LOG CONTINUITY OF SOLUTIONS OF COMPLEX MONGE-AMPERE EQUATIONS

HOANG-SON DO AND DUC-VIET VU

ABSTRACT. Let X be a compact Kéhler manifold with semipositive anticanonical line bundle.
Let L be a big and semi-ample line bundle on X and « be the Chern class of L. We prove
that the solution of the complex Monge-Ampere equations in « with L? right-hand side
(p > 1) is log™-continuous for every constant M > 0. As an application, we show that
every singular Ricci-flat metric in a semi-ample class in a projective Calabi-Yau manifold X
is globally log™ -continuous with respect to a smooth metric on X.
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1. INTRODUCTION

Let (X,w) be a compact Kéhler manifold. A cohomology (1, 1)-class « is said to be semi-
positive if o contains a semi-positive smooth form. Let § be a smooth closed (1, 1)-form in a
big and semi-positive cohomology class. We consider the following complex Monge-Ampere
equation

(1.1 (dd°u+0)" = fw", supu=0,
X

where f € L? (p > 1) is a nonnegative function so that [, fw" = [ 6". The regularity of
solutions of (1.1) is well-known if # is Kiahler thanks to pioneering works by Yau [44] and
Kotodziej [29], and many subsequent papers. We refer to [16, 18, 19, 31, 30, 35, 36, 37,
40, 41, 42] and references therein for details on Holder continuity of solutions when 6 is
Kahler.

The focus of our work is the case where 6 belongs to a semi-positive and big cohomology
class. In this general setting, it is well-known by [7] that the solution « is smooth outside
the non-Kahler locus of the cohomology class of 6. By [21, 8] or [17], we know that the
equation (1.1) admits a unique continuous solution v on X if the cohomology class of § is
integral (see [23] for more information). The aim of this paper is to quantify this continuity
property of solutions. The methods in [21, 8] or [17] seem to be only qualitative. To state
our results, we need to introduce some notions.

Let M > 0 be a constant. We fix a smooth Riemannian metric dist(-,-) on X. A function
won X is said to be logM -continuous if there exists a constant C'; > 0 such that

Cu
< - -
= Togdist( 1"
for every z,y € X. Let K x be the canonical line bundle of X. Recall that X is Calabi-Yau if
c1(Kx) =0, and X is Fano if Kx < 0. A line bundle L on X is said to be semi-ample if L*

u(z) — u(y)
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is base-point free for some large enough integer k& > 1. It is a well-known fact that (see [38,
Section 2] for a summary), L is automatically semi-ample if X is a projective Calabi-Yau
manifold and L is big and nef.

Here is our main result in this work giving a partial answer to the above question.

Theorem 1.1. Let (X, w) be a compact Kihler manifold such that K% is semi-positive (Where
K% is the dual of the canonical line bundle Kx) and let L be a big and semi-ample line bundle
on X. Assume f is a LP function for some constant p > 1 and 0 € ¢1(L) is a smooth form.
Then the unique solution u of (1.1) is logM -continuous for every constant M > 0.

As far as we know, Theorem 1.1 is probably the first known quantitative (global) regu-
larity for solutions of complex Monge-Ampeére equations in a semi-positive class. We would
like to notice that it was proved in [27] that the solution of the equation (dd‘u+w)"™ = ef'wn
for e’ € L'(log L)? is log -continuous for M := min{ =", #1} ; see also [24] for a recent
development. As far as we can see, the method in [27] or [24] uses crucially the fact that
w is Kahler and it is not clear if this can be extended to semi-positive classes to obtain a
logM -continuity for solutions of (1.1).

Assume that X, L, w are as in the statement of Theorem 1.1. Hence the non-Kéhler locus
N of ¢1(L) is a proper analytic subset in X; see [5]. Let F' be a smooth function on X such
that [, e'w™ = [ (c1(L))" and denote by wp the (singular) positive (1,1)-form on X such

that w? = ef'w". Recall that wp is a genuine Kihler metric on X\ N.

Corollary 1.2. Assume that X, L,w, N and F are as above. Then for every constant M > 0,
there exists a constant Cps > 0 such that

dwF (xa y) < CM’ lOg diSt(‘Iu y>‘7M7
for every x,y € X\N, where d,,, is the distance induced by wr on X\ N.

In the case where 6 is in a Kahler class, one has better estimates; see [24, 33, 43] for
details. We are not aware of any previous result similar to Corollary 1.2 for merely semi-
ample and big classes. As an immediate consequence of Corollary 1.2, we get the following.

Corollary 1.3. Let (X, w) be a compact Kdhler manifold such that K% is semi-positive and let
L be a big and semi-ample line bundle on X. Assume wy is a (singular) Kdhler-Einstein metric
in c1(L). Then wy has a logM-continuous potential. Moreover, if d,,, denotes the distance
induced by wy on X\ N then for every constant M > 0 there is a constant Cy; > 0 so that

dug (,y) < Chr|log dist(z, )|,
for every x,y € X\N.

One can apply Corollary 1.3 to the case where X is Calabi-Yau. In this case wy is the
Ricci-flat metric in ¢; (L) which always exists uniquely (see [21]).

We now explain main ideas in the proof of Theorem 1.1. We will need to approximate our
smooth solution u by smooth quasi-psh function (u.).. Using [14] or [15, Theorem 4.12]
(analytic approximation for general closed positive (1, 1)-currents), one obtains (64 ew)-psh
functions u, so that u. converges to v in a quantitative way in L'. However || Vu,|| 1~ grows
like e!/¢. The fact that u, is only ( + ew)-psh and a bad control on ||Vu,||~ is not usable
in our approach. For this reason, we have to restrict ourselves to the line bundle setting
for which a more precise approximation procedure is available. Precisely we will need a
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modified version of Demailly’s analytic approximation of singular (not necessarily Kahler)
Hermitian metrics for a line bundle (Theorem 5.11). This together with Kotodziej’s capacity
technique will give us a weak Log continuity property for u (see Lemma 6.2). Our second
ingredient (Sections 2 and 3) is to say that a function satisfying this weak Log continuity
property is indeed Log continuous as desired.

The paper is organized as follows. In Sections 2 and 3, we present important facts about
log continuity of functions. In Section 4, we recall some facts about Holder continuous
measures. In Section 5, we present a modified version of Demailly’s analytic approxima-
tion. The rest of the paper is devoted to the proof of main results.
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2. LOG CONTINUITY OF PSEUDOMETRICS

Let Z be a topological space and d : Z2 — Rx( be a function. Let B > 1 be a constant.
We say that d is a B-pseudometric on Z if the following holds:

(i) d is symmetric, i.e, d(z,y) = d(y, z),

(ii) d is continuous on Z?2,

(iii) for every x1,...,2,, € Z, one has
m—1
d(z1,zm) < B Z d(xj, xj41).
j=1

Lemma 2.1. Let U C R™ be a bounded convex domain (m > 2). Let B > 1 be a constant.
Let d : U x U — [0,00) be a B-pseudometric satisfying the following condition: there exist
constants o > 0, D > 1 and Cy > 0 such that

Co
2.1 d(z,y) < 77—,
(.9) |log |z — y||*

for every x,y € U with |z — y|P < min{dist(z, OU), dist(y, OU)}, where
dist(w,0U) = inf{|lw — | : £ € OU }.
Then, there exists a constant C' > 0 depending only on B, Cy,«, D and U such that
C
dz,y) £ ————=»
9) = iogle =yl
forevery x,y € U.

Proof. Without loss of generality, we can assume that diam/(U) < 1. In particular, |z —y|” <
|x — y| for every z,y € U.
Fix a € U and denote r = dist(a,0U). The desired assertion is clear if we have either
|x —y| >r/2o0r
min{dist(x, 9U), dist(y, 0U)} > r/2 > |z — y|
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(by (2.1)). Consider now the case where
|z —y| <r/2 and min{dist(z,dU),dist(y,oU)} < r/2.

Thus, we have max{|z — al, |y — a|} > |z — y|. Without loss of generality, we can assume
that |z —a| > |z —y| :== & > 0. Set

In other words, ¢ is a point in [z, a] satisfying | — x¢| = 0. Since U is convex, we have
—a| — 0) dist(z,0U) n d dist(a, 0U)

| — al |z — al

(2.2) dist (9, 0U) > U > ré.

For every k € ZT, we denote by z;, the point in [z, zo] satisfying |z — x| = 6°". Then, we
have
dist(xo, U )|zg, — x|

> r6P*  and |z — 21| < §o
|z — z0

dist(zy, 0U) >

1
Put M = [} + 1, where [-] is the greatest integer function. For every [ = 0,...,M and
r

k € Z+, we denote
(g, — xp—
Tkl = Th—1 + (]Wl)

Dk—l

Then |zy; — k41| < . Moreover, since dist(.,0U) is a concave function on U, we

have
e 6P
dist(xg 1, 0U) > min{dist(xy, dU), dist(zg_1,0U)} > rd”" > ST

Therefore, by the condition (2.1), we get

Cy Co
d(rgg,x < < '
(ks Tgg1) < [log |x) — 2pi11]]* — DEDallog e

Thus, we have
M-

BCyM
(g, 21-1) ; @ty Th141) < S Tl log d]o"
Hence
: _B2GM ~ oy Ci
D~=De <
d@x; 20) z:: (25, 25-1) < \logéyaz ~ |log |’
where C — B*CoM D~  B*CoM
T 1-De T pa-1
Since d is continuous on U x U, one gets
Gy
2.3 d = lim d < .
(2.3) (z,20) = lim d(zg, z0) < Tog o
Since |y — xo| < |z —y| + |z — x0| < 26, by using the same argument as above, we also have
C
2.4 d(y, o) < 1

= [logd|®”’
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where C5 > 0 depends only on B, Cy, M, D and a.
Combining (2.3) and (2.4), we get
B(Cl +CQ) B(C1 +CQ)

d(x,y) < B(d(x,zq) + d(y,zq)) < = )
(2.y) < Bld(z, z0) + d{y. z0)) | log 6] | log [ — yl|*

The proof is completed. 0

Lemma 2.2. Let U C R™ be a bounded convex domain (m > 2). Let B > 1 be a constant.
Assume d : U x U — [0,00) is a B-pseudometric satisfying the following condition: there exist
constants « > 1 and Cy > 0 such that

Co
(2.5) dz,y) < =
(0] |log |z — ]|

for every z,y € U with |z — y| < min{dist(z, 0U), dist(y, 9U)}, where
dist(w,0U) = inf{|lw — | : £ € OU }.

