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Abstract

In this paper, we consider stochastic differential equations whose drift coefficient is superlinearly grow-
ing and piece-wise continuous, and whose diffusion coefficient is superlinearly growing and locally Hölder
continuous. We first prove the existence and uniqueness of the solution to such stochastic differential
equations and then propose a tamed-adaptive Euler-Maruyama approximation scheme. We study the
rate of convergence in the L1-norm of the scheme in both finite and infinite time intervals.
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1 Introduction

Stochastic differential equations (SDEs) are used to model a variety of random dynamical phenomena; there-
fore, they play a significant role in many fields of science and industry. In many cases, the solution to many
SDEs cannot be computed explicitly and has to be approximated by a numerical scheme.

In this paper, we consider the numerical approximation for stochastic processes X = (Xt)t∈[0,+∞) defined
by the following stochastic differential equation (SDE),

{
dXt = b(Xt)dt+ σ(Xt)dWt,

X0 = x0 ∈ R,
(1)

whereW = (Wt)t∈[0,+∞) is a standard Brownian motion defined on a filtered probability space (Ω,F, (Ft),P)
satisfying the usual condition.

For SDEs with Lipschitz continuous coefficients, it is well-known that the explicit Euler-Maruyama ap-
proximation scheme converges at the strong rate of order 1

2 (see [11, 18]). The numerical approximation
for SDEs with irregular coefficients has recently been considered extensively. The divergence of the classical
Euler-Maruyama scheme when applying for SDEs with super-linear growth coefficients has been pointed out
in [9]. Thereafter, many modified Euler-Maruyama schemes have been introduced for SDEs with super-linear
growth coefficients, such as the tamed Euler-Maruyama scheme (see [7, 9, 27, 28]), the truncated Euler-
Maruyama scheme (see [16]), the implicit Euler-Maruyama scheme (see [17]), and the adaptive scheme (see
[4]). The convergence of the Euler-Maruyama scheme for SDEs with Hölder continuous diffusion coefficients
was first studied in [5] by using the Yamada-Watanabe approximation technique. This technique has been
developed in [26, 25] to study the strong convergence of the tamed Euler-Maruyama scheme for SDEs with
super-linear growth coefficients.

There are several approaches to study numerical approximation for SDEs with discontinuous drift coef-
ficient. The first approach is to transform an SDE with discontinuous drift into a new SDE with Lipschitz
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continuous coefficients. Using this transformation technique, Leobacher and Szölgyenyi developed an approx-
imation method for SDEs with piecewise Lipschitz continuous drift and global Lipschitz continuous diffusion
(see [14, 15]). Thereafter, the transformation technique was applied to study a quasi-Milstein scheme for
a smaller family of SDEs, i.e. those with coefficients having piecewise continuous Lipschitz derivatives (see
[20, 21]). The second approach is to use a Gaussian bound for the density of the Euler-Maruyama approxi-
mated solution, which was proven in [13]. Using this Gaussian bound, in [26], Ngo and Taguchi showed that
for SDEs the Euler-Maruyama approximation with uniformly elliptic, bounded, (1/2+α)-Hölder diffusion co-
efficient and one-sided Lipschitz, bounded variation drift coefficient, the Euler-Maruyama strongly converges
in L1-norm at the order of α ∈ (0, 1/2]. In [25], by introducing a drift removal transformation technique,
they can get rid of the one-sided Lipschitz continuous condition of drift for one-dimensional SDEs (see also
[1]). The third approach is to use adaptive schemes (see [31, 22]). The basic idea is that the step size of
the scheme will be adjusted to be smaller near the discontinuous points of the drift coefficient. The fourth
approach is to use the regularisation of the noise. In [3], by exploiting the regularising effect of the noise, the
authors showed that the rate of strong convergence of the Euler-Maruyama is arbitrarily close to 1/2 when
applying for a larger class of non-degenerated SDEs with irregular drift. The fifth approach is to use the
stochastic sewing lemma. In [12, 2], they studied a tamed Euler-Maruyama scheme of strong order 1/2 for a
class of SDEs with an integrable drift coefficient and elliptic regular diffusion coefficient. The approximation
for SDEs with superlinearly growing coefficients, locally Lipschitz diffusion, and piece-wise continuous drift,
has been studied very recently in [19, 6].

So far, all the numerical studies for SDEs with discontinuous drift have only considered the approximation
in a finite time interval. For infinite time intervals, Fang and Giles (see [4]) developed an adaptive Euler-
Maruyama scheme for a class of SDEs with a polynomial growth Lipschitz continuous drift, and bounded,
globally Lipschitz continuous diffusion. Using the method of Lyapunov functions, they proved that the
proposed scheme converges in Lp-norm at the rate of order 1/2. To extend this result for a larger class
of SDEs, i.e. those with locally Lipschitz continuous and one-sided Lipschitz drift and locally (α + 1/2)-
Hölder continuous diffusion coefficients, Kieu et. al. (see [10]) established a tamed-adaptive Euler-Maruyama
approximation scheme, utilized the Yamada-Watanabe approximation to obtain upper bounds for some pth

moments of the approximated solution, and then showed that the scheme converges in L1-norm at the rate
of order α ∈ (0, 1/2].

In this paper, we are interested in the uniformly in time numerical approximation for the SDEs of the form
(1), where b is superlinearly growing and piecewise locally Lipschitz continuous, and σ is superlinerly growing
and locally (α + 1/2)-Hölder continuous. By combining and improving the tamed and adaptive models in
the literature, we introduce a tamed-adaptive Euler-Maruyama approximation scheme that converges in both
finite and infinite time intervals. The scheme is proved to converge in L1-norm at the rate of order α, and,
specifically, under some condition on the growths of b and σ, the scheme is proved to converge in infinite time
intervals. The proof is based on an enhancement from the techniques introduced by Kieu et. al. [10], and
Yaroslavtseva [31], and an introduction of a new function ϕ to control the discontinuity of drift coefficient,
which is the most novel technical contribution of this work. To the best of our knowledge, this is the first
approximation scheme for SDEs with superlinearly growing and piecewise continuous drift, superlinearly
growing, and locally Hölder continuous diffusion.

The rest of this paper is structured as follows. In Section 2, we first introduce a list of assumptions on
the coefficients b and σ, and state theorems on the existence and uniqueness of solution for some classes of
SDEs with superlinearly growing and piecewise continuous drift, superlinearly growing and locally Hölder
continuous diffusion. Next, we introduce the tamed-adaptive Euler-Maruyama approximation scheme and
state our main results on the rate of convergence of this scheme in both finite and infinite time intervals.
All the proofs are deferred to Section 3. In Section 4, we present a numerical experiment to illustrate the
performance of the new scheme for various SDEs.

2 Tame-adaptive Euler-Maruyama approximation

2.1 Existence and uniqueness of solution

We first introduce some assumptions on the coefficients of equation (1).

(A1) There exist constants γ, η ∈ R and p0 ∈ [2,+∞) such that

xb(x) +
p0 − 1

2
|σ(x)|2 ≤ γx2 + η, for any x ∈ R.
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(A2) There exists a constant L1 such that

(x − y)(b(x)− b(y)) ≤ L1(x− y)2, for any x, y ∈ R.

(A3) There exist a sequence ξ1 < ξ2 < . . . < ξk, some constants L2 > 0 and l ≥ 1 such that for any
(x, y) ∈ S := ∪k−1

i=1 (ξi, ξi+1)
2 ∪ (−∞, ξ1)

2 ∪ (ξk,+∞)2,

|b(x) − b(y)| ≤ L2(1 + |x|l + |y|l)|x− y|.

(A4) There exist constants m ≥ 1, L3 ≥ 0 and α ∈ [0, 12 ] such that

|σ(x) − σ(y)| ≤ L3(1 + |x|m + |y|m)|x− y|α+1/2, for any x, y ∈ R.

