= (sup{w € PSH (Q):w < H on Q\ U,NP(dd“w)" > 1yu})",
where H is a negative plurisubharmonic function on Q. Then 1yNP(dd“u)" = 1y .

In order to prove the above theorem, we need the following lemmas:

Lemma 4.2. Let S be a family of negative plurisubharmonic functions on Q and let L be a
positive Borel measure on Q such that NP(dd“w)" > U for every w € S. Denote

us = (sup{w:we S}H".
Then NP(dd‘ug)" > p.

Proof. By Choquet’s lemma [[17, Lemma 2.3.4], there exists a sequence {u;} jcz+ C S such that

us = (sup{u;: jez})".
For every j € Zt, we denote
vj =max{ui,uz,...,u;}.

Then {v,} is an increasing sequence and us = (lim ;.. v;)*. Moreover, it follows from Lemma
R.5that for every j € Z ™,

NP(ddv;)" > u.
Hence, by Lemma we have

NP(ddus)" > u.



Lemma 4.3. Let S be a family of negative plurisubharmonic functions on Q. Assume that there
exist a set W C Q and a function H : W — R such that w|w < H for every w € S. Put

us = (sup{w:we S}H)".
Then, there exists a pluripolar set N C Q such that ug < H on W \ N.

Proof. Set vg = sup{w : w € S}. Since negligible sets are pluripolar, we have {ug > vg} is
pluripolar. By Josefson’s theorem, there exists y € PSH™ (Q) such that {ug > vg} C {y =
—oo}. Therefore, for all € > 0,

us+ ey <vg.
Since vs < H on W, it follows that ug+ ey < H on W. Letting € \, 0, we get us < H on
WA (=~
The proof is completed. U

Lemma 4.4. Let u be a bounded, negative plurisubharmonic function on Q and let D € Q be an
open ball. Denote by up the smallest maximal plurisubharmonic majorant of u in D. Assume
that U is a non-pluripolar positive Radon measure on D such that [L(D) < +eo. Then, there
exists v € % (D,up) such that (dd°v)" = u. Here, % (D,up) is the set of plurisubharmonic
functions @ on D satisfying up +w < @ < up for some w € F (D).

Proof. This lemma is an immediate corollary of [2, Theorem 3.7]. Here we will give a proof
that does not use [2, Theorem 3.7].

Let u; be a sequence of smooth plurisubharmonic functions decreasing to u on a neighbor-
hood V of D. It is classical that for every j, there exists a unique maximal plurisubharmonic
function u; p on D such that limps, ., u; p(z) = u;(zo) for every zg € dD. It is easy to check
that u; p is decreasing to up as j — oo.

By [, Theorem 3.4], there exists a unique v; € .% (D, u; p) such that (dd“v;)" = u. More-
over, it follows from the comparison principle [[1, Theorem 3.2] that v; is a decreasing sequence
and

vo+ujp <V;<ujp,
where vy is the unique function in .% (D) satisfying (ddvy)" = p. Denote v = lim; .. v;. We
have vo <up <v <up and (ddv)" = .
This finishes the proof. U

Now we begin to prove Theorem 4.1, We first consider the case where H is bounded and
H(Q) < oo.

Theorem 4.5. Let u be a non-pluripolar positive Radon measure on Q such that () < +oo.
Let U be a plurifine open subset of Q and H € L”(Q). Denote
u= (sup{w € PSH (Q): w<H on Q\U,NP(ddw)" > ]luu})*.
Then u € 2(Q) and 1y (dd‘u)" = 1y u.
Proof. We first show that u is well-defined, i.e., the family
S:={wePSH (Q): w<HonQ\U,NP(ddw)" > 1yu}

1S non-empty.

Let D € Q be an open ball. By [9, Theorem 5.14], there exists ¢ € .% (D) such that
(dd°@)" =1yu. Put M = —info H. We have ¢|q —M € S. Hence, u is well-defined. Moreover,
since ¢ € .Z (D) and @|q —M < u, we have u € Z(Q).
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It remains to show that 1y (dd“u)"” = 1yu. We first consider the case where U is open in
the usual topology. In this case, we only need to show that 15(dd“u)" = 1gu for any open ball
BeU.

