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Abstract

We consider the problem of determining a term in the right-hand side of an elliptic equation

in a cylinder from boundary observations with constant and variable coefficients. Based on

the special form of the considered equation in a cylinder, the solution of the direct and inverse

problems can be represented by the Fourier series. As the problem is ill-posed, we regularize

it by truncating the Fourier series. We prove error estimates of the method and present some

numerical examples for showing its efficiency.
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1 Introduction and problem setting

As noted in our work [4], the problem of determining sources in elliptic equations has attracted

researchers for several decades, see e.g., [2,5,7,10,12,14,15]. However, the inverse source problems

with boundary observations are not many [1,2,5–10,12–18]. In this paper, we continue our research

on these source inverse problems, but for a special elliptic equation with constant and variable

coefficients in a cylinder. Namely, let Ω be a bounded, open set in Rn with Lipschitz boundary,

Q = (0, T )×Ω, where T is a given positive number. Let aij(x), i, j = 1, . . . n, belong to C1(Ω̄) and

a(x) belong to C(Ω̄) satisfying

n∑
i,j=1

aijξiξj ≥ µ∥ξ∥2R2 for all ξ ∈ Rn, and a(x) ≥ m, (1.1)

with given positive constants µ and m. Set

Lu = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ a(x)u.
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Consider the Neumann problem
−∂2u

∂t2
+ Lu = f(x) + g(x, t), x ∈ Ω, t ∈ (0, T ),

∂u
∂ν |∂Ω×(0,T ) = 0,
∂u
∂t |t=0 = 0,
∂u
∂t |t=T = 0.

(1.2)

Here, ∂/∂ν is the normal outer derivative defined on the boundary ∂Ω.

Definition 1.1. Let f and g be given. A weak solution in H1(Q) to (1.2) is a function u ∈ H1(Q)

such that ∫
Q

∂u

∂t

∂v

∂t
dxdt+

∫
Q

n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
dxdt+

∫
Q
a(x)uvdxdt =

∫
Q
(f + g)dxdt (1.3)

for all v ∈ H1(Ω).

It is well-known that, for each pair f ∈ L2(Ω) and g ∈ L2(Q), there exists a unique solution

u ∈ H1(Q) to (1.2). Moreover, there is a positive number c independent of f and g such that

∥u∥H1(Q) ≤ c
(
∥f∥L2(Ω) + ∥g∥L2(Q)

)
. (1.4)

The inverse problem is that of determining f from an observation taken on a part of the boundary

∂Q. Namely, we consider the problem of determining the term f in the right-hand side of the first

equation of (1.2) from the observation

u(x, 0) = φ(x). (1.5)

We will study the well-posedness of this problem and will suggest a stable method based on the

truncating the Fourier series representing the solution to the direct problem (1.2).

Denote ū and ũ respectively the solutions to the following problems:
−∂2u

∂t2
+ Lu = f(x), x ∈ Ω, t ∈ (0, T ),

∂ū
∂N |∂Ω×(0,T ) = 0,
∂ū
∂t |t=0 = 0,
∂ū
∂t |t=T = 0,

(1.6)

and 
−∂2ū

∂t2
+ Lũ = g(x, t), x ∈ Ω, t ∈ (0, T ),

∂ũ
∂N |∂Ω×(0,T ) = 0,
∂ũ
∂t |t=0 = 0,
∂ũ
∂t |t=T = 0,

(1.7)

Clearly, u = ū + ũ is the solution to (1.2). Since g ∈ L2(Q) is given, problem (1.7) is well-posed.

That is, there exists a unique ũ ∈ H1(Q) satisfying (1.7). So, the above inverse problem can be

rewritten as the problem of determining f from
−∂2ū

∂t2
+ Lū = f(x), x ∈ Ω, t ∈ (0, T ),

∂ū
∂N |∂Ω×(0,T ) = 0,
∂ū
∂t |t=0 = 0,
∂ū
∂t |t=T = 0,

(1.8)
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with the observation

ū(x, 0) = u(x, 0)− ũ(x, 0) = φ(x)− ũ(x, 0) := φ(x)− φ̃(x) := φ̄(x). (1.9)

Suppose that φ is approximated by φϵ ∈ L2(Ω) such that

∥φ− φϵ∥L2(Ω) ≤ ϵ (1.10)

which ϵ being a noise level. Our aim is to determine f from the noisy data φϵ.