(A5) The function σ satisfies σ(ξi) > 0 for all i = 1, . . . , k, where (ξi) is the sequence defined in (A3).

(A6) There exist constants L4, h, ξ
′ > 0 such that

sup
|x−y|≤h,|x|≥ξ′

σ(x)

σ(y)
≤ L4.

(A’2) There exists a constant L1 such that

(x − y)(b(x)− b(y)) ≤ L1(x− y)2,

for any (x, y) ∈ (−∞, ξ1)
2 ∪ (ξk,+∞)2, where ξ1, ξk are defined in Assumption (A3).

(A’5) There exists a positive constant κ such that σ(x) ≥ κ for any x ∈ R.

Remark 2.1. It can be seen that

• Assumption (A3) implies that there exists a constant L′
2 > 0 such that

|b(x)− b(y)| ≤ L′
2 + L′

2(1 + |x|l + |y|l)|x− y|, for any x, y ∈ R.

• Assumption (A’5) implies Assumption (A5); Assumption (A2) implies Assumption (A’2).

Theorem 2.2. Suppose that Assumptions (A1),(A’2), (A3),(A4),(A’5) hold, and p0 ≥ (4l+4)∨(4+4α+4m).
Moreover, if either (A6) hold or (A’2) hold for L2 < 0, then the equation (1) has a unique strong solution.

Theorem 2.3. Suppose that (A1)–(A5) hold for p0 ≥ (4l + 4) ∨ (4m+ 4α+ 4). Then the equation (1) has
a unique strong solution.

The existence and uniqueness of solution to one dimensional SDEs with super-linear growth coefficients,
discontinuous drift and degenerate locally Lipschitz continuous diffusion coefficient have been studied recently
in [19, 6]. The novel of our Theorems 2.2 and 2.3 is that they can be applied for SDE with locally Hölder
continuous coefficient. Our approach is based on a localization technique (see [24]).

2.2 Tamed-adaptive Euler-Maruyama approximation scheme

Throughout this paper, we always assume that Assumptions (A1), (A3) and (A4) hold. Let Ξ = {ξ1, . . . , ξk},
d(x,Ξ) = min

1≤i≤k
|x − ξi|, and Ξε = {x ∈ R : d(x,Ξ) ≤ ε} for any ε > 0. Since σ is continuous and σ(ξi) 6= 0,

there exist µ, ν > 0 depending only on σ such that inf
|x−ξi|≤µ

σ(x) ≥ ν. Let ε0 = µ ∧ min
1≤i≤k−1

(ξi+1 − ξi).

Let ∆0 be a positive constant satisfying

∆ log4(1/∆) <
√
∆ log2(1/∆) <

1

2
ε0,

for all ∆ ∈ (0,∆0). For each ∆ ∈ (0,∆0), we define the functions σ∆ and h∆ by

σ∆(x) :=
σ(x)

1 + ∆1/2|σ(x)| ,

3



and

h∆(x) =





∆

[1 + |b(x)|+ |σ(x)| + |x|l]2 if x ∈ (Ξε1)c,

[d(x,Ξ)]2

log4(1/∆)[1 + |b(x)| + |σ(x)| + |x|l]2
if x ∈ Ξε1 \ Ξε2 ,

∆2 log4(1/∆)

[1 + |b(x)|+ |σ(x)| + |x|l]2 if x ∈ Ξε2 ,

(2)

where ε1 :=
√
∆ log2(1/∆) and ε2 := ∆ log4(1/∆).

The tamed-adaptive Euler-Maruyama scheme is defined as follows. Let Y0 = x0, t0 = 0, and for each
i ≥ 0, {

ti+1 = ti + h∆(Yti),

Yt = Yti + b(Yti)(t− ti) + σ∆(Y (ti))(Wt −Wti), ti < t ≤ ti+1.
(3)

Note that if Assumptions (A1), (A3) and (A4) hold, then by following the argument in the proof of Proposition
2.1 in [10], it can be shown that the scheme is well-defined, i.e. lim

i→∞
ti = +∞, a.s.

For each t ≥ 0, we define t := max{ti, ti ≤ t}, which is a stopping time, and Y t := Yt.
Let [p0

2 ] denote the integer part of p0

2 . The following result shows the convergence in L1-norm of the
tamed-adaptive Euler-Maruyama scheme.

Theorem 2.4. Let Assumptions (A1)–(A5) hold and [p0

2 ] ≥ (l + 1) ∨ (1 + 2α + 2m). Then there exists a
positive constant C which does not depend on ∆ such that

sup
0≤t≤T

E [|Yt −Xt|] ≤





C∆α if 0 < α ≤ 1

2
,

C

log 1
∆

if α = 0.
(4)

Moreover, if γ and L1 are negative, then the constant C does not depend on T either.

Assumption (A2) is in fact quite restrictive since it excludes some very simple functions, such as b(x) =
1(0,∞)(x). In the following, we will study the convergence of the tamed-adaptive scheme (3) under Assumption
(A’2), which only requires that b is one-sided Lipschitz continuous outside the interval (ξ1, ξk). However, we
need to assume that σ satisfies Assumption (A’5), which is stronger than Assumption (A5).

Theorem 2.5. Suppose that Assumptions (A1),(A’2), (A3),(A4) and (A’5) hold, and [p0

2 ] ≥ (l + 1) ∨ (1 +
2α+ 2m).

a) If (A6) holds, then there exists a positive constant C which does not depend on ∆ such that

sup
0≤t≤T

E [|Yt −Xt|] ≤





C∆α if 0 < α ≤ 1

2
,

C

log 1
∆

if α = 0.
(5)

b) If (A’2) holds for some L1 < 0, then the estimate (5) also holds. Moreover, if we suppose further that
γ < 0, then the constant C does not depend on T either.

Finally, we consider the complexity of the scheme (3). For any T > 0, let NT be the number of time-steps
required by a path approximation on [0, T ]. More precisely, we write

NT = 1 +
∞∑

k=1

1{tk<T}.

Theorem 2.6. Suppose that Assumptions (A1),(A3),(A4) and (A5) hold, and [p0

2 ] ≥ (l+1)∨ (1+2α+2m).
Then there exists a constant C > 0 which does not depend on ∆ such that

E[NT ] ≤
{
CT∆α/2−7/4 if [p0

2 ] ≤ 3
2α+1 (1 + 2α+ 2m),

CT∆−1 if [p0

2 ] > 3
2α+1 (1 + 2α+ 2m).

Moreover, if γ < 0, then the constant C does not depend on T either.

Remark 2.7. If [p0

2 ] > (l+1)∨ 3(1+2α+2m)
1+2α , then the number of time discretizations on the interval [0, T ] of

the scheme (3) is proportional to the one of the classical Euler-Maruyama scheme.
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3 Proofs

3.1 Yamada-Watanabe approximation

We recall the Yamada-Watanabe approximation ([30]). For each δ > 1 and ε > 0, there exists a continuous

function ψδε : R → R
+ with suppψδε ⊂ [ε/δ; ε] such that

∫ ε

ε/δ ψδε(z)dz = 1 and 0 ≤ ψδε(z) ≤
2

z log δ
, z > 0.

Define φδε(x) :=
∫ |x|

0

∫ y

0
ψδε(z)dzdy, x ∈ R. It is easy to verify that φδε has the following useful properties:

for any x ∈ R\{0},

(YW1) φ′δε(x) =
x

|x|φ
′
δε (|x|),

(YW2) 0 ≤ |φ′δε(x)| ≤ 1,

(YW3) |x| ≤ ε+ φδε(x),

(YW4)
φ′δε(|x|)

|x| ≤ δ

ε
,

(YW5) φ′′δε (|x|) = ψδε(|x|) ≤
2

|x| log δ 1[ εδ ;ε](|x|) ≤
2δ

ε log δ
.

