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Abstract. Let F : R2 → R2 be a polynomial mapping. We consider the image of the
compositions F k of F . We prove that under some condition then the image of the iterated
map F k is stable when k is large.

1. Introduction

The Jacobian conjecture stated firstly by Keller in 1939 for a field k of characteristic 0
asserts that any polynomial mapping f : kn → kn, for which the Jacobian determinant J(f)
is a nonzero constant, is bijective and the inverse mapping is also polynomial ([6]), we denote
this assertion as JC(k, n). The full Jacobian conjecture asserts that JC(k, n) is true for
all fields k of characteristic 0, and all integers n > 0; till now, no particular case of the
conjecture has been proved for n > 1. We consider the real Jacobian conjecture which states
that any polynomial mapping f : Rn → Rn whose Jacobian determinant does not vanish
anywhere has polynomial inverse. This real version of JC(k, n) is disproved by Pinchuk
([12]), more precisely, Pinchuk constructed a polynomial mapping from R2 to R2 which is
locally diffeomorphism but is not a global diffeomorphism (see also [3] for different examples).
One natural question raised from those families of mappings is that which kind of global
properties does a polynomial mapping have? In this paper, we do not deal with the Jacobian
conjecture, but prove a global property on the iterated image of a polynomial mapping from
R2 to R2, namely: we show that, under some condition, the iterated image of F is stable at
some moment. The main result is the following.

Theorem 1.1. Let F : R2 −→ R2 be a polynomial mapping satisfying the following conditions:

1) The complement R2 \ F (R2) consists of finite number of points;
2) Each point outside the asymptotic variety of F has more than one preimage via F .

Then, there exists a natural number N such that the image F k(R2) of F k are equal for all
k > N .

A similar observation has been considered in [11] for complex mappings, where the authors
proved the stability of the iterated images of an open polynomial mapping from an affine
complex algebraic set to itself. The proof of Theorem 1.1 is in the last section, while next
section recalls some known results in real algebraic geometry.
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2. Preliminaries

We begin recalling the notion of the so-called asymptotic value of a polynomial mapping.

Definition 2.1. Given a mapping F : kn −→ km, k = R,C. A point y0 ∈ km is called an
asymptotic value of F if there exists a curve γ : (0,∞) → kn, such that γ(t) → ∞ as t → ∞
and F (γ(t))→ y0 as t→∞. The curve γ is called an asymptotic curve with respect to y0.

The set of all asymptotic values of F is denoted by SF , we call it the asymptotic variety of
F .

Example 2.2. Consider the polynomial mapping (x2, xy) : R2
x,y → R2

u,v. By Definition 2.1, a

point (a, b) is an asymptotic value of the mapping if there is a curve γ = (γ1, γ2) : (0,∞)→ R2

such that, as t→∞, we have γ21(t)+γ22(t)→∞, γ21(t)→ a and γ1(t)γ2(t)→ b, then γ2(t)→∞
and γ1(t)→ 0 (otherwise, γ1(t)γ2(t) could not have a finite limit). Hence a = 0.

On the other hand, any point (0, λ), λ ∈ R is an asymptotic value of the mapping with the
asymptotic curve γ(t) = (1/t, λt), t > 0. Thus, the set of asymptotic values of this mapping
is the line {u = 0} in the target plane.

It is clear that a proper map has the empty set as asymptotic variety, then asymptotic
varieties play an important role in the study of polynomial mappings. In [5], Hadamard shows
that a smooth map F from Rn to Rn is invertible if and only if its Jacobian determinant is
nowhere vanishing and F is proper. Hence, the Jacobian Conjecture could be restated as: If
the Jacobian determinant of a mapping is a nonzero constant then the mapping is proper.

There are many studies on the set of asymptotic values of polynomial mappings (for complex
maps, see [7], for real maps, see [8]). For real mappings, the geometry of asymptotic variety
is described by Z. Jelonek in [8] as follow.

Theorem 2.3. Let f : Rn → Rm be a non-constant polynomial mapping. Then the set
Sf is closed, semi-algebraic and for every non-empty connected component S ⊂ Sf we have
1 ≤ dimS ≤ n− 1.

In the sequel, we also need the following property of fibers of morphisms between real
algebraic sets. The original result is for regular functions between Zariski open sets, but we
need only the restricted version for algebraic sets (see [1, Proposition 2.3.2]).

Proposition 2.4. Let V and W be real algebraic sets with W irreducible. Let f : V →W be
a regular function. Then there is a number δ(f) ∈ {0, 1} and a proper real algebraic subset X
of W with dimX < dimW , such that for each z ∈W \X we have

χ(f−1(z)) = δ(f) modulo 2,

where χ denotes the Euler characteristic.

Definition 2.5. For a regular function f as in the previous proposition, we call δ(f) the
degree of f .