Note that since u and ũ are in H1(Q), we have ū(x, 0) = u(x, 0) − ũ(x, 0) = φ̄(x) belongs to

H1/2(Ω). The operator A mapping f ∈ L2(Ω) to the restriction of the solution u on Ω is linear

and bounded. Since H
1
2 (Ω) is compactly embedded on L2(Ω), the operator A : L2(Ω) −→ L2(Ω) is

compact. So, the inverse problem (1.2)–(1.5) now becomes the linear compact operator equation

Af = φ̄, (1.11)

which is ill-posed.

1.1 A representation of the solution

We will find the solution to the direct problem (1.2) by the method of separation of variables (the

Fourier method). Consider the eigenvalue problem{
Lu = λu, x ∈ Ω,
∂ū
∂N |∂Ω = 0.

(1.12)

It is known that [11, §3, pp. 174–181] L admits an orthonormal eigenbasis {ϕk}k≥0 in L2(Ω) and the

associated eigenvalues m ≤ λ0 < λ1 ≤ λ2 ≤ . . . , where λk tends to infinity as k → ∞. Furthermore,

the system {
ϕ1√

λ0 −m+ 1
,

ϕ2√
λ1 −m+ 1

, . . . ,
ϕn√

λn −m+ 1

}
forms the orthonormal basis of H1(Ω).

To find a solution u(x, t) to (1.2), we formally represent it in a series

u(x, t) =
∞∑
k=0

uk(t)ϕk(x), (1.13)

with uk(t) being sought.

Set

fk = ⟨f(·), ϕk(·)⟩L2(Ω),

and

gk(t) = ⟨g(·, t), ϕk(·)⟩L2(Ω).

Then the series

f(x) =
∑
k≥0

fkϕk(x) (1.14)
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is convergent in L2(Ω), and the series

g(x, t) =
∑
k≥0

gk(t)ϕk(x) (1.15)

is convergent in L2(Q). Substituting (1.13) into (1.2), we get

−
∑
k≥0

u′′k(t)ukϕk +
∑
k≥0

λkuk(t)ϕk =
∑
k≥0

(fk + gk(t))ϕk,

−
∑
k≥0

u′k(0)ϕk = 0,∑
k≥0

u′k(T )ϕk = 0,

(1.16)

Taking the L2(Ω) inner product to the both sides of (1.16) with ϕk we obtain the second-order

ordinary differential equations

−u′′k(t) + λkuk(t) = fk + gk(t) (1.17)

with the boundary conditions

u′k(0) = 0, u′k(T ) = 0, k = 0, 1, 2, . . . (1.18)

The unique solution to problem (1.17)–(1.18) is

uk(t) =
fk
λk

+
1√

λk sinh
√
λkT

∫ t

0
gk(t) sinh

√
λk(ξ − t)dt

+
cosh

√
λkt√

λk sinh
√
λkT

∫ T

0
gk(t)cosh

√
λk(T − ξ)dt.

Therefore,

uk(0) =
1√

λk sinh
√
λkT

∫ T

0
gk(ξ) cosh(

√
λk(T − ξ))dξ +

fk
λk

, k = 0, 1, . . . .

Thus,

u(x, 0) =
∞∑
k≥0

uk(0)ϕk(x) (1.19)

=
∑
k≥0

(
1√

λk sinh
√
λkT

∫ T

0
gk(ξ) cosh(

√
λk(T − ξ))dξ +

fk
λk

)
ϕk(x), k = 0, 1, . . . (1.20)

which converges in L2(Ω).

Further, since φ ∈ L2(Ω), we have

u(x, 0) = φ(x) =
∑
k≥0

φkϕk, (1.21)

where φk = ⟨φ, ϕk⟩L2(Ω), k = 0, 1, . . .

Comparing this series with (1.19), we get

1√
λk sinh

√
λkT

∫ T

0
gk(ξ) cosh(

√
λk(T − ξ))dξ +

fk
λk

= φk, k = 0, 1, . . .
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Therefore,

fk = λk

(
φk −

1√
λk sinh

√
λkT

∫ T

0
gk(ξ) cosh(

√
λk(T − ξ))dξ

)
, k = 0, 1, . . . (1.22)

When f = 0, u is the solution ũ to (1.7). Hence,

ũ(x, 0) = φ̃(x) =
∞∑
k≥0

φ̃k(0)ϕk(x)

=
∑
k≥0

ϕk(x)√
λk sinh

√
λkT

∫ T

0
gk(ξ) cosh(

√
λk(T − ξ))dξ, k = 0, 1, . . .

which converges in L2(Ω).