3.2 Some moment estimates

The following result has been proven in [10].

Proposition 3.1. Suppose that the coefficients b and σ satisfy Assumption (A1), and σ is bounded on every
compact subset of R. Then, for any p ∈ [0, p0],

E [|Xt|p] ≤
∣∣∣∣x

2
0e

2γt +
η

γ
(e2γt − 1)

∣∣∣∣
p/2

.

Proposition 3.2. Suppose that the coefficients b and σ satisfy Assumptions (A1), (A3) and (A4). Then for
any positive number k ≤ [p0/2], there exists a positive constant K = K(x0, k, η, γ, L1, L2, L3) which does not
depend on ∆, such that

E
[
|Yt|2k

]
≤





Ke2kγt if γ > 0,
K(1 + t)k if γ = 0,
K if γ < 0.

(6)

Proof. Thanks to Hölder’s inequality, it is sufficient to show (6) for 0 < k ≤ p0/2. From the definition of the
scheme, we have

max
{
|Y sb(Y s)(s− s)|, b2(Y s)(s− s)2, E

[
σ2
∆(Y s)(Ws −Ws)

2
∣∣Fs

]}
≤ C∆.

Then the proof follows directly from the argument of Theorem 2.4 in [10].

Lemma 3.3. Suppose that the coefficients b and σ satisfy all conditions of Proposition 3.2. Then for any
p > 0, there exists a positive constant Cp depending only on p such that

sup
t≥0

E
[
|Yt − Y t|p

]
≤ Cp∆

p/2.

Proof. From (3),

|Yt − Y t|p =
∣∣b(Y t)(t− t) + σ∆(Y t)(Wt −Wt)

∣∣p

≤ 2p−1
(∣∣b(Y t)(t− t)

∣∣p +
∣∣σ∆(Y t)(Wt −Wt)

∣∣p
)

≤ 2p−1
(∣∣b(Y t)

∣∣p ∣∣h∆(Y t)
∣∣p +

∣∣σ∆(Y t)
∣∣p ∣∣Wt −Wt

∣∣p
)
.

By (2), we have
∣∣b(Y t)h∆(Y t)

∣∣ ≤ ∆

4
, and

∣∣∣σ∆(Y t)
∣∣h∆(Y t)

∣∣1/2
∣∣∣ ≤ ∆1/2, which implies the desired result.
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Lemmas 3.4 and 3.5 are modified versions of Lemmas 6 and 7 in [31] for the stochastic differential equations
with Hölder continuous diffusion coefficient.

Lemma 3.4. Suppose that Assumptions (A1),(A3),(A4) and (A5) hold for 2[p0

2 ] ≥ (l+ 1) ∨ (4m+ 4α+ 2).

Let f : [0,+∞) → [0,+∞) be a Borel measurable function. Let n =
[
p0
2 ]

1+2α+2m and q = 4n−3
4n . Then there

exists a constant c which does not depend on ∆ such that for any h ≥ 1, ε < ε0,∆ < ∆0,

E

[ ∫ t+h

t

f(d(Ys,Ξ))1Ξε(Ys)ds
]
≤





ch

∫ ε

0

f(x)dx + ch∆
1
4+

α
2 sup

x∈[0,ε]

f(x), if [p0

2 ] ≤ 3(1+2α+2m)
2α+1 ,

ch

∫ ε

0

f(x)dx + ch sup
x∈[0,ε]

f(x)
(
εq+

α
2 + 1

4 +∆
)

if [p0

2 ] > 3(1+2α+2m)
2α+1 .

Moreover, if γ < 0, then the constant c does not depend on t.

Proof. It is enough to show that for all i = 1, . . . , k, there exists c ∈ (0,+∞) such that for all ∆ < ∆0, ε <
ε0, h ≥ 1,

E

[ ∫ t+h

t

f(|Ys−ξi|)1[ξi−ε,ξi+ε](Ys)ds
]
≤





ch

∫ ε

0

f(x)dx + ch∆
1
4+

α
2 sup

x∈[0,ε]

f(x), if [p0

2 ] ≤ 3(1+2α+2m)
2α+1 ,

ch

∫ ε

0

f(x)dx + ch sup
x∈[0,ε]

f(x)
(
εq+

α
2 + 1

4 +∆
)

if [p0

2 ] > 3(1+2α+2m)
2α+1 .

For each a ∈ R, let La(Y ) = (La
t (Y ))t∈[0,+∞) be the local time of Y at the point a. From (3), by Tanaka’s

formula, for any h ≥ 1, we have

|Yt − a| = |x0 − a|+
∫ t

0

sgn(Ys − a)b(Y s)ds+

∫ t

0

sgn(Ys − a)σ∆(Y s)dWs + La
t (Y ).

Hence

|La
t+h(Y )− La

t (Y )| ≤|Yt+h − Yt|+
∣∣∣∣∣

∫ t+h

t

sgn(Ys − a)b(Y s)ds

∣∣∣∣∣+
∣∣∣∣∣

∫ t+h

t

sgn(Ys − a)σ∆(Y s)dWs

∣∣∣∣∣

≤
∣∣∣∣∣

∫ t+h

t

b(Y s)ds

∣∣∣∣∣+
∣∣∣∣∣

∫ t+h

t

σ∆(Y s)dWs

∣∣∣∣∣

+

∣∣∣∣∣

∫ t+h

t

sgn(Ys − a)b(Y s)ds

∣∣∣∣∣+
∣∣∣∣∣

∫ t+h

t

sgn(Ys − a)σ∆(Y s)dWs

∣∣∣∣∣ .

For the rest of the proof, we denote by K1,K2, ... some constants that do not depend on ∆, h or a. Moreover,
when γ < 0, these constants do not depend on t either. By taking expectations on both sides of the above
inequality and using Doob’s inequality, we get

E

[
|La

t+h(Y )− La
t (Y )|

]
≤2

∫ t+h

t

E[|b(Y s)|]ds+ 2

∣∣∣∣∣

∫ t+h

t

E

[
σ2
∆(Y s)

]
ds

∣∣∣∣∣

1/2

≤K1

∫ t+h

t

(
E

[
(1 + |Y s)|l)|Y s|

]
+ 1

)
ds

+K1

∣∣∣∣∣

∫ t+h

t

(
E

[(
1 + |Y s|m

)2|Ys|2α+1
]
+ 1

)
ds

∣∣∣∣∣

1/2

,

where the last estimate is derived from Assumptions (A3), (A4), Remark 2.1, and the fact that σ2
∆(x) ≤ σ2(x).

Thanks to Proposition 3.2,

sup
s∈[0,t]

E

[
|Y s|l+1

]
+ sup

s∈[0,t)

E

[
|Y s|2m+2α+1

]
≤ K2.

This implies that

E

[
|La

t+h(Y )− La
t (Y )|

]
≤ K3

√
h+K3h ≤ 2K3h. (7)

6



On the other hand, by using the occupation time formula, for all ε < ε0 and ∆ < ∆0,

E

[ ∫ t

0

f(|Ys − ξi|)1[ξi−ε,ξi+ε](Ys)σ
2
∆(Y s)ds

]
=

∫

R

f(|a− ξi|)1[ξi−ε,ξi+ε](a)E
[
La
t (Y )

]
da.

