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ABSTRACT. LetX be a compact Kähler manifold with semipositive anticanonical line bundle.
Let L be a big and semi-ample line bundle on X and α be the Chern class of L. We prove
that the solution of the complex Monge-Ampère equations in α with Lp right-hand side
(p > 1) is logM -continuous for every constant M > 0. As an application, we show that
every singular Ricci-flat metric in a semi-ample class in a projective Calabi-Yau manifold X
is globally logM -continuous with respect to a smooth metric on X.
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1. INTRODUCTION

Let (X,ω) be a compact Kähler manifold. A cohomology (1, 1)-class α is said to be semi-
positive if α contains a semi-positive smooth form. Let θ be a smooth closed (1, 1)-form in a
big and semi-positive cohomology class. We consider the following complex Monge-Ampère
equation

(ddcu+ θ)n = fωn, sup
X
u = 0,(1.1)

where f ∈ Lp (p > 1) is a nonnegative function so that
∫
X fω

n =
∫
X θ

n. The regularity of
solutions of (1.1) is well-known if θ is Kähler thanks to pioneering works by Yau [44] and
Kołodziej [29], and many subsequent papers. We refer to [16, 18, 19, 31, 30, 35, 36, 37,
40, 41, 42] and references therein for details on Hölder continuity of solutions when θ is
Kähler.

The focus of our work is the case where θ belongs to a semi-positive and big cohomology
class. In this general setting, it is well-known by [7] that the solution u is smooth outside
the non-Kähler locus of the cohomology class of θ. By [21, 8] or [17], we know that the
equation (1.1) admits a unique continuous solution u on X if the cohomology class of θ is
integral (see [23] for more information). The aim of this paper is to quantify this continuity
property of solutions. The methods in [21, 8] or [17] seem to be only qualitative. To state
our results, we need to introduce some notions.

Let M > 0 be a constant. We fix a smooth Riemannian metric dist(·, ·) on X. A function
u on X is said to be logM -continuous if there exists a constant CM > 0 such that

|u(x)− u(y)| ≤ CM
| log dist(·, ·)|M

,

for every x, y ∈ X. Let KX be the canonical line bundle of X. Recall that X is Calabi-Yau if
c1(KX) = 0, and X is Fano if KX < 0. A line bundle L on X is said to be semi-ample if Lk
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is base-point free for some large enough integer k ≥ 1. It is a well-known fact that (see [38,
Section 2] for a summary), L is automatically semi-ample if X is a projective Calabi-Yau
manifold and L is big and nef.

Here is our main result in this work giving a partial answer to the above question.

Theorem 1.1. Let (X,ω) be a compact Kähler manifold such that K∗X is semi-positive (where
K∗X is the dual of the canonical line bundle KX) and let L be a big and semi-ample line bundle
on X. Assume f is a Lp function for some constant p > 1 and θ ∈ c1(L) is a smooth form.
Then the unique solution u of (1.1) is logM -continuous for every constant M > 0.

As far as we know, Theorem 1.1 is probably the first known quantitative (global) regu-
larity for solutions of complex Monge-Ampère equations in a semi-positive class. We would
like to notice that it was proved in [27] that the solution of the equation (ddcu+ω)n = eFωn

for eF ∈ L1(logL)p is logM -continuous for M := min{p−nn , p
n+1}; see also [24] for a recent

development. As far as we can see, the method in [27] or [24] uses crucially the fact that
ω is Kähler and it is not clear if this can be extended to semi-positive classes to obtain a
logM -continuity for solutions of (1.1).

Assume that X,L, ω are as in the statement of Theorem 1.1. Hence the non-Kähler locus
N of c1(L) is a proper analytic subset in X; see [5]. Let F be a smooth function on X such
that

∫
X e

Fωn =
∫
X(c1(L))n and denote by ωF the (singular) positive (1, 1)-form on X such

that ωnF = eFωn. Recall that ωF is a genuine Kähler metric on X\N .

Corollary 1.2. Assume that X,L, ω,N and F are as above. Then for every constant M > 0,
there exists a constant CM > 0 such that

dωF (x, y) ≤ CM | log dist(x, y)|−M ,
for every x, y ∈ X\N , where dωF is the distance induced by ωF on X\N .

In the case where θ is in a Kähler class, one has better estimates; see [24, 33, 43] for
details. We are not aware of any previous result similar to Corollary 1.2 for merely semi-
ample and big classes. As an immediate consequence of Corollary 1.2, we get the following.

Corollary 1.3. Let (X,ω) be a compact Kähler manifold such that K∗X is semi-positive and let
L be a big and semi-ample line bundle on X. Assume ω0 is a (singular) Kähler-Einstein metric
in c1(L). Then ω0 has a logM -continuous potential. Moreover, if dω0 denotes the distance
induced by ω0 on X\N then for every constant M > 0 there is a constant CM > 0 so that

dω0(x, y) ≤ CM | log dist(x, y)|−M ,
for every x, y ∈ X\N .

One can apply Corollary 1.3 to the case where X is Calabi-Yau. In this case ω0 is the
Ricci-flat metric in c1(L) which always exists uniquely (see [21]).

We now explain main ideas in the proof of Theorem 1.1. We will need to approximate our
smooth solution u by smooth quasi-psh function (uε)ε. Using [14] or [15, Theorem 4.12]
(analytic approximation for general closed positive (1, 1)-currents), one obtains (θ+εω)-psh
functions uε so that uε converges to u in a quantitative way in L1. However ‖∇uε‖L∞ grows
like e1/ε. The fact that uε is only (θ + εω)-psh and a bad control on ‖∇uε‖L∞ is not usable
in our approach. For this reason, we have to restrict ourselves to the line bundle setting
for which a more precise approximation procedure is available. Precisely we will need a
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modified version of Demailly’s analytic approximation of singular (not necessarily Kähler)
Hermitian metrics for a line bundle (Theorem 5.11). This together with Kołodziej’s capacity
technique will give us a weak Log continuity property for u (see Lemma 6.2). Our second
ingredient (Sections 2 and 3) is to say that a function satisfying this weak Log continuity
property is indeed Log continuous as desired.

The paper is organized as follows. In Sections 2 and 3, we present important facts about
log continuity of functions. In Section 4, we recall some facts about Hölder continuous
measures. In Section 5, we present a modified version of Demailly’s analytic approxima-
tion. The rest of the paper is devoted to the proof of main results.
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2. LOG CONTINUITY OF PSEUDOMETRICS

Let Z be a topological space and d : Z2 → R≥0 be a function. Let B ≥ 1 be a constant.
We say that d is a B-pseudometric on Z if the following holds:

(i) d is symmetric, i.e, d(x, y) = d(y, x),
(ii) d is continuous on Z2,
(iii) for every x1, . . . , xm ∈ Z, one has

d(x1, xm) ≤ B
m−1∑
j=1

d(xj , xj+1).

Lemma 2.1. Let U ⊂ Rm be a bounded convex domain (m ≥ 2). Let B ≥ 1 be a constant.
Let d : U × U → [0,∞) be a B-pseudometric satisfying the following condition: there exist
constants α > 0, D > 1 and C0 > 0 such that

(2.1) d(x, y) ≤ C0

| log |x− y||α
,

for every x, y ∈ U with |x− y|D ≤ min{dist(x, ∂U),dist(y, ∂U)}, where

dist(w, ∂U) = inf{|w − ξ| : ξ ∈ ∂U}.

Then, there exists a constant C > 0 depending only on B,C0, α,D and U such that

d(x, y) ≤ C

| log |x− y||α
,

for every x, y ∈ U .

Proof. Without loss of generality, we can assume that diam(U) ≤ 1. In particular, |x−y|D ≤
|x− y| for every x, y ∈ U .

Fix a ∈ U and denote r = dist(a, ∂U). The desired assertion is clear if we have either
|x− y| ≥ r/2 or

min{dist(x, ∂U), dist(y, ∂U)} ≥ r/2 ≥ |x− y|
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(by (2.1)). Consider now the case where

|x− y| ≤ r/2 and min{dist(x, ∂U),dist(y, ∂U)} < r/2.

Thus, we have max{|x − a|, |y − a|} > |x − y|. Without loss of generality, we can assume
that |x− a| > |x− y| := δ > 0. Set

x0 =
(|x− a| − δ)x
|x− a|

+
δa

|x− a|
.

In other words, x0 is a point in [x, a] satisfying |x− x0| = δ. Since U is convex, we have

(2.2) dist(x0, ∂U) ≥ (|x− a| − δ) dist(x, ∂U)

|x− a|
+
δ dist(a, ∂U)

|x− a|
≥ rδ.

For every k ∈ Z+, we denote by xk the point in [x, x0] satisfying |x − xk| = δD
k
. Then, we

have

dist(xk, ∂U) ≥ dist(x0, ∂U)|xk − x|
|x− x0|

≥ rδDk and |xk − xk−1| ≤ δD
k−1

.

Put M =

[
1

r

]
+ 1, where [·] is the greatest integer function. For every l = 0, ...,M and

k ∈ Z+, we denote

xk,l = xk−1 +
l(xk − xk−1)

M
.

Then |xk,l − xk,l+1| ≤
δD

k−1

M
. Moreover, since dist(., ∂U) is a concave function on U , we

have

dist(xk,l, ∂U) ≥ min{dist(xk, ∂U), dist(xk−1, ∂U)} ≥ rδDk ≥ δD
k

M
.

Therefore, by the condition (2.1), we get

d(xk,l, xk,l+1) ≤ C0

| log |xk,l − xk,l+1||α
≤ C0

D(k−1)α| log δ|α
.

Thus, we have

d(xk, xk−1) ≤ B
M−1∑
l=0

d(xk,l, xk,l+1) ≤ BC0M

D(k−1)α| log δ|α
.

Hence

d(xk, x0) ≤ B
k∑
j=1

d(xj , xj−1) ≤ B2C0M

| log δ|α
k∑
j=1

D−(j−1)α ≤ C1

| log δ|α
,

where C1 =
B2C0M D−α

1−D−α
=
B2C0M

Dα − 1
.

Since d is continuous on U × U , one gets

(2.3) d(x, x0) = lim
k→∞

d(xk, x0) ≤ C1

| log δ|α
.

Since |y−x0| ≤ |x− y|+ |x−x0| ≤ 2δ, by using the same argument as above, we also have

(2.4) d(y, x0) ≤ C2

| log δ|α
,
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where C2 > 0 depends only on B,C0,M,D and α.
Combining (2.3) and (2.4), we get

d(x, y) ≤ B(d(x, x0) + d(y, x0)) ≤ B(C1 + C2)

| log δ|α
=

B(C1 + C2)

| log |x− y||α
.

The proof is completed. �

Lemma 2.2. Let U ⊂ Rm be a bounded convex domain (m ≥ 2). Let B ≥ 1 be a constant.
Assume d : U ×U → [0,∞) is a B-pseudometric satisfying the following condition: there exist
constants α > 1 and C0 > 0 such that

(2.5) d(x, y) ≤ C0

| log |x− y||α
,

for every x, y ∈ U with |x− y| ≤ min{dist(x, ∂U),dist(y, ∂U)}, where

dist(w, ∂U) = inf{|w − ξ| : ξ ∈ ∂U}.

Then, there exists a constant C > 0 depending only on B,C0, α,D and U such that

d(x, y) ≤ C

| log |x− y||α−1
,

for every x, y ∈ U .

Proof. We will use the same method as in the proof of Lemma 2.1. Without loss of generality,
we can assume that there exists a ∈ U such that r = dist(a, ∂U) ≥ 1. We only need to
consider the case where |x − y| ≤ r/2 and min{dist(x, ∂U),dist(y, ∂U)} < r/2. In this
case, we have max{|x−a|, |y−a|} > |x− y|. We can assume that |x−a| > |x− y| := δ > 0.
Set

x0 =
(|x− a| − δ)x
|x− a|

+
δa

|x− a|
.

In other words, x0 is a point in [x, a] satisfying |x− x0| = δ. Since U is convex, we have

(2.6) dist(x0, ∂U) ≥ (|x− a| − δ) dist(x, ∂U)

|x− a|
+
δ dist(a, ∂U)

|x− a|
≥ rδ.

For every k ∈ Z+, we denote by xk the point in [x, x0] satisfying |x− xk| = 2−kδ. Then, we
have

dist(xk, ∂U) ≥ dist(x0, ∂U)|xk − x|
|x− x0|

≥ r2−kδ and |xk − xk−1| ≤ 2−kδ.