3. Image of iterated maps on real plane

Let F : R2 → R2 be a polynomial mapping. We consider the iterated map

F k := F ◦ F ◦ · · · ◦ F (k composition of factors).

One sees that

F (R2) ⊇ F 2(R2) ⊇ F 3(R2) ⊇ . . . .
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In this Section, we will look for the stability of this sequence. More precisely, we will prove
Theorem 1.1.

Let F be a polynomial mapping satisfying the assumption of Theorem 1.1. Set

R2 \ F (R2) = {x1, ..., xd}

and, for each non-negative integer n, denote

An := {x1, x2, ..., xd;F (x1), F (x2), ..., F (xd); ...;F
n−1(x1), F

n−1(x2), ..., F
n−1(xd)}.

Then R2 \ Fn(R2) ⊂ An.
We have the following lemmas.

Lemma 3.1. With the assumption of Theorem 1.1 and assuming further that for each i ∈
{1, 2, . . . , d} there is a positive integer ni, such that Fni(xi) ∈ Fni+1(R2). Then, there exists
a positive integer N which FN (R2) = FN+1(R2).

Proof. For each i = 1, 2, ..., d, let bi ∈ N be the smallest number such that Fni(xi) ∈
Fni+1(R2). Let

N = max{bi | i = 1, 2, ..., d}.
It is obvious that FN+1(R2) ⊆ FN (R2). We will show that FN (R2) = FN+1(R2).

Assume by contradiction that there is a point y ∈ FN (R2) \ FN+1(R2). Hence y = FN (x)
for some x ∈ R2. Since y /∈ FN+1(R2), we get x /∈ F (R2), that means x = xi for some
i = 1, 2, ..., d. We have

y = FN (xi) = FN−bi(F bi(xi)) ∈ FN−bi(F bi+1(R2)) = FN+1(R2),

this is a contradiction. Thus FN (R2) = FN+1(R2). �

Lemma 3.2. With the hypothesis of Theorem 1.1, if for some i ∈ {1, 2, . . . , d} one has
Fn(xi) /∈ Fn+1(R2) for all n > 0, then there does not exist sequence 0 < n1 < n2 < . . . such
that #F−1(Fnk(xi)) > 2.

Proof. By contradiction, assume that there exist i ∈ {1, 2, . . . , d} and a sequence {nk}k>0
satisfying that Fn(xi) /∈ Fn+1(R2) for all n > 0 and #F−1(Fnk(xi)) > 2 for all k > 0.

Since Fn(xi) /∈ Fn+1(R2), for all n > 0, for any pair of natural numbers m < s we have
Fm(xi) 6= F s(xi) (otherwise Fm(xi) = F s(xi) ∈ F s(R2) ⊆ Fm+1(R2)). Further, from the
definition of Ank

, there does not exist x ∈ R2 \ Ank
which F (x) = Fnk(xi). Therefore, for

each k, beside Fnk−1(xi), the point Fnk(xi) has another preimage via F which belongs to
Ank

. Denote that preimage by Fmk(xnk), (xnk 6= xi,mk 6 nk − 1).
So, for each k > 0 there is a point Fmk(xnk) ∈ Ank

, such that

(3.1) Fmk+1(xnk) = Fnk(xi) and Fmk(xnk) 6= Fnk−1(xi).

Since xnk ∈ {x1, ..., xd} for all k > 0, there are numbers k < l, such that xnk = xnl . Therefore{
Fmk+1(xnk) = Fnk(xi),

Fml+1(xnk) = Fml+1(xnl) = Fnl(xi).

Hence

Fmk+1(Fnl(xi)) = Fmk+1(Fml+1(xnk)) = Fml+1(Fmk+1(xnk)) = Fml+1(Fnk(xi)).

That means

Fmk+nl+1(xi) = Fml+nk+1(xi).
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On the other hand, the sequence {Fn(xi)}n>0 is not periodic then mk + nl = ml + nk, this
means ml −mk = nl − nk = h > 1. Hence

Fml(xnl) = Fml(xnk) = F h+mk(xnk) = F h−1(Fmk+1(xnk)) = F h−1(Fnk(xi)) = Fnl−1(xi),

this contradicts to 3.1. The lemma is proved. �

Now we are ready to prove the main theorem.

Proof of Theorem 1.1. By Lemma 3.1 and Lemma 3.2, if there does not exist a positive integer
N such that

FN (R2) = FN+1(R2)

then one can find a number i ∈ {1, 2, . . . , d} satisfying the followings

i) Fn(xi) /∈ Fn+1(R2), for all n > 0;
ii) #F−1(Fn(xi)) = 1, for all n >M , where M is some non-negative integer.

Without the genericity, one can assume that i = 1. According to the hypothesis, every
point outside the asymptotic variety SF has more than one preimage via the map F then
Fn(x1) ∈ SF , for all n >M .