Hence, it follows from (7) that

E

[ ∫ t+h

t

f(|Ys − ξi|)1[ξi−ε,ξi+ε](Ys)σ
2
∆(Y s)ds

]
=

∫

R

f(|a− ξi|)1[ξi−ε,ξi+ε](a)
(
E
[
La
t+h(Y )

]
− E

[
La
t (Y )

])
da

≤K4h

∫ ε

0

f(x)dx. (8)

Next, it follows from Assumption (A4), Lemma 3.3, Proposition 3.2, 2[p0

2 ] ≥ (4mn+ 4nα+ 2n) and the
Cauchy-Schwarz inequality that

(
E

[ ∣∣σ2(Ys)− σ2(Y s)
∣∣2n
]) 1

2n

≤ L2
3

(
E

[(
1 + |Ys|m + |Y s|m

)2n|Ys − Y s|(α+
1
2 )2n

(
2σ(0) + |Ys|m+α+ 1

2 + |Ys|
1
2+α + |Y s|m+α+ 1

2 + |Y s|
1
2+α

)2n
]) 1

2n

≤ K5∆
1
4+

α
2 .

Therefore, (
E

[
|σ2(Ys)− σ2(Y s)|

4n
3

]) 3
4n

≤
(
E

[
|σ2(Ys)− σ2(Y s)|2n

]) 1
2n

≤ K5∆
1
4+

α
2 . (9)

Note that |σ2
∆(x) − σ2(x)| ≤ 2|σ(x)|3∆ 1

2 . Thus

(
E
[ ∣∣σ2

∆(Y s)− σ2(Y s)
∣∣ 4n3 ]

) 3
4n

=

(
E

[(2∆1/2|σ3(Y s)|+∆σ4(Y s)[
1 + ∆1/2|σ(Y s)|

]2
) 4n

3
]) 3

4n

≤ K6∆
1/2

(
E

[
|σ4n(Y s)|

]) 3
4n

≤ K7∆
1/2

(
E

[
σ4n(0) + L4n

3 |Y s|4n(α+
1
2 )
(
1 + |Y m

s |
)4n]

) 3
4n

≤ K8∆
1/2. (10)

From (8),(9) and (10), for all ε ≤ ε0, we have

E

[ ∫ t+h

t

f(|Ys − ξi|)1[ξi−ε,ξi+ε](Ys)ds
]

≤ 1

ν2
E

[ ∫ t+h

t

f(|Ys − ξi|)1[ξi−ε,ξi+ε](Ys)σ
2(Ys)ds

]

≤ 1

ν2
E

[ ∫ t+h

t

f(|Ys − ξi|)1[ξi−ε,ξi+ε](Ys)σ
2
∆(Y s)ds

]

+
1

ν2
E

[ ∫ t+h

t

f(|Ys − ξi|)1[ξi−ε,ξi+ε](Ys)
[
σ2(Y s)− σ2

∆(Y s)
]
ds
]

+
1

ν2
E

[ ∫ t+h

t

f(|Ys − ξi|)1[ξi−ε,ξi+ε](Ys)
[
σ2(Ys)− σ2(Y s)

]
ds
]

≤K4h

ν2

∫ ε

0

f(x)dx +
(K8h

3
4n∆1/2

ν2
+
K5∆

1
4+

α
2 h

3
4n

ν2

)
sup

x∈[0,ε]

f(x)
( ∫ t+h

t

P(Ys ∈ [ξi − ε, ξi + ε])ds
) 4n−3

4n

≤K9h

∫ ε

0

f(x)dx+K10h
3
4n∆

1
4+

α
2 sup

x∈[0,ε]

f(x)
( ∫ t+h

t

P(Ys ∈ [ξi − ε, ξi + ε])ds
) 4n−3

4n

(11)

where the fourth estimate is obtained by using Hölder inequality .
If 1

4 + α
2 + q < 1, then α

2 + 1
4 − 3

4n < 0. In this case, we get the desired result from (11) since P(Ys ∈
[ξi − ε, ξi + ε]) ≤ 1.
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It remains to consider the case when 1
4 + α

2 + q ≥ 1. By choosing f = 1 in (11), we get

∫ t+h

t

P(Ys ∈ [ξi − ε, ξi + ε])ds

≤ K9hε+K10h
3
4n∆

1
4+

α
2

(∫ t+h

t

P(Ys ∈ [ξi − ε, ξi + ε])ds
) 4n−3

4n

≤ K9hε+K10h∆
1
4+

α
2 .

By applying the above estimate to (11) again, we get

E

[ ∫ t+h

t

f(|Ys − ξi|)1[ξi−ε,ξi+ε](Ys)ds
]

≤K9h

∫ ε

0

f(x)dx +K10h
1−q sup

x∈[0,ε]

f(x)∆
1
4+

α
2

(
K9hε+K10h∆

1
4+

α
2

)q

By Hölder’s inequality and the fact that 1
4 + α

2 + q ≥ 1, we have

εq∆
1
4+

α
2 ≤ q

q + α
2 + 1

4

εq+
α
2 + 1

4 +
α
2 + 1

4

q + α
2 + 1

4

∆q+α
2 + 1

4

≤ q

q + α
2 + 1

4

εq+
α
2 + 1

4 +
α
2 + 1

4

q + α
2 + 1

4

∆.

Therefore,

E

[ ∫ t+h

t

f(|Ys − ξi|)1[ξi−ε,ξi+ε](Ys)ds
]
≤ K9h

∫ ε

0

f(x)dx + hK11 sup
x∈[0,ε]

f(x)
(
εq+

α
2 + 1

4 +∆( 1
4+

α
2 )(1+q) +∆

)
.

(12)

We will prove by induction that for any k ∈ N, there exists a constant ck such that

E

[ ∫ t+h

t

f(|Ys−ξi|)1[ξi−ε,ξi+ε](Ys)ds
]
≤ K9h

∫ ε

0

f(x)dx+hck sup
x∈[0,ε]

f(x)
(
εq+

α
2 + 1

4 +∆( 1
4+

α
2 )(1+q+...+qk)+∆

)
.

(13)
Indeed, the estimate (12) verifies (13) for k = 1. Assume that (13) holds for k = m > 1. Substituting f = 1
in (13) for k = m, we have

∫ t+h

t

P(Ys ∈ [ξi − ε, ξi + ε])ds ≤ K9hε+ hcm
(
ε+∆+∆( 1

2+
α
4 )(1+q+...+qm)

)
.

Hence, from (11) and by using Young’s inequality, we obtain

E

[ ∫ t+h

t

f(|Ys − ξi|)1[ξi−ε,ξi+ε](Ys)ds
]

≤ K9h

∫ ε

0

f(x)dx +K10h
1−q∆

1
4+

α
2 sup

x∈[0,ε]

f(x)
( ∫ t+h

t

P(Ys ∈ [ξi − ε, ξi + ε])ds
)q

≤ K9h

∫ ε

0

f(x)dx +K10h∆
1
4+

α
2 sup

x∈[0,ε]

f(x)
[
(K12 + cm)ε+ cm

(
∆( 1

4+
α
2 )(1+q+...+qm) +∆

)]q

≤ K9h

∫ ε

0

f(x)dx + hcm+1 sup
x∈[0,ε]

f(x)
(
εq+

α
2 + 1

4 +∆( 1
4+

α
2 )(1+q+...+qm+1) +∆

)
,

which implies that (13) is true for k = m+ 1. Therefore, by induction, (13) holds for any positive integer k.
The desired result follows from the fact that 1 + q + q2 + . . . = 4n

3 > p.

Lemma 3.5. For any β > 0, there exist positive constants d1, d2 and d3 such that for all ∆ ≤ ∆0,

i) supt>0 P

(
|Yt − Yt| ≥ βε1, Yt ∈ (Ξε1)c

)
≤ d1∆

β log(1/∆),
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ii) supt>0 P

(
|Yt − Yt| ≥ βd(Yt,Ξ), Yt ∈ Ξε1 \ Ξε2

)
≤ d2∆

β log(1/∆),

iii) supt>0 P

(
|Yt − Yt| ≥ βε2, Yt ∈ Ξε2

)
≤ d3∆

β log(1/∆).

The proof of this Lemma is similar to the one of Lemma 7 in [31], so it shall not be provided here.