Then, there exists a constant C > 0 depending only on B, Cy, o, D and U such that

C
d(z,y) < )
(@9) < Mog T —yo

forevery x,y € U.

Proof. We will use the same method as in the proof of Lemma 2.1. Without loss of generality,
we can assume that there exists a € U such that r = dist(a,0U) > 1. We only need to
consider the case where |z —y| <r/2 and min{dist(z,dU),dist(y,0U)} < r/2. In this
case, we have max{|z —al, |y —a|} > |x —y|. We can assume that |z —a| > |z —y| :=J > 0.
Set
(|lx —al = d)x da

|z — al |z —al

g =

In other words, zy is a point in [z, a] satisfying |x — x| = J. Since U is convex, we have

(|lx — a] — §) dist(z, 0U) n d dist(a, 0U)

(2.6) dist(zg,0U) >
| — al |z — al

> rd.

For every k € Z*, we denote by z;, the point in [z, z¢) satisfying |z — x;| = 27%4. Then, we
have
dist(zg, OU)|z) — x|

dist(zg, 0U) >
[z — 0

>r27%5 and |z — xp_1| < 2756

By the condition (2.5), we have

C() CO
S S ay
[log |z — xp—1||* ~ (|logd| + klog2)

d(zy, TK—1)

for every k € Z*. Hence

k

k
BCy BCy /00 dt o]
d < B d(zj,zj 1) < < 7@ = Tlogglo—T
(ks 20) < B Y _d(wj, 1)_Z(|log6|—|—jlog2)a ~ log2 Jiog)s t* ~ [log gt

j=1 7j=1

_ BCo
where C; = a=1)log2"
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Since d is continuous on U x U, one has
C
2. d = lim d < —
2.7) (z,20) = lim d(z,20) < Togoo—T
Since |y — xo| < |z —y| + |z — x| < 26, by using the same argument as above, we also have
<& ,
~ |logd|t
where C5 > 0 depends only on B, Cjy and «. Combining (2.7) and (2.8), we get
B(C1 + C») B(C1 + Cs)

d < B(d d < = ‘
(z,y) < B(d(z,x0) + d(y,x0)) < [log 5|1 [log |z — y|[* !

(2.8) d(y, o)

The proof is completed. O

Proposition 2.3. Let Ny, Ns..., N, be affine subspaces of R™ such that codim (N;) > 2 for
every j = 1,...,p. Denote N = U?ZINJ». Let B > 1 be a constant. Let « > 0, D > 1 and
Co > 0 be constants. Let d be a B-pseudometric on B"™ \ N satisfying one of the following
conditions

i) D >1and

Co
(2.9 dz,y) < =————,
(529 = Tioglo — gl
for every x,y € B™\ N with |z — y|P < min{dist(x, N), dist(y, N)}.
(i) D =1and

Co
(2.10) d(z,y) < ;
() = Toglo— gl
for every x,y € B™ \ N with |z — y| < min{dist(z, N), dist(y, N)}.
Then, there exists C' > 0 depending only on B, Cy, a, D, N and m such that
C
d x?y S 1 1 A
(59) = Toglo =yl
for every x,y € B™\ N.

Proof. We will give the proof for the first case where (i) is satisfied. The second case is
similar (use Lemma 2.2 in place of Lemma 2.1). Recall that d is a continuous functionon
(B™\ N) x (B™\ N). Let H; be a hyperplane containing N; for j = 1, ..., p, and denote
H = U?ZIHJ. Observe that the connected components of B™ \ H are bounded convex
subsets of R™. Moreover, if U is a connected component of B" \ H then by (2.9), u satisfies
the condition (2.1) in Lemma 2.1.

Let z,y € B™ \ N. We distinguish into three cases.

Case 1: there exists a connected component U of B \ H such that x,y € U \ N.
In this case, by Lemma 2.1 and by the continuity of d, we have

d(l’,y) S L,
| log |z — yl[*
where Cy; > 0 is a constant depending only on B, Cy, o, D and U.
Case 2: [z,y| N H # () but [z,y] NN = 0.
In this case, there exist connected components Uy, Us, ..., Uy, of B\ H and x¢, z1, 2, ..., T €



LOG CONTINUITY OF SOLUTIONS OF COMPLEX MONGE-AMPERE EQUATIONS 7

[z,y] such that xg = z € Uy, o, = y € U and x; € 0U; N OU,44 for every j = 1,...,k — 1.
Using the result in Case 1, we have

k k
— =

kBCy
~ |log |z —y||*
(p+1)BC}y
= |log |z —y||*’
where C1 = sup{Cy : U is a connected component of B"™ \ N}.
Case 3: [z,y] N N # 0.

Denote f(t) =tx + (1 —t)y, 0 <t < 1. Then, thereexist 0 < k <pand 0 < t; <ty < ... <
ti. < 1 such that

BCy,

J

zj—xj-1]|*

[yl "N ={f(t;):j=1,....k}.
By Lemma 2.4 below, for every j = 1, ..., k and for every 0 < ¢ < 1, there exists a pieceweise

linear curve | = agpai...asr with ag = f(t; + €) and asr = f(t; — €) such that [ does not
intersect N and

L(l) < Calf(t; +€) — f(t; — )| = 2C2¢lz — ],
where C5 > 1 is a constant depending only on p. Therefore, by the result in Case 2, we
have
(2.11) d(f(t; + ). 1 (t; — ) = O(e).
Denote ¢ty = 0 and 41 = 1. By Case 2 and by (2.11), we have

Az, y) = lim d(f(to + ), (i1 — <)

e—0+
k

<hmsupBZd (tj +e), f( ]+1—6))+11mSUPBZd (tj +e), f(tj —¢))
e—0+ j=0 =0+ J=1

B2 1
< limsup Z Cilp+ 1)
= [log | f(tj +€) = f(tj41 — )|
B2Cy(p +1)?
= |loglx —yl|*
The proof is completed. O

The following lemma plays also an important role in our proof later.

Lemma 2.4. Let N1, Na, ..., Nj, be affine subspaces of R™ such that codim (N;) > 2 for every
j =1,...,k Denote N = U;C:lN. Then, there is a constant C' > 1 dependlng only on k
(and m) satisfying the following property: for every x,y € R"™ \ N, there is a polygonal chain
l = apay...ag with ag = x and ay. = y such that

Cdist(¢§, N) > min{dist(z, N), dist(y, N)},
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for every ¢ € Uﬁkzal[as, as+1], and
L(l) < Clz —yl,
where L(l) = |ag — a1| + a1 — ag| + ... + |agx_; — ayx| is the length of L.
In order to prove Lemma 2.4, we need the following elementary lemma:

Lemma 2.5. Let N be an affine subspace of R™ with codim N > 2. Let r > 1 be a constant.
Then, for every x,y € R™ \ N, there exists w € R™ \ N such that

|z —w| +w —y[ < 3z —yl,
and
2r dist(&, N) > min{dist(z, N), dist(y, N)} > rdist(&, [z, y]),
for every £ € [z, w] U [w, y].
Proof. Observe that the function dist(-, V) is convex on R™. Indeed, for every a,b € R™,
there exist ag, bp € N such that |a — ag| = dist(a, N) and |b — bg| = dist(b, N). Hence, if
n = aa+ (1 — a)b for some « € [0,1] then
adist(a, N) + (1 — «) dist(b, N) = ala — ag| + (1 — «a)|b — bo|
> lafa —ag) + (1 — a)(b— bo)|
= |n — (aap + (1 — a)bp)| > dist(n, N).
Let R := min{dist(x, N),dist(y, N)}. If dist(n, N) > R/(2r) for every n € [z,y], then

w := z satisfies the desired property. Assume, from now on, that there is a point n € [z, y]
such that dist(n, N) < R/(2r) < R/2. We deduce that

(2.12) |z —y| = |z — 9|+ |n — y| > dist(z, N) — dist(n, N) + dist(y, N) — dist(n, N) > R.

We distinguish into three cases

Case 1: Either [z,y] is parallel to N or the line passing through x,y intersects N but
[,y NN = @.
In this case, we can take w := z.

Case 2: [z,y| NN # @.
Since codim N > 2, there exists a hyperplane NV containing z,y, N. Let wg = [z,y] N N. Let
w be a point in R™\N so that |w — wo| = £ and [w, w] is orthogonal to N. We have

w — |+ Jw —y| < o —wo| + 2w —wo| + [y —wo| <[z —y[+ 2R < 3|z —y],

where the last estimate holds due to (2.12).
Moreover, if £ € [z, w] U [y, w] then
dist(¢, [z, y]) < dist(w, [x,y]) = |w — wo| = R
r
Let zp € N such that [z — 29| = dist(z, N). If § € [z, w] then { = ax + (1 — a)w for some
a € [0,1]. Since z —zp L N and w — wy L N, we have

R
dist(¢, N) = [¢ — awo — (1 — @)wo| = v/a?|z — o> + (1 — a)?|w — wo[? > o
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Similarly, if £ € [y, w] then we also have dist({, N) > 2%. Then, w satisfies the desired
properties.

Case 3: [z,y] is not parallel to N and the line d passing through x,y does not intersect

N.
In this case, there exist w; € N, wy € d such that [wy,w;] is orthogonal to N and d, and
|lwy — wy| = min{|z — 2| : 2 € d,2’ € N}. Using the convexity of d(-, N) and the fact
that there exists n € [z,y] with d(n, N) < R/2, we deduce that d(¢,N) > R/2 for every
¢ € d\[z,y]. Consequently ws € [z,y].

Let w be the point in the line passing through w;, wy such that wo lies between w; and
w, and |w — wa| = R/r. We check that w satisfies the required properties. Let £ € [w, z].
Write £ = az + (1 — a)w for some constant « € [0, 1]. Let &y, zp be points in N such that
[z, z0] and [&, &o] are orthogonal to N. We have

& =axp+ (1 — a)w;.
Compute
1€ = &of* = | — @) + (1 — @) (w — wy)[?
= ?lz — 2o + (1 — @)} w — w1 ]* + 2a(1 — a){z — 20, w — wy).
Recall that w — w; is both orthogonal to N and d. It follows that
(x —zo,w —wy) = (& — wo, w — wy) + (wg — wi,w —wy) + (w1 — xg,w — wy)
which is equal to (ws — w1, w — wy) > 0. Hence we obtain

€ — &l* > Pz — zo)* + (1 — @) |w — wy |2
RQ
>a’R*+ (1 — a)?R?*/r? > T
r
Since dist(&, N) = | — &o|, we infer

2dist(¢, N) > R/r.
On the other hand, we have
dist(¢, [z, y]) < dist(w, [x,y]) < |w — wa| = R/7r.
We obtain a similar inequalities if £ € [w, y]. Finally, observe
[w—a|+|w—y| < |w—ws| + |z —wa| + [w —wa| + Jwa —y[ = 2R+ |z —y| < 3R < 3|z —y],

because wy € [x,y] and we used here (2.12). Thus w satisfies the desired properties.
This finishes the proof. O

Proof of Lemma 2.4. We will use induction in k. The case k£ = 1 is an immediate corollary
of Lemma 2.5. Assume that Lemma 2.4 is true for k = ky. We will show that it is also true
fork = ko + 1.