By the condition (2.5), we have

d(xk, xk−1) ≤ C0

| log |xk − xk−1||α
≤ C0

(| log δ|+ k log 2)α
,

for every k ∈ Z+. Hence

d(xk, x0) ≤ B
k∑
j=1

d(xj , xj−1) ≤
k∑
j=1

BC0

(| log δ|+ j log 2)α
≤ BC0

log 2

∫ ∞
log |δ|

dt

tα
≤ C1

| log δ|α−1
,

where C1 = BC0
(α−1) log 2 .



6 HOANG-SON DO AND DUC-VIET VU

Since d is continuous on U × U , one has

(2.7) d(x, x0) = lim
k→∞

d(xk, x0) ≤ C1

| log δ|α−1
.

Since |y−x0| ≤ |x− y|+ |x−x0| ≤ 2δ, by using the same argument as above, we also have

(2.8) d(y, x0) ≤ C2

| log δ|α−1
,

where C2 > 0 depends only on B,C0 and α. Combining (2.7) and (2.8), we get

d(x, y) ≤ B(d(x, x0) + d(y, x0)) ≤ B(C1 + C2)

| log δ|α−1
=

B(C1 + C2)

| log |x− y||α−1
.

The proof is completed. �

Proposition 2.3. Let N1, N2..., Np be affine subspaces of Rm such that codim(Nj) ≥ 2 for
every j = 1, ..., p. Denote N = ∪pj=1Nj . Let B ≥ 1 be a constant. Let α > 0, D ≥ 1 and
C0 > 0 be constants. Let d be a B-pseudometric on Bm \ N satisfying one of the following
conditions

(i) D > 1 and

(2.9) d(x, y) ≤ C0

| log |x− y||α
,

for every x, y ∈ Bm \N with |x− y|D ≤ min{dist(x,N), dist(y,N)}.
(ii) D = 1 and

(2.10) d(x, y) ≤ C0

| log |x− y||α+1
,

for every x, y ∈ Bm \N with |x− y| ≤ min{dist(x,N), dist(y,N)}.
Then, there exists C > 0 depending only on B,C0, α,D,N and m such that

d(x, y) ≤ C

| log |x− y||α
,

for every x, y ∈ Bm \N .

Proof. We will give the proof for the first case where (i) is satisfied. The second case is
similar (use Lemma 2.2 in place of Lemma 2.1). Recall that d is a continuous functionon
(Bm \ N) × (Bm \ N). Let Hj be a hyperplane containing Nj for j = 1, ..., p, and denote
H = ∪pj=1Hj . Observe that the connected components of Bm \ H are bounded convex
subsets of Rm. Moreover, if U is a connected component of Bm \H then by (2.9), u satisfies
the condition (2.1) in Lemma 2.1.

Let x, y ∈ Bm \N . We distinguish into three cases.
Case 1: there exists a connected component U of Bm \H such that x, y ∈ U \N .

In this case, by Lemma 2.1 and by the continuity of d, we have

d(x, y) ≤ CU
| log |x− y||α

,

where CU > 0 is a constant depending only on B,C0, α,D and U .
Case 2: [x, y] ∩H 6= ∅ but [x, y] ∩N = ∅.

In this case, there exist connected components U1, U2, ..., Uk of Bm\H and x0, x1, x2, ..., xk ∈
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[x, y] such that x0 = x ∈ U1, xk = y ∈ Uk and xj ∈ ∂Uj ∩ ∂Uj+1 for every j = 1, ..., k − 1.
Using the result in Case 1, we have

d(x, y) ≤ B
k∑
j=1

d(xj , xj−1) ≤
k∑
j=1

BCUj
| log |xj − xj−1||α

≤ kBC1

| log |x− y||α

≤ (p+ 1)BC1

| log |x− y||α
,

where C1 = sup{CU : U is a connected component of Bm \N}.
Case 3: [x, y] ∩N 6= ∅.

Denote f(t) = tx+ (1− t)y, 0 ≤ t ≤ 1. Then, there exist 0 < k ≤ p and 0 < t1 < t2 < ... <
tk < 1 such that

[x, y] ∩N = {f(tj) : j = 1, ..., k}.
By Lemma 2.4 below, for every j = 1, ..., k and for every 0 < ε� 1, there exists a pieceweise
linear curve l = a0a1...a4p with a0 = f(tj + ε) and a4p = f(tj − ε) such that l does not
intersect N and

L(l) ≤ C2|f(tj + ε)− f(tj − ε)| = 2C2ε|x− y|,
where C2 ≥ 1 is a constant depending only on p. Therefore, by the result in Case 2, we
have

(2.11) d(f(tj + ε), f(tj − ε)) = O(ε).

Denote t0 = 0 and tk+1 = 1. By Case 2 and by (2.11), we have

d(x, y) = lim
ε→0+

d(f(t0 + ε), f(tk+1 − ε))

≤ lim sup
ε→0+

B

k∑
j=0

d(f(tj + ε), f(tj+1 − ε)) + lim sup
ε→0+

B

k∑
j=1

d(f(tj + ε), f(tj − ε))

≤ lim sup
ε→0+

k∑
j=0

B2C1(p+ 1)

| log |f(tj + ε)− f(tj+1 − ε)||α

≤ B2C1(p+ 1)2

| log |x− y||α
.

The proof is completed. �

The following lemma plays also an important role in our proof later.

Lemma 2.4. Let N1, N2, ..., Nk be affine subspaces of Rm such that codim(Nj) ≥ 2 for every
j = 1, ..., k. Denote N = ∪kj=1Nj . Then, there is a constant C ≥ 1 depending only on k

(and m) satisfying the following property: for every x, y ∈ Rm \N , there is a polygonal chain
l = a0a1...a4k with a0 = x and a4k = y such that

C dist(ξ,N) ≥ min{dist(x,N),dist(y,N)},
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for every ξ ∈ ∪4k−1
s=0 [as, as+1], and

L(l) ≤ C|x− y|,
where L(l) = |a0 − a1|+ |a1 − a2|+ ...+ |a4k−1 − a4k | is the length of l.

In order to prove Lemma 2.4, we need the following elementary lemma:

Lemma 2.5. Let N be an affine subspace of Rm with codimN ≥ 2. Let r ≥ 1 be a constant.
Then, for every x, y ∈ Rm \N , there exists w ∈ Rm \N such that

|x− w|+ |w − y| ≤ 3|x− y|,

and
2r dist(ξ,N) ≥ min{dist(x,N), dist(y,N)} ≥ r dist(ξ, [x, y]),

for every ξ ∈ [x,w] ∪ [w, y].

Proof. Observe that the function dist(·, N) is convex on Rm. Indeed, for every a, b ∈ Rm,
there exist a0, b0 ∈ N such that |a − a0| = dist(a,N) and |b − b0| = dist(b,N). Hence, if
η = αa+ (1− α)b for some α ∈ [0, 1] then

α dist(a,N) + (1− α) dist(b,N) = α|a− a0|+ (1− α)|b− b0|
≥ |α(a− a0) + (1− α)(b− b0)|
= |η − (αa0 + (1− α)b0)| ≥ dist(η,N).

Let R := min{dist(x,N),dist(y,N)}. If dist(η,N) ≥ R/(2r) for every η ∈ [x, y], then
w := x satisfies the desired property. Assume, from now on, that there is a point η ∈ [x, y]
such that dist(η,N) ≤ R/(2r) ≤ R/2. We deduce that

|x− y| = |x− η|+ |η − y| ≥ dist(x,N)− dist(η,N) + dist(y,N)− dist(η,N) ≥ R.(2.12)

We distinguish into three cases

Case 1: Either [x, y] is parallel to N or the line passing through x, y intersects N but
[x, y] ∩N = ∅.
In this case, we can take w := x.

Case 2: [x, y] ∩N 6= ∅.
Since codimN ≥ 2, there exists a hyperplane Ñ containing x, y,N . Let w0 = [x, y]∩N . Let
w be a point in Rm\Ñ so that |w − w0| = R

r and [w,w0] is orthogonal to Ñ . We have

|w − x|+ |w − y| ≤ |x− w0|+ 2|w − w0|+ |y − w0| ≤ |x− y|+ 2R ≤ 3|x− y|,

where the last estimate holds due to (2.12).
Moreover, if ξ ∈ [x,w] ∪ [y, w] then

dist(ξ, [x, y]) ≤ dist(w, [x, y]) = |w − w0| =
R

r
.

Let x0 ∈ N such that |x − x0| = dist(x,N). If ξ ∈ [x,w] then ξ = αx + (1 − α)w for some
α ∈ [0, 1]. Since x− x0 ⊥ N and w − w0 ⊥ Ñ , we have

dist(ξ,N) = |ξ − αx0 − (1− α)w0| =
√
α2|x− x0|2 + (1− α)2|w − w0|2 ≥

R

2r
.
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Similarly, if ξ ∈ [y, w] then we also have dist(ξ,N) ≥ R
2r . Then, w satisfies the desired

properties.
Case 3: [x, y] is not parallel to N and the line d passing through x, y does not intersect

N .
In this case, there exist w1 ∈ N , w2 ∈ d such that [w1, w2] is orthogonal to N and d, and
|w1 − w2| = min{|z − z′| : z ∈ d, z′ ∈ N}. Using the convexity of d(·, N) and the fact
that there exists η ∈ [x, y] with d(η,N) < R/2, we deduce that d(ξ,N) > R/2 for every
ξ ∈ d\[x, y]. Consequently w2 ∈ [x, y].

Let w be the point in the line passing through w1, w2 such that w2 lies between w1 and
w, and |w − w2| = R/r. We check that w satisfies the required properties. Let ξ ∈ [w, x].
Write ξ = αx + (1 − α)w for some constant α ∈ [0, 1]. Let ξ0, x0 be points in N such that
[x, x0] and [ξ, ξ0] are orthogonal to N . We have

ξ0 = αx0 + (1− α)w1.

Compute

|ξ − ξ0|2 = |α(x− x0) + (1− α)(w − w1)|2

= α2|x− x0|2 + (1− α)2|w − w1|2 + 2α(1− α)〈x− x0, w − w1〉.

Recall that w − w1 is both orthogonal to N and d. It follows that

〈x− x0, w − w1〉 = 〈x− w2, w − w1〉+ 〈w2 − w1, w − w1〉+ 〈w1 − x0, w − w1〉

which is equal to 〈w2 − w1, w − w1〉 ≥ 0. Hence we obtain

|ξ − ξ0|2 ≥ α2|x− x0|2 + (1− α)2|w − w1|2

≥ α2R2 + (1− α)2R2/r2 ≥ R2

2r2
·

Since dist(ξ,N) = |ξ − ξ0|, we infer

2 dist(ξ,N) ≥ R/r.

On the other hand, we have

dist(ξ, [x, y]) ≤ dist(w, [x, y]) ≤ |w − w2| = R/r.

We obtain a similar inequalities if ξ ∈ [w, y]. Finally, observe

|w−x|+ |w− y| ≤ |w−w2|+ |x−w2|+ |w−w2|+ |w2− y| = 2R+ |x− y| ≤ 3R ≤ 3|x− y|,

because w2 ∈ [x, y] and we used here (2.12). Thus w satisfies the desired properties.
This finishes the proof. �

Proof of Lemma 2.4. We will use induction in k. The case k = 1 is an immediate corollary
of Lemma 2.5. Assume that Lemma 2.4 is true for k = k0. We will show that it is also true
for k = k0 + 1.

Denote N ′ = N1∪N2∪ ...∪Nk0 and N = N1∪N2∪ ...∪Nk0+1. Let x, y ∈ Rm \N , x 6= y.
By the induction assumption, there exists a polygonal chain l0 = a0a1...a4k0 with a0 = x
and a4k0 = y such that

(2.13) L(l0) ≤ C0|x− y|,
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and

(2.14) C0 dist(ξ,N ′) ≥ min{dist(x,N ′), dist(y,N ′)},

for every ξ ∈ ∪4k0
s=1[as−1, as], where C0 ≥ 1 is a constant depending only on k0 and m.

We will construct a polygonal chain l = b0b1...b4k0+1 satisfying the conditions as in Lemma
2.4. Denote

A := min{dist(x,N), dist(y,N)}.
If 2C0 dist(ξ,N) ≥ A for every ξ ∈ ∪4k0

s=1[as−1, as] then we can choose l = l0 and C = 2C0.
It remains to consider the case where 2C0 dist(ξ0, N) < A for some ξ0 ∈ ∪4k0

s=1[as−1, as]. In
this case, we have

(2.15) L(l0) ≥ |x−ξ0|+|y−ξ0| ≥ (dist(x,N)−dist(ξ0, N))+(dist(y,N)−dist(ξ0, N)) ≥ A.