Thus, denoting φ̄k =
∫
Ω φ̄(x)ϕk(x)dx, which φ̄ being defined by (1.9), we have

f(x) =
∑
k≥0

λk(φk − φ̃k)ϕk(x) =
∑
k≥0

λkφ̄kϕk(x). (1.23)

Since λk tends to infinity as k → ∞, this series does not always converge in L2(Ω) if φ is ap-

proximately given. Thus, the problem of determining f from u(x, 0) is ill-posed. Therefore, a

regularization method for it is desirable. We shall do it by truncating the Fourier series (1.22)

((1.23)).

1.2 Regularization by the truncated Fourier series

We now use the traditional truncated Fourier series method for regularizing the inverse problem

(1.2)–(1.5). Denoting φϵ
k the Fourier coefficient of φϵ and φ̄ϵ

k = φϵ
k − φ̃k, we approximate f by

truncating the Fourier series (1.23):

fN,ϵ =
N∑
k=0

λkφ̄
ϵ
kϕk. (1.24)

We shall determine N = N(ϵ) ∈ N such that ∥fN,ϵ − f∥L2(Ω) → 0 as ϵ → 0. To do this we require

some ”smoothness” of f . Namely, we introduce the space Hα(Ω), α ≥ 0, which consists of all

functions f such that the series
∑∞

k=0 λ
α
kfkϕk converges in L2(Ω). We introduce the norm in this

space by

∥f∥Hα(Ω) =
( ∞∑

k=0

λ2α
k |fk|2

)1/2
.

We see that H0(Ω) = L2(Ω).

Theorem 1.2. Let α be a given positive number and f ∈ Hα(Ω). Let further that there is a positive

number E such that ∥f∥Hα(Ω) ≤ E. Then, with

N = N∗ :=
[( E

c1cα0 ϵ

) n
2+2α

]
with [γ] being the entire part of a number γ, there exists a positive number c2 = c2(E,n, α) inde-

pendent of ϵ such that

∥f − fN,ϵ∥L2(Ω) ≤ c2ϵ
α

α+1

which tends to zero as ϵ tends to zero.
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Proof. For N ∈ N, we have

∥f − fN,ϵ∥L2(Ω) ≤ ∥f − fN∥L2(Ω) + ∥fN − fN,ϵ∥L2(Ω) := A+B.

Here,

A2 = ∥f − fN∥2L2(Ω) =
∥∥∥ ∑
k≥N+1

λkfkϕk

∥∥∥2
L2(Ω)

=
∑

k≥N+1

f2
k =

∑
k≥N+1

λ−2α
k λ2α

k f2
k

≤ λ−2α
N+1

∑
k≥N+1

λ2α
k f2

k

≤ λ−2α
N+1∥f∥

2
Hα(Ω)

≤ λ−2α
N+1E

2. (1.25)

From [11, Theorem 5, p. 189], there exists constants c0 and c1, 0 < c0 < c1 and a number N0 such

that

c0s
2
n ≤ λs ≤ c1s

2
n

for all s ≥ N0. Taking N ≥ N0, we then have

A ≤ c−α
0 (N + 1)

−2α
n E ≤ c−α

0 N
−2α
n E. (1.26)

Since m ≤ λ0 ≤ λ1 ≤ · · · ≤ λN , we have

B2 = ∥fN − fN,ϵ∥2 = ∥
N∑
k=0

λk(φk − φϵ
k)ϕk∥2L2(Ω)

≤ λ2
N∥φ− φϵ∥2 ≤ ϵ2λ2

N

≤ c21N
4
n ϵ2. (1.27)

Combining the last inequalities, we get

∥f − fN,ϵ∥L2(Ω) ≤ c−α
0 N

−2α
n E + c1N

2
n ϵ.