Denote N’ = NyUNaU...UNy, and N = Ny UNaU...UN 41. Letz,y € R™\ N, = # .
By the induction assumption, there exists a polygonal chain [y = apa;...aux, With ag = «
and a,r, = y such that

(2.13) L(lp) < Colz —y|,
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and

(2.14) Co dist(¢, N') > min{dist(x, N'), dist(y, N')},
for every £ € ng:ol [as—1,as], where Cy > 1 is a constant depending only on &y and m.

We will construct a polygonal chain [ = byb;...bx,+1 satisfying the conditions as in Lemma
2.4. Denote

A := min{dist(x, N), dist(y, N)}.
If 2Cy dist(¢, N) > A for every £ € it [as—1,as] then we can choose [ = [y and C = 2.

s=1
It remains to consider the case where 2C) dist(§p, N) < A for some &, € U;‘i(’l [as—1,as]. In

this case, we have
(2.15) L(lo) = |[z—&ol+|y—&o| = (dist(z, N)—dist(§o, NV))+ (dist(y, N) —dist(§o, V) = A.
For every s = 0, ..., 4%, we define by, as follows

e If 2C) dist(as, N) > A then we put bys = as;
e If 2C) dist(as, N) < A then we choose bys € R™ such that the vector bys — as is
perpendicular to Ny, 11 and

. i A
(2.16) dist(bas, Nkg+1) = |as — bas| + dist(as, Nkg+1) = 2Co”
Thus we have
A
(217) ’b4s - b43+4‘ < ‘as - Cbs-t,-l‘ + ’CLS - b4s’ + |as+1 - b4s+4‘ < ‘as - as—l—l’ + 50,
and
. A
(218) dlSt(€7 [a87 as—l—lD < max{]b45 - a8|7 ’b45+4 - as+1|} < T%7
for each ¢ € [bys, bysy4] and for every s = 0,1, ..., 4k — 1.
Combining (2.14) and (2.18), we get
A
(2.19) dist(¢, N') > inf  dist(n, N') — dist(¢, [as, ast1]) > —,
n€las,ast1] 2Cy

for each & € [bys, bysy4] and for every s = 0,1, ..., 4k — 1.
We will find bys+1, bast2 and bysy3 such that

iy yds3 N
(D 35500 by — bjsa| < 3las — asp| + 2

(i) dist(&, N) > 8‘%0 for every ¢ € U?s:ﬁ[bj, bjt1].

We distinguish into three cases.

Case 1: dist(£, Nyy11) > g for all € € [bas, basra].
In this case, we put byst1 = bys+2 = bys+3 = bysya. It follows from (2.17) and (2.19) that
the conditions (i) and (i7) are satisfied.

Case 2: dist(&o, Nky+1) < ﬁ for some &) € [bys, bysta) and either ag # bys OF asy1 7# basta-
In this case, we have

min{dist(b4s, Nk0+1>, diSt(b4s+4, Nk0+l)} = TCIO
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By Lemma 2.5, we can choose ¢ € R"™ such that

(2.20) |bas — q| + |basta — q| < 3|bys — basyal
and
. A .
(2.21D) 4dlst(f, Nk;OJrl) > f > 2dlSt(f, [b45, b4s+4]),
0
for everyf € [b487 q] U [q7 b45+4]'
By (2.19) and (2.21), we have
A

(2.22) dist(&, N') > inf  dist(n, N') — dist(, [bas, basta]) > —.

NE[bas,bast4] 4Cy

for everyf € [b487 Q] U [q7 b4s+4]'
Put bysi1 = byst2 = basys = q. It follows from (2.17) and (2.20) that (4) is satisfied. By
(2.21) and (2.22), we also get (i7).

Case 3: diSt(fo,Nk0+1) < ﬁ for some & € [545, b45+4] and a; = b4j fOl’j =s,5+ 1.
In this case, we choose bss12 € R™ such that the vector bsys — a; is perpendicular to Ny, 41
and

. . A
(2.23) dist (bast2, Nio+1) = [bast2 — bas| + dist(€o, Nio41) = 40y’
Similar to (2.17) and (2.18) (and note that a; = by; for j = s, s+ 1), we have
A A
2.2 s — U4s s — U4s ébs_bs ~~ — |Us —ds a0
(2.24) |bas — bas+o| + |basto — basta| < |ba 4+4|+200 la a+1|+200
and
. . A
(225) dlSt(ga [CLS, as+1]) — dlSt(ga [b487 b48+4]) S TC,()’

for every § € [b437 b4s+2] U [b4s+2> b4s+4]-
Combining (2.14) and (2.25), we get

3A
2.26 dist(¢, N') > —
for every £ € [bys, basy2] U [basi2, bastal.
By using Lemma 2.5 for [bys, bys+2] and [basy2, bas+a], we can choose bys11 and by, 3 such
that

4s+3
(2.27) Z 1b; — bjt1] < 3(|bas — basya| + |basto — bastal),

j=4s
and

. A .
(2.28) 2dist (&, Ngg+1) > iCo > dist (&, [bas, bast2] U [bass2, basya]),
for every ¢ € U?jﬁ [bj,bj41]-
By (2.26) and (2.28), we have
A
(2.29) dist(¢, N') > inf dist(n, N') — dist(&, 1) > —2,
nel 200
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for every ¢ € U?szzg [bj,bj11], where I = [bys, basy2] U [bast2, basta]. It follows from (2.28)

and (2.29) that (i7) is satisfied. By (2.24) and (2.27), we also obtain (i).
Now, let [y = boby...byko+1. By (i7), we have

dist(§, N) > %min{dist(x,]\f),dist(y, N)}.
0
By (2.13), (2.15) and (i), we have

gkot1l_1 4ko—1

24
OB SHEURED DY CORTMIEE-)
=0 s=0 0

24

=3L ko ==

3L(lp) + Co

+7k0 L(l

< 1

3< Co) (0)
§3<CU—|-4ko> |$—y|

Choosing C = 8 (Co + 4’“0), we see that [ and C satisfy the desired conditions. Thus,
Lemma 2.4 is true in the case k = ko + 1. This completes the proof. O

3. LOG CONTINUITY PRESERVED UNDER BLOWUPS

Let f : X — Y be a smooth surjective map between compact differentiable manifolds.
Let gx, gy be Riemannian metrics on X, Y respectively. Let dg,,d,4, denote the distances
induced by gx, gy on X,Y respectively. For £ C X, let dx(a, E) := infycp dx(a,b). For
every a,b € Y, we define

d ,b) = inf d "b).
ax.f(a:0) = Y. S ax (@' 0')
We note the last function is in general not a metric on Y. Observe
(3.1) dgy < Cdgy g
for some constant C' > 0 because the differential D f is bounded uniformly on X.

Lemma 3.1. Let Xy,...,X,, be compact complex manifolds and f : X; — X;_1 be the blow
up along a smooth submanifold V;_; C X;_1in X;_i for 1 <j < m. Let f := fp,0---0 fy:
Xm — Xo. Let g; be a Riemannian metric on X; for 1 < j < m. Let A > 0,8 € (0,1]
be constants. Let u be a function on Xy and M > 0 be a constant. Then if u o f,, is a
log™-continuous function, then so is u.

We note that a similar property for Holder continuity was proved in [26]. The following
proof is more or less similar.

Proof. This is indeed implicitly in the proof of Lemma 3.4 in [26] if m = 1. The general case
follows from an immediate induction on m. For readers’ convenience, we reprove below
the case where m = 1.

Let f1 : X1 — X{ be the blow up along a smooth submanifold V' in Xj. Let n := dim X
and [ :=dimV. Leta € V and let (U,z = (x1,...,2,)) be a local chart around a such that
V is given by {x; = 0,1 < j < n —I}. Thus f; }(U) is biholomorphic to the submanifold
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of U x CP"~!~1 defined by the equations zjvs = vjxs for 1 < j,s < n — 1, where v := [v; :
- : v,_;] are the homogeneous coordinates on CP"~'~!. One can cover f; ' (U) by (n — 1)
open subsets

U; = {(z,v) € f{(U) :vj # 0}
In U;, we have
fi(z,v) = (vizj/vj,v2x/V), ..., VT [V, Tp—ig1s -+ 5 Tp)-

Now let a,b € X. It suffices to consider a,b close to each other and both close to V
(because f; is biholomorphic outside V). We split the proof into several cases. Firstly
observe that if a,b € V, then since f; : f; '(V)) — V is a submersion, one gets

Cdgq(a;b) = dgy 1, (a,b),
for some constant C' > 0 independent of a and b. Hence
(3.2) lu(a) — u(b)| = _inf o uo fi(d) —uo fi ()]
a’efy (a),bef " (b)
< [logdy, 1, (a,0)| ™ < [log dg, (a, b)| .
Note that in the last inequality, we only consider a and b close to each other, hence log dg, (a, b) <
0.

Case 1. Consider now b € V and a ¢ V but close to b. Then there is a local chart (U, )
on X containing b, a such that V is given by {z; = 0,1 < j < n —[}. We use now the
Euclidean distance on that local chart.

Without loss of generality, we can assume that b = 0, a = (2, ...,2) with 2} # 0 and
h(t) := (ta),...,tz)) € U for every t € [0,1]. We see that
ht) = frloh(t) = (ta),. .. bl [z}« ... 2)),
for t > 0. Letting t — 0 gives
h(0) := }%ffl oh(t) = (0,...,0,[x}) :...:z]) € f7 (D).

We infer that
dgy (h(1), h(0)) S [&h] + -+ + || < la—b].
It follows that
g, (A(1), /71 (1)) S la = b] S dgo(a,0).
Hence dg, ¢, (a,b) < dg,(a,b). Thus we get an estimate similar to (3.2).