For every s = 0, ..., 4k0 , we define b4s as follows

• If 2C0 dist(as, N) ≥ A then we put b4s = as;
• If 2C0 dist(as, N) < A then we choose b4s ∈ Rm such that the vector b4s − as is

perpendicular to Nk0+1 and

(2.16) dist(b4s, Nk0+1) = |as − b4s|+ dist(as, Nk0+1) =
A

2C0
.

Thus we have

(2.17) |b4s − b4s+4| ≤ |as − as+1|+ |as − b4s|+ |as+1 − b4s+4| ≤ |as − as+1|+
A

C0
,

and

(2.18) dist(ξ, [as, as+1]) ≤ max{|b4s − as|, |b4s+4 − as+1|} ≤
A

2C0
,

for each ξ ∈ [b4s, b4s+4] and for every s = 0, 1, ..., 4k0 − 1.
Combining (2.14) and (2.18), we get

(2.19) dist(ξ,N ′) ≥ inf
η∈[as,as+1]

dist(η,N ′)− dist(ξ, [as, as+1]) ≥ A

2C0
,

for each ξ ∈ [b4s, b4s+4] and for every s = 0, 1, ..., 4k0 − 1.
We will find b4s+1, b4s+2 and b4s+3 such that

(i)
∑4s+3

j=4s |bj − bj+1| ≤ 3|as − as+1|+ 2A
C0

;
(ii) dist(ξ,N) ≥ A

8C0
for every ξ ∈ ∪4s+3

j=4s[bj , bj+1].

We distinguish into three cases.

Case 1: dist(ξ,Nk0+1) ≥ A
4C0

for all ξ ∈ [b4s, b4s+4].
In this case, we put b4s+1 = b4s+2 = b4s+3 = b4s+4. It follows from (2.17) and (2.19) that
the conditions (i) and (ii) are satisfied.

Case 2: dist(ξ0, Nk0+1) < A
4C0

for some ξ0 ∈ [b4s, b4s+4] and either as 6= b4s or as+1 6= b4s+4.
In this case, we have

min{dist(b4s, Nk0+1),dist(b4s+4, Nk0+1)} =
A

2C0
.
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By Lemma 2.5, we can choose q ∈ Rn such that

(2.20) |b4s − q|+ |b4s+4 − q| ≤ 3|b4s − b4s+4|

and

(2.21) 4 dist(ξ,Nk0+1) ≥ A

2C0
≥ 2 dist(ξ, [b4s, b4s+4]),

for every ξ ∈ [b4s, q] ∪ [q, b4s+4].
By (2.19) and (2.21), we have

(2.22) dist(ξ,N ′) ≥ inf
η∈[b4s,b4s+4]

dist(η,N ′)− dist(ξ, [b4s, b4s+4]) ≥ A

4C0
.

for every ξ ∈ [b4s, q] ∪ [q, b4s+4].
Put b4s+1 = b4s+2 = b4s+3 = q. It follows from (2.17) and (2.20) that (i) is satisfied. By

(2.21) and (2.22), we also get (ii).

Case 3: dist(ξ0, Nk0+1) < A
4C0

for some ξ0 ∈ [b4s, b4s+4] and aj = b4j for j = s, s+ 1.
In this case, we choose b4s+2 ∈ Rm such that the vector b4s − as is perpendicular to Nk0+1

and

(2.23) dist(b4s+2, Nk0+1) = |b4s+2 − b4s|+ dist(ξ0, Nk0+1) =
A

4C0
.

Similar to (2.17) and (2.18) (and note that aj = b4j for j = s, s+ 1), we have

(2.24) |b4s − b4s+2|+ |b4s+2 − b4s+4| ≤ |b4s − b4s+4|+
A

2C0
= |as − as+1|+

A

2C0
,

and

(2.25) dist(ξ, [as, as+1]) = dist(ξ, [b4s, b4s+4]) ≤ A

4C0
,

for every ξ ∈ [b4s, b4s+2] ∪ [b4s+2, b4s+4].
Combining (2.14) and (2.25), we get

(2.26) dist(ξ,N ′) ≥ 3A

4C0
,

for every ξ ∈ [b4s, b4s+2] ∪ [b4s+2, b4s+4].
By using Lemma 2.5 for [b4s, b4s+2] and [b4s+2, b4s+4], we can choose b4s+1 and b4s+3 such

that

(2.27)
4s+3∑
j=4s

|bj − bj+1| ≤ 3(|b4s − b4s+2|+ |b4s+2 − b4s+4|),

and

(2.28) 2 dist(ξ,Nk0+1) ≥ A

4C0
≥ dist(ξ, [b4s, b4s+2] ∪ [b4s+2, b4s+4]),

for every ξ ∈ ∪4s+3
j=4s[bj , bj+1].

By (2.26) and (2.28), we have

(2.29) dist(ξ,N ′) ≥ inf
η∈I

dist(η,N ′)− dist(ξ, I) ≥ A0

2C0
,
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for every ξ ∈ ∪4s+3
j=4s[bj , bj+1], where I = [b4s, b4s+2] ∪ [b4s+2, b4s+4]. It follows from (2.28)

and (2.29) that (ii) is satisfied. By (2.24) and (2.27), we also obtain (i).
Now, let l0 = b0b1...b4k0+1 . By (ii), we have

dist(ξ,N) ≥ 1

8C0
min{dist(x,N), dist(y,N)}.

By (2.13), (2.15) and (i), we have

L(l) =

4k0+1−1∑
j=0

|bj − bj+1| ≤
4k0−1∑
s=0

(
3|as − as+1|+

2A

C0

)
= 3L(l0) + 4k0

2A

C0

≤ 3

(
1 +

4k0

C0

)
L(l0)

≤ 3
(
C0 + 4k0

)
|x− y|.

Choosing C = 8
(
C0 + 4k0

)
, we see that l and C satisfy the desired conditions. Thus,

Lemma 2.4 is true in the case k = k0 + 1. This completes the proof. �

3. LOG CONTINUITY PRESERVED UNDER BLOWUPS

Let f : X → Y be a smooth surjective map between compact differentiable manifolds.
Let gX , gY be Riemannian metrics on X,Y respectively. Let dgX , dgY denote the distances
induced by gX , gY on X,Y respectively. For E ⊂ X, let dX(a,E) := infb∈E dX(a, b). For
every a, b ∈ Y , we define

dgX ,f (a, b) := inf
a′∈f−1(a),b′∈f−1(b)

dgX (a′, b′).

We note the last function is in general not a metric on Y . Observe

dgY ≤ CdgX ,f(3.1)

for some constant C > 0 because the differential Df is bounded uniformly on X.

Lemma 3.1. Let X0, . . . , Xm be compact complex manifolds and f : Xj → Xj−1 be the blow
up along a smooth submanifold Vj−1 ⊂ Xj−1 in Xj−1 for 1 ≤ j ≤ m. Let f := fm ◦ · · · ◦ f0 :
Xm → X0. Let gj be a Riemannian metric on Xj for 1 ≤ j ≤ m. Let A > 0, β ∈ (0, 1]
be constants. Let u be a function on X0 and M > 0 be a constant. Then if u ◦ fm is a
logM -continuous function, then so is u.

We note that a similar property for Hölder continuity was proved in [26]. The following
proof is more or less similar.

Proof. This is indeed implicitly in the proof of Lemma 3.4 in [26] if m = 1. The general case
follows from an immediate induction on m. For readers’ convenience, we reprove below
the case where m = 1.

Let f1 : X1 → X0 be the blow up along a smooth submanifold V in X0. Let n := dimX0

and l := dimV . Let a ∈ V and let
(
U, x = (x1, . . . , xn)

)
be a local chart around a such that

V is given by {xj = 0, 1 ≤ j ≤ n − l}. Thus f−1
1 (U) is biholomorphic to the submanifold
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of U × CPn−l−1 defined by the equations xjvs = vjxs for 1 ≤ j, s ≤ n− l, where v := [v1 :

· · · : vn−l] are the homogeneous coordinates on CPn−l−1. One can cover f−1
1 (U) by (n− l)

open subsets
Uj :=

{
(x, v) ∈ f−1

1 (U) : vj 6= 0
}
.

In Uj , we have

f1(x, v) = (v1xj/vj , v2xj/vj , . . . , vn−lxj/vj , xn−l+1, . . . , xn).

Now let a, b ∈ X0. It suffices to consider a, b close to each other and both close to V
(because f1 is biholomorphic outside V ). We split the proof into several cases. Firstly
observe that if a, b ∈ V , then since f1 : f−1

1 (V )→ V is a submersion, one gets

Cdg0(a, b) ≥ dg1,f1(a, b),

for some constant C > 0 independent of a and b. Hence

|u(a)− u(b)| = inf
a′∈f−1

1 (a),b′∈f−1
1 (b)

|u ◦ f1(a′)− u ◦ f1(b′)|(3.2)

. | log dg1,f1(a, b)|−M . | log dg0(a, b)|−M .
Note that in the last inequality, we only consider a and b close to each other, hence log dg0(a, b) <
0.

Case 1. Consider now b ∈ V and a 6∈ V but close to b. Then there is a local chart (U, x)
on X0 containing b, a such that V is given by {xj = 0, 1 ≤ j ≤ n − l}. We use now the
Euclidean distance on that local chart.

Without loss of generality, we can assume that b = 0, a = (x′1, . . . , x
′
n) with x′1 6= 0 and

h(t) := (tx′1, . . . , tx
′
n) ∈ U for every t ∈ [0, 1]. We see that

ĥ(t) := f−1
1 ◦ h(t) = (tx′1, . . . , tx

′
n, [x

′
1 : . . . : x′n]),

for t > 0. Letting t→ 0 gives

ĥ(0) := lim
t→0

f−1
1 ◦ h(t) = (0, . . . , 0, [x′1 : . . . : x′n]) ∈ f−1

1 (b).

We infer that
dg1
(
ĥ(1), ĥ(0)

)
. |x′1|+ · · ·+ |x′n| . |a− b|.

It follows that
dg1
(
ĥ(1), f−1(b)

)
. |a− b| . dg0(a, b).

Hence dg1,f1(a, b) . dg0(a, b). Thus we get an estimate similar to (3.2).

Case 2. Consider now a, b 6∈ V but close to V . Direct computations show that |Df−1
1 (a)| .

|dg0(a, V )|−2. Thus we get

dg1,f1(a, b) . max{dg0(a, V )−2, dg0(b, V )−2}dg0(a, b).

Hence if min{dg0(a, V )2, dg0(b, V )2} ≥ dg0(a, b)1/2, then

dg1,f1(a, b) . dg0(a, b)1/2.

We treat now the case where min{dg0(a, V )2, dg0(b, V )2} ≤ dg0(a, b)1/2. Without loss of
generality, we can assume that dg0(b, V ) ≤ dg0(a, b)1/4. Then

dg0(a, V ) ≤ dg0(a, b) + dg0(b, V ) . dg0(a, b)1/4.
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Now we consider a local chart (U, x) containing a, b. We use now the Euclidean metric. Let
aV , bV be the projection of a, b to V respectively.

|aV − bV | . |a− b|

and
|a− aV | . |a− b|1/4, |b− bV | . |a− b|1/4.

Now applying Case 1 to (a, aV ), (b, bV ) and (aV , bV ), one obtains

dg1,f1(a, aV ) + dg1,f1(aV , bV ) + dg1,f1(bV , b) . |a− aV |+ |aV − bV |+ |b− bV | . |a− b|1/4.
(3.3)

Put x1 := |u(a)− u(aV )|, x2 := |u(aV )− u(bV )| and x3 := |u(bV )− u(b)|. By previous parts
of the proof, we see that

dg0(a, aV ) & e−x
− 1
M

1 , dg0(aV , bV ) & e−x
− 1
M

2 ,

and

dg0(bV , b) & e
−x
− 1
M

3 .

This combined with (3.1) and (3.3) gives

|a− b|1/4 &
3∑
j=1

e−x
− 1
M

j & exp

{
−
(
x1 + x2 + x3

3

)−1/M
}
.

It follows that

x1 + x2 + x3 .

∣∣∣∣log
|a− b|
C

∣∣∣∣−M . | log |a− b||−M ,

for some constant C > 0 independent of a and b. The left-hand side of the last inequality is
≥ |u(a)− u(b)|. Hence |u(a)− u(b)| . | log |a− b||−M . This finishes the proof. �

4. HÖLDER CONTINUOUS MEASURES

Let η be a closed smooth semi-positive (1, 1)-form in a big (semi-positive) cohomology
class. Let K be a Borel subset of X. The capacity of K is given by

capη(K) := sup
{∫

K
ηnϕ : 0 ≤ ϕ ≤ 1, ϕ η-psh

}
.