Choosing, for example,

N = N∗ :=
[( E

c1cα0 ϵ

) n
2+2α

]
, and c2 = 3

( E

c0cα1

) 1
1+α

we see that

∥f − fN,ϵ∥L2(Ω) ≤ c2ϵ
α

α+1

which tends to zero as ϵ tends to zero.
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2 A special case of equations with constant coefficients in a par-

allelepiped

In this paragraph, we consider a special case of the previous paragraph. We take Ω = (0, 2)n−1, n ≥
2 and Q = Ω × (0, 2) and the elliptic in (1.2) with constant coefficients. Namely, we consider the

Neumann problem for finding a function u = u(x, t) satisfying{
−∆u+ au = f(x) + g(x, t) in Q,

−∇u · n = 0 on ∂Q.
(2.1)

Here, f and g are supposed to be in L2(Ω) and L2(Q), respectively; a is a given positive constant.

As in the previous paragraph, a weak solution in H1(Q) to problem (2.1) is a function u ∈ H1(Q)

such that ∫
Q
∇u∇vdxdt+

∫
Q
auvdx =

∫
Q
(f + g)vdxdt

for all v ∈ H1(Q).

It is well-known that the exists a unique solution u ∈ H1(Q) to (2.1). We consider the inverse

problem of determining f from the observation

u(x, 0) = φ(x), x ∈ Ω. (2.2)

We have φ ∈ H
1
2 (Ω) ⊂ L2(Ω). Denote ū and ũ the solutions to the following problems, respectively{

−∆ū+ aū = f(x) in Q,

−∇ū · n = 0 on ∂Q.
(2.3)

and {
−∆ũ+ aũ = g in Q,

−∇ũ · n = 0 on ∂Q.
(2.4)

Clearly, u = ū + ũ is the solution to (2.1). Since g ∈ L2(Q) is given, problem (2.4) is well-posed.

That is, ũ uniquely exists ∈ H1(Q). Therefore, the inverse problem (2.1)–(2.2) can be rewritten as{
−∆ū+ aū = f in Q,

−∇ū · n = 0 on ∂Q.
(2.5)

with observation

ū(x, 0) = φ(x)− ũ(x, 0) = φ̄(x). (2.6)

Suppose further that φ ∈ L2(Ω) such that

∥φ− φϵ∥ ≤ ϵ, (2.7)

with ϵ being a given noise level. Our aim is to determine f ϵ from the noisy data φϵ. As previously,

we solve the Neumann problem (2.1) by the Fourier method. However, for this special case, we

proceed a little bit differently. Namely, we consider the eigenvalue problem{
−∆u+ au = λu in Q,

−∇u · n = 0 on ∂Q.
(2.8)
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A nonzero function u ∈ H1(Q) satisfying (2.8) is called an eigenfunction to this problem and the

number λ is called the eigenvalue (corresponding to the eigenfunction u).

Set k = (k1, k2, . . . , kn−1, kn), ki ∈ N, and

|k| = k1 + k2 + · · ·+ kn−1 + kn,

k′ = (k1, k2, · · · , kn−1),

|k′| = k1 + k2 + · · ·+ kn−1.

We see that a is the smallest eigenvalue of (2.8) corresponding to the normalized in L2(Q) eigen-

function ϕ(0,0,...,0) =
1√
2
. The other eigenvalues are

λk = a+

(
k1π

2

)2

+

(
k2π

2

)2

+ . . .

(
knπ

2

)2

which correspond to the normalized in L2(Q) eigenfunction

ϕk(x, t) = cos

(
k1πx1

2

)
cos

(
k2πx2

2

)
· · · cos

(
knπxn−1

2

)
cos

(
knπt

2

)
. (2.9)

The system {ϕk}|k|≥0 forms an orthonormal system in L2(Q) and the system {ϕ̃k}|k|≥0, with

ϕ̃0 = ϕ0, ϕ̃k =
ϕk√

1 +
n∑

i=1

(
kiπ
2

)2
forms an orthonormal system in H1(Q), (see, e.g. [11, p. 174–181]).

Set

fk =

∫
Ω
f(x)ϕk(x, t)dxdt and gk =

∫
Ω
g(x, t)ϕk(x, t)dxdt.

First we see that g =
∑

|k|≥0

gkϕk converges in L2(Q). Concerning f(x), we have

fk =

∫
Q
f(x)ϕk(x, t)dxdt

=

∫
Ω
f(x) cos

k1πx1
2

cos
k2πx2

2
· · · cos kn−1πxn−1

2
dx1dx2 · · · dxn−1

∫ 2

0
cos

knπt

2
dt

=

∫
Ω
f(x)ϕk′(x)dx

∫ 2

0
cos

knπt

2
dt.