Case 2. Consider now a,b ¢ V but close to V. Direct computations show that | D f; *(a)| <
|dg, (@, V)| 2. Thus we get

dg, ., (a,b) < max{dy, (a, V)72= dgo (b V)72}dgo (a,b).
Hence if min{d,,(a, V)2, dg, (b, V)?} > dy,(a,b)'/?, then
dgl,fl (CL, b) 5 dgo (aa b)l/Q'

We treat now the case where min{dy,(a,V)?,dy, (b, V)?} < dy,(a,b)*/?. Without loss of
generality, we can assume that dg, (b, V) < dy,(a,b)'/*. Then

dgo (a’7 V) S dgo (CL, b) + dgo (bv V) S dgo (a7 b)1/4'
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Now we consider a local chart (U, z) containing a, b. We use now the Euclidean metric. Let
ay, by be the projection of a, b to V' respectively.
lay —by| S |a — 0]
and
la—av| S la—bY* b —by| S la—b'/*.
Now applying Case 1 to (a,ay ), (b,by) and (ay, by ), one obtains
(3.3)
dgy i (a,av) + dg, 5, (av, bv) +dg, 1, (bv,0) S la—av| + |ay — by +[b = by| < |a — b['/*.

Put x1 := |u(a) — u(ay)|, z2 := |u(ay) — u(by)| and x3 := |u(by) — u(b)|. By previous parts
of the proof, we see that

il
_e M _

dgo(a7av) 2 e " s dgo(aVa bV) 2 e "2 )
and

dgo(by,b) 2 e "3
This combined with (3.1) and (3.3) gives

3 1 —-1/M
] + T2 + I3
LA D RN _(rtratas .

€1
M

It follows that

la — bl M M
$1+l’2+l’3§10gT < [logla —bl|™™,

for some constant C' > 0 independent of a and b. The left-hand side of the last inequality is
> |u(a) — u(b)|. Hence |u(a) — u(b)| < |log|a — b||~M. This finishes the proof. O

4. HOLDER CONTINUOUS MEASURES

Let 1 be a closed smooth semi-positive (1, 1)-form in a big (semi-positive) cohomology
class. Let K be a Borel subset of X. The capacity of K is given by

cap, (K) := sup{/KnZ; :0< ¢ <1,¢ npsh}.

The above notion was introduced in [21] generalizing those in [2, 29]; see [11, 34] and
references therein for various generalizations of capacity.
Let A, B > 0. We say that a Borel measure p on X satisfies the condition H (3, A, n) if

u(EK) < A (cap, (K))'7

for every Borel set K C X.

Fix a Kahler form w on X. Let i be a measure on X. Recall that x is said to be a Holder
continuous measure with the Holder constant A and the Holder exponent v € (0, 1] if for
every w-psh function 1, g3 with [, ¢;w" = 0 for j = 1,2 there holds

/X(<P1 —p2)dp < Allpr — 2|11 )
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Let M(A,~) be the set of Holder continuous measures with the Holder constant A and
the Holder exponent v € (0, 1]. By [19, Lemma 3.3], a measure . € M(A,~) if there is a
constant C' > 0 depending only on A such that for every w-psh function 1, p2, we have

(4.1 | ot = ek < Cmax {ller = el ey or = alac )

Note that if p is a Holder continuous measure then it follows from [19, Proposition 2.4 and
Proposition 4.4] that for every constant 3 > 0, there exists a constant Ag > 0 such that
p satisfies the condition # (3, Ag,w). Therefore, by the comparison of capacities (see [20,
Theorem 3.17]), for every 8 > 0, there exists Ag > 0 such that p satisfies the condition
H(B, Ag,n). Alternatively, one can prove the last property by using results in [11].

The following proposition is a special case of [25, Proposition 5.3] (replace ¢ and v by
w1 and we, respectively):

Proposition 4.1. Let 1 be a big semi-positive closed smooth (1,1)-form and let wi,wy be
negative n-psh functions such that wy is of full Monge-Ampére mass (i.e, [, n, = [y n™).
Denote p11 = (n + ddwi)™. Assume that the following conditions hold

(1) there exists a constant M > 0 such that

—M < max{w;,ws} < 0;
(ii) there exist constants A, 3 > 0 such that yu, satisfies the condition H(53, A, n).

Then, for every constant r > 0, there exists a constant C' > 0 depending on w,n, M, A, 5 and
r such that

Br
n+p(n+r)

L7 (p1)
In particular, if uy € M(B,«) for some B > 0 and 0 < o < 1 then for every r,~y > 0, there
exists a constant C’ > 0 depending on w,n, B, a, vy and r such that

yr
n+~vy(n+r)

L (p1)
We will apply Proposition 4.1 to the case where r is large enough, this means the expo-

Br
nent AT 1 close to be 1.

Corollary 4.2. Let n be a big semi-positive closed smooth (1, 1)-form and let w be a negative
n-psh function of full Monge-Ampére mass with supy w = 0. Assume that (n + dd“w)" €
M(B, ) for some B > 0and 0 < o < 1. Then ||w|/p~ < C, where C > 0 is a constant
depending on w,n, B and a.

wy — wy > —Cllwy — wa|

wy — wy > —C'||wy — ws|

By [19], a measure p of mass [, w" is Holder continuous if and only if y = (dd°u + w)"
for some Holder continuous w-psh function u on X. The following will be important for us.

Corollary 4.3. Let X,...,X,, be compact complex manifolds and f; : X; — X;_1 be the
blow up along a smooth submanifold V;_1 C X;_; in X;_1 for 1 < j < m. Let f :=
fmo--ofo: Xy — Xo. Let u be a Holder continuous measures on X,,. Then f.u is also
Holder continuous.

Proof. By induction, it suffices to prove the desired assertion for m = 1. Let uy, us be wg-psh
functions on X for j = 1,2, where wy is a Kihler form on Xj. Put ug = fiu;. Let w; be a
Kahler form on X;. Using Holder continuity of ;, we obtain

s — s gy = s = sl oy s = sy + I — bl capy.
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Standard computations using local coordinates for blowups show that there exists a func-
tion g € LP(w() for some constant p > 1 satisfying (f1).w] = gw(. Hence

o = wllry = [ s = unlg 5 s = vl
0
where 1/¢+ 1/p = 1. By [19, Lemma 2.2], one has
lur = sl o) S lun = uall S50

Hence (f1).u is Holder continuous. O

5. REGULARIZATION OF PSH FUNCTIONS
5.1. L2-estimates. We recall first the I2-estimates for 0 and discuss some of its variants.

Theorem 5.1. (see [15, Corollary 5.3]) Let (X,w) be a compact Kdhler manifold. Let € > 0
be a constant. Let L be a holomorphic line bundle on X together with a singular Hermitian
metric h satisfying

c1(L,h) > ew.
Then for every g € L? 1(X, L) with dg = 0, there exists u € L? o(X, L) such that Oou = g, and

/|u|hww <e /‘g‘hw ’

where |g(x)|n,., denotes the norm of g with respect to the norm induced by the Hermitian metric
h on L and the Riemannian metric on X associated to w.

We deduce from the above result the following more or less standard consequence.

Theorem 5.2. Let (X,w) be a compact Kdhler manifold. Let e > 0 be a constant. Let K% be
the dual of the canonical line bundle, and let hy denote the metric induced by w on K. Let
L be a holomorphic line bundle on X together with a singular Hermitian metric h. Assume
that there exists a singular metric h Ky, on K so that

Cl(L h) + Cl(K}, iLK* ) > ew.
Then for every g € L§ (X, L) with dg = 0, there exists u € L§ (X, L) such that du = g, and

J e <t [ gl e

where ¥ is a quasi-psh function defined by EK;( = e 2 K%

Proof Set L' := L ® K%. Thus L = L' ® Kx. Let i’ be the singular Hermitian metric on L'
given by &' = h ® hyy,. For every 0 < ¢ < n, we have a natural isometry

U, AT*X)®R L — A™(T*X)® L,
e.g., see the proof of [9, Corollary 4.3]), where we use the metric h on L, and h ® hk; on

L'. The map ¥ commutes with 9, d operators. Thus ¥,(g) € L2 (X, L) with 9%, (g) = 0.
Since VU, is an isometry, one gets

—29 —29
C1(9)l = \‘1’1(9)!%@}(}6 2 = glpe?

The desired assertion now follows from Theorem 5.1. O
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In particular we obtain the following.

Corollary 5.3. Let (X,w) be a compact Kahler manifold so that the Chern class of K% contains
a closed positive (1,1)-current of bounded potentials, i.e, there exists a bounded ,,-psh function
¥ on X, where 1, is the Chern form of the metric on K% induced by w. Let L be a holomorphic
line bundle on X together with a singular Hermitian metric h such that

c1(L,h) > ew.
Then for every g € L§ (X, L) with dg = 0, there exists u € L§ (X, L) such that du = g, and

el oo

We also use the following consequence of Corollary 5.3.

Corollary 5.4. Let X,w,? be as in Corollary 5.3. Let 0 be a semi-positive form on X with
0 < w such that 0 is Kdhler in an open dense Zariski subset W in X. Assume that there exist a
weakly pseudoconvex manifold U’ with a smooth Kdhler metric ¢’, an open connected subset U
in X and a biholomorphic map ® : U — U’ such that § := ®*¢’ on U. Let L be a holomorphic
line bundle on X together with a singular Hermitian metric h such that

c1(L,h) > ew.

Let f € H°(U, L) and let X' be a smooth function with compact support in U’ and  is constant
on some open subset Z' in U'. Set x := x' o ®. Then there exists a smooth real section u of L
over W such that Ou = d(xf) on W, and

. M2l Lo .
[ o < i
X € X\®-1(Z")

where M := sup,cyr |0X' ()] o

The crucial point here is that we obtain a version of L?-estimates for a possibly degener-
ate volume form 6.

Proof. Let r > 0 be a small constant and let §, := 6 + rw < (1 4+ r)w. Hence ¢1(L,h) >
(14 r)716,. Applying Corollary 5.3 to 6,., we obtain

B e
~ |uT|h0r < € ~ |8(Xg)|h‘9r‘

00¢f) In6. = |99XIn.6. = [ fInOxla,
Since |Ox(®~1(2"))|s, — |0X'(z')|s which is < M, we infer that

lim sup 100X ) |no, < M| flnle—1(z.-
T—>

We compute

The desired estimate thus follows from Corollary 5.3 applied to 6,.. We infer that

_ M2l
fimsup [ fu, o < 2= | e
r—00 X\o-1(Z")
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Thus, extracting a subsequence if necessary, we can assume that u, converges weakly to
some wu in the Hilbert space L?(X, 6"). Consequently,

. M2l oo N
[ < e
X € X\®—1(Z")

On the other hand, since # is Kéhler on W, we infer that u, converges weakly to u as
currents on W. It follows that Ou = lim,_,o du, = 9d(xf) on W, hence, u is in particular
smooth on W because it is a solution of J-equation with smooth right-hand side. O

We recall now a special case of the Ohsawa-Takegoshi extension theorem (see [15,
Theroem 13.6]).