Since 1 (Q) < oo, without loss of generality, we can assume that y(dB) = 0. Set

up = (sup{w €PSH (Q): w<uon Q\B}) .
Then, up is maximal on B. In particular, 15(ddug)” =0 < 1. By Lemma there exists
wp € A (B,up) such that
(dd°wp)" = 1pU.
Here, the notation wg € .#'(B,up) means that there exists a function y € .4 (B) ( .4 (B)
is the set of functions belonging in Z(B) with smallest maximal plurisubharmonic majorant
identically zero) such that
up+y <wp<up onbB.

By Lemma we have (ddu)" > 1y . Then, it follows from the comparison principle [2,
Theorem 3.1] (see also [2, Corollary 3.2]) that u|p < wg. On the other hand, for every zy € dB,
we have

limsupwg(z) < limsupup(z) = limsup up(z) = limsup u(z) = u(zp).

B3z—70 B3z—79 U\B>z—29 U\B>z—z9
Hence, the function
_ uonQ\B,
up .=
wpon B,

is plurisubharmonic on . Moreover,
(ddCﬁB)n > ]lB(ddCWB)n -l-]lQ\B(ddcu)n > ]lU\BBu =1yu.

Hence, up € S. Consequently, g < u on . Recall that wg > u on B, thus up > u on Q. Then
up = u on Q and it follows that

(ddcl/t)n|3 = (ddcﬁB)n’B = (ddCWB)n =1puU.

Now, we consider the general case where U is plurifine open. By Lemma [2.2] there exists a

decreasing sequence of open subset U; of Q such that U C () U; and () U;\U is pluripolar.
jz1 jz1
For every j, we denote
Si={wePSH (Q): w<Hon Q\U; NP(ddw)" > 1yu},

and

uj= (sup{w:wes;}".
By using the case where U is open, we have u; € Z(Q) and

]lUj (ddcuj)n =1yu. 4.1)

Since U C Uj41 C Uj for every j, we have u; is a decreasing sequence and u; > u for every j.
Hence
= limu; > u. (4.2)
J—reo
Moreover, using (4.1)) and applying Lemmas [3.2] and [3.3] (replace u by 1y ), we get
1y (ddcl/_t)n =1yu. 4.3)

It remains to show that u = it. By Lemma[4.3] for every j, there exists a pluripolar set N; such
that uj < H on Q\ (U;jUNj). Denote N = U7_;N;. We have N is pluripolar and & < H on
11



Q\ (UUN). By Josefson’s theorem, there exists a negative plurisubharmonic function y on Q
such that N C {y = —eo}. Then, we have ii+ €y < H on Q\ U and, by Lemma[2.6

NP(dd‘a+ey)" > (dda)" > 1yu.
Hence ii + ey € S for every € > 0. As a consequence, we have

u> (limsup(ﬂ—f— 81}/)) =i 4.4

£—0

Combining (#.2) and @.4), we get ii = u. Therefore, by (4.3), we obtain 1y (dd“u)" = 1y u.
The proof is completed. U

End of the proof of Theorem For every j,k € Z*, we denote
Ui={z€U:d(z,0Q) >27/,¢(z) > -2/},

and
H, = max{H, —k}.
We also define
Ujp = (sup{w € PSH (Q) : w < Hyon Q\U,NP(ddw)" > leju})* ,
and

uj = (sup{w € PSH™(Q) : w < H on Q\ U,NP(ddw)" > 1y, u})".
It is clear that the sequence {u 4 }ycz+ is decreasing for every j and
Ujk = Uj, (4.5)

for every j,k. The assumption NP(dd“¢9)" > 1yu implies that ij du < oo, It follows from
Theorem [.3] that

]lUNP(ddCuj’k)" = ]lUju,
for every j,k. Letting k — o and using Lemmas [3.2]and [3.3] we get

]lUNP(ddCIZj)n = ]]_Uj[J, 4.6)

where i1 = limy_o 14 .