The above notion was introduced in [21] generalizing those in [2, 29]; see [11, 34] and
references therein for various generalizations of capacity.

Let A, β > 0. We say that a Borel measure µ on X satisfies the condition H(β,A, η) if

µ(K) ≤ A
(
capη(K)

)1+β
,

for every Borel set K ⊂ X.
Fix a Kähler form ω on X. Let µ be a measure on X. Recall that µ is said to be a Hölder

continuous measure with the Hölder constant A and the Hölder exponent γ ∈ (0, 1] if for
every ω-psh function ϕ1, ϕ2 with

∫
X ϕjω

n = 0 for j = 1, 2 there holds∫
X

(ϕ1 − ϕ2)dµ ≤ A‖ϕ1 − ϕ2‖L1(ωn).
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Let M(A, γ) be the set of Hölder continuous measures with the Hölder constant A and
the Hölder exponent γ ∈ (0, 1]. By [19, Lemma 3.3], a measure µ ∈ M(A, γ) if there is a
constant C > 0 depending only on A such that for every ω-psh function ϕ1, ϕ2, we have∫

X
|ϕ1 − ϕ2|dµ ≤ C max

{
‖ϕ1 − ϕ2‖γL1(X)

, ‖ϕ1 − ϕ2‖L1(X)

}
.(4.1)

Note that if µ is a Hölder continuous measure then it follows from [19, Proposition 2.4 and
Proposition 4.4] that for every constant β > 0, there exists a constant Aβ > 0 such that
µ satisfies the condition H(β,Aβ, ω). Therefore, by the comparison of capacities (see [20,
Theorem 3.17]), for every β > 0, there exists Aβ > 0 such that µ satisfies the condition
H(β,Aβ, η). Alternatively, one can prove the last property by using results in [11].

The following proposition is a special case of [25, Proposition 5.3] (replace ϕ and ψ by
w1 and w2, respectively):

Proposition 4.1. Let η be a big semi-positive closed smooth (1, 1)-form and let w1, w2 be
negative η-psh functions such that w1 is of full Monge-Ampère mass (i.e,

∫
X η

n
w1

=
∫
X η

n).
Denote µ1 = (η + ddcw1)n. Assume that the following conditions hold

(i) there exists a constant M > 0 such that

−M ≤ max{w1, w2} ≤ 0;

(ii) there exist constants A, β > 0 such that µ1 satisfies the condition H(β,A, η).
Then, for every constant r > 0, there exists a constant C > 0 depending on ω, η,M,A, β and
r such that

w1 − w2 ≥ −C‖w1 − w2‖
βr

n+β(n+r)

Lr(µ1) .

In particular, if µ1 ∈ M(B,α) for some B > 0 and 0 < α ≤ 1 then for every r, γ > 0, there
exists a constant C ′ > 0 depending on ω, η,B, α, γ and r such that

w1 − w2 ≥ −C ′‖w1 − w2‖
γr

n+γ(n+r)

Lr(µ1) .

We will apply Proposition 4.1 to the case where r is large enough, this means the expo-
nent βr

n+β(n+r) is close to be 1.

Corollary 4.2. Let η be a big semi-positive closed smooth (1, 1)-form and let w be a negative
η-psh function of full Monge-Ampère mass with supX w = 0. Assume that (η + ddcw)n ∈
M(B,α) for some B > 0 and 0 < α ≤ 1. Then ‖w‖L∞ ≤ C, where C > 0 is a constant
depending on ω, η,B and α.

By [19], a measure µ of mass
∫
X ω

n is Hölder continuous if and only if µ = (ddcu+ ω)n

for some Hölder continuous ω-psh function u on X. The following will be important for us.

Corollary 4.3. Let X0, . . . , Xm be compact complex manifolds and fj : Xj → Xj−1 be the
blow up along a smooth submanifold Vj−1 ⊂ Xj−1 in Xj−1 for 1 ≤ j ≤ m. Let f :=
fm ◦ · · · ◦ f0 : Xm → X0. Let µ be a Hölder continuous measures on Xm. Then f∗µ is also
Hölder continuous.

Proof. By induction, it suffices to prove the desired assertion for m = 1. Let u1, u2 be ω0-psh
functions on X0 for j = 1, 2, where ω0 is a Kähler form on X0. Put u′j := f∗1uj . Let ω1 be a
Kähler form on X1. Using Hölder continuity of µ, we obtain

‖u1 − u2‖L1((f1)∗µ) = ‖u′1 − u′2‖L1(µ) . ‖u′1 − u′2‖
γ
L1(ωn1 )

+ ‖u′1 − u′2‖L1(ωn1 ).
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Standard computations using local coordinates for blowups show that there exists a func-
tion g ∈ Lp(ωn0 ) for some constant p > 1 satisfying (f1)∗ω

n
1 = gωn0 . Hence

‖u′1 − u′2‖L1(ωn1 ) =

∫
X0

|u1 − u2|gωn0 . ‖u1 − u2‖Lq(ωn0 )

where 1/q + 1/p = 1. By [19, Lemma 2.2], one has

‖u1 − u2‖Lq(ωn0 ) . ‖u1 − u2‖1/(2q)L1(ωn0 )
.

Hence (f1)∗µ is Hölder continuous. �

5. REGULARIZATION OF PSH FUNCTIONS

5.1. L2-estimates. We recall first the L2-estimates for ∂̄ and discuss some of its variants.

Theorem 5.1. (see [15, Corollary 5.3]) Let (X,ω) be a compact Kähler manifold. Let ε > 0
be a constant. Let L be a holomorphic line bundle on X together with a singular Hermitian
metric h satisfying

c1(L, h) ≥ εω.

Then for every g ∈ L2
n,1(X,L) with ∂̄g = 0, there exists u ∈ L2

n,0(X,L) such that ∂̄u = g, and∫
X
|u|2h,ωωn ≤ ε−1

∫
X
|g|2h,ωωn,

where |g(x)|h,ω denotes the norm of g with respect to the norm induced by the Hermitian metric
h on L and the Riemannian metric on X associated to ω.

We deduce from the above result the following more or less standard consequence.

Theorem 5.2. Let (X,ω) be a compact Kähler manifold. Let ε > 0 be a constant. Let K∗X be
the dual of the canonical line bundle, and let hK∗X denote the metric induced by ω on K∗X . Let
L be a holomorphic line bundle on X together with a singular Hermitian metric h. Assume
that there exists a singular metric h̃K∗X on K∗X so that

c1(L, h) + c1(K∗X , h̃K∗X ) ≥ εω.

Then for every g ∈ L2
0,1(X,L) with ∂̄g = 0, there exists u ∈ L2

0,0(X,L) such that ∂̄u = g, and∫
X
|u|2he−2ϑωn ≤ ε−1

∫
X
|g|2h,ωe−2ϑωn,

where ϑ is a quasi-psh function defined by h̃K∗X = e−2ϑhK∗X .

Proof. Set L′ := L⊗K∗X . Thus L = L′ ⊗KX . Let h′ be the singular Hermitian metric on L′

given by h′ = h⊗ h̃K∗X . For every 0 ≤ q ≤ n, we have a natural isometry

Ψq : Λ0,q(T ∗X)⊗ L→ Λn,q(T ∗X)⊗ L′,
e.g., see the proof of [9, Corollary 4.3]), where we use the metric h on L, and h⊗ hK∗X on
L′. The map Ψ commutes with ∂, ∂̄ operators. Thus Ψ1(g) ∈ L2

n,1(X,L′) with ∂̄Ψ1(g) = 0.
Since Ψ1 is an isometry, one gets

|Ψ1(g)|2h′ = |Ψ1(g)|2h⊗hK∗
X

e−2ϑ = |g|2he−2ϑ.

The desired assertion now follows from Theorem 5.1. �
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In particular we obtain the following.

Corollary 5.3. Let (X,ω) be a compact Kähler manifold so that the Chern class ofK∗X contains
a closed positive (1, 1)-current of bounded potentials, i.e, there exists a bounded ηω-psh function
ϑ on X, where ηω is the Chern form of the metric on K∗X induced by ω. Let L be a holomorphic
line bundle on X together with a singular Hermitian metric h such that

c1(L, h) ≥ εω.

Then for every g ∈ L2
0,1(X,L) with ∂̄g = 0, there exists u ∈ L2

0,0(X,L) such that ∂̄u = g, and∫
X
|u|2hωn ≤

e4‖ϑ‖L∞

ε

∫
X
|g|2h,ωωn.

We also use the following consequence of Corollary 5.3.

Corollary 5.4. Let X,ω, ϑ be as in Corollary 5.3. Let θ be a semi-positive form on X with
θ ≤ ω such that θ is Kähler in an open dense Zariski subset W in X. Assume that there exist a
weakly pseudoconvex manifold U ′ with a smooth Kähler metric θ′, an open connected subset U
in X and a biholomorphic map Φ : U → U ′ such that θ := Φ∗θ′ on U . Let L be a holomorphic
line bundle on X together with a singular Hermitian metric h such that

c1(L, h) ≥ εω.

Let f ∈ H0(U,L) and let χ′ be a smooth function with compact support in U ′ and χ is constant
on some open subset Z ′ in U ′. Set χ := χ′ ◦ Φ. Then there exists a smooth real section u of L
over W such that ∂̄u = ∂̄(χf) on W , and∫

X
|u|2hθn ≤

M2e4‖ϑ‖L∞

ε

∫
X\Φ−1(Z′)

|f |2hθn,

where M := supx′∈U ′ |∂χ′(x′)|θ′ .

The crucial point here is that we obtain a version of L2-estimates for a possibly degener-
ate volume form θn.

Proof. Let r > 0 be a small constant and let θr := θ + rω ≤ (1 + r)ω. Hence c1(L, h) ≥
(1 + r)−1θr. Applying Corollary 5.3 to θr, we obtain∫

X
|ur|2hθnr ≤

e4‖ϑ‖L∞

ε

∫
X
|∂̄(χg)|2hθnr .

We compute
|∂̄(χf)|h,θr = |g∂̄χ|h,θr = |f |h|∂̄χ|θr

Since |∂̄χ(Φ−1(x′))|θr → |∂̄χ′(x′)|θ which is ≤M , we infer that

lim sup
r→0

|∂̄(χf)|h,θr ≤M |f |h1Φ−1(Z′).

The desired estimate thus follows from Corollary 5.3 applied to θr. We infer that

lim sup
r→∞

∫
X
|ur|2hθn ≤

M2e4‖ϑ‖L∞

ε

∫
X\Φ−1(Z′)

|f |2hθn.
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Thus, extracting a subsequence if necessary, we can assume that ur converges weakly to
some u in the Hilbert space L2(X, θn). Consequently,∫

X
|u|2hθn ≤

M2e4‖ϑ‖L∞

ε

∫
X\Φ−1(Z′)

|f |2hθn.

On the other hand, since θ is Kähler on W , we infer that ur converges weakly to u as
currents on W . It follows that ∂̄u = limr→0 ∂̄ur = ∂̄(χf) on W , hence, u is in particular
smooth on W because it is a solution of ∂̄-equation with smooth right-hand side. �

We recall now a special case of the Ohsawa-Takegoshi extension theorem (see [15,
Theroem 13.6]).

Theorem 5.5. Let X be a weakly pseudoconvex n-dimensional manifold with a Kähler metric
ω. Let y be a point in X. Let (L, h) be a line bundle on X and let E be the trivial holomorphic
vector bundle of rank n equipped with the trivial Hermitian metric such that there exists a
global section s of E with y = {s = 0} so that Λnds(y) 6= 0 and |s| ≤ e−1. Then for every
(n, 0)-form f with values in L at y, there exist a ∂̄-closed (n, 0)-form F with values in L on X
such that F (y) = f(y) and∫

X

|F |2h,ω
|s|2n(− log |s|)2

ωn ≤ Cn
|f |2h,ω

|Λnds(y)|2ω
,

where Cn is a numerical constant depending only on n.

We note that since E and its Hermitian metric are trivial, the curvature of the metric of
E vanishes everywhere, and s is nothing but a collection of n holomorphic functions on X.