By Theorem 2.3, the asymptotic variety SF is a closed semi-algebraic set of dimension at
most one. Therefore, its Zariski closure SF is an algebraic set of dimension at most one. Let

SF =

s⋃
i=1

γi

be the decomposition of SF into irreducible components (γi is either a point or an irreducible
algebraic curve in R2).

Since Fn(x1) ∈
⋃s
i=1 γi for all n >M , we have

Fn(x1) ∈ (F k)−1(
s⋃
i=1

γi) =
s⋃
i=1

(F k)−1(γi)

for all k > 0, n >M . Hence (recall that Fn(x1) 6= Fm(x1) for all n 6= m)

Fn(x1) ∈
s⋃
i=1

s⋃
j=1

(γi ∩ (F k)−1(γj)).

It implies that for each k > 0, there exist a sequence of numbers {nki }i>0 (nki > M) and

two curves γk1 , γ
k
2 among γi such that Fn

k
i (x1) ∈ γk1 ∩ (F k)−1(γk2 ), for all i > 0. That is,

the intersection of the two curves γk1 and F−1(γk2 ) have infinitely many points. Since γk1 is
irreducible, it follows that γk1 ⊂ (F k)−1(γk2 ).

For all k, γk1 and γk2 are irreducible components of SF then there are l < s such that γl1 = γs1
and γl2 = γs2. We have γl1 ⊂ (F l)−1(γl2) so

F l(γl1) = F l(γs1) ⊂ γl2 = γs2.

Similarly, γs1 ⊂ (F s)−1(γs2) hence F l(γs1) ⊂ (F s−l)−1(γs2). Thus

F l(γs1) ⊂ γs2 ∩ (F s−l)−1(γs2).

On the other hand, Fn
s
i (x1) ∈ γs1 for all i ≥ 0, then Fn

s
i+l(x1) ∈ F l(γs1). So, two curves

γs2 and (F s−l)−1(γs2) both contain infinitely many points Fn
s
i+l(x1) for all i ≥ 0, while γs2 is

again irreducible then γs2 ⊂ (F s−l)−1(γs2). Put G = F s−l, then G(γ) ⊂ γ, where γ := γs2 is an
irreducible component of SF .
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One claims that #G−1(Fn(x1)) = 1 for all n ≥ M + s− l − 1. Since, if x ∈ G−1(Fn(x1)),
then F s−l(x) = Fn(x1), this means F s−l−1(x), Fn−1(x1) ∈ F−1(Fn(x1)), due to ii), it implies
that F s−l−1(x) = Fn−1(x1). Continue this process, finally, we obtain that x = Fn−s+l(x1).
Put yi = Fn

s
i+s(x1), then for all i large enough, yi ∈ G(γ) ⊂ γ and G−1(yi) ∈ γ.

Next, we will prove that G(γ) = γ. Indeed, consider the restriction map G|γ : γ → γ. It
follows from Proposition 2.4 and the previous explaination that there exists a finite subset
W ⊂ γ such that the number of points in the preimage (G|γ)−1(y) is one (modulo 2) for all
y ∈ γ \W . It means that G(γ) = γ \ B for some finite subset (possibly empty) B of γ. If γ
is bounded, then it is a compact set, the image G(γ) is also a compact set, hence G(γ) = γ.
The case when γ is unbounded is handled as follows.

For an unbounded curve C in R2, if we denote by BR the open ball centered at the origin
with radius R, then once R ≥ R0 with R0 > 0 is large enough, the complement C \ BR has
finite number of unbounded connected components, each of which is diffeomorphic to [0,∞),
the number of components does not depend on R. We call those connected components the
branches at infinity of the curve C.

Since γ \G(γ) is a finite set, for R > 0 large enough, γ \ BR consists of finite branches at
infinity Γ1,Γ2, . . . ,Γm, all of which are subsets of G(γ). We see that for each i = 1, . . . ,m,
the inverse G−1(Γi) is a closed semialgebraic subsets of the curve γ and it is unbounded
(otherwise, Γi = G(G−1(Γi)) is bounded), hence, there is one branch at infinity ∆i of γ such
that Γi ⊂ G(∆i) (we may choose R bigger if needed). That means, each branch at infinity of
γ is the image of some branch via G. Because the number of branches is finite, therefore G
maps each branch at infinity of γ to a branch at infinity of γ.

Now, fix R > 0 large enough and consider the inverse

K := (G|γ)−1(BR) = G−1(BR) ∩ γ,

where BR is the closed ball centered at the origin with radius R. It implies from the previous
observation that K is a bounded subset of γ and is also closed. So it is a compact set.
Therefore, we obtain that

G(γ) = G(K) ∪ (
m⋃
i=1

Γi)

is a closed subset of γ. Hence B is empty. In other words, G(γ) = γ. It follows that for all
n > 0 we have Gn(γ) = γ, then for a fixed i > 0 large enough:

yi = Fn
s
i+s(x1) ∈ γ = Gn(γ) = F (s−l)n(γ).