Now we will prove it; = u;. By Lemma@ for every k, there exists a pluripolar set N ; such
that u;, < Hx on Q\ (UUN; ). Denote N; = U;?_|N; x. We have N is pluripolar and ii; < H
on Q\ (UUN;). By Josefson’s theorem, there exists a negative plurisubharmonic function y;
on Q such that N C {y; = —co}. Then, we have i+ ey; < H on Q\ U and, by Lemma 2.6

NP(dd‘a;+ey;)" > NP(dd“a;)" > 1y;u.
By the definition of u;, we have it; + ey; < u; for every € > 0. Hence
ij= (égr(l)(b_lj“f—el[/j)) <uj. 4.7)

Combining (4.3 and (.7), we get ii; = u;. Then, by (4.6), we have

1yNP(ddu;)" = 1y,1.
Letting j — o and using Lemmas [3.2| and , we get 1y, NP(dda)" = 1y, u for every jo €
Z+, where i = lim;_,., uj. By the same argument as above, we also have i = u. Hence

]lUjONP(ddcu)” =1y, K, (4.8)
for every jo € Z". Observe that U%s—1Ujo =U\{¢ = —co} and p({¢ = —co}) = 0. Hence, by
using (4.8)) and letting jj — oo, we have

]lUNP(ddCu)" = ]]_U‘Ll.
12



This finishes the proof. U
The following result is a corollary of Theorem#.1|and Lemma [3.3}

Proposition 4.6. Let u € PSH (Q). Then there exists i € PSH™ (Q) such that u < it < Plu]
and NP(dd‘a)" = 0. In particular, if u is model then NP(dd“u)" = 0.

Proof. For every j € Z", we denote

Vi={z€Q: d(z,0Q) >27/, u(z) > -2/},
and

uj= (sup{vePSH(Q): v<uonQ\V;})".
By using Theorem 4.1} we have 1y, NP(dd“u ;)" =0 for every j. Then, it follows from Lemma
that 1y,NP(dd“)" = 0 for every j, where it = (lim . u;)*. Since U7, V; = Q\ {u = —oo}
and NP(dd“a)" vanishes on pluripolar sets, it follows that

NP(dd‘a)" = 0.

Moreover, since u < u; < P[u] for every j, we also have u < it < P[u.
The proof is completed. U

5. XING-TYPE COMPARISON PRINCIPLES

In [19]], Xing provided a strong comparison principle for bounded plurisubharmonic func-
tions. Xing’s theorem then has been generalized by Nguyen-Pham [18]] and by Ahag—Cegrell—
Czyz-Pham [2]. In this section, we introduce two new Xing-type theorems (Theorems and
[5.6) and some applications.

Theorem 5.1. Let u,v € PSH (Q) such that

i, liminf (u(z) —v(z)) > 0 for every &y € dQ, where N = {v = —co};
Q\NBZ%&O

iil, v<u+0(1) on Q.
Letw; € PSH(Q,[—1,0]), j=1,...,n, and denote T = dd“w A ... \dd“wy,. Then

’% (v—u)"T + / (—w1)NP(ddv)" < / (—w1)NP(ddu)". (5.1)
'{u<v} {u<v} {u<v}
Moreover, if NP(dd“u)" < NP(dd°v)" + u for some positive Borel measure [L then
% v-uT< [ (-widu (5.2)
{u<v} {u<v}

Proof. For each M > 0, we denote
uy = max{u,—M} and vy = max{v,—M}.
By the assumption (i), we have

liminf, (uy(2) — (1+-€)vaa(2)) > liminf. (uss (<) — v () > 0,
for every & € dQ and M € Z". Hence, by using [18, Theorem 4.9] (observe that, in this
theorem, the condition Q is hyperconvex is not necessary), we have

% (14+¢&)vpy—upy —&)"T < /(—wl) ((ddup)" — (dd°((1+€)vmr))"), (5.3)
Ey Ey
where Eyy = {uy < (1+€)vyy — €} € Q.
13



Note that if z € Ej then v(z) > —% and v(z) > (14 ¢€)v(z) > um(z) > u(z). Moreover, by

the assumption (if), there exists K > 1 such that v < u+ K. Hence, we have
M
Ey C {v> —?}ﬂ{u<v} Clu>-—-M}n{u<v},

for every M > (Hs)