Corollary 5.6. Let X,ω,L, h,E, y, s be as in Theorem 5.5. Let hK∗X be the Hermitian metric
on K∗X induced by ω. Assume furthermore that there exists a singular Hermitian metric h̃K∗X
on K∗X such that h̃K∗X = hK∗Xe

−2ϑ, for some bounded ηω-psh function ϑ on X, where ηω is the
Chern form of hK∗X . Then for every section f of L at y, there exists F ∈ H0(X,L) such that
F (y) = f(y) and ∫

X

|F |2h
|s|2n(− log |s|)2

ωn ≤ Cne4‖ϑ‖L∞ |f |2h
|Λnds(y)|2ω

,

where Cn is a numerical constant depending only on n.

Proof. Let L′ := L⊗K∗X and h′ := h⊗ h̃K∗X . The desired inequality follows from Theorem
5.5 applied to (L′, h′) and arguments as in the proof of Theorem 5.2. �

We deduce the following degenerate version of the above extension.

Corollary 5.7. Let the notations and assumptions be as in Corollary 5.6. Let θ be a semi-
positive form on X which is Kähler on an open Zariski dense subset W in X. Assume that
there exist a manifold U ′ with a smooth Kähler metric θ′, an open connected subset U in X
and a biholomorphic map Φ : U → U ′ such that θ := Φ∗θ′ on U and y ∈ U . Then for every
for every section f of L at y, there exists F ∈ H0(W,L) such that F (y) = f(y) and∫

X

|F |2h
|s|2n(− log |s|)2

θn ≤ Cne4‖ϑ‖L∞ |f |2h
|Λnds′(y′)|2θ′

,(5.1)

where Cn is a numerical constant depending only on n, where s′ := s ◦Φ−1 and y′ := Φ−1(y).
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Proof. Let θr := θ + rω which is a Kähler form on X. Let ω′ := Φ∗ω and θ′r := θ′ + rω′. We
see that the norm |Λnds′(y′)|θ′r converges to |Λnds′(y′)|θ′ as r → 0, and one has

|Λnds(y)|θr = |Λnds′(y′)|θ′r .
Applying Corollary 5.6 to θr gives∫

X

|Fr|2h
|s|2n(− log |s|)2

θnr ≤ C4‖ϑ‖L∞
n

|f |2h
|Λnds(y)|2θr

,

for some Fr ∈ Hp(X,L) with Fr(y) = f(y) Letting r → 0 and arguing as in the end of the
proof of Corollary 5.4 show that after extracting a subsequence if necessary, Fr converges
weakly to a function F ∈ L2

loc(W ) and the estimate (5.1) holds. Furthermore since Fr is
holomorphic (hence ∂̄Fr = 0), we infer that F is indeed holomorphic on W . �

It is a good moment to mention a result about the extension of holomorphic functions
which is used later in the paper: every holomorphic function on the complement of an ana-
lytic subset of codimension at least 2 in a normal complex space is automatically extended
to a global holomorphic function on that space (see [22]).

5.2. Analytic regularisation of psh functions. Let (X,ω) be a compact Kähler manifold.
From now on we assume the following hypothesis:

(H) The Chern class of K∗X contains a closed positive (1, 1)-current of bounded poten-
tials, i.e, there exists a bounded ηω-psh function ϑ on X, where ηω is the Chern form of the
Hermitian metric on K∗X induced by ω.

In particular, this assumption is fulfilled if K∗X is semi-positive. Let L be a big and semi-
ample line bundle on X (hence X is forced to be projective by Moishezon’s theorem). Since
L is big, by Demailly [15], there exists a negative θ-psh function ρ such that locally

ρ = log
( r∑
j=1

|fj |
)

+O(1),

for some local holomorphic functions f1, . . . , fr, and

ddcρ+ θ ≥ δ0ω,

where δ0 > 0 is a constant. We can choose ρ so that N := {ρ = −∞} is equal to the
non-Kähler locus of c1(L), see [5]. Recall that the non-Kähler locus of c1(L) is equal to the
augmented base locus of L (see [39, Theorem 2.3] or [4]).

Let dk := dimH0(X,Lk) and {s1, . . . , sdk} be a basis of H0(X,Lk). We define Φk : X →
CPdk−1 by putting

Φk(x) := [s1(x) : · · · : sdk(x)].

Observe that Φk is a well-defined map outside B(kL) := ∩s∈H0(X,Lk){s = 0}.
We recall ddc := i/π∂∂̄. Since L is semi-ample, there is k′ > 0 sufficiently large so

that B(k′L) = ∅. Hence Φk′ : X → CPdk is a holomorphic map. Since L is big, we
can find k′′ > 0 so that Φk′′ is of maximal rank. Let kL := k′k′′. It follows that ΦkL is
a holomorphic map of maximal rank. Let X ′ := ΦkL(X) which is an irreducible analytic
subset of dimension n in CPdkL−1. By increasing kL if necessary, we also have that ΦkL is
an algebraic fibre space, i.e, the fibers of ΦkL are connected, and X ′ is a normal variety (see
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[32, Theorem 2.1.27]), moreover ΦkL is bihomorphic outside the non-Kähler locus N , see
[6, Theorem A].

Let

θ :=
1

2kL
ddc log

dkL∑
j=1

|sj |2

which is smooth closed form in c1(L). Hence θ is the pull-back of the Fubini-Study form in
CPdkL−1 under ΦkL . Let h0 be a smooth Hermitian metric on L with c1(L, h0) = θ.

Fix a smooth Riemannian metric on X and let B(x, r) be the ball of radius r with respect
to this metric. Let rX > 0 be a constant so that for every x ∈ X the closure of the ball
B(x, rX) is contained in a local chart of X which is biholomorphic to a ball in Cn.

Lemma 5.8. There exist constants C0 > 0, r0 > 0 small enough such that for every y ∈ X,
there exist global negative θ-psh functions uy on X so that

uy(x) ≤ log |y − x|+ C0

on Φ−1
kL

(
B(y′, r0)

)
where y′ := ΦkL(y) and by abuse of notation, for every r > 0, we denote by

B(y′, r) the ball of radius r centered at y′ ∈ CPdkL−1 with respect to a fixed smooth metric on
CPdkL−1. Furthermore, for every constant ε > 0, we have

uy ≥ log ε− C(5.2)

outside Φ−1
kL

(
B(y′, ε)

)
for some constant C independent of y, ε.

Proof. Let y′ := ΦkL(y) and let vy(z) be a ωFS-psh function on CPdkL−1 given by

vy(z) := log |z − y′|
where we use homogeneous coordinates for z, y′, and ωFS is the Fubini-Study form on
CPdkL−1. Thus, for every ε > 0, there holds vy ≥ C log ε outside B(y′, ε) for some constant
C independent of y, ε.

Since Φ∗kLωFS = θ, we infer uy := Φ∗kLvy and ũy := Φ∗kL ṽy are θ-psh and satisfies that

uy(x) = log |ΦkL(y)− ΦkL(x)| ≤ log |y − x|+ C0

on Φ−1
kL

(
B(y′, r0)

)
. Moreover one also has (5.2) because of the smoothness of vy outside

y′. �

Let Br(y) be the ball of radius r centered at y in CkL−1. If y = 0, then we write Br for
Br(y). Put N ′ := ΦkL(N) which is an analytic subset in X ′. Let U ′1, . . . , U

′
l be open subsets

in CPdkL−1 such that the following properties hold:
(i) U ′j b U ′′j which is biholomorphic to the ball B3 in CdkL−1 under a map Ψj for every

1 ≤ j ≤ l and Uj is biholomorphic to B2 under Ψj ,
(ii) X ′ ⊂ ∪lj=1U

′
j ,

(iii) There is a hyperplane Hj on CPdkL−1 such that Hj does not intersect U ′′j for every
1 ≤ l ≤ j.

By our choice of U ′j , we see that U ′j is hyperconvex (hence weakly pseudoconvex), i.e,
there is a smooth psh function wj on U ′j such that {wj < c} is relatively compact in U ′j for
every constant c < 0 and every j. Let

Uj := Φ−1
kL

(U ′j).
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Note that Uj is also hyperconvex and L is trivial over Uj because L = Φ∗kLO(1) and O(1) is
trivial over X ′\Hj .

Lemma 5.9. Let h := h0e
−2φ be a singular positively curved metric on L. Fix 1 ≤ j ≤ l. Let

y ∈ Uj\N . Let e be a local holomorphic frame of L over Uj . Then for every a ∈ C, there exists
a section f ∈ H0(Uj , L) such that f(y) = ae(y) and∫

Uj

|f |2h0e
−2φθn ≤ C|a|2|e(y)|2h0e

−2φ(y).

where C > 0 is a constant independent of y and a.

Proof. Let L|Uj be the restriction of L to Uj , and E := L|Uj ⊕ · · · ⊕ L|Uj (n times). Since L
is trivial on Uj , so is E. Equip E with the trivial Hermitian metric. Hence a section of E is
simply a collection of n holomnorphic functions on Uj . Let z = (z1, . . . , zkL−1) be the local
coordinates on U ′′j ≈ B3. We can assume that y′ is the origin in these local coordinates. Let
s′E(z) := z. Observe that sE := s′E ◦ Φ−1

kL
is a section of E on Uj and vanishes only at y.

Recall that θ = Φ∗kLωFS , where ωFS is the Fubini-Study form on CPkL−1.
Let N ′ := ΦkL(N). Then X ′\N ′ is smooth and ΦkL is a biholomoprhism from Uj\N to

U ′j\N ′. Let X ′′ := X ′ ∩ B2, we have a natural inclusion ξ : X ′′ → U ′j ≈ B2. Let Ψ be
an orthogonal change of coordinates on CkL−1 so that Ψ∗ξ∗TyX

′′ is given by the subspace
{z1, . . . , zn, 0, . . . , 0} at 0 in CkL−1. Write Ψ = (Ψ1, . . . ,ΨkL). Let

s′E := (Ψ1, . . . ,Ψn) ◦ ξ

regarded as a section of Φ∗kL−1E. Let Y := X ′′ ∩ {s′E = 0,det Js′E 6= 0 : 1 ≤ k ≤ n} contains
0 as an isolated point, where ξy(z) := (zj1 , . . . , zjn) for z ∈ X ′′ (note that Y may not be
connected). Note that ω0 is preserved under Ψ. By the choice of s′E , there is a constant
ε0 > 0 independent of y such that

|Λnds′E(y′)|ξ∗ωFS ≥ ε0.(5.3)

Indeed, by the choice of Ψ, the norm |Λnds′E(y′)|ξ∗ω0 (which is the norm of det Js′E with
respect to ξ∗ω0) is equal to the absolute value of the determinant of the (n, n)-submatrix
of the Jacobian of (Ψ1, . . . ,Ψn) given by the first n rows. Hence |Λnds′E(y)|ξ∗ω0 = 1. Since
ωFS and ω0 are equivalent on U ′, we get (5.3).

Let sE := s′E ◦ ΦkL . Applying Corollary 5.7 to Uj , θ, sE ,ΦkL , y implies that there exists a
section f ∈ H0(Uj\N,L) such that f(y) = ae(y) and∫

Uj

|f |2h0e
−2φθn ≤ C|a|2|e(y)|2h0e

−2φ(y)|Λnds′E(y′)|−2
ωFS
. C|a|2|e(y)|2h0e

−2φ(y)

by (5.3), where C > 0 is a constant independent of y and a. This finishes the proof. �

Let h be a positive Hermitian metric on L. Let eL is a local holomorphic frame for L (i.e.,
eL is a local holomorphic section of L and eL 6= 0 everywhere). Write h = h0e

−2ϕ. Thus by
hypothesis one gets

0 ≤ c1(L, h) = −ddc log |eL|h = ddcϕ+ θ.

In other words, ϕ is θ-psh function. By multiplying a large constant with h0, without loss
of generality we can assume that ϕ ≤ 0. We assume from now on that ϕ is bounded.
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For every constant δ ∈ (0, 1), define

ϕδ := (1− δ)ϕ+ δρ, hδ := h0e
−2ϕδ .

We have ddcϕδ+θ ≥ δδ0ω. Let m ∈ N and dm := dimH0(X,Lm) which is ≈ mn as m→∞.
Let m0 := 2n+ 3. Let a0 ∈ (0, 1/2) be a constant such that∫

X
e−2a0ρωn <∞.