Theorem 5.5. Let X be a weakly pseudoconvex n-dimensional manifold with a Kdhler metric
w. Let y be a point in X. Let (L, h) be a line bundle on X and let E be the trivial holomorphic
vector bundle of rank n equipped with the trivial Hermitian metric such that there exists a
global section s of E with y = {s = 0} so that A"ds(y) # 0 and |s| < e~!. Then for every
(n,0)-form f with values in L at y, there exist a -closed (n,0)-form F with values in L on X
such that F(y) = f(y) and

/ |F|hw W< O |f|l21,w
|s]2r(~log s[)2™ = ""[Ands(y)[2’

where C,, is a numerical constant depending only on n.

We note that since F and its Hermitian metric are trivial, the curvature of the metric of
E vanishes everywhere, and s is nothing but a collection of n holomorphic functions on X.

Corollary 5.6. Let X,w, L, h, E,y, s be as in Theorem 5.5. Let hrcy, be the Hermitian metric
on K% induced by w. Assume furthermore that there exists a singular Hermitian metric hc,
on K% such that fzK§< = hks, e~ 29, for some bounded n,,-psh function ¥ on X, where n,, is the
Chern form of hys . Then for every section f of L at y, there exists ' € H 9(X, L) such that

F(y) = f(y) and )
|F |3 A9 |f1i
— "< CLe e —— &
/ |s|**(—log |s])? [Ands(y)2,
where C,, is a numerical constant depending only on n.

Proof. Let L' .= L® Ky and W := h ® h i - The desired inequality follows from Theorem
5.5 applied to (L, k') and arguments as in the proof of Theorem 5.2. O

We deduce the following degenerate version of the above extension.

Corollary 5.7. Let the notations and assumptions be as in Corollary 5.6. Let 6 be a semi-
positive form on X which is Kdhler on an open Zariski dense subset W in X. Assume that
there exist a manifold U’ with a smooth Kdhler metric ¢, an open connected subset U in X
and a biholomorphic map ® : U — U’ such that 6 := ®*¢' on U and y € U. Then for every
for every section f of L at y, there exists F € H°(W, L) such that F(y) = f(y) and

FE 4|19 Fil3
(5.1) / o < Cpetlile
|s[27(— log |s])? |Ands' (y')]3,

where C,, is a numerical constant depending only on n, where s’ ;== so® ! and 3/ := ®~(y).
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Proof. Let 0, := 0 + rw which is a Kéhler form on X. Let o’ := ®,w and .. := 0’ + ru’. We
see that the norm |A"ds'(y')|e: converges to [A™ds'(y')| as 7 — 0, and one has

[A"ds(y)lo, = [A"ds'(y)]g;.
Applying Corollary 5.6 to 6, gives

|7 o < oAl e 7
2n 2°r — Cn 20
x |s[?"(—log|s|) [A™ds(y) |5,

for some F, € Hp(X, L) with F,.(y) = f(y) Letting » — 0 and arguing as in the end of the
proof of Corollary 5.4 show that after extracting a subsequence if necessary, F,. converges
weakly to a function F € LZQOC(W) and the estimate (5.1) holds. Furthermore since F, is

holomorphic (hence OF, = 0), we infer that F is indeed holomorphic on W. O

It is a good moment to mention a result about the extension of holomorphic functions
which is used later in the paper: every holomorphic function on the complement of an ana-
lytic subset of codimension at least 2 in a normal complex space is automatically extended
to a global holomorphic function on that space (see [22]).

5.2. Analytic regularisation of psh functions. Let (X,w) be a compact Kéhler manifold.
From now on we assume the following hypothesis:

(H) The Chern class of K% contains a closed positive (1, 1)-current of bounded poten-
tials, i.e, there exists a bounded 7,,-psh function 9 on X, where 7, is the Chern form of the
Hermitian metric on K% induced by w.

In particular, this assumption is fulfilled if K% is semi-positive. Let L be a big and semi-
ample line bundle on X (hence X is forced to be projective by Moishezon’s theorem). Since
L is big, by Demailly [15], there exists a negative #-psh function p such that locally

p=log (D Ifl) +0(1),

j=1
for some local holomorphic functions f1, ..., f., and
ddp + 0 > dgw,

where dy > 0 is a constant. We can choose p so that N := {p = —oo} is equal to the
non-Kéhler locus of ¢; (L), see [5]. Recall that the non-Kéhler locus of ¢; (L) is equal to the
augmented base locus of L (see [39, Theorem 2.3] or [4]).

Let dy := dim H°(X, L*) and {s, ..., sq,} be a basis of H*(X, L*). We define ®; : X —

CP%~! by putting
Oy (x) :=[s1(x) : -+ : sq,(x)].
Observe that @ is a well-@eﬁned map outside B(kL) := Nycpo(x,pry{s = 0}.

We recall dd® := i/700. Since L is semi-ample, there is ¥’ > 0 sufficiently large so
that B(k'L) = @. Hence ®;, : X — CP% is a holomorphic map. Since L is big, we
can find ¥” > 0 so that ®;~ is of maximal rank. Let k;, := k'k”. It follows that &, is
a holomorphic map of maximal rank. Let X’ := &, (X) which is an irreducible analytic
subset of dimension n in CP%.~!. By increasing k, if necessary, we also have that @y, is
an algebraic fibre space, i.e, the fibers of @, are connected, and X’ is a normal variety (see
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[32, Theorem 2.1.27]), moreover ®;, is bihomorphic outside the non-Kahler locus N, see
[6, Theorem A].

Let
1 de
. c 12
0= 2ded logjg_1 En

which is smooth closed form in ¢;(L). Hence 6 is the pull-back of the Fubini-Study form in
CP%:~! under &, .- Let hy be a smooth Hermitian metric on L with ¢ (L, hg) = 6.

Fix a smooth Riemannian metric on X and let B(x, r) be the ball of radius r with respect
to this metric. Let rx > 0 be a constant so that for every x € X the closure of the ball
B(x,rx) is contained in a local chart of X which is biholomorphic to a ball in C".

Lemma 5.8. There exist constants Cy > 0, ro > 0 small enough such that for every y € X,
there exist global negative §-psh functions u, on X so that

uy(z) <logly —z| + Co
on ®, ' (B(y',r0)) where y' := &y, (y) and by abuse of notation, for every r > 0, we denote by
B(y',r) the ball of radius r centered at y' € CPY%.~! with respect to a fixed smooth metric on
CP%. L. Furthermore, for every constant ¢ > 0, we have
(5.2) uy >loge — C
outside @,;Ll (B(v/, €)) for some constant C independent of y, e.

Proof. Lety' := @4, (y) and let v,(z) be a wrg-psh function on CP%. =1 given by

vy(2) = log |z — ¥/
where we use homogeneous coordinates for z,4/, and wpg is the Fubini-Study form on
CP%. 7L, Thus, for every e > 0, there holds vy > C'loge outside B(y/, €) for some constant

C independent of y, e.
Since ®; wps = 0, we infer u, := D5, vy and a, = o}, Uy are f-psh and satisfies that

uy(x) = log [Py, (y) — g, ()| < logly — x| + Co

on (I),;Ll (IB%(y’ , ro)). Moreover one also has (5.2) because of the smoothness of v, outside
y. O

Let B, (y) be the ball of radius r centered at y in C*2 =1, If y = 0, then we write B, for
B, (y). Put N' := ®;, (N) which is an analytic subset in X’. Let U{, ..., U] be open subsets
in CP%.~! such that the following properties hold:

() Uj € U} which is biholomorphic to the ball B3 in C%z.~! under a map U, for every
1 < j <l and Uj; is biholomorphic to B, under ¥,

(i) X' C Ué-lej’»,

(iii) There is a hyperplane H; on CP%:~! such that H; does not intersect U 7 for every
1<1<j.

By our choice of U}, we see that U} is hyperconvex (hence weakly pseudoconvex), i.e,
there is a smooth psh function w; on U such that {w; < c} is relatively compact in U} for
every constant ¢ < 0 and every j. Let

Uj = <I>,:L1(UJ’-).
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Note that Uj is also hyperconvex and L is trivial over U; because L = ®; O(1) and O(1) is
trivial over X'\ H;.

Lemma 5.9. Let h := hoe2? be a singular positively curved metric on L. Fix 1 < j < . Let
y € U;\N. Let e be a local holomorphic frame of L over U;. Then for every a € C, there exists
a section f € H°(U;, L) such that f(y) = ae(y) and

1ﬂﬂae%mscwmawae%@.
J

where C' > 0 is a constant independent of y and a.

Proof. Let Ly, be the restriction of L to Uj, and E := L|y; © --- @ L[y, (n times). Since L
is trivial on U}, so is £. Equip E with the trivial Hermitian metric. Hence a section of E is
simply a collection of n holomnorphic functions on Uj. Let z = (21,..., 2, 1) be the local

coordinates on U} ~ B3. We can assume that y/’ is the origin in these local coordinates. Let
s'y(z) := z. Observe that sp := s/ o <I>,;L1 is a section of E on U; and vanishes only at y.
Recall that § = <I>}';Lw rs, where wrg is the Fubini-Study form on CP*.—1,

Let N' := ®;, (N). Then X"\ N’ is smooth and ®;, is a biholomoprhism from U;\N to
U’\N’ Let X” := X’ N By, we have a natural inclusion ¢ : X" — U’ ~ By. Let U be
an orthogonal change of coordinates on C*-~1 so that W&, T, X" is given by the subspace
{z1,...,2n,0,...,0} at 0 in C*2 1. Write ¥ = (Uy,..., Uy, ). Let

spi=(U,...,¥,)0&

regarded as a section of Py, B LetY := X" N{slp =0,det JS/E #0:1 <k <n} contains
0 as an isolated point, where &,(z) := (zj,,...,2;,) for = € X" (note that Y may not be
connected). Note that wy is preserved under ¥. By the choice of s, there is a constant
€p > 0 independent of y such that

(5.3) A" S5 (Y)|erwps = €o-

Indeed, by the choice of ¥, the norm [A"ds(y')[¢+w, (Which is the norm of det J, with
respect to £*wp) is equal to the absolute value of the determinant of the (n,n)-submatrix
of the Jacobian of (¥y,...,¥,) given by the first n rows. Hence |A"ds’;(y)|¢+w, = 1. Since
wrg and wg are equivalent on U’, we get (5.3).