. In particular,
]1EM(ddCuM) = ]lEMNP(ddCu)" < ]l{u<V}NP(ddCu)",

(1+z—:)

for every M > . Hence,
/ (—w1)(ddCup)" < / (—w1)NP(dd°w)", (5.4)
Ey {u<v}

for M > 1.
By the fact Eyy C {v > —M}, we also have

/ (—w1)(dd (14 €)var))" = / (—w1)NP(dd“(1 4 €)v)" > / (—w)NP(ddV)".  (5.5)

Ey Ey Ey

Combining (5.3), (5.4) and (5.3), we get

(1+€)var — s — €)"T + / w1 )NP(dd V)" < / (—w1)NP(dd“u)",
Ey {u<v}
for every M > 1.

Letting M — oo and using the monotone convergence theorem (observer that {1z, ((1 +
€)vy —up — €)" }yez+ 1s an increasing sequence), we have

1 n C n C n

¥ / (1+&)v—u—g)'T+ / (—w1)NP(ddCv)" < / (—w1)NP(ddCw)".
{u<(1+€)v—¢€} {u<(14+£)v—¢} {u<v}

Letting € \, 0, we obtain the inequality (5.1).

It remains to prove (5.2). For every M > (He) , by the fact Eyy C {u > -M}n{v>-M},
we have
((dd up)" = (dd*((1+ &)vm))") |Eyy = (NP(dd“u)" — NP(dd“((1+€)v))") |5y < MlEy-
Hence, it follows from (5.3) that
1
(e —eyT < [(~wn)du,

n!
Ey Ey

n!

for every M > 1. Letting M — oo, we get

1
» / (1+&)v—u—g)"T < / (—w1)du.
‘{u<(1+£)v78} {u<(14+-€)v—e}

Letting € \, 0, we obtain (5.2). This finishes the proof. O

Corollary 5.2. Let u,v € PSH™ (Q) such that

i, liminf (u(z) —v(z)) > 0 for every & € dQ, where N = {v = —co};
Q\NSZ*)&O

il, v<u+0(1) on Q.
IfNP(ddu)" < NP(ddv)" then u > v.
14



Proof. By the last assertion of Theorem [5.1] we have

(v—u)"(ddw)" =0,
{u<v}
for every w € PSH(Q,[—1,0]). It follows that v < u a.e., and thus v < u everywhere in Q. [
Corollary 5.3. Ifu € PSH (Q) and NP(dd“u)" = 0 then u is model.
Proof. Letv € PSH™ (Q) such that v <u+O(1) on Q and liminf (u(z) —v(z)) > 0 for every

Q\N3z—&
& € 0Q, where N = {u = —oo} C {v = —eo}. For € > 0, we denote

ve(z) = v(z) +e(||z]|* = M),
where M = sup ||z||>. Then ve € PSH™ (Q), ve <u+O0(1) on Qand liminf (u(z) —ve(z) >0
o) Q\NSZ*)&O
for every &) € dQ. It follows from Corollary [5.2] that u > v, for every € > 0. Letting € — 0,
we obtain u > v. Taking the supremum over all such v and taking the upper semi-continuous

regularization yields u > P[u| almost everywhere in Q, hence u > P[u| everywhere in Q. It is
clear that u < P[u]. Therefore u = P[u], which means u is model, as desired. O

Theorem 5.4. Suppose u € PSH™ (Q). Then

(i) P[u] is a model plurisubharmonic function;
(ii) u is model iff NP(dd‘u)" = 0.

Proof. (ii) is an immediate corollary of Proposition {.6] and Corollary [5.3] It remains to prove
).

By Proposition there exists # € PSH™(Q) such that u < i < P[u] and NP(dda)" = 0.
Then, by Corollary we have i is model and it follows that

u < ii= Pl < Plul.

Moreover, the condition u < i implies that P[u] < P[i]. Hence
i = Pli) = Plu].
Thus, P[u] is model. O

Remark 5.5. (1) If u is a negative maximal plurisubharmonic function then it follows di-
rectly from the definitions that u is model. However, the converse is not true. For
example, u = log|z| is a model plurisubharmonic function which is not maximal on the
unit ball.