For m > m0, δ ∈ (0, a0/m) and s, s′ ∈ H0(X,Lm), we put

〈s, s′〉L2 = 〈s, s′〉L2,m,δ :=

∫
X
〈s, s′〉hm0 e

−2(m−m0)ϕδθn

which is finite because the boundedness of ϕ and the choice of a0. To give readers a hint
what we do with δ, we remark that we will choose later δ := m−2D for some constantD ≥ 1
(see the proof of Lemma 6.2 below), thus the condition δ < a0/m is automatically satisfied
for m ≥ a−1

0 .
Let {σ1, . . . , σdm} be an orthonormal basis of H0(X,Lm) with respect to L2-product, and

let

ψm,δ :=
1

2m
log

( dm∑
j=1

|σj |2hm0

)
=

1

2m
sup

s∈H0(X,Lm):‖s‖L2=1

log |s|2hm0 .

Since log |σj |hm0 is mθ-psh, we infer that ψm is θ-psh.

Lemma 5.10. Let ξ := ωn/θn. There exists a constant p0 > 1 such that∫
X
ξp0θn <∞.(5.4)

Proof. Direct computations show that on a small enough local chart U , one has

ξ−1 = |f0|(1 +
∑

1≤j≤kL−1

|fj |2)

for some holomorphic functions f0, . . . , fkL−1, e.g., see the proof of [10, Proposition 4.36].
Let ψ := − log ξ. One sees that ψ is quasi-psh on U , hence ψ is quasi-psh function on X.
Now observe ∫

X
ξp0θn =

∫
X
ξp0−1ωn =

∫
X
e−(p0−1)ψωn

which is finite for p0 − 1 > 0 small enough because ψ is quasi-psh. This finishes the
proof. �

The following result is a variant from [15, Theorem 14.21]. Recall N = {ρ = −∞}.

Theorem 5.11. There exists a constant C > 0 such that for every δ ∈ (0, a0/m) and every
m ≥ m0 + 1 there holds:

(i)

m−m0

m
ϕδ(x)− C + | log δ|

2m
≤ ψm,δ ≤

m−m0

m
sup

x′∈B(x,r)
ϕδ(x

′) + Cr + C
| log r|
m

,

for every x ∈ X and r > 0.
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(ii)

|∇ψm,δ(x)| ≤ C +
C

mδ1/2rn+1
e(m−m0)(supB(x,r) ϕδ−ϕδ(x))+C(m−m0)r,

for every x ∈ X\N and r > 0.

Proof. We check the second inequality in (i). Let U be a small local chart around x. We
trivialize L over U and let eL,U be a nowhere vanishing holomorhic section of L over U .
Hence we can identify h0 = e−2φ0 for some smooth function φ0, and sections of Lm are
identified with holomorphic functions on U .

Let s ∈ Lm with ‖s‖L2 = 1. By abuse of notation we still denote by s the holomorphic
function corresponding to a section s of Lm. Thus |s|2hm0 = |s|2e−2mφ0 . Put q = 2(m −
m0)ϕδ + 2mφ0 and ξ := ωn/θn. Let p0 be the constant in Lemma 5.10 and put q0 :=
p0/(p0 − 1) and ε0 := 1/q0. By the submean inequality and Lemma 5.10, one gets

|s(x)|2ε0 . r−2n

∫
B(x,r)

|s|2ε0dLebCn

. r−2ne2ε0 supB(x,r) q
∫
B(x,r)

|s|2ε0e−2ε0qξθn

≤ r−2ne2ε0 supB(x,r) q

(∫
B(x,r)

|s|2e−2qθn
)1/q0(∫

X
ξp0θn

)1/p0

. r−2ne2ε0 supB(x,r) q‖s‖2/q0
L2 .

Thus
|s(x)|2hm0 = |s(x)|2e−2mφ0(x) . r−2n/ε0e2(m−m0)(supB(x,r)(ϕδ+φ0)−φ0(x)).

By this and the fact that φ0 ∈ C1 we infer that

|s(x)|2hm0 . r
−2ne2(m−m0) supB(x,r) ϕδ+2(m−m0)C1r,

for some constant C1 > 0 independent of δ,m, ϕ, s, for s ∈ H0(X,Lm) with |s|L2 = 1. It
follows that

(5.5) e2mψm,δ = sup
s∈H0(X,Lm):‖s‖L2=1

|s(x)|2hm0 ≤ e
C2r−2n/ε0e2(m−m0) supB(x,r) ϕδ+2(m−m0)C1r,

where C1, C2 > 0 are constants independent of δ,m, ϕ, s. Hence we obtain

ψm,δ ≤
m− c0

m
sup

x′∈B(x,r)
ϕδ(x

′)+C1r+
2nε−1

0 | log r|+ C2

2m
≤ m−m0

m
sup

x′∈B(x,r)
ϕδ(x

′)+C3r+
C3| log r|

m
,

for every x ∈ X and r > 0, where C3 = C1ε
−1
0 + C2e+ n.

The remaining inequality of (i) requires the L2-estimate. It suffices to consider x 6∈ N .
Let U1, . . . , Ul be the open cover of X defined above. Without loss of generality we can
assume that x ∈ U1. Choose U := U1. We can modify the coordinates on U ′1 ≈ B2 so that
ΦkL(x) is the center of U ′1. By Lemma 5.9, there are a constant B1 > 0 independent of x
such that for every a ∈ C, there is a f ∈ H0(U1, L

m) so that f(x) = aemL,U and∫
U1

|f |2hm0 e
−2(m−m0)ϕδθn ≤ B1|a|2|eL,U (x)|2mh0 e

−2(m−m0)ϕδ(x).
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Fix a cut-off function χ′ supported on U ′1 and equal to 1 on B1/2 (recall that U ′1 ≈ B2 and
ΦkL(x) = 0 is the origin). Put χ := χ′ ◦ Φ−1

kL
. By Lemma 5.8, there exist a constant C4 > 0

independent of x and a negative θ-psh function ux satisfying ux(z) ≤ log |z − x| + C4, and
ux(z) ≥ −C4 for z 6∈ Φ−1

kL
(B1/2(x′)) (x′ := ΦkL(x)). Let

w :=
(
m−m0

)
ϕδ +m0ux.

Observe that
ddcw +mθ ≥

(
m−m0

)
δδ0ω.

Let
hux := h0e

−2ux , h̃ := hm0 e
−2w

which is a singular Hermitian metric on Lm. Thanks to the hypothesis about the semi-
positivity of K∗X , we can apply Corollary 5.4 to h̃ and g := ∂̄(χf) which is smooth. Hence
we find a smooth section v of L over X\N so that ∂̄v = g and∫

X
|v|2hm0 e

−2wθn ≤ 1

(m−m0)δδ0

∫
X\Φ−1

kL
(B1/2(x′))

|f |2hm0 e
−2wθn(5.6)

because supU ′1 |∂χ
′|ωFS is bounded by a constant independent of x. This combined with the

fact that ux(x′) ≥ C4 outside Φ−1
kL

(B1/2(x′)) yields∫
X
|v|2hm0 e

−2wθn ≤ 1

(m−m0)δδ0

∫
X\Φ−1

kL
(B1/2(x′))

|f |2hm0 e
−2(m−m0)ϕδθn(5.7)

|a|2|eL,U (x)|2mh0 e
−2(m−m0)ϕδ(x).

Note that since g vanishes near x, one gets that ∂̄v = 0 near x. Thus v is holomorphic near
x. By properties of ux, observe that

e−2w(x′) &
1

|x′ − x|2n+2

which in turn implies that v(x) = 0 because
∫
X |v|

2
hm0
e−2wωn is finite. This together with

(5.7) gives ∫
X
|v|2hm0 e

−2wθn .
|a|2

(m−m0)δ
e−2(m−m0)ϕδ(x)−2mφ0(x).(5.8)

Let ṽ := χf −v ∈ H0(X\N,Lm). The function ṽ extends to a global holomorphic section of
L on X because ṽ ◦ Φ−1

kL
is holomorphic on X ′\N ′, X ′ is normal and N ′ is of codimension

2 in X ′. Since ux ≤ 0, using (5.8) and the choice of f , we obtain∫
X
|ṽ|2hm0 e

−2(m−m0)ϕδθn ≤
B2|a|2|eL,U (x)|2mh0

(m−m0)δ
e−2(m−m0)ϕδ(x),

for some constant B2 > 0 independent of x, a,m, δ. Choose

a := B
−1/2
2 |eL,U (x)|−mh0 δ1/2(m−m0)1/2e(m−m0)ϕδ(x).

We see that ∫
X
|ṽ|2hm0 e

−2(m−m0)ϕδθn ≤ 1.

and
ṽ(x) = f(x)− v(x) = f(x) = a emL,U (x).
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It follows that

(5.9) e2mψm,δ(x) ≥ |ṽ(x)|2hm0 ≥
δ(m−m0)

B2
e2(m−m0)ϕδ(x).

Thus

ψm,δ(x) ≥ m−m0

m
ϕδ(x) +

1

2m
log

δ(m−m0)

B2

≥ m−m0

m
ϕδ(x)− | log δ|+ logB2

2m
.

This finishes the proof for (i).
We now check (ii). We work in a small local chart (U, x) and write h0 = e−2φ0 as above.

We identify sections with holomorphic functions on a trivialization of L over this local chart.
We have

ψm,δ =
1

2m
log

dm∑
j=1

|σj |2 − φ0.

Direct computations give

∂ψm,δ =
1

2m

∑dk
j=1 σ̄j∂σj∑dk
j=1 |σj |2

− ∂φ0.

Hence

|∂ψm,δ| ≤
1

2m

(∑dk
j=1 |∂σj |2

)1/2(∑dk
j=1 |σj |2

)1/2 + |∂φ0|.(5.10)

By (5.9), we have

(5.11)
dk∑
j=1

|σj(x)|2 = e2m(ψm,δ+φ0) ≥ δ(m−m0)

B2
e2(m−m0)ϕδ(x)+2mφ0(x).

On the other hand, since σj is homomorphic, it follows from Cauchy’s integral formula that

dk∑
j=1

|∂σj(x)|2 . r−n−2
dk∑
j=1

∫
x+∂0∆n

r

|σj |2dξ1...dξn . r
−2 sup

x+∆n
r

dk∑
j=1

|σj |2 = r−2 sup
x+∆n

r

e2m(ψm,δ+φ0),

for every 0 < r < dist(x, ∂U), where ∆r denotes the disk of radius r with center at 0 in C,
and ∂0∆n

r := (∂∆r)
n. Therefore, by (5.5) and the fact φ0 ∈ C1, we get

(5.12)
dk∑
j=1

|∂σj(x)|2 . r−2n−2e2(m−m0)(supB(x,r) ϕδ+φ0)+C5(m−m0)r.

Combining (5.10), (5.11) and (5.12), we get

|∂ψm,δ| . 1 +
1

mδ1/2rn+1
e(m−m0)(supB(x,r) ϕδ−ϕδ(x))+C5(m−m0)r.

�
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The new point here is that we approximate ϕ through the analytic approximation se-
quence for ϕδ with δ depending on m. We will choose δ to be very small compared to
m.

Lemma 5.12. Let u be a bounded negative psh function on the open unit ball B of Cn and let
K b B. Let v be a Hölder continuous plurisubharmonic function on B and denote µ = (ddcv)n.
Then there exist constants α = α(µ,K) and C = C(n,K, µ, ‖u‖L∞) > 0 such that∫

K

∣∣ sup
x′∈B(x,s)

u(x′)− u(x)
∣∣dµ ≤ Csα,

for every 0 < s < r3
0, where r0 := 1

4 infw∈K dist(w, ∂B).

Proof. Denote M = ‖u‖L∞ , U = (1− 3r0)B and V = (1− 2r0)B. First, we prove that

(5.13)
∫
V

∣∣ sup
y∈B(x,s)

u(y)− u(x)
∣∣dLeb ≤ C0Ms2/3,

for every 0 < s < r3
0, where C0 > 0 is a constant depending only on n and r0.

For every 0 < r < r0 and z ∈ U , we denote

ûr(z) =
1

vol(B(z, r))

∫
B(z,r)

u(ξ)dV (ξ),

and

ūr(z) = sup
ξ∈B(z,r)

u(ξ).

Let z0 ∈ V and vM := M
r0

(|z − z0|2 − 1). We have vM < u on B√
1/2−r0

(z0) (which contains

V + r0B because r0 < 1). By the comparison principle for Laplace operator, one has∫
{vM<u}

∆u ≤
∫
{vM<u}

∆vM .M/r0.

It follows that there exists C1 > 0 depending only on n such that∫
V+r0B

∆u ≤ C1M

r0
.

Then, by Jensen formula (see, for example, [1, 16]), one has

(5.14)
∫
V
|ûr(z)− u(z)|dLeb ≤ C2Mr2,

for every 0 < r < r0, where C2 > 0 depends only on n and r0.
For every z ∈ V and for every 0 < s < r, there exists ẑ ∈ B(z, s) such that

ūs(z) = u(ẑ) ≤ ûr(ẑ).