Let sg := s’; o @y, . Applying Corollary 5.7 to U;, 0, sg, P, , y implies that there exists a
section f € HY(U;\N, L) such that f(y) = ae(y) and

Clalle(y)lh,e >

’wFS S

/L% 2647 < Clalle(y) 2,20 | Amdsly (y
Uj

by (5.3), where C' > 0 is a constant independent of y and a. This finishes the proof. O

Let h be a positive Hermitian metric on L. Let ey, is a local holomorphic frame for L (i.e.,
ez, is a local holomorphic section of L and e;, # 0 everywhere). Write h = hge~2#. Thus by
hypothesis one gets

0<c1(L,h) = —ddloglep|p = dd°p + 6.

In other words, ¢ is #-psh function. By multiplying a large constant with hg, without loss
of generality we can assume that ¢ < 0. We assume from now on that ¢ is bounded.
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For every constant § € (0,1), define
5= (L= 08)p+0dp, hs:=hoe .

We have ddps+60 > §6pw. Let m € N and d,, := dim H°(X, L™) which is &~ m™ as m — oc.
Let mg := 2n + 3. Let ag € (0,1/2) be a constant such that

/ e 2Py < o,
X

For m > my, d € (0,a9/m) and s,s' € H°(X, L™), we put

<57 5,>L2 = <S’5/>L2,m,6 ::/ <573/>h6ne_2(m_m0)¢759n
X

which is finite because the boundedness of ¢ and the choice of ay. To give readers a hint
what we do with §, we remark that we will choose later 6 := m 2P for some constant D > 1
(see the proof of Lemma 6.2 below), thus the condition § < ag/m is automatically satisfied
for m > ay L

Let {o1,...,04,, } be an orthonormal basis of HY(X, L™) with respect to L?-product, and
let
1 dm 1
Y5 = =— log ( |U"im) = — sup log |s|2m.
" 2m ]z; 71 2m e HO(X,Lm):|s|| 2 =1 0

Since log |0 |py is m-psh, we infer that v, is 0-psh.

Lemma 5.10. Let £ := w™/0". There exists a constant po > 1 such that
(5.4) / PP < oo.
X

Proof. Direct computations show that on a small enough local chart U, one has

Eh=1ola+ Yo 1P

1<j<kr—1
for some holomorphic functions fy,. .., fr, -1, €.8., see the proof of [10, Proposition 4.36].
Let ¢ := —log&. One sees that ¢ is quasi-psh on U, hence v is quasi-psh function on X.

Now observe

/gpogn:/ gpolwn:/ e~ (Po—1)¥ n
X X X

which is finite for pg — 1 > 0 small enough because ¢ is quasi-psh. This finishes the
proof. O

The following result is a variant from [15, Theorem 14.21]. Recall N = {p = —o0}.

Theorem 5.11. There exists a constant C' > 0 such that for every 6 € (0,a9/m) and every
m > mg + 1 there holds:

)

C + |log | m — mg | log r|

< P < sup 5(2") + Cr + C——,
m 2m M weB(ar) m

forevery x € X and r > 0.
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(i)
C

= (m=mo)(supp(y ) ps—¢s(2))+C(m—mo)r
moL/2yn+l ’

for every x € X\N and r > 0.

Proof. We check the second inequality in (i). Let U be a small local chart around x. We
trivialize L over U and let ey iy be a nowhere vanishing holomorhic section of L over U.
Hence we can identify hy = e~2%0 for some smooth function ¢, and sections of L™ are
identified with holomorphic functions on U.

Let s € L™ with ||s||;2 = 1. By abuse of notation we still denote by s the holomorphic
function corresponding to a section s of L™. Thus |s|,21€1 = |s|?e72m%0, Put ¢ = 2(m —
mo)ps + 2me¢y and £ = w"/0™. Let py be the constant in Lemma 5.10 and put ¢y :=
po/(po — 1) and €y := 1/qp. By the submean inequality and Lemma 5.10, one gets

\s(m)]zeo < 7'2”/ |s|2€°dLean
B(z,r)

—2n _2€egp sup q 2€0 ,—2€0q ¢ nn
Sr " B(=,m) |s|“Ce &0
B(x,r)

1/90 1/po
< r—%e?fosupm,rw( / 3\26—2‘19”) ( / 5”%“)
B(z,r) X

< 20260 SUPs(a 1) 4 |]3||i/2qo-

Thus

~

’5($)|}2ng = |s(x)[2e~2mo0(®) < pm2n/e0 2m=mo)(SuPg (e ) (#s5+P0) =0 ()

By this and the fact that ¢y € C' we infer that

‘S(.Z‘) ’%LSL < r72n62(m7m0) SUPR(g,r) Ps+2(m—mo)Crr

~ Y

for some constant C; > 0 independent of §,m, ¢, s, for s € H°(X, L™) with |s|;2 = 1. It
follows that

(5 5) €2m1/1m,5 — sup |S(LU)|2 < 602T72n/60€2(m—m0)supB(w,r) ps+2(m—mg)Cir
. mo~ 5
s€EHO(X,L™):||s|| 2=1

where C1, Cy > 0 are constants independent of §, m, ©, s. Hence we obtain

m — C

2ne; ! logr|+Cs m—myg
¢m,6 < 0 | | <

sup s(z")+Crr+ sup s(z")+Csr+

Cs|logr|
m yeB(z,r) 2m B m ' €B(x,r) m ’

for every x € X and r > 0, where C3 = Clegl + Coe + n.

The remaining inequality of (i) requires the L?-estimate. It suffices to consider z ¢ N.
Let Uy,...,U; be the open cover of X defined above. Without loss of generality we can
assume that x € U;. Choose U := U;. We can modify the coordinates on U; ~ B, so that
@y, () is the center of U]. By Lemma 5.9, there are a constant B; > 0 independent of z
such that for every a € C, there is a f € H°(Uy, L™) so that f(z) = aey'; and

[ Uflige2mengn < Bujaflen,p (o) e 2m o),
Ui
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Fix a cut-off function x’ supported on U and equal to 1 on B, /5 (recall that U] ~ B> and
@, () = 0 is the origin). Put x := x’ o CI),;LI. By Lemma 5.8, there exist a constant Cy > 0
independent of x and a negative #-psh function u, satisfying u,(z) < log |z — x| + C4, and
ug(z) > —Cyfor z ¢ @,;;(181/2(:6’)) (' := Py, (x)). Let

w = (m — mo)apg + mouy.
Observe that
dd°w + mf > (m — mo)ééow.
Let
hu, = hoe 2=, h:= hl'e™ 2V
which is a singular Hermitian metric on L™. Thanks to the hypothesis about the semi-
positivity of K%, we can apply Corollary 5.4 to h and ¢ := J(xf) which is smooth. Hence
we find a smooth section v of L over X\ N so that Jv = g and
1

(5.6) ity < / Flgee"
\ | ‘ho (m — mg)ddo X\<I>,:L1(]B1/2(m/)) | ‘ho

because supy; [0X'|w ¢ is bounded by a constant independent of z. This combined with the
fact that u, (') > Cy outside ®, ' (By5(z')) yields

1
5.7) / R / [P e2m=mo)es gn
X | ‘ho (m — m0)550 X\(I);;(B1/2(CC’)) ‘ ‘hO

jaller.v(a)[fye2mmmoese),

Note that since g vanishes near x, one gets that v = 0 near =. Thus v is holomorphic near
x. By properties of u,, observe that

2wy > L
~ ‘xl _ x|2n+2
which in turn implies that v(z) = 0 because [y ]v|,%6ne_2ww” is finite. This together with
(5.7) gives

2 —2wpn
(5.8) /X|v|h6ne 0" <

2
|CL| 672(m*m0)@6(1)72m¢0(z),

(m —myp)d

Let ¥ := xf —v € H(X\N, L™). The function ¢ extends to a global holomorphic section of
L on X because v o <I>,;L1 is holomorphic on X"\ N’, X’ is normal and N’ is of codimension
2 in X'. Since u, < 0, using (5.8) and the choice of f, we obtain

2 2m
Bs|al !6L,U($)|h0 e—Q(m—mo)sozs(ﬂﬁ)7

~ 2m —2(m—mo)ap50n <
/XMhO ‘ — (m—mg)d

for some constant By > 0 independent of x, a, m,d. Choose
a = By Plepy(@);m0Y(m — mo)t/ 2e(m=mo)es(@),
We see that
(B2, e~ 2m—mo)esgn < 1,
x M N

and

() = f(z) —v(z) = f(z) = aefy(z).
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It follows that

(5.9) mm ) > () [ > Wemmmo)mx)
Thus
m—mg d(m — myg)
Yms(2) 2 == s(w) + 5 log =5
> ;mo¢6($) - W-

This finishes the proof for (i).

We now check (ii). We work in a small local chart (U, z) and write hg = e~2%0 as above.
We identify sections with holomorphic functions on a trivialization of L over this local chart.
We have

m

d
1 2
¢m,§ = % IOgZ ’Uj’ — ¢o.
j=1
Direct computations give

d —
P - 1 ZjilUjan 5
wm,é— & 1o bo-
2m Zj:l o[

Hence
d 2\1/2
1 k|00 ;
(5.10) |0%m 5] < o (Z]d_: | j‘z )1/2 + |0
(Zj:l o )

By (5.9), we have

0 o(m — myg)
(5.11) oi(2)]2 = e2m(¥mstdo) > 0) p2(m—mo)ps(x)+2meo(z)

3.l =

On the other hand, since ¢; is homomorphic, it follows from Cauchy’s integral formula that

d

dp. d
S @l £ S [ Pz £ sp 3oyl =72 sup ¢t

for every 0 < r < dist(z,0U), where A, denotes the disk of radius » with center at 0 in C,
and JyA” := (0A,)". Therefore, by (5.5) and the fact ¢y € C!, we get

dy
(5.12) Z |80'j (x) ’2 < T—2n—262(m—m0)(supm(myr> <p(5+¢>0)+C5(m—m0)r.

j=1

Combining (5.10), (5.11) and (5.12), we get

0m.s] <1+ e(m=mo)(supg (s ) 05 —¢s(€))+Cs(m—mo)r

mol/2pn+1
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The new point here is that we approximate ¢ through the analytic approximation se-
quence for s with § depending on m. We will choose § to be very small compared to
m.