(ii) Let u € PSH™ (Q) N 2(Q) such that (dd“u)" vanishes on pluripolar sets. If v> u is a
model plurisubharmonic function then it follows from [6, Theorem 1.2] and [2, Lemma
4.1] that v € 2(Q) and (dd°v)" vanishes on pluripolar sets. Hence, by Theorem
we have (ddv)" =0, i.e., v is maximal. Consequently, if Q is a hyperconvex domain
then

{we Z(Q): (dd°w)" vanishes on pluripolar sets} C Np().
Theorem 5.6. Let u,v,H € PSH™ (Q) such thatu € A\p(H) andv < H. Assume w; € PSH(Q,[—1,0]),
j=1,...,n,and denote T =ddwi A\ ... Ndd°w,,. Then
1

n!

(v—u)"T + / (—w1)NP(ddv)" < /(—wl)NP(ddCu)".

{u<v} {u<v} {u<v}
15



Moreover, if NP(ddu)" < NP(ddv)" + U for some positive Borel measure | then
/ (v—u)"T < / (—wi)du.
.{u<v} {u<v}
Proof. We will use the same idea as in the proof of [2, Theorem 3.1]. Recall that
Avp(H) ={w € PSH (Q) : there exists v € Ayp such that v+ H <w < H},

where Ajyp is the set of negative plurisubharmonic functions u satisfying P[u] = 0.
Let ¢ € Anp such that H > u > H + ¢. For every j € 7", we denote

Vi={z€Q:d(z,0Q) >277, ¢(z) > -2/, H(z) > -2/},
and

¢ = (sup{y €PSH (Q): y <@onQ\V;})".
Since v < H, we have, forevery j € 7™,

u>H+@=H+¢;>¢;+vonQ\Vj, (5.6)
which implies
Q\l}vfgziil)gg[” —(@j+v)] =0, (5.7)
where N = {u = —oo} C {¢+v = —oo}. We also have,
u>H+¢>-2">(¢;+v)—2"" onV}. (5.8)
By the inequalities (5.6) and (5.8), we have
¢j+v—e<u+2"'onQ. (5.9)

By using the inequalities (5.7) and (5.9), and applying Theorem [5.1] we have

1
o Getv=w T [ (cw)NP@d (g )"
{u<@j+v} {u<@j+v}
< / (—w1)NP(ddCu)".
{u<ej+v}

Hence, by Lemma[2.6, we obtain

1

p} / (@j+v—u)"T+ / (—w1)NP(ddv)" < / (—w1)NP(ddu)".
u<gj+v} {u<@;+v} {u<@j+v}

Then, by the monotone convergence theorem, we have

1
— / (lim @; +v—u)"T+ / (—w1)NP(ddv)"
J—ree
{u<]1im ¢j+v} {u<lim @;+v}
—yoo J—yeo
< / (—w1)NP(ddCu)".
{u<lim @;+v}
J—ree
By the same argument as in the proof of Proposition 4.6 we have NP(dd‘(lim ¢;)*)" = 0,
Joree
and then it follows from Corollary that (lim ¢;)* is model. Hence, by the condition ¢ €
Joree

16



~\p and the fact ¢ < @; for every j, we have (Jlgrolo ¢;)* = 0 and hence ]11_>n.}° @; = 0 outside a
pluripolar set. It thus follows that
1
- (v—u)"T + / (—w1)NP(ddv)" < / (—w1)NP(ddu)".
n!
{u<v} {u<v} {u<v}

Now, assume that NP(dd“u)" < NP(dd‘v)" + p. Since NP(ddv)" < NP(dd‘(¢;+v))", we

have NP(dd“u)" < NP(dd®(¢;+v))" + u. By using the inequalities (5.7) and (5.9), and apply-

ing Theorem [5.1] we have
1

n!

| @v-wrs [ (wd
{u<@j+v} {u<@j+v}

Letting j — oo and using the fact (lim ¢;)* = 0, we obtain
Jree

1

n!