Since u is negative, it follows that

(5.15) ūs(z) ≤
(
r − s
r

)2n

ûr−s(z).
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Combining (5.14) and (5.15), we get∫
V
|ūs(z)− u(z)|d Leb ≤

(
r − s
r

)2n ∫
V
|ûr−s(z)− u(z)|dLeb +

r2n − (r − s)2n

r2n

∫
V
|u(z)|dLeb

≤ C3

(
M(r − s)2 +

Ms

r

)
,

for every 0 < s < r < r0, where C3 > 0 is a constant depending only on n and r0. Choosing
s = r3, we obtain (5.13) (with C0 = 2C3).

Fix s ∈ (0, r3
0). For every z ∈ V , we denote ψ(z) = M

r0
(|z|2 − (1− 2r0)2), u′ := max{u, ψ}

and v′ := max{ūs, ψ}. We have u = u′ on K, ūs = v′ on K and u′ = v′ = ψ on V \ U .
Let φ ∈ C∞0 (V ) such that 0 ≤ φ ≤ 1 and φ ≡ 1 on U . Put ũ = φu′ and ṽ = φv′. By using
the standard embedding Cn ↪→ CPn, one can extend ũ and ṽ to AωFS-plurisubharmonic
functions on CPn, where A ≥ 1 is a constant depending only on n,M and r0. Since
µ = (ddcv)n, we have µ̃ := 1Vµ is a Hölder continuous measure on CPn. Therefore, there
exist constants β = β(µ̃) > 0 and C4 = C4(µ̃,M,A) > 0 such that

(5.16)
∫
K
|ūs − u|dµ ≤ ‖ũ− ṽ‖L1(µ̃) ≤ C4‖ũ− ṽ‖βL1(CPn)

≤ C4‖ūs − u‖βL1(V )
.

Combining (5.13) and (5.16), we get∫
K
|ūs − u|dµ ≤ C5s

2β/3,

where C5 > 0 is a constant depending on n, r0, µ̃ and M . The proof is completed. �

Recall that N = {ρ = −∞}. By the choice of ρ, and Lojasiewicz’s inequality (e.g., see
[3]), there exist constants A0, A1 > 1 such that

A0 log dist(x,N)−A1 ≤ ρ(x) ≤ 1

A0
log dist(x,N) +A1,(5.17)

for every x ∈ X.

Theorem 5.13. Let µ be a Hölder continuous measure on X and p ≥ 1 be a constant. Assume
that ϕ is bounded on X and B := ‖ϕ‖L∞ . Then there exist a constant C > 0 and a family of
θ-psh functions ψm,δ with δ ∈ (0, a0/m),m ∈ Z+ satisfying the following three properties:

(i)

‖ψm,δ − ϕ‖Lp(µ) ≤ C
| log δ|+ logm

m
+ Cδ,

(ii)

ψm,δ(x) ≥ ϕ(x)− Bm0

m
+A0(δ +m−1) log dist(x,N)− C

(
δ +
| log δ|
m

)
for every x ∈ X,

(iii)

|∇ψm,δ(x)| ≤ Cδ−1/2e(B+1)me−A0mδ log dist(x,N)

for every x ∈ X.
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Proof. We note that the assumption that ϕ is bounded implies that the Chern class of L is
nef by Demailly’s regularisation theorems. The property (ii) follows from Theorem 5.11 (i)
and from (5.17). The property (iii) follows from Theorem 5.11 (ii) applied to r = 1 and
from (5.17). It remains to prove (i).

Since ϕδ = (1− δ)ϕ+ δρ, we have

(5.18) sup
B(x,r)

ϕδ − ϕδ(x) ≤ (1− δ)( sup
B(x,r)

ϕ− ϕ(x)) + δ|ρ(x)| ≤ sup
B(x,r)

ϕ− ϕ(x) + δ|ρ(x)|,

and

(5.19)
∣∣∣∣m−m0

m
ϕδ(x)− ϕ(x)

∣∣∣∣ ≤ (m0

m
+ δ
)
|ϕ(x)|+ δ|ρ(x)|,

for every x ∈ X, m > m0 and 0 < δ < 1.
Using (5.18), (5.19) and Theorem 5.11 (i), we get

|ψm,δ − ϕ| ≤
∣∣∣∣ψm,δ − m−m0

m
ϕδ

∣∣∣∣+

∣∣∣∣m−m0

m
ϕδ − ϕ

∣∣∣∣
≤ sup

B(x,r)
ϕδ − ϕδ(x) + C1r + C1

| log r|+ | log δ|+ 1

m
+
(m0

m
+ δ
)
|ϕ(x)|+ δ|ρ(x)|

≤ sup
B(x,r)

ϕ− ϕ(x) + 2δ|ρ(x)|+ C1r +Bδ + C2
| log r|+ | log δ|

m
,

for every m > m0, r > 0 and 0 < δ < 1/2, where C1, C2 > 0 are constants. Then we have
(5.20)

‖ψm,δ − ϕ‖Lp(µ) ≤ ‖ sup
B(x,r)

ϕ− ϕ(x)‖Lp(µ) + C3

(
| log δ|+ | log r|

m
+ δ + r + δ‖ρ‖Lp(µ)

)
.

It follows from [19, Proposition 4.4] that there exist constants ε,M > 0 depending only
on X,ω, θ and µ satisfying ∫

X
e−εwdµ ≤M,

for every w ∈ PSH(X, θ) with supX w = 0. Then, by Hölder inequality, we have

‖ sup
B(x,r)

ϕ−ϕ(x)‖Lp(µ) ≤ ‖ sup
B(x,r)

ϕ−ϕ(x)‖
1
2p

L1(µ)
‖ sup
B(x,r)

ϕ−ϕ(x)‖
2p−1
2p

L2p−1(µ)
≤ C4‖ sup

B(x,r)
ϕ−ϕ(x)‖

1
2p

L1(µ)
,

where C4 > 0 is a constant depending only on M, ε, µ and p. This combined with Lemma
5.12 gives

(5.21) ‖ sup
B(x,r)

ϕ− ϕ(x)‖Lp(µ) ≤ C5r
α/p,

for every 0 < r < r0, where r0 = r0(X,ω), α = α(X,ω, µ) and C5 = C5(n,X, ω, θ, µ,B, p)
are positive constants.

Combining (5.20) and (5.21), we get

‖ψm,δ − ϕ‖Lp(µ) ≤ C6

(
rα/p +

| log δ|+ | log r|
m

+ δ + r

)
,

for every m > m0, 0 < r < r0 and 0 < δ < 1/2. Choosing r = r0
mp/α

, we obtain (i). The
proof is completed. �
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6. GOING UP TO THE DESINGULARISATION OF N

Let π : X̂ → X be the composition of sequence of blowups along smooth centers over
N such that N̂ := π−1(N) is a simple normal crossing hypersurface in X ′. By Lojasiewicz’s
inequality, one has

(6.1) dist(π(x), N) . dist(x, N̂) . distβ(π(x), N),

for some constant β > 0 independent of x ∈ X̂. Let ϕ̂ := π∗ϕ which is θ̂-psh, where
θ̂ := π∗θ.

Theorem 6.1. Let µ be a Hölder continuous measure on X̂ and p ≥ 1 be a constant. Assume
that ϕ is bounded and let B := ‖ϕ‖L∞ . Then there exist constants A,C > 0 and a family of
θ̂-psh functions ψ̂m,δ with δ ∈ (0, a0/m),m ∈ Z+ satisfying the following three properties:

(i)

‖ψ̂m,δ − ϕ̂‖Lp(µ) ≤ C
| log δ|+ logm

m
+ Cδ,

(ii)

ψ̂m,δ(x) ≥ ϕ̂(x)− Bm0

m
+Aδ log dist(x, N̂)− C

(
δ +
| log δ|
m

)
,

for every x ∈ X̂,
(iii)

|∇ψ̂m,δ(x)| ≤ Cδ−1/2e(B+1)me−Amδ log dist(x,N̂),

for every x ∈ X̂.

Proof. Let ψm,δ be functions in Theorem 5.13. Let ψ̂m,δ := π∗ψm,δ. The desired assertions
(ii) and (iii) follow directly from (6.1) and Theorem 5.13. To see why (i) holds, we recall
that π is a composition of successive blowups along smooth centers. Thus the desired
inequality (i) is deduced by Theorem 5.13 and Corollary 4.3 applied to µ. The proof is
complete. �

Lemma 6.2. Assume that ϕ is bounded on X and (ddcϕ + θ)n = µ is a Hölder continuous
measure. Let γ be an arbitrary constant in (0, 1). Then for every constant D > 1, there is a
constant cD,γ > 0 so that

|ϕ̂(x)− ϕ̂(y)| ≤
cD,γ

| log dist(x, y)|γ
,

for every x, y ∈ X̂\N̂ with

(dist(x, y))D ≤ min{dist(x, N̂),dist(y, N̂)}.

Proof. Without loss of generality, we can assume that 0 < dist(x, y) < 1/2. Let p > 1 be a
constant. Denote γ0 := p/(p + 2n + 1) and γ = p/(p + 2n + 2). Note that if p → ∞, then
γ → 1. Let δ := m−2D. By Lemma 4.1 (we choose the constant γ = 1 in Lemma 4.1) and
Theorem 6.1(i), one get

ψ̂m,δ(x)− ϕ̂(x) .γ0 ‖ψ̂m,δ − ϕ̂‖
γ0
Lp(µ) .γ0

(
logm

m

)γ0
,
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for every x ∈ X̂, m > m0. This combined with Theorem 6.1 (ii) yields

|ψ̂m,δ(x)− ϕ̂(x)| .
(

logm

m

)γ0
+m−2D(− log dist(x, N̂))+(6.2)

for every x ∈ X̂, m > m0. Here (− log dist(x, N̂))+ = max{− log dist(x, N̂), 0}.
Let lx,y be the curve chosen as in Lemma 2.4 (for N̂ in place of N). Now using (6.2) and

Theorem 6.1 (iii), and Lemma 2.4, we estimate

|ϕ̂(x)− ϕ̂(y)| ≤ |ϕ̂(x)− ψ̂m,δ(x)|+ |ϕ̂(y)− ψ̂m,δ(y)|+ |ψ̂m,δ(x)− ψ̂m,δ(y)|

.

(
logm

m

)γ0
+m−2D(− log dist(x, N̂))+ +m−2D(− log dist(y, N̂))+

+ dist(x, y)mDem(B+1)e−Am
−2D+1 log dist(lx,y(t),N̂),

for some point t ∈ [0, 1]. Since dist(lx,y(t), N̂) ≥ C−1 min{dist(x, N̂),dist(y, N̂)}, we obtain

|ϕ̂(x)− ϕ̂(y)| .
(
| log δ|
m

)γ0
+ δγ0 + δ(− log min{dist(x, N̂),dist(y, N̂)})+

+ dist(x, y)δ−1/2em(B+1)e−Am
−2D+1 log min{dist(x,N̂),dist(y,N̂)}.

Hence, if (dist(x, y))D ≤ min{dist(x, N̂),dist(y, N̂)} then we have

|ϕ̂(x)− ϕ̂(y)| . m−γ −Dm−2D log dist(x, y)

+ dist(x, y)mDem(B+1)e−ADm
−2D+1 log dist(x,y).

By choosing

m := max

{
m0 + 1,

γ| log dist(x, y)|
3(B + 1)

}
,

we get

|ϕ̂(x)− ϕ̂(y)| ≤ cD
| log dist(x, y)|γ

,

for every x, y ∈ X̂\N̂ with

(dist(x, y))D ≤ min{dist(x, N̂),dist(y, N̂)}.

This finishes the proof. �

Proposition 6.3. Assume that ϕ is bounded on X and θnϕ is a Hölder continuous Monge-
Ampère measure. Then for every constant γ ∈ (0, 1), there exists a constant Cγ > 0 such
that

|ϕ(x)− ϕ(y)| ≤ Cγ
| log dist(x, y)|γ

,

for every x, y ∈ X\N .

Proof. By Lemma 6.2, we can apply Proposition 2.3 to ϕ̂, and we see that ϕ̂ is logγ-
continuous on X̂. This combined with Lemma 3.1 yields that ϕ is logγ-continuous. �

Theorem 1.1 is a direct consequence of the following result.
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Theorem 6.4. Let (X,ω) be a compact Kähler manifold such that the Chern class of −KX

contains closed positive current of bounded potentials. Let L be a big and semi-ample line
bundle on X. Let θ be a smooth semi-positive form in c1(L). Let µ be a Hölder continuous
measure onX of mass equal to

∫
X θ

n. Then the unique solution u to the equation (ddcu+θ)n =

µ is logM -continuous for every constant M > 0.