Lemma 5.12. Let u be a bounded negative psh function on the open unit ball B of C™ and let
K & B. Let v be a Hélder continuous plurisubharmonic function on B and denote p = (dd“v)".
Then there exist constants « = a(u, K) and C' = C(n, K, p, ||u||e=) > 0 such that

/ | sup u(m')—u(x)‘d,unga,
K a'eB(z,s)

for every 0 < s < rj, where o := 1 inf ek dist(w, IB).

Proof. Denote M = ||u||f, U = (1 — 3rg)B and V = (1 — 2r()B. First, we prove that

(5.13) | sup u(y) —u(z)|dLeb < CoM %3,
V  yeB(z,s)

for every 0 < s < r3, where Cj > 0 is a constant depending only on n and 7.
For every 0 < r < rg and z € U, we denote

N .
) = ey L, MOV

and

ur(z) = sup u(f).
£eB(z,r)

Let zp € V and vy := %(|z — 29|?> — 1). We have v); < u on Bm(zg) (which contains

V 4 roB because ry < 1). By the comparison principle for Laplace operator, one has

/ Au < / Avpyr S M.
{vpr<u} {vpr<u}

It follows that there exists C'; > 0 depending only on n such that

M
/ Au < @ .
V+roB To

Then, by Jensen formula (see, for example, [1, 16]), one has

(5.14) / |G (2) — u(z)|d Leb < CoMr?,
|4

for every 0 < r < rg, where Cy > 0 depends only on n and 7.
For every z € V and for every 0 < s < r, there exists 2 € B(z, s) such that

s(2) = u(2) < 4y (2).

Since u is negative, it follows that

(5.15) is(2) < <T_S>2nars(z).
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Combining (5.14) and (5.15), we get

/]us )= u(z )\dLeb<( >2n/ 6 o(2) — u(z)|d Leb 4T =5 /\u J[dLeb
§03<M(r—s) +J\fs>

forevery 0 < s < r < rg, where C'3s > 0 is a constant depending only on n and r. Choosing
s = 3, we obtain (5.13) (with Cy = 2C5).

Fix s € (0,73). For every z € V, we denote ¢(z) = 22 (|2[* — (1 — 2r¢)?), v’ := max{u, ¢}
and v’ := max{us,1}. We have u = v/’ on K, 45 = v  on K and v/ = ¢ = ¢ on V \ U.
Let ¢ € 65°(V) suchthat 0 < ¢ < 1and ¢ =1 onU. Put u = ¢u’ and © = ¢v'. By using
the standard embedding C™ — CP", one can extend @ and ¢ to Awpg-plurisubharmonic
functions on CP", where A > 1 is a constant depending only on n, M and ry. Since

= (ddv)"™, we have i := 1y is a Holder continuous measure on CP". Therefore, there
exist constants 3 = (i) > 0 and Cy = Cy(fz, M, A) > 0 such that

(5.16) /K [ts — uldp < [|& = B 1y < Call@ = 3117 gy < Callis — ulF )
Combining (5.13) and (5.16), we get
/ |ty — uldp < Css?%/3,
K

where C5 > 0 is a constant depending on n, rg, i and M. The proof is completed. O

Recall that N = {p = —oc}. By the choice of p, and Lojasiewicz’s inequality (e.g., see
[3]), there exist constants Agp, A1 > 1 such that

(5.17) Aplogdist(z, N) — Ay < p(z) < —logdist(z, N) + A1,
0

A
for every z € X.

Theorem 5.13. Let ;. be a Holder continuous measure on X and p > 1 be a constant. Assume
that ¢ is bounded on X and B := ||¢||z~. Then there exist a constant C' > 0 and a family of
9-psh functions 1, s with § € (0, ao/m), m € Z™ satisfying the following three properties:
Q)
|log 6| + log m e
m

[%m.s — el < C
(ii)

Bmg

Yms(x) > p(x) — + Ag(6 + m~ ) logdist(z, N) — C <5+ |l(j§5|>

forevery x € X,
(i)

\Vwm,a(ﬂl?) ’ < C571/26(3+1)m67A0m6 log dist(z,N)

for every x € X.
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Proof. We note that the assumption that ¢ is bounded implies that the Chern class of L is
nef by Demailly’s regularisation theorems. The property (ii) follows from Theorem 5.11 (4)
and from (5.17). The property (iii) follows from Theorem 5.11 (ii) applied to » = 1 and
from (5.17). It remains to prove (7).

Since p; = (1 — )¢ + dp, we have
(5.18)  sup s — ps(x) < (L —0)(sup ¢ —p(z)) +d|p(z)| < sup ¢ — p(z) + d|p(z)],

B(z,r) B(z,r) B(z,r)

and

(5.19)

\m”m%w—ﬂw

~ < (52 +5) le@) + dlo(a)]

foreveryx € X, m >mpand 0 < 6 < 1.
Using (5.18), (5.19) and Theorem 5.11 (i), we get

m — Mo m — my

Ps s — ¢

W}m,(S - 90| < ‘¢m,6 -
m

l

logr|+ [logd| + 1
< sup cp(;—(pg(m)+Clr+Cl| gr|+ |logo] +

< (22 +6) e (@) + dlp(a)|
B(z,r) m

m

< sup ¢ — p(z) + 20|p(z)| + Cir + B + Cq

[log 7| +[logd]
B(z,r) m ’

for every m > mg,r > 0and 0 < 6 < 1/2, where C,Cs > 0 are constants. Then we have

(5.20)
log d| + |logr
[m,s — @llzewy < |l sup v — ()|l Le(u) + Cs <’g|m|g‘

B(z,r)

+d+r+ 5HPHLP(M)> -

It follows from [19, Proposition 4.4] that there exist constants ¢, M > 0 depending only
on X, w,d and p satisfying
/ e”Ydu < M,
X

for every w € PSH(X, ) with supy w = 0. Then, by Holder inequality, we have
1 2p—1 1

sup p—p(x < || sup p—p(z)| sup o—o(x)l|, 3% < Oy sup po—o(x)||25, |,
I 3p ¢=e(@ ) < Il sup o= e@IF )l 50 @@ < il s o=@l
where Cy > 0 is a constant depending only on M, e, x and p. This combined with Lemma
5.12 gives
(5.21) | up P (@) Ly < Csr®/?,

B(z,r

for every 0 < r < rg, where 1o = 79(X,w),a = a(X,w, u) and C5 = C5(n, X,w, 0, u, B, p)
are positive constants.

Combining (5.20) and (5.21), we get

1 1
H@Z}m,é - SOHLP(M) < 06 (T’a/p + |0g§]m—|—|og?”| +45 +T> ’

for every m > mp, 0 < r < rpand 0 < 6 < 1/2. Choosing r = —%—, we obtain (i). The

p/a?
proof is completed. " U
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6. GOING UP TO THE DESINGULARISATION OF IV

Let 7 : X — X be the composition of sequence of blowups along smooth centers over
N such that N := 7—1(N) is a simple normal crossing hypersurface in X’. By Lojasiewicz’s
inequality, one has

(6.1) dist(m(z), N) < dist(z, N) < dist? (7 (z), N),

for some constant 3 > 0 independent of z € X. Let § := m*y which is f-psh, where
0 := 7.

Theorem 6.1. Let i be a Holder continuous measure on X and p > 1 be a constant. Assume
that ¢ is bounded and let B := ||¢||. Then there exist constants A,C' > 0 and a family of
6-psh functions i, s with § € (0,ap/m), m € Z™ satisfying the following three properties:

@

[Yms — @llzoguy < C

log ¢ 1
|log d| + OngrCé,
m

(i)

Bmo

b, = 1
(@) = Ble) — 9 1 A§log dist(x, N) — C <5 L 5\> 7
for every z € X,
(iii)
!Vﬁm s(x)] < C(s—1/26(B+1)n~oe—ArmS1ogdist(gcﬁ)7
for every x € X.

Proof. Let 1, 5 be functions in Theorem 5.13. Let '(Zm75 = 7", 5. The desired assertions
(ii) and (iii) follow directly from (6.1) and Theorem 5.13. To see why (i) holds, we recall
that 7 is a composition of successive blowups along smooth centers. Thus the desired
inequality (i) is deduced by Theorem 5.13 and Corollary 4.3 applied to p. The proof is
complete. O

Lemma 6.2. Assume that ¢ is bounded on X and (dd“p + 0)" = p is a Holder continuous
measure. Let v be an arbitrary constant in (0,1). Then for every constant D > 1, there is a
constant cp > 0 so that

R N €D,y
_ <
1P(2) = W = e dist(z )7

for every x,y € )A(\]\Af with
(dist(z,y))? < min{dist(z, N), dist(y, N)}.

Proof. Without loss of generality, we can assume that 0 < dist(z,y) < 1/2. Letp > 1 be a
constant. Denote 7y := p/(p+2n + 1) and v = p/(p + 2n + 2). Note that if p — oo, then
v — 1. Let § := m~2P. By Lemma 4.1 (we choose the constant v = 1 in Lemma 4.1) and
Theorem 6.1(i), one get

~ N ~ . logm\ "
Bns(0) = 1) S 1 = 5o Soo (22)

m
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for every x € X , m > mg. This combined with Theorem 6.1 (ii) yields

logm

Yo R
> +m 2P (—log dist(x, N))+
m

©62) %m@—ﬂM§<

for every z € X, m > my. Here (—logdist(z, N)); = max{— logdist(z, N), 0}.
Let [, , be the curve chosen as in Lemma 2.4 (for N in place of N). Now using (6.2) and
Theorem 6.1 (iii), and Lemma 2.4, we estimate

B(@) = )] < 18(@) = bins(@)] + BW) = Pms (W)] + [m,5(2) = b 5 ()]

logm\ ™ _9D . = —2D . N
< +m~ 7 (—logdist(xz, N))1 +m " (—logdist(y, N))+

~
m

+ dist(x, y)mDem(BﬂLl)e—AanD+1 log dist(lz,y(t),]v)v
for some point ¢ € [0, 1]. Since dist(l; (), N) > ¢~ min{dist(z, N), dist(y, N)}, we obtain
~ . |log 6]\ . ~ ~
(@) = B)| S (22 )+ a7 + 8(— log min{dist(w, N), dist (y, N)})
+ dist(z, y)5—1/2€m(3+1)e—Am*2D+1 log min{dist(z,N),dist(y,N)}

Hence, if (dist(z,y))” < min{dist(z, N), dist(y, N)} then we have
() = §(y)| S m™7 — Dm P log dist(z, y)

+ dlSt(x y)mDem(B+1)e_ADm72D+1 log dist(z,y)
’ .