(v—u)'T < / (—wi)dy.
{u<v} {u<v}

The proof is completed. U
Similar to Corollary [5.2] we have the following result:

Corollary 5.7. Let H € PSH (Q) and u,v € A\p(H). Assume that NP(dd‘u)" > NP(ddv)".
Then u <.

6. PROOFS OF THEOREM [[.1] AND COROLLARY

6.1. Proof of Theorem [I.1l For the reader’s convenience, we recall the statement of Theorem

Theorem 6.1. Assume that there exists v € PSH™ () such that NP(dd®v)" > u and P[v| = ¢.
Denote

S={wePSH (Q):w < ¢ ,NP(ddw)" > u}.
Then ug := (sup{w : w € S})* is a solution of the problem

{NP@%FMW::u, 6.

Plu] =9,

Moreover; if there exists W € A\p such that NP(dd“y)" > W then ug is the unique solution of
(©.1).
Proof. By the assumption, we have v < ug < ¢ and P[v] = ¢. Therefore, Plus] = ¢. We need
to show that NP(dd“ug)" = .

For every j > 1, we denote

Q;={z€Q:d(z,0Q) >277},
and ‘
U;= {z € Qi:v+¢ > —27}.
We also define
Six={we€PSH (Q): w < ¢ on Q\ Uy, NP(ddw)" > 1y, 1},

for all k,j > 1. It is easy to see that v € S, hence u;; := (sup{w € §;;})* is well-defined.
Since S C S k» we also have
us < uji (6.2)
17



Recall that

Pl¢] = <sup{w €PSH (Q): w<¢+0(1) on Q, Q\{q)h:rzlir}}gz%g((P(Z) —w(z)) > 0VE € 89})

*

By the definition of S;, we have u;; < ¢ on Q\ Uy and ¢ > v+ ¢ > —2F on U,. Hence,
¢+0(1) > uj;onQand ¥ limir}}f é((P(Z) —ujx(z)) > 0forall £ € dQ. Consequently, we
O\{p=—c0}>7—

have, u;; < P[¢]. Since ¢ is model, it follows that

Moreover, it follows from Theorem [.1] that
:ﬂ_UkNP(ddCuLk)n = ]lUk<]lUj[,L) = ]lUj[J, (64)

forevery k > j > 1.
Note that if j; < j> and ky > kp then S, 1, < S}, ,. Hence
Uj oy S Uy kys V1 < Jo, k1 2 k. (6.5)
Put

uj = (lim ;)"

It follows from (6.2) and (6.3)) that
us < uj < 9. (6.6)
In particular, u; # —co. By using (6.4) and applying Lemmas and we get
1y;NP(ddu;)" = 1y,1,Vj > 1. (6.7)
It follows from (6.5)) that (u;) j>1 is a decreasing sequence. Set

u = lim Ltj.
jee

By (6.6), we have
us <ua<9. (6.8)
By using and applying Lemmas [3.2] and we deduce that
j]'UjO NP(ddCﬁ)" = ]lUjoua
for every jo > 0. Letting jo — oo, we obtain
1y o,NP(ddm)" =1 ) y, . (6.9)

Jj=1 j=1

By definition, Q\ |J Uj = {v+ ¢ = —co} is a pluripolar set. Therefore, implies that
=1

NP(ddn)" = .
This combined with (6.8) gives
us < < (sup{w € PSH (Q):w < ¢,NP(ddw)" > u})" = us.

Hence, ug = it and NP(dd ug)" = p. Thus, ug is a solution of (6.1).

Now, assume that there exists ¥ € Ayp and NP(dd“y)" > p. We need to show that ug is the
unique solution of the problem (6.1)). Note that v := y + ¢ satisfies the conditions NP(ddv)" >
NP(dd“y)" > u and P[v] = ¢. Hence ug is a solution (6.1)) satisfying

0+ v <us<¢.

In particular ug € Ayp(9).