Lemma 3.6. For each t > 0, there exists a positive constant C which does not depend on ∆ such that for
all h ≥ 1,∆ ≤ ∆0,

E

[ ∫ t+h

t

1S(Ys, Y s)ds

]
≤ Ch∆

1
4+

α
2 .

If γ < 0, then the constant C does not depend on t either.

Proof. We write

E

[ ∫ t+h

t

1S(Ys, Y s)ds

]

= E

[ ∫ t+h

t

1S(Ys, Y s)1(Ξε1)c(Ys)ds

]
+ E

[ ∫ t+h

t

1S(Ys, Y s)1Ξε1\Ξε2 (Ys)ds

]
+ E

[ ∫ t+h

t

1S(Ys, Y s)1Ξε2 (Ys)ds

]

≤
∫ t+h

t

P

(
|Ys − Ys| ≥ ε1, Ys ∈ (Ξε1 )c

)
ds+

∫ t+h

t

P

(
|Ys − Ys| ≥ d(Ys,Ξ), Ys ∈ Ξε1 \ Ξε2

)
ds

+

∫ t+h

t

P
(
Ys ∈ Ξε2

)
ds.

By Lemma 3.5, the first and second terms of the last expression are bounded by d1h∆ and d2h∆, respectively.
For the last term, it can be bounded by H1 +H2, where

H1 =

∫ t+h

t

P
(
|Ys − Ys| ≥ ε2, Ys ∈ Ξε2

)
ds, H2 =

∫ t+h

t

P
(
Ys ∈ Ξ2ε2

)
ds.

Note that H1 ≤ d3
√
h∆. By using Lemma 3.4 with f = 1, ε = ε2, we have H2 ≤ 4c

√
hε2 + ch∆

1
4+

α
2 , where

c is a constant not depending on ∆. Moreover, if γ < 0, then c does not depend on t either. This concludes
the proof.

Lemma 3.7. For each t > 0 and L0 ∈ R, there exists a positive constant K which does not depend on ∆
such that for all ∆ < ∆0, it holds that

E

[ ∫ t

0

e−L0s1S(Ys, Y s)ds

]
≤ Ke−L0t∆

1
4+

α
2 . (14)

When both γ and L0 are negative, the constant K does not depend on t either.

Proof. It is sufficient to prove (14) for t ∈ N. For C being the constant in the statement of Lemma 3.6, we
have

E

[ ∫ t

0

e−L0s1S(Ys, Y s)ds

]
=

t−1∑

i=0

E

[ ∫ i+1

i

e−L0s1S(Ys, Y s)ds

]

≤ e|L0|
t−1∑

i=0

e−L0(i+1)
E

[ ∫ i+1

i

1S(Ys, Y s)ds

]
≤ Ce|L0|

t−1∑

i=0

e−L0(i+1)∆
1
4+

α
2 = Ce|L0|

e−L0(t+1) − e−L1

e−L0 − 1
∆

1
4+

α
2 ,

which implies the desired result.

3.3 Proof of Theorem 2.4

Put Zt := Xt − Yt. Applying Property (YW3) and Itô’s formula to e−L1tφδε(Yt) gives

e−L1t|Zt| ≤ e−L1tε+ e−L1tφδε(Zt)
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=e−L1tε+

∫ t

0

e−L1s

[
−L1φδε(Zs) + φ′δε(Zs)

(
b(Xs)− b(Y s)

)
+

1

2
φ′′δε(Zs)

∣∣σ(Xs)− σ∆(Y s)
∣∣2
]
ds

+

∫ t

0

e−L1sφ′δε(Zs)
(
σ(Xs)− σ∆(Y s)

)
dWs. (15)

Set J1(s) = φ′δε(Zs)
(
b(Xs)− b(Y s)

)
and J2(s) =

1

2
φ′′δε(Zs)

∣∣σ(Xs)− σ∆(Y s)
∣∣2. Firstly, we write

J2(s) =
1

2
φ′′δε(Zs)

∣∣σ(Xs)− σ(Ys) + σ(Ys)− σ(Y s) + σ(Y s)− σ∆(Y s)
∣∣2 .

Using Property (YW5) and Assumption (A4), we have

J2(s) ≤
3

|Zs| log δ
1[ εδ ;ε](|Zs|)

(
|σ(Xs)− σ(Ys)|2 +

∣∣σ(Ys)− σ(Y s)
∣∣2 +

∣∣σ(Y s)− σ∆(Y s)
∣∣2
)

≤ 3

|Zs| log δ
1[ εδ ;ε](|Zs|)

(
L2
3 (1 + |Xs|m + |Ys|m)2 |Xs − Ys|1+2α+

+L2
3

(
1 + |Ys|m + |Y s|m

)2 |Ys − Y s|1+2α +∆
∣∣σ(Y s)

∣∣4
)

≤ 3

|Zs| log δ
1[ εδ ;ε](|Zs|)

(
3L2

3

(
1 + |Xs|2m + |Ys|2m

)
|Xs − Ys|1+2α+

+3L2
3

(
1 + |Ys|2m + |Y s|2m

)
|Ys − Y s|1+2α +∆

∣∣σ(Y s)
∣∣4
)

≤ 9L2
3ε

2α

log δ

(
1 + |Xs|2m + |Ys|2m

)
+

9L2
3δ

ε log δ

(
1 + |Ys|2m + |Y s|2m

)
|Ys − Y s|2α+1

+
3δ∆|σ(Y s)|4

ε log δ
.

Using the fact that
(
1 + |Ys|2m + |Y s|2m

)
|Ys−Y s|2α+1 ≤

(
1 + |Ys|2m + |Y s|2m

)2
∆

1
2+α+|Ys−Y s|4α+2∆− 1

2−α,
we have

J2(s) ≤
9L2

3ε
2α

log δ

(
1 + |Xs|2m + |Ys|2m

)
+

9L2
3δ

2ε log δ

(
1 + |Ys|2m + |Y s|2m

)2
∆1/2+α

+
9L2

3δ

2ε log δ
∆− 1

2−α|Ys − Y s|4α+2 +
C1δ∆

(
|Y s|2+4α+4m + 1

)

ε log δ

≤ 9L2
3ε

2α

log δ

(
1 + |Xs|2m + |Ys|2m

)
+

27L2
3δ

2ε log δ

(
1 + |Ys|4m + |Y s|4m

)
∆1/2+α

+
9L2

3δ

2ε log δ
∆− 1

2−α|Ys − Y s|2+4α +
C1δ∆

(
|Y s|2+4α+4m + 1

)

ε log δ
, (16)

for some constant C1 > 0. Secondly, we write

J1(s) = φ′δε(Zs) (b(Xs)− b(Ys)) + φ′δε(Zs)
(
b(Ys)− b(Y s)

)
.

Thanks to Properties (YW1), (YW2) and Assumptions (A2), (A3), we have

J1(s) ≤
φ′δε(|Zs|)

|Zs|
Zs (b(Xs)− b(Ys)) +

∣∣φ′δε(Zs)
(
b(Ys)− b(Y s)

)∣∣

≤L1φ
′
δε(|Zs|)|Zs|+ |b(Ys)− b(Y s)|1S(Ys, Y s) + |b(Ys)− b(Y s)|1Sc(Ys, Y s)

≤L1φ
′
δε(|Zs|)|Zs|+ |b(Ys)− b(Y s)|1S(Ys, Y s) + L2(1 + |Ys|l + |Y s|l)|Ys − Y s|.