Since ∫ 2

0
cos

knπt

2
dt =

{
0, if kn ̸= 0

2 if kn = 0,

the coefficient fk ̸= 0 only if kn = 0, or (x, t) = (x, 0). Set

ϕk′(x) = cos
k1πx1

2
cos

k2πx2
2

. . . cos
kn−1πxn−1

2
.

Then ϕk(x, t) = ϕk′(x) and fk = 2
∫
Ω f(x)ϕk′(x)dx = 2fk′ where

f ′
k =

∫
Ω
f(x)ϕ′

k(x)dx.
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Thus,

f(x) =
∑
|k|≥0

fkϕk(x) = 2
∑
|k′|≥0

fk′ϕk′(x) (2.10)

which converges in L2(Ω).

Formally representing

u(x, t) =
∑
|k|≥0

ukϕk(x, t),

then putting it into (2.1) and comparing the resulting equation with the series of f and g we have

uk =
1

λk
(fk + gk).

Thus,

u(x, t) =
∑
|k|≥0

1

λk
(fk + gk)ϕk(x, t) (2.11)

which converges in H1(Q).

Substituting it into (2.2), we get

φ(x) = u(x, 0) = 2
∑
|k′|≥0

1

λk
fk′ϕk′(x) +

∑
|k|≥0

1

λk
gkϕk(x). (2.12)

Similarly to f , we represent φ into the series

φ(x) =
∑
|k′|≥0

φk′ϕk′(x).

This series converges in L2(Ω).

Then, from (2.2), we have

φ(x) = 2
∑
|k′|≥0

φk′ϕk′(x) = 2
∑
|k′|≥0

fk′ϕk′(x) +
∑
|k|≥0

1

λk
gkϕk(x, 0) (2.13)

We note that

gk = g(k′,kn)

=

∫
Q
g(x1, x2, · · ·xn−1, xn, t)×

cos
k1x1π

2
cos

k2πx2
2

· · · cos kn−1πxn−1

2
cos

knπt

2
dx1dx2 · · · dxn−1dt,

and

ϕk(x, 0) = cos
k1πx1

2

cos k2πx2
2

· · · cos kn−1πxn−1

2
= ϕk′(x),

comparing the both sides of (2.13), we have

φk′ =
∞∑

kn=0

1

λ(k′,kn)
g(k′,kn) + 2

1

λk′
fk′.
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Hence,

fk′ =
1

2

λk′φk′ − λk′

∞∑
kn=0

1

λ(k′,kn)
g(k′,kn)

 .

We denote ũ(x, t) =
∑

|k|≥0

gk
λk
ϕk(x, t), that means, ũ(x, t) solves the problem

{
−∆u+ au = g in Ω,

∇u · n = 0 on ∂Ω.
(2.14)

Set

φ̄(x) = φ(x)− ũ(x, 0)

and denote

φ̄k′ =

∫
Ω
φ̄(x)ϕk′(x)dx.

Hence,

f(x) =
∑
|k′|≥0

λk′φ̄kϕk′(x). (2.15)

Since

λk′ = a+

(
k1π

2

)2

+

(
k2π

2

)2

+ . . .

(
kn−1π

2

)2

tends to infinity as |k′| tends to infinity, we see from (2.15) that the problem of reconstructing f

from φ is ill-posed, and we will use truncated Fourier series method for regularizing it.

Suppose that instead of φ we have only its approximate data φϵ ∈ L2(Ω) which satisfies (2.7). Then

we see that the series (2.15) may not converge for this data. To avoid it, we shall truncate this

series. Namely, we take

fN,ϵ(x) =

N∑
|k′|≥0

λk′(φ
ϵ
k′ − φ̄k′)ϕk′(x) (2.16)

fN (x) =
N∑

|k′|≥0

λk′(φk′ − φ̄k′)ϕk′(x) =
N∑

|k′|≥0

λk′φ̄k′ϕk′(x). (2.17)

The purpose of this regularization method is to determine an appropriate N = N(ϵ) ∈ N such that

∥fN,ϵ − f∥L2(Ω) → 0 as ϵ → 0.