When n is big enough, we get (s− l)n > nsi + s implying that

Fn
s
i+s(x1) ∈ Fn

s
i+s+1(R2).

This contradicts to i). The proof is complete.
�

For a polynomial mapping F = (p, q) : R2 −→ R2, the set of critical values of F is
a semialgebraic set and by the Sard’s Theorem, it has measure zero. Hence, for generic
(a, b) ∈ R2 (i.e. outside some algebraic curve), the preimage F−1(a, b) is either an empty set
or a set consisting of finitely many points. Let CF ⊂ R2 be the union of the set of critical values
and the asymptotic variety of F , then CF divides the plane into some connected components.
On each such component R, for all y ∈ R the preimage F−1(y) has the same number of points.
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Theorem 3.3. Let F : R2 −→ R2 be a polynomial mapping with even degree such that the
complement of the image is a finite set. Then, there exists a natural number N such that the
image F k(R2) of F k are equal for all k > N .

Proof. It follows from the hypothesis that there is an algebraic curve S ⊂ R2 such that for all
point x /∈ S, the Euler characteristic of the fiber F−1(x) is even. We will choose S such that
it contains the curve CF in the previous explanation, then the fiber F−1(x) is a finite set, so
it contains an even number of points. Because there are at most finitely many points whose
preimage is empty, if x /∈ S, the set F−1(x) is nonempty and contains even number of points,
this means it has more than one point.

We repeat the argument as in the proof of Theorem 1.1, replacing the asymptotic variety
SF by this curve S. More precisely, if there does not exist natural number N such that
FN (R2) = FN+1(R2), then there is some point x1 ∈ R2 such that the following two conditions
hold

i) Fn(x1) /∈ Fn+1(R2), for all n > 0;
ii) #F−1(Fn(x1)) = 1, for all n >M , where M is some non-negative integer.

It implies from ii) that Fn(x1) ∈ S, for all n > M . Now, the proof is complete by following
all argument as in the proof of Theorem 1.1. �

The followings are some examples where the assumptions of Theorem 1.1 hold.

Example 3.4. F1(x, y) = (x2y − x− y, (x2y − x+ y)(xy − 1/2)) : R2
x,y → R2

u,v.

We have the following remarks on this mapping:
1) J(F1) = (x2y − x + y)2 + 4(xy − 1/2)2, J(F1) 6= 0 at all points except two points

A = (1, 1/2) and B = (−1,−1/2). Thus the map has two critical points F1(A) = (−1, 0) and
F1(B) = (1, 0).

2) Fibers the map: F−11 (a, b), (a, b) ∈ R2. Let (x, y) ∈ F−11 (a, b), this means

(3.2)

{
x2y − x− y = a,

(x2y − x+ y)(xy − 1/2) = b.

There are two cases:
Case 1: a 6= ±1. From the first equation in 3.2 we get y = a+x

x2−1 , substituting to the other
equation, one obtains that

(3.3) (a− 2b)x4 + 2(a2 + 1)x3 + (6a+ 4b)x2 + 2(a2 + 1)x+ (a− 2b) = 0.

Then, one can check that if a − 2b 6= 0, the equation 3.3 has two solutions, which implying
that the fiber F−11 (a, b) is a set consisting of two points. If a − 2b = 0, the fiber F−11 (a, b)
consists of one point.

Case 2: a = 1 or a = −1. By computation, one can also check that each of the points
(1, 0), (−1, 0), (1, 12), (−1,−1

2) has exactly one point in the preimage and other points have
two points in the preimage.

Thus the map is surjective and the asymptotic variety of this map is the line {u− 2v = 0}.
The map has degree zero.

Example 3.5. (Pinchuk map, see [12, 4, 2]) Put

t = xy − 1, h = t(tx+ 1), f = (tx+ 1)2(h+ 1/x)

and
u(f, h) = −170fh− 91h2 − 195fh2 − 69h3 − 75fh3 − (75/4)h4.

The Pinchuk map is (p, q) : R2 −→ R2, where p = f + h and q = −t2 − 6th(h+ 1) + u(f, h).
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The image of the Pinchuk map is R2 \ {(0, 0), (−1,−163/4)}, it has degree zero and all
points outside the asymptotic variety has two preimage.

Remark 3.6. In Theorem 1.1 and Theorem 3.3, we can not remove the assumption that
the complement of the image of the map has only finitely many points. Indeed, consider the
following mapping.

F (x, y) = (x2 + 1, y) : R2 → R2.

Then the image of the iterated map F k is never stable.
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