Proof. Throughout this proof, Cj (j = 1, 2, 3...) is a constant independent of m, δ, x, r.
Let γ ∈ (0, 1). By Proposition 6.3, we have

sup
x′∈B(x,r)

ϕδ(x
′)− ϕδ(x) ≤ (1− δ)( sup

x′∈B(x,r)
ϕ(x′)− ϕ(x))− δρ(x)

≤ C1

(
| log r|−γ + δ| log dist(x,N)|

)
,

for every x ∈ X and 0 < r, δ < 1/2. This combined with Theorem 5.11 (ii) yields

|∇ψm,δ(x)| ≤ C2δ
−1/2r−n−1eC2m(| log r|−γ+δ| log dist(x,N)|+r),

for every m > m0. Now choose

r := e−m
1

1+γ
.

We obtain that

|∇ψm,δ(x)| ≤ C3δ
−1/2eC3m

1
1+γ +C3mδ| log dist(x,N)|,(6.3)

for every x ∈ X, 0 < δ < 1/2 and m > m0.
Let π : X̂ → X and N̂ be as above. Let ψ̂m,δ := π∗ψm,δ. Thanks to (6.3) one gets

immediately the following property (which is a stronger version of Theorem 6.1 (iii)):

(6.4) |∇ψ̂m,δ(x)| ≤ C4δ
−1/2eC4m

1
1+γ +C4mδ| log dist(x,N̂)|,

for every x ∈ X̂.
Now arguing exactly as in the proofs of Lemma 6.2 (use (6.4) in place of Theorem 6.1

(iii)) with δ := m−2D, we get

|ϕ̂(x)− ϕ̂(y)| . m−γ −Dm−2D log dist(x, y)

+ dist(x, y)mDeC4m
1

1+γ
e−C5m−2D+1 log dist(x,y),

for every x, y ∈ X̂\N̂ with (dist(x, y))D ≤ min{dist(x, N̂),dist(y, N̂)}. Now letting

m := max

{
m0 + 1,

(
γ| log dist(x, y)|

3C4

)1+γ
}
,

we obtain
|ϕ̂(x)− ϕ̂(y)| . | log |x− y||−γ(1+γ),

for every x, y ∈ X̂\N̂ with (dist(x, y))D ≤ min{dist(x, N̂),dist(y, N̂)}. We note that if
γ → 1, then γ(1 + γ) → 2. Using again arguments from the proof of Proposition 6.3 we
infer that Proposition 6.3 holds for γ(1 + γ) in place of γ. Applying now Proposition 2.3
to ϕ̂, we see that ϕ̂ is logγ(1+γ)-continuous on X̂. This combined with Lemma 3.1 yields
that ϕ is logγ

′
-continuous for every γ′ ∈ (0, 2). Repeating this procedure gives the desired

assertion. �
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7. LOG CONTINUITY OF MONGE-AMPÈRE METRICS

In this section we prove Corollary 1.2. We start with some auxiliary results. We fix a
smooth Kähler form ω on X which induces a distance on X.

Lemma 7.1. Let v be a bounded ω-psh function. Then there exists a constant C > 0 such that
for every x ∈ X and ε ∈ (0, 1] one has

λ(v, x, ε) := ε−2n+2

∫
B(x,ε)

(ddcv + ω) ∧ ωn−1 ≤ C/| log ε|.

Proof. Fix x0 ∈ X. Let ψ be a negative ω-psh function on X such that ψ = c log |x− x0| on
an open neighborhood of x0 in X for some constant c > 0, and ψ is smooth outside x0. For
ε small enough, we see that ψ(x) = c log |x − x0| on B(x, ε). Hence ψ ≤ c log ε on B(x0, ε).
Recall also that

ε−2n+2

∫
B(x,ε)

(ddcv + ω) ∧ ωn−1 .
∫
B(x,ε)

(ddcv + ω) ∧ (ddcψ + ω)n−1,

see [12, Page 159]. Hence we get

λ(v, x, ε) . | log ε|−1

∫
B(x,ε)

−ψ(ddcv + ω) ∧ (ddcψ + ω)n−1

≤ | log ε|−1

∫
X
−ψ(ddcv + ω) ∧ (ddcψ + ω)n−1

= | log ε|−1

∫
X
−ψω ∧ (ddcψ + ω)n−1

+ | log ε|−1

∫
X
−vddcψ ∧ ω ∧ (ddcψ + ω)n−1

. | log ε|−1(‖v‖L∞ + 1).

This finishes the proof. �

Lemma 7.2. Let u be a logM -continuous θ-psh function on X such that u is smooth outside
N . Let δ ∈ (0, 1] be a constant. Then there exist a constant C > 0 independent of δ and a
sequence of smooth (θ + δω)-psh function (uε)ε so that uε converges uniformly to u and uε
converges to u locally in the C∞-topology on X\N .

Proof. This follows essentially from Demailly’s regularisation of psh functions ([13, Section
8]). Let expz be the exponential map at z ∈ X of (X,ω). Let χ be a cut-off function as in
[13, Page 492]. We define

uε(z) :=
1

Cε2n

∫
ζ∈TzX

u(expz(ζ))χ′(|ζ|2/ε2)dλ(ζ),

where dλ denotes the Lebesgue measure on the Hermitian space TzX and

C :=

∫
ζ∈TzX

χ′(|ζ|2)dλ(ζ).

One sees immediately that uε is logM -continuous uniformly in ε because u is already logM -
continuous.
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By [13, Proposition 8.5 and Lemma 8.6], we know that there is a constant A1 > 0 such
that

ddcuε(x) + θ(x) ≥
(
−A1λ(u, x, ε)−A1ε/| log ε|

)
ω,

where

λ(u, x, ε) := ε−2n+2

∫
B(x,ε)

(ddcu+ ω) ∧ ωn−1 ≤ A2/| log ε|

for some constant A2 independent of x by Lemma 7.1. Hence we infer that

ddcuε + ω ≥ −A3| log ε|−1ω

for some constant A3 > 0 independent of ε. This finishes the proof. �

Lemma 7.3. Let δ ∈ (0, 1], M > 1 and C0 > 0 be constants. Let u be a smooth (θ + δω)-psh
functions such that

|u(x)− u(y)| ≤ C0| log dist(x, y)|−2M

for every x, y ∈ X. Denote by d̃ the distance induced by ddcu+ θ + δω. Then

d̃(x, y) ≤ C| log dist(x, y)|−M+1

for every x, y ∈ X, where C > 0 is a constant independent of u and δ.

Proof. Let Ω(r) be the modulus of continuity of u. By hypothesis, one has

Ω(r) ≤ C0| log r|−2M(7.1)

for every 0 < r < 1. We cover X by finitely many local charts (which are relatively compact
in bigger local charts) and since the Kähler form ω is equivalent to the standard Kähler form
on Cn in these local charts, we can assume that ω is equal to the standard form on Cn on
these local charts.

Let B(x, r) denotes the ball of radius r with center at x ∈ Cn. Fix x∗ ∈ X and a local
chart U around x∗ biholomorphic to B(0, 2) such that x∗ = 0 in these local coordinates.
Define d(x) := d̃(x, 0). Recall that d̃ is the Riemannian metric induced by ddcu + θ + δω.
For x ∈ B(0, 1), let

dr(x) := vol(B(x, r))−1

∫
x′∈B(x,r)

d(x′)ωn.

Arguing as in the proof of [27, Lemma 5] (see also [33] or [26]) and using (7.1), for every
x0 ∈ B(0, 1), one obtains∫

B(x0,r)
|∇d|2ωωn ≤ C1r

2n + C1

∫
B(x0,3r/2)

|u(x)− u(x0)|ωn ≤ C2r
2n−2| log r|−2M .

Therefore, by Poincaré inequality, we infer

r−2n

∫
B(x0,r)

|d(x)− dr(x0)|2ωn ≤ C3| log r|−2M ,

where C3 > 0 is a uniform constant independent of x0, δ and r. This combined with Hölder
inequality gives

r−2n

∫
Bω(x0,r)

|d(x)− dr(x0)|ωn ≤ C3| log r|−M .(7.2)
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We now use some arguments similar to the proof of Campanato’s lemma. We follow the
presentation in [28, Chapter 3]. Assume 0 < r1 < r2 < 1 and x1, x2 ∈ B(0, 1) with
B(x1, r1) ⊂ B(x2, r2). Observe that

|dr1(x0)− dr2(x0)| ≤ |dr1(x0)− d(x)|+ |dr2(x0)− d(x)|

for every x ∈ B(x1, r1) ⊂ B(x2, r2). It follows that

|dr1(x1)− dr2(x2)| ≤

vol(Bω(x1, r1))−1

(∫
Bω(x1,r1)

|dr1(x1)− d(x)|ωn +

∫
Bω(x2,r2)

|dr2(x2)− d(x)|ωn
)

By (7.2), it follows that

(7.3) |dr1(x1)− dr2(x2)| . r−2n
1

(
r2n

1 | log r1|−M + r2n
2 | log r2|−M

)
.

Applying the last inequality to r1 = r/2k+1, r2 = r/2k and x1 = x2 = x0 yields

|d2−kr(x0)− d2−k−1r(x0)| ≤ C4

(
| log r|+ (k + 1) log 2

)−M ≤ ∫ k+1

k

C4dt

(| log r|+ t log 2)−M
,

for some uniform constant C4 > 0 independent of x0, r, k, ε, δ. Summing over k = 0, 1, 2, . . .
yields

∞∑
k=0

|d2−kr(x0)− d2−k−1r(x0)| ≤
∫ ∞

0

C4dt

(| log r|+ t log 2)−M
≤ C5| log r|−M+1.

Since dr converges uniformly to d on B(0, 1) as r ↘ 0, it follows that

|d(x0)− dr(x0)| ≤ C5| log r|−M+1(7.4)

for every x0 ∈ B(x∗, 1) (recall x∗ = 0), and 0 < r < 1. Let x ∈ B(x∗, 1/8) and r :=
dist(x, x∗) ≤ 1/8. Using (7.4) and then applying (7.3) for x1 = x, x2 = x∗ and r2 = 3r1 =
3r, we get

d(x) = d(x)− d(x∗)

≤ |d(x)− dr(x)|+ |d(x∗)− d3r(x
∗)|+ |dr(x)− d3r(x

∗)|

. | log r|−M+1 + |dr(x)− d3r(x
∗)|

. | log r|−M+1 + | log r|−M

. | log r|−M+1.

This finishes the proof. �

Proof of Corollary 1.2. Write ωF = ddcu+ θ, where u is logM -continuous θ-psh function for
every constant M > 1 by Theorem 1.1. Fix δ ∈ (0, 1]. Let uε be as in Lemma 7.2 for u.
Since ddcuε + θ + δω converges to ddcu + θ + δω ≥ ddcu + θ locally in the C∞-topology in
X\N , one sees that the desired assertion follows from Lemma 7.3 by letting ε→ 0. �
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(2004), pp. 45–76.
[6] S. BOUCKSOM, S. CACCIOLA, AND A. F. LOPEZ, Augmented base loci and restricted volumes on normal

varieties, Math. Z., 278 (2014), pp. 979–985.
[7] S. BOUCKSOM, P. EYSSIDIEUX, V. GUEDJ, AND A. ZERIAHI, Monge-Ampère equations in big cohomology

classes, Acta Math., 205 (2010), pp. 199–262.
[8] D. COMAN, V. GUEDJ, AND A. ZERIAHI, Extension of plurisubharmonic functions with growth control, J.

Reine Angew. Math., 676 (2013), pp. 33–49.
[9] D. COMAN AND G. MARINESCU, Convergence of Fubini-study currents for orbifold line bundles, Internat. J.

Math., 24 (2013), pp. 1350051, 27.
[10] T. DARVAS, E. DI NEZZA, AND C. H. LU, Monotonicity of nonpluripolar products and complex Monge-Ampère

equations with prescribed singularity, Anal. PDE, 11 (2018), pp. 2049–2087.
[11] T. DARVAS, E. DI NEZZA, AND C. H. LU, Log-concavity of volume and complex Monge-Ampère equations

with prescribed singularity, Math. Ann., 379 (2021), pp. 95–132.
[12] J.-P. DEMAILLY, Complex analytic and differential geometry. http://www.fourier.ujf-grenoble.fr/

~demailly.
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