Theorem 2.1. Let α be a positive given number, f a function in Hα(Ω). Furthermore, suppose

that there is a positive constant E such that

∥f∥Hα(Ω) ≤ E.

Then with

N = N∗ =
[(E

ϵ

) 1
2+2α

(4(n− 1)

π2

) α
2+2α

(a+
π2

4
)
− 1

(2+2α)

]
there exists a positive c3 = c3(E,α, n) independent of ϵ such that

∥f − fN,ϵ∥L2(Ω) ≤ c3ϵ
α

1+α

which tends to zero as ϵ tends to zero.
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Proof. For N ∈ N, we have,

∥f − fN,ϵ∥L2(Ω′) ≤ ∥f − fN∥L2(Ω′) + ∥fN − fN,ϵ∥L2(Ω′) := A+B. (2.18)

We have

A2 =
∥∥∥ ∑
|k′|≥N+1

fk′ϕk′(·)
∥∥∥2
L2(Ω)

=
∑

|k′|≥N+1

f2
k′ =

∑
|k′|≥N+1

λ2α
k′ f

2
k′λ

−2α
k′

≤ λ−2α
N+1

∑
|k′|≥N+1

λ2α
k′ f

2
k′

≤ λ−2α
N+1∥f∥

2
Hα(Ω)

≤ λ−2α
N+1E

2.

Using the Cauchy-Bunyakovsky inequality, we have

λ−α
k′ =

(
a+

(
k1π

2

)2

+

(
k2π

2

)2

+ . . .

(
kn−1π

2

)2
)−α

≤

(
a+

(k1 + k2 + . . . kn−1)
2 π2

4(n− 1)

)−α

=

(
a+

|k′|2π2

4(n− 1)

)−α

≤
(
a+

(N + 1)2π2

4(n− 1)

)−α

<
( N2π2

4(n− 1)

)−α
. (2.19)

Thus,

A < E

(
4(n− 1)

π2

)α

N−2α. (2.20)

On the other hand, we have

λN = a+

(
k1π

2

)2

+

(
k2π

2

)2

+ . . .

(
kn−1π

2

)2

with k1 + k2 + · · ·+ kn−1 = N . So,

λN ≤ a+
(k1 + k2 + · · ·+ kn−1)

2π2

4
= a+

N2π2

4
≤
(
a+

π2

4

)
N2.

Since λ0 ≤ λ1 ≤ · · · ≤ λN , we have

B2 = ∥
N∑

|k′|≥0

λk′(φ̄
ϵ
k′ − φ̄k′)ϕk′(x

′)∥2L2(Ω′)

=
N∑

|k′|≥0

λ2
k′ ((φk′ − ũk(., 0))− (φϵ

k′ − ũk(., 0)))
2 =

N∑
|k′|≥0

λ2
k′ (φk′ − φϵ

k′)
2

≤ λ2
N ϵ2 ≤

(
a+

π2

4

)2

N4ϵ2. (2.21)
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Therefore,

B ≤
(
a+

π2

4

)
N2ϵ (2.22)

From estimates (2.18), (2.20) and (2.22), we have

∥f − fN,ϵ∥L2(Ω) ≤ E

(
4(n− 1)

π2

)α

N−2α +

(
a+

π2

4

)
N2ϵ. (2.23)

By taking

N = N∗ =
[(E

ϵ

) 1
2+2α

(4(n− 1)

π2

) α
1+2α

(a+
π2

4
)
− 1

(2+2α)

]
and

c3 = 3E
1

1+α

(4(n− 1)

π2

) α
1+α
(
a+

π2

4

) α
1+α

,

for example, we have

∥f − fN,ϵ∥L2(Ω′) ≤ c3ϵ
α

1+α (2.24)

which tends to zero as ϵ tends to zero.

3 Numerical examples

In this section we apply the proposed method to some concrete examples for illustrating its effi-

ciency. We wish to determine f = f(x) in the problem{
∆u+ 2u = f(x) + g(x, y), (x, y) in Ω,

∇u · n = 0, (x, y) on ∂Ω
(3.1)

from the noisy observation on the boundary:

u(x, 0) ≈ φϵ(x) = cos
πx

2

(
1 + p ∗ rand(−1, 1)

)
. (3.2)

Here, rand(−1, 1) generates a random number in (−1, 1), p is the percentage of the error. So, the

noise level is ϵ = p.∥u(., 0)∥.