It follows from Remark 2.1 that

J1(s) ≤ L1φ
′
δε(|Zs|)|Zs|+ C21S(Ys, Y s) + C2(1 + |Ys|l + |Y s|l)|Ys − Y s| (17)

≤ L1φ
′
δε(|Zs|)|Zs|+ C21S(Ys, Y s) +

3

2
C2∆

1/2
(
1 + |Ys|2l + |Y s|2l

)
+

1

2
C2∆

−1/2|Ys − Y s|2,

10



where the constant C2 > 0 depends on L2, n, ξi, b(ξi+), b(ξi−).
From (15),(16), and the property −L1φδε(x) + L1φ

′
δε(|x|)|x| ≤ max{L1ε; 0},

E
[
e−L1t|Zt|

]

≤ e−L1tε+

∫ t

0

e−L1s

[
max{L1ε; 0}+

3

2
C2∆

1/2
(
1 + E

[
|Ys|2l

]
+ E

[
|Y s|2l

])

+
1

2
C2∆

−1/2
E
[
|Ys − Y s|2

]
+ C21S(Ys, Y s) +

9L2
3ε

2α

log δ

(
1 + E

[
|Xs|2m

]
+ E

[
|Ys|2m

])

+
27L2

3δ

2ε log δ

(
1 + E

[
|Ys|4m

]
+ E

[
|Y s|4m

])
∆1/2+α +

9L2
3δ

2ε log δ
∆−1/2−α

E
[
|Ys − Y s|2+4α

]

+
C1δ∆

(
E
[
|Y s|2+4α+4m

]
+ 1
)

ε log δ

]
ds.

Thanks to the condition p0 ≥ (2l + 2) ∨ (2 + 4α + 4m), Proposition 3.2, Proposition 3.1, and Lemma 3.3,
there exists a constant C > 0, which does not depend on ∆, such that for any 0 ≤ t ≤ T , it holds that

E
[
e−L1t|Zt|

]
≤ e−L1tε+ C

[
ε+∆

1
2 +∆+∆

1
4+

α
2 +

ε2α

log δ
+
δ∆1/2+α

ε log δ
+

δ∆

ε log δ

]∫ t

0

e−L1sds.

If α ∈ (0, 12 ], by choosing ε = ∆
1
2 , δ = 2, we obtain supt≤T E [|Zt|] ≤ C∆α.

If α = 0, by choosing ε = ∆
1
4 , δ = ∆− 1

4 , we obtain supt≤T E [|Zt|] ≤ C
log 1

∆

.

Moreover, if γ, L1 < 0, the constant C does not depend on T . We conclude the proof of Theorem 2.4.

3.4 Proof of Theorem 2.5

3.4.1 Control drift function

In [25], the authors used the function ϕ, which is a solution to the equation bϕ′ + 1
2σ

2ϕ′′ = 0 to handle
the discontinuity of the drift coefficient b when it is no longer one-sided Lipschitz. Our assumptions on the
boundedness of b and σ are not as strict as those in [25]. Moreover, we want to show the convergence of
the approximation scheme on the whole interval (0,+∞). Therefore, we will modify the approach in [25] by
introducing a new function ϕ defined as follows.

First, we consider the following properties on the drift coefficient b.

(Pb1): b(y) ≥ 0 for all y > ξk.

(Pb2): b(y) ≤ 0 for all y < ξ1.

If Property (Pb1) does not hold, we choose ξk+1 > ξk such that b(ξk+1) < 0. Otherwise, we choose
ξk+1 = ξk + 1.

If Property (Pb2) does not hold, we choose ξ0 < ξ1 such that b(ξ0) > 0. Otherwise, we choose ξ0 = ξ1 − 1.
Note that if L1 < 0 then it follows from Assumption (A’2) that neither Property (Pb1) nor Property (Pb2)

holds, which implies that b(ξ0) > 0 > b(ξk+1). Also, note that b is continuous at ξ0 and ξk+1.
Next, we define a function ϕ ∈ C1(R) as follows:

• For y ∈ [ξ0, ξk+1],

ϕ(y) = b(ξ0) +

∫ y

ξ0

exp

(∫ x

ξ0

−2b(t)

σ2(t)
dt

)[∫ x

ξ0

exp

(∫ t

ξ0

2b(s)

σ2(s)
ds

)
2R(t)

σ2(t)
dt+K

]
dx,

where the constant K is chosen such that

K > 2

∫ ξk+1

ξ0

∣∣∣∣exp
(∫ t

ξ0

2b(s)

σ2(s)
ds

)
2R(t)

σ2(t)

∣∣∣∣ dt+ 2 exp

(∫ ξk+1

ξ0

|2b(s)|
σ2(s)

ds

)
+ 2,

and

R(x) = b(ξ0) +
(x− ξ0)(b(ξk+1)− b(ξ0))

ξk+1 − ξ0
,

for any x ∈ (ξ0, ξk+1).
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• For y ∈ (−∞, ξ0),

ϕ(y) =





ϕ(ξ0)−

∫ ξ0

y

(
1 + [ϕ′(ξ0)− 1] exp

(∫ x

ξ0

−2b(s)

σ2(s)
ds

))
dx if (Pb2) holds,

b(ξ0) + (y − ξ0)ϕ
′(ξ0) otherwise.

• For y ∈ (ξk+1,+∞), then

ϕ(y) =




ϕ(ξk+1) +

∫ y

ξk+1

(
1 + [ϕ′(ξk+1)− 1] exp

(∫ x

ξk+1

−2b(s)

σ2(s)
ds

))
dx if (Pb1) holds,

ϕ(ξk+1) + (x− ξk+1)ϕ
′(ξk+1) otherwise,

We show some useful properties of the function ϕ.

Lemma 3.8. Under the assumption of Theorem 2.5, the function ϕ satisfies

(P1) ϕ ∈ C1(R),

(P2) There exists a positive constant H such that 1 ≤ ϕ′(x) ≤ H for any x ∈ R,

(P3) ϕ′′ exists and is bounded on R\Ξ,

(P4) ϕ′(x)b(x) +
1

2
ϕ′′(x)σ2(x) = Ψ(x) for any x ∈ R\Ξ, where

Ψ(x) =





R(x) if x ∈ (ξ0, ξk+1)\Ξ,
ϕ′(ξ0)b(x) if x ∈ (−∞, ξ0] and (P2b) does not hold,

b(x) if x ∈ (−∞, ξ0] and (P2b) hold,

ϕ′(ξk+1)b(x) if x ∈ [ξk+1,∞) and (P1b) does not hold,

b(x) if x ∈ [ξk+1,∞) and (P1b) holds.

(18)

Proof. One can proves Properties (P1),(P2) and (P4) easily. To verify Property (P3), we will show that
supx>ξk+1

|ϕ′′(x)| < +∞. The proof for the fact that supx<ξ0 |ϕ′′(x)| < +∞ is similar.
Case 1: Suppose (A’2) holds for some L1 < 0 then Property (Pb1) does not hold, the result follows

straightforward from the fact that ϕ′′(x) = 0 for any x ≥ ξk+1.
Case 2: Suppose that both (A6) and (Pb1) hold. Then for any x > max{ξ′ + h, ξk+1 + h}

|ϕ′′(x)| = [ϕ′(ξk+1)− 1]
2b(x)

σ2(x)
exp

(∫ x

ξk+1

−2b(s)

σ2(s)
ds

)

≤ [ϕ′(ξk+1)− 1]
2b(x)

σ2(x)
exp

(∫ x

x−h

−2b(s)

σ2(s)
ds

)
.

By the mean value theorem, there exists ξ ∈ [x− h, x] such that

|ϕ′′(x)| ≤[ϕ′(ξk+1)− 1]
2b(x)

σ2(x)
exp

(
h
−2b(ξ)

σ2(ξ)

)

=[ϕ′(ξk+1)− 1]
2b(ξ)

σ2(ξ)
exp

(
h
−2b(ξ)

σ2(ξ)

)

+ [ϕ′(ξk+1)− 1] exp

(
h
−2b(ξ)

σ2(ξ)

)
2b(ξ)

σ2(ξ)

(σ2(ξ)

σ2(x)
− 1
)

+ [ϕ′(ξk+1)− 1] exp

(
h
−2b(ξ)

σ2(ξ)

)
(b(x) − b(ξ))(x− ξ)

σ2(ξ)(x − ξ)
.