By choosing

7| log dist(z, )|
= 1
m max{mo+ , 3B+ 1) ,

we get

_ <
1P(z) =20 = o Tt P

for every z,y € )A(\]/\\f with
(dist(z, )P < min{dist(z, N), dist(y, N)}.
This finishes the proof. O

Proposition 6.3. Assume that ¢ is bounded on X and 07 is a Holder continuous Monge-
Ampére measure. Then for every constant v € (0,1), there exists a constant C, > 0 such
that

C
—o(y)| < .
le(@) =Wl < o Tt 7

for every x,y € X\N.

Proof. By Lemma 6.2, we can apply Proposition 2.3 to ¢, and we see that ¢ is log”-
continuous on X. This combined with Lemma 3.1 yields that ¢ is log”-continuous. O

Theorem 1.1 is a direct consequence of the following result.
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Theorem 6.4. Let (X,w) be a compact Kdhler manifold such that the Chern class of —Kx
contains closed positive current of bounded potentials. Let L be a big and semi-ample line
bundle on X. Let 6 be a smooth semi-positive form in ci(L). Let p be a Holder continuous
measure on X of mass equal to [, 0™. Then the unique solution v to the equation (dd“u+6)" =

w is log™-continuous for every constant M > 0.

Proof. Throughout this proof, C; (j = 1,2, 3...) is a constant independent of m, §, z, r.
Let v € (0,1). By Proposition 6.3, we have

sup s(2') — s(x) < (1= 0)( sup () — p(x)) — dp(x)
' €B(x,r) o' €B(x,r)

< Ci (|logr|™7 + d|log dist(z, N)|)
forevery x € X and 0 < r,0 < 1/2. This combined with Theorem 5.11 (ii) yields
‘vwm 5($)| < 02571/27,7n71602m(\ log r|~7+4] logdist(:r,N)\Jrr)’

for every m > mgy. Now choose

We obtain that
(6.3) |Vip.s(z)| < 035*1/2603mﬁ+03m5|10gdist(z,N)|7

forevery:ceX 0<d< 1/2andm>m0
Let 7 : X — X and N be as above. Let ¢m5 := m*m 5. Thanks to (6.3) one gets
immediately the following property (which is a stronger version of Theorem 6.1 (iii)):

(6.4) |V’(/ﬁ\m’5(l‘)‘ < C4571/2€C’4mﬁ+04m5|logdist(m,f\\m’

for every x € X.
Now arguing exactly as in the proofs of Lemma 6.2 (use (6.4) in place of Theorem 6.1
(iii)) with 0 := m 2P, we get

() = (y)| S m™ — Dm~*P log dist(, y)

)

1
. I+ —2D+1 3
dlSt(:L’, y)mDeC4m v e—C5m log dist(z,y)

for every z,y € X\N with (dist(z,y))” < min{dist(z, N), dist(y, N)}. Now letting

. 14y
m = max 3 mo 4 1, 7[log dist(z, )| ’
3C,

we obtain
|B(x) = By)| < og |z — y|| 7,

for every z,y € X\N with (dist(z,))” < min{dist(z, N),dist(y, N)}. We note that if
~v — 1, then (1 + v) — 2. Using again arguments from the proof of Proposition 6.3 we
infer that Proposition 6.3 holds for (1 + «) in place of v. Applying now Proposition 2.3
to ¢, we see that $ is log?*7)_continuous on X. This combined with Lemma 3.1 yields
that ¢ is log” -continuous for every v/ € (0,2). Repeating this procedure gives the desired
assertion. O
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7. LOG CONTINUITY OF MONGE-AMPERE METRICS

In this section we prove Corollary 1.2. We start with some auxiliary results. We fix a
smooth Kéhler form w on X which induces a distance on X.

Lemma 7.1. Let v be a bounded w-psh function. Then there exists a constant C' > 0 such that
forevery x € X and € € (0, 1] one has

Mo, z,€) :== 6_2"+2/ (ddv 4+ w) AWt < C/|logel.
B(x,€)

Proof. Fix xy € X. Let ¢ be a negative w-psh function on X such that ¢ = clog |x — x| on
an open neighborhood of x( in X for some constant ¢ > 0, and ¢ is smooth outside x(. For
e small enough, we see that ¢(z) = clog |x — | on B(z, ¢). Hence ¢ < cloge on B(xy, €).
Recall also that

e 2nt2 / (dd°v +w) AWt < / (ddv + w) A (ddp 4 w)" L,
B(z,e€) B(z,€)
see [12, Page 159]. Hence we get
v, z,€) < |loge| ™t / —p(ddv + w) A (ddep + w)" !
B(z,€)

< |loge|™? / —p(ddv 4 w) A (dd°p + w)" !
X

= |loge|™? / —pw A (ddp 4+ w)™"
X

+ |loge|_1/ —vddp A w A (ddp + w)" !
X

< Nog e[~ ([fv]l o +1).
This finishes the proof. U

Lemma 7.2. Let u be a log™-continuous 6-psh function on X such that u is smooth outside
N. Let § € (0,1] be a constant. Then there exist a constant C' > 0 independent of 6 and a
sequence of smooth (6 + dw)-psh function (u.)e so that u. converges uniformly to u and u.
converges to u locally in the C*°-topology on X\ N.

Proof. This follows essentially from Demailly’s regularisation of psh functions ([13, Section
8]). Let exp, be the exponential map at z € X of (X,w). Let x be a cut-off function as in
[13, Page 492]. We define

1 /
o /Cesz u(exp. ()X (1C17/e%)dA(C),

ue(2)
where d\ denotes the Lebesgue measure on the Hermitian space 7. X and

C:= X (IC1*)dA(C).-

CeT. X

One sees immediately that u, is log™-continuous uniformly in e because u is already log™-
continuous.
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By [13, Proposition 8.5 and Lemma 8.6], we know that there is a constant 4; > 0 such
that

ddue(z) +0(z) > (— A1\ (u,z,€) — Are/|loge|)w,
where
Mu, x,€) = 62"“/ (ddu + w) Aw™™ 1 < Ay/|log el
B(x,€)

for some constant A independent of x by Lemma 7.1. Hence we infer that
dduc +w > —As|loge|lw
for some constant A3 > 0 independent of e. This finishes the proof. O

Lemma 7.3. Let 6 € (0,1], M > 1 and Cy > 0 be constants. Let u be a smooth (6 + ow)-psh
functions such that

[u(z) — uly)| < Collog dist(z, y)| "
for every x,y € X. Denote by d the distance induced by ddu + 0 + dw. Then
d(z,y) < C|logdist(z,y)| "M+
for every x,y € X, where C > 0 is a constant independent of u and 6.
Proof. Let Q(r) be the modulus of continuity of u. By hypothesis, one has
(7.1) Q(r) < Co|logr| =

for every 0 < r < 1. We cover X by finitely many local charts (which are relatively compact
in bigger local charts) and since the Kahler form w is equivalent to the standard Kahler form
on C" in these local charts, we can assume that w is equal to the standard form on C” on
these local charts.

Let B(x,r) denotes the ball of radius r with center at x € C". Fix 2* € X and a local
chart U around z* biholomorphic to B(0,2) such that z* = 0 in these local coordinates.
Define d(z) := d(x,0). Recall that d is the Riemannian metric induced by dd“u + 6 + dw.
For z € B(0,1), let

dy(z) := vol(B(x, 7“))1/ d(z")w".
' €B(z,r)
Arguing as in the proof of [27, Lemma 5] (see also [33] or [26]) and using (7.1), for every
xo € B(0, 1), one obtains

/ IVd]2w" < O™ + Cl/ Ju(x) — u(z)|w" < Cor®~2|logr| M.
B(zo,r) B(x0,37/2)
Therefore, by Poincaré inequality, we infer
7'2”/ |d(z) — d(x0)]Pw™ < Cs|logr| M,
B(zo,r)

where C3 > 0 is a uniform constant independent of ¢, § and r. This combined with Holder
inequality gives

(7.2) 7”_2”/ |d(z) — dy(z0)|w™ < Cs|log T‘|_M.
B (zo,r)
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We now use some arguments similar to the proof of Campanato’s lemma. We follow the
presentation in [28, Chapter 3]. Assume 0 < 7, < 79 < 1 and zj,22 € B(0,1) with
B(wl, 7”1) C B(xQ, 7"2). Observe that

|dry (20) = dry (x0)| < |dr, (20) — d()[ + [dry(20) — d(2)]
for every x € B(z1,71) C B(x2,r2). It follows that
|dry (21) = dry (22)] <

VOI(Bw(“”))_l(/Bw(m,n) \dy, (21) — d()|w" +/

B, (-TQ 7T2)

dr2) = do)f"

By (7.2), it follows that
(7.3) |dpy (1) = dyy (22)] S 72" (" Tog 1|~ + 757 log ro| 7).

Applying the last inequality to r1 = r/28T1 7y = r/2F and 21 = 29 = ¢ yields

(dy (0) — doi1, (0)| < Ca(|log| + (k+1)lo 2)—M</k+1 Cadt
2-kr(T0) — dg—r—1,(T0)| < Cy(]log & ~Ji  (llogr|+tlog2)~—M’

for some uniform constant Cy > 0 independent of z¢, r, k, ¢, 6. Summing over k =0, 1,2,...
yields

do- —dy k- < < 5|1 .
;)’ 2 kr(xo) 2-k 1T(x0)’ —/0 (\10g7“\ +t10g2)_M = 5| Og'f"

Since d, converges uniformly to d on B(0, 1) as r \, 0, it follows that
(7.4) |d(wo) — dr(wo)| < Cs|log |~

for every o € B(z*,1) (recall z* = 0), and 0 < r < 1. Let z € B(z* 1/8) and r :=
dist(x,z*) < 1/8. Using (7.4) and then applying (7.3) for x; = z, o = 2™ and 7 = 3r; =
3r, we get
d(z) = d(z) — d(z")
< ld(z) — dr(2)] + |d(2") — dar (27)| + |dr () — dsr(27)]
< Nogr|™M* + |dy () — da, ()]
< [logr| =M+ 4 [log r[~

< [logr| =M1,
This finishes the proof. O

Proof of Corollary 1.2. Write wp = ddu + 6, where u is log™ -continuous -psh function for
every constant M > 1 by Theorem 1.1. Fix 6 € (0,1]. Let u. be as in Lemma 7.2 for w.
Since dd“ue + 0 + ow converges to dd°u + 0 + dw > dd“u + 6 locally in the C*°-topology in
X\N, one sees that the desired assertion follows from Lemma 7.3 by letting ¢ — 0. O
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