We test our method for three cases:

Example 1: f is a smooth function

g(x, y) = (1.25π2 + 2) cos
πx

2
cos

πy

2
− 3 sin(πx) + 1).

The exact solution with p = 0 is

(u, f) = (cos
πx

2
cos

πy

2
, 3 sin(πx) + 1).

Example 2: f is a continuous but non-smooth function

g(x, y) = (1.25π2 + 2) cos
πx

2
cos

πy

2
− |x− 1|.

The exact solution with p = 0 is

(u, f) = (cos
πx

2
cos

πy

2
, |x− 1|).

12



Example 3: f is a discontinuous function

g(x, y) =

{
(1.25π2 + 2) cos πx

2 cos πy
2 , (x, y) ∈ (0, 12)× (0, 2) ∪ (32 , 2)× (0, 2),

(1.25π2 + 2) cos πx
2 cos πy

2 − 1, (x, y) ∈ [12 ,
3
2 ]× 2.

In all examples, we use the Finite Difference Method with 80×80 nodes the domain and boundary.

We compare the accuracy of the Finite Difference Method under different conditions: using the

same number of Fourier coefficients with varying noise levels (5%, 7%, and 10%) and using different

numbers of coefficients (M = 7, 10, 15 for Examples 1 and 2, and M = 10, 15, 20 for Example 3)

with a fixed noise level.

The results of Example 1 are presented in Figures 1–4 and Table 1 while results of Example 2

and Examples 3 are shown in Figures 5–8, Table 2 and 9–12, 3, respectively. From these figures

and tables we can see the decline in errors with decreasing noise: The errors in the computational

solutions consistently decrease as the noise level drops from 10% to 5%, given a fixed number of

Fourier coefficients. This pattern is evident across all examples. In Example 1, using 15 Fourier

coefficients, the relative error drops from 0.1992 at a noise level of 10% to 0.0477 at a noise level of

5%. Increasing the number of Fourier coefficients also reduces errors: When employing the same

noise level of 5% and increasing the number of Fourier coefficients from 7 to 15, the relative errors

in Example 1 decrease from 0.0903 to 0.0477. This suggests that incorporating more coefficients

can further enhance accuracy. Examples 2 and 3 exhibit similar trends, though their errors are

generally larger than those in Example 1. This can be attributed to the underlying complexity of

their exact solutions, which are non-smooth functions compared to the smooth solution in Example

1.

Figure 1: Example 1: Exact solution and

numerical solutions with different perturba-

tions in non-smooth case

Figure 2: Example 1: Comparison of errors

of numerical solutions with different pertur-

bations

13



Figure 3: Example 1: Exact solution and nu-

merical solutions with p=7 different number

of Fourier coefficients

Figure 4: Example 1: Comparison errors of

numerical solutions with different number of

Fourier coefficients

Table 1: Example 1. The L2-norm of relative errors

p 5% 7 % 10%

M = 10 0.0573 0.1427 0.3978

M=15 0.0477 0.0536 0.1992

Figure 5: Example 2: Exact solution and

numerical solutions with different perturba-

tions in non-smooth case

Figure 6: Example 2: Comparison of errors

of numerical solutions with different pertur-

bations

Table 2: Example 2. The L2-norm of relative errors.

p 5% 7 % 10%

M = 10 0.1095 0.2077 0.3626

M=15 0.0868 0.0987 0.2077

14



Figure 7: Example 2: Exact solution and nu-

merical solutions with p=7 different number

of Fourier coefficients

Figure 8: Example 2: Comparison errors of

numerical solutions with different number of

Fourier coefficients

Figure 9: Example 3:Exact solution and

numerical solutions with different perturba-

tions

Figure 10: Example 3: Comparison of errors

of numerical solutions with different pertur-

bations

Table 3: Example 3. The L2-norm of relative errors

p 5% 7 % 10%

M = 15 0.1730 0.1776 0.3894

M=20 0.1520 0.1494 0.2522
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Figure 11: Example 3: Exact solution and

numerical solutions with p=7 different num-

ber of Fourier coefficients

Figure 12: Example 3: Comparison errors of

numerical solutions with different number of

Fourier coefficients
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