Note that supx>0 xe
−hx < +∞. Using this fact and Assumptions (A2), (A5), and (A6), we obtain the

desired result.
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We can further see that the function Ψ defined in (18) is one-sided Lipschitz continuous, i.e. there exists
a constant lΨ such that

(x − y)(Ψ(x)−Ψ(y)) ≤ lΨ(x− y)2, for all x, y ∈ R.

We denote S̄ := ∪k
i=0(ξi, ξi+1)

2 ∪ (−∞, ξ0)
2 ∪ (ξk+1,+∞)2, and

LΨ =

{
lΨ
H if lΨ < 0,

lΨ if lΨ ≥ 0.
(19)

3.4.2 Proof of Theorem 2.5

First, we have |Zt| = |Xt − Yt| ≤ |ϕ(Xt) − ϕ(Yt)| ≤ ε + φδε(ϕ(Xt) − ϕ(Yt)). By using Itô’s formula and
Property (P4), we have

e−LΨtφδε(ϕ(Xt)− ϕ(Yt)) = J1 + J2 + J3 + J4 + J5 + J6, (20)

where

J1 =

∫ T

0

−LΨe
−LΨtφδε(ϕ(Xt)− ϕ(Yt)) dt,

J2 =

∫ T

0

e−LΨtφ′δε(ϕ(Xt)− ϕ(Yt)) (Ψ(Xt)−Ψ(Yt)) dt,

J3 =

∫ T

0

e−LΨtφ′δε(ϕ(Xt)− ϕ(Yt))
[
ϕ′(Yt)(b(Yt)− b(Yt))

]
dt,

J4 =

∫ T

0

e−LΨtφ′δε(ϕ(Xt)− ϕ(Yt))

[
1

2
σ2
∆(Yt)ϕ

′′(Yt)−
1

2
σ2(Yt)ϕ

′′(Yt)

]
dt,

J5 =

∫ T

0

1

2
e−LΨtφ′′δε(ϕ(Xt)− ϕ(Yt))

[
ϕ′(Xt)σ(Xt)− ϕ′(Yt)σ∆(Yt)

]2
dt,

J6 =

∫ T

0

e−LΨtφ′δε(ϕ(Xt)− ϕ(Yt))
[
ϕ′(Xt)b(Xt)− ϕ′(Yt)b(Yt)

]
dWt.

We now give a bound for each term on the left-hand side of (20). First, by Property (YW1), we have

φ′δε(ϕ(Xt)− ϕ(Yt)) (Ψ(Xt)−Ψ(Yt)) =
φ′δε(ϕ(Xt)− ϕ(Yt))

ϕ(Xt)− ϕ(Yt)
(ϕ(Xt)− ϕ(Yt)) (Ψ(Xt)−Ψ(Yt))

=
φ′δε(|ϕ(Xt)− ϕ(Yt)|)

|ϕ(Xt)− ϕ(Yt)|
ϕ(Xt)− ϕ(Yt)

Xt − Yt
(Xt − Yt) (Ψ(Xt)−Ψ(Yt))

≤ φ′δε(|ϕ(Xt)− ϕ(Yt)|)
|ϕ(Xt)− ϕ(Yt)|

ϕ(Xt)− ϕ(Yt)

Xt − Yt
lΨ(Xt − Yt)

2

= lΨ
φ′δε(|ϕ(Xt)− ϕ(Yt)|)

|ϕ(Xt)− ϕ(Yt)|
(ϕ(Xt)− ϕ(Yt)) (Xt − Yt).

Using the definition of LΨ in (19) and Property (P2), we get

φ′δε(ϕ(Xt)− ϕ(Yt)) (Ψ(Xt)−Ψ(Yt)) ≤ LΨ
φ′δε(|ϕ(Xt)− ϕ(Yt)|)

|ϕ(Xt)− ϕ(Yt)|
(ϕ(Xt)− ϕ(Yt))

2

= LΨφ
′
δε(|ϕ(Xt)− ϕ(Yt)|)|ϕ(Xt)− ϕ(Yt)|.

Since −LΨφδε(x) + LΨ|x|φ′δε(|x|) ≤ max{LΨε, 0}, we get

J1 + J2 =

∫ T

0

[
−LΨe

−LΨtφδε(ϕ(Xt)− ϕ(Yt)) + e−LΨtφ′δε(ϕ(Xt)− ϕ(Yt)) (Ψ(Xt)−Ψ(Yt))
]
dt

≤
∫ T

0

max{LΨε, 0}e−LΨtdt.

For the rest of the proof, we denote by K1,K2, ... some constants that do not depend on ∆. Moreover,
when γ < 0, these constants do not depend on t either.
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Using Properties (YW2),(P2), Assumption (A3), and Remark 2.1, we get
∣∣φ′δε(ϕ(Xt)− ϕ(Yt))ϕ

′(Yt)(b(Yt)− b(Yt))
∣∣ ≤ H

∣∣b(Yt)− b(Yt)
∣∣

= H
∣∣b(Yt)− b(Yt)

∣∣ 1S̄(Yt, Yt) +H
∣∣b(Yt)− b(Yt)

∣∣ 1
R2\S̄(Yt, Yt)

≤ K1

(
1
S̄
(Yt, Yt) + (1 + |Yt|l + |Yt|l)|Yt − Yt|

)
.

Then, Proposition 3.2, Lemma 3.3 and Lemma 3.7 give

E[J3] ≤ K1

∫ T

0

e−LΨt
E
(
1
S̄
(Yt, Yt) + (1 + |Yt|l + |Yt|l)|Yt − Yt|

)
dt ≤ K2

∫ T

0

e−LΨt∆
1
4+

α
2 dt.

For J4, we first note that
∣∣φ′δε(ϕ(Xt)− ϕ(Yt))

[
σ2
∆(Yt)ϕ

′′(Yt)− σ2(Yt)ϕ
′′(Yt)

]∣∣

≤ K3

[
(1 + |Yt|2m+α+1/2 + |Yt|2m+α+1/2)|Yt − Yt|1/4+α/2 + (1 + |Yt|2m+2α+1)∆1/2

]
;

hence, by Proposition 3.2 and Lemma 3.3

E[J4] ≤
∫ T

0

E

[∣∣∣∣∣e
−LΨtφ′δε(ϕ(Xt)− ϕ(Yt))

(
1

2
σ2
∆(Yt)ϕ

′′(Yt)−
1

2
σ2(Yt)ϕ

′′(Yt)

) ∣∣∣∣∣

]
dt

≤K4

∫ T

0

e−LΨt
E

[
(1 + |Yt|2m+α+1/2 + |Yt|2m+α+1/2)|Yt − Yt|1/2+α + (1 + |Yt|2m+2α+1)∆1/2

]
dt

≤K5

∫ T

0

e−LΨt(∆1/4+α/2 +∆1/2) dt.

For J5, using the estimate (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2), we get

∫ T

0

e−LΨtφ′′δε(ϕ(Xt)− ϕ(Yt))
[
ϕ′(Xt)σ(Xt)− ϕ′(Yt)σ∆(Yt)

]2
dt

≤ 4

∫ T

0

e−LΨtφ′′δε(ϕ(Xt)− ϕ(Yt)) [ϕ
′(Xt)]

2
[σ(Xt)− σ(Yt)]

2 dt

+ 4

∫ T

0

e−LΨtφ′′δε(ϕ(Xt)− ϕ(Yt)) [ϕ
′(Yt)]

2 [
σ(Yt)− σ(Yt)

]2
dt

+ 4

∫ T

0

e−LΨtφ′′δε(ϕ(Xt)− ϕ(Yt)) [ϕ
′(Yt)]

2 [
σ∆(Yt − σ(Yt)

]2
dt

+ 4

∫ T

0

e−LΨtφ′′δε(ϕ(Xt)− ϕ(Yt))σ
2(Yt) [ϕ

′(Xt)− ϕ′(Yt)]
2
dt

:= 4(J5,1 + J5,2 + J5,3 + J5,4).