Let u be an arbitrary solution of (6.1)). We will show that u € Ayp(¢).
18



Denote .
Vj = {Z € 'Q‘j7u > _21}7
and *
uj = (sup{w €PSH (Q): w<uon Q\Vj}> .
By the same argument as in the proof of Proposition 4.6 we have
(hm uj) = Plu| = ¢. (6.10)
J—eo
It is easy to see that
u<uj, (6.11)
on Q. Moreover, u; + y satisfying the conditions
eui+y<uj=u on Q\Vj
euj+y<u;<u+2/ on Vj
e NP(dd(uj+y))" > NP(ddy)" > u.
Then, it follows from Corollary that
Wby < (6.12)

Combining (6.10), (6.11)) and (6.12), we get
(P+I//:<lim(uj+l//)) §u§<1imuj) =¢.
oo oo

In particular, u € Ayp(¢). By Corollary we have u = ug. Thus, ug is the unique solution

of (6.1).
This finishes the proof. U

6.2. Proof of Corollary[I.3, In order to prove Corollary [I.3] we need the following lemma:

Lemma 6.2. Let u,v,h € 2(Q) such that u+v < h. Assume that (dd“u)" and (ddv)" vanish
on pluripolar sets. Then (dd“h)" vanishes on pluripolar set.

Proof. Since the problem is local, we can assume that € is hyperconvex and u, v, h are negative.
In particular, u,v,h € &(Q) (see [9, Theorem 4.5] and [6, Theorem 1.2]). Replacing Q by a
relative compact subset of Q, we can also assume that [ (dd“w)" < oo for w = u, v, h.

Let A C Q be a pluripolar set. By [2, Lemma 4.4] and by the assumption [,(ddu)" =
J4(ddv)" =0, we have

n—k)/n

/A (ddw)* A (ddv)™* < ( /A (ddcu)”)k/n A ( /A (ddcv)”)( 0,

for every k =0, 1,...,n. Therefore,

/A(ddc(u—l—v))" = i (Z) /A(ddcu)k/\ (ddv)"* =0.

k=0
Since A is arbitrary, we have (dd“(u+v))" vanishes on every pluripolar set. Thus, it follows
from [2, Lemma 4.1] that (dd“h)" vanishes on pluripolar sets. U
Now we begin to prove Corollary [I.3] We recall its statement for the reader’s convenience.

Corollary 6.3. Assume that | is a non-negative measure defined on Q by u = (dd°@)" for
some @ € N 4(Q). Then, for every H € 2(Q) with (dd°H)" < U, there exists a unique function
u € NH) such that (dd“u)" = 1 on Q.
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Proof. Put ¢ = P[H] and u = (sup{w:w € S})", where
S={wePSH (Q): Plw|=0¢,(ddw)" > u}.
Since ¢ + ¢ € S, we have
W>o+¢>H+o. (6.13)

By the definitions of .4#"“ and .#Np, we have 4% C A{p. In particular, ¢ € 4{p. Then, it
follows from Theorem |1.1|that u is the unique solution to the problem

{NP(dde)" —u,

6.14
Plw| = ¢. (6.14)

Moreover, it follows from [6, Theorem 1.2] and Lemma [6.2| that u € Z(Q) and (dd“u)" van-
ishes on pluripolar sets. Hence, we have

(dd“u)" = p. (6.15)

Denote v = (dd“H)". Then H is a solution of the problem

NP(dd“w)" =
(ddw)' =V, (6.16)
Pw]=9¢.
Moreover, by Theorem [I.1] the problem (6.16) has a unique solution. Hence
H = (sup{w € PSH™ (Q) : P]w] = ¢, (ddw)" > v})" >u. (6.17)

Combining (6.13) and (6.17), we get u € .4#"“(H). This combined with gives that u is a

solution of the problem

“(H

wE‘,/V (H), 6.18)
(ddw)" = L.

It remains to show the uniqueness of solution of the problem (6.18)). Assume that v is a solution
of (6.18)). Then there exists y € .4 such that

H+y<v<H.
Since A% C Ap, it follows that
P[H) = P[H] +Ply] < PIH + ] < P}] < P[]

Then P[v| = P[H] = ¢. Moreover, since = (dd“ )" vanishes on pluripolar sets, the condition
(ddv)" = u implies that NP(dd“v)" = u. Hence, v is a solution of the problem (6.14)). By the
uniqueness of solution of (6.14]), we have v = u. Thus, u is the unique solution of (6.18).

The proof is completed. U
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