Using Properties (YW5), (P2), Assumption (A4), Proposition 3.2 and Proposition 3.1, we get

E[J5,1] ≤H2

∫ T

0

e−LΨt
E

[
φ′′δε(ϕ(Xt)− ϕ(Yt))|ϕ(Xt)− ϕ(Yt)|

[
σ(Xt)− σ(Yt)

]2

|ϕ(Xt)− ϕ(Yt)|

]
dt

≤ K6

∫ T

0

e−LΨt
E

[
2

log δ
1{|ϕ(Xt)−ϕ(Yt)|≤ε}

|Xt − Yt|1+2α(1 + |Xt|2m + |Yt|2m)

|ϕ(Xt)− ϕ(Yt)|

]
dt

≤ K7

∫ T

0

e−LΨt ε
2α

log δ
E
[
(1 + |Xt|2m + |Yt|2m)

]
dt

≤ K8

∫ T

0

e−LΨt ε
2α

log δ
dt,

and

E[J5,4] =

∫ T

0

e−LΨt
E

[
φ′′δε(ϕ(Xt)− ϕ(Yt))|ϕ(Xt)− ϕ(Yt)|σ2(Yt)

|ϕ′(Xt)− ϕ′(Yt)|2
|ϕ(Xt)− ϕ(Yt)|2

|ϕ(Xt)− ϕ(Yt)|
]
dt

14



≤ K9

∫ T

0

e−LΨt
E

[
2

log δ
1{|ϕ(Xt)−ϕ(Yt)|≤ε}|ϕ(Xt)− ϕ(Yt)|σ2(Yt)

]
dt

≤ K10

∫ T

0

e−LΨt 2

log δ
εE
[
σ2(Yt)

]
dt

≤ K11

∫ T

0

e−LΨt 2ε

log δ
dt.

Using Properties (YW5), (P2), Assumption (A4), Proposition 3.2, and Lemma 3.3, we get

E[J5,2] ≤ K12

∫ T

0

e−LΨt
E

[(
σ(Yt)− σ(Yt)

)2 2δ

ε log δ

]
dt ≤ K13

∫ T

0

e−LΨt∆α+1/2 2δ

ε log δ
dt.

Using similar estimates as in (10), we get

E[J5,3] ≤ K14

∫ T

0

e−LΨt
E

[
2δ

ε log δ

(
σ∆(Yt)− σ(Yt)

)2
]
dt ≤ K15

∫ T

0

e−LΨt 2δ

ε log δ
∆ dt.

Finally, E[J6] = 0. To sum up,

E[e−LΨT |ZT |] ≤ E[J1 + J2 + J3 + J4 + J5 + J6] + e−LΨT ε

≤ K16

∫ T

0

e−LΨt

[
ε+∆1/2 +∆

1
4+

α
2 +

ε2α

log δ
+
δ∆1/2+α

ε log δ
+

δ∆

ε log δ
+

2ε

log δ

]
dt.

If α ∈ (0, 12 ], then by choosing ε = ∆1/2 and δ = 2, we obtain

E[|ZT |] ≤ C
eLΨT − 1

LΨ
∆α. (21)

If α = 0, then by choosing ε = ∆1/4 and δ = ∆−1/4, we obtain

sup
t∈[0,T ]

E [|Zt|] ≤ C
eLΨT − 1

LΨ

1

log 1
∆

. (22)

Recall that the constants C in (21) and (22) do not depend on T when L1, γ and LΨ are negative. This
implies the desired result.

3.5 Proof of Theorem 2.6

Proof. We first note that

NT = 1 +

∞∑

k=1

1{tk<T} = 1 +

∞∑

k=1

1{tk<T}

∫ tk

tk−1

1

h∆(Y s)
ds = 1 +

∫ T

0

1

h∆(Y s)
ds.

We write E

[ ∫ T

0

1

h∆(Y s)
ds
]
= I1 + I2 + I3, where I1 = E

[ ∫ T

0

1

h∆(Y s)
1(Ξε1)c(Ys)ds

]
,

I2 = E

[ ∫ T

0

1

h∆(Y s)
1Ξε1\Ξε2 (Ys)ds

]
, I3 = E

[ ∫ T

0

1

h∆(Y s)
1Ξε2 (Ys)ds

]
.

For the rest of the proof, we denote by K1,K2, ... some constants that do not depend on ∆. Moreover,
when γ < 0, these constants do not depend on t either. It follows from (2) and Proposition 3.2 that

I1 ≤ E

[ ∫ T

0

[
1 + |b(Ys)|+ |σ(Ys)|+ |Ys|l

]2

∆
ds

]
≤ K1T∆

−1.

Thanks to Assumptions (A3) and (A4), supy∈Ξε2

[
1 + |b(y)|+ |σ(y)|+ |y|l

]2
< +∞. It follows from (2) that

I3 = E

[ ∫ T

0

[
1 + b(Ys) + σ(Ys) + |Ys|l

]2

∆2 log4(1/∆)
1Ξε2 (Ys)ds

]
≤ K2

∆2 log4(1/∆)

∫ T

0

P

(
Ys ∈ Ξε2

)
ds. (23)
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Similarly, we have

I2 = E

[ ∫ T

0

log4(1/∆)
[
1 + |b(Ys)|+ |σ(Ys)|+ |Ys|l

]2
[
d(Ys,Ξ)

]2 1Ξε1\Ξε2 (Ys)ds

]

≤ K3 log
4(1/∆)E

[ ∫ T

0

1
[
d(Ys,Ξ)

]2 1Ξε1\Ξε2 (Ys)ds

]
= K3 log

4(1/∆)(I21 + I22),

where

I2,1 = E

[ ∫ T

0

1
[
d(Ys,Ξ)

]2 1Ξε1\Ξε2 (Ys)1{|Ys−Ys|≥
1
2d(Ys,Ξ)}ds

]
,

I2,2 = E

[ ∫ T

0

1
[
d(Ys,Ξ)

]2 1Ξε1\Ξε2 (Ys)1{|Ys−Ys|<
1
2d(Ys,Ξ)}ds

]
.

By applying Lemma 3.5.ii, for all ∆ < ∆0 we obtain

I2,1 ≤ 1

ε22

∫ T

0

P

(
|Ys − Ys| ≥

1

2
d(Ys,Ξ), Ys ∈ Ξε1 \ Ξε2

)
ds ≤ K4

T

∆2 log8(1/∆)
∆

1
2 log(1/∆).

Note that |Ys − Ys| < 1
2d(Ys,Ξ) implies 1

2d(Ys,Ξ) ≤ d(Ys,Ξ) ≤ 3
2d(Ys,Ξ). Hence, if ε2 ≤ d(Ys,Ξ) ≤ ε1,

then 1
2ε2 ≤ d(Ys,Ξ) ≤ 3

2ε1. Hence

I2,2 ≤ 9

4
E

[ ∫ T

0

1
[
d(Ys,Ξ)

]2 1Ξ 3
2
ε1\Ξ

1
2
ε2
(Ys)ds

]
.

Now we will consider two cases.

Case 1 : [p0

2 ] >
3

2α+1 (1 + 2α+ 2m).

We can choose n such that n > 3
2α+1 and [p0

2 ] >
3

2α+1 (1 + 2α + 2m)n, and then choose p ∈ ( 4
2α+1 ,

4n
3 ).

Let q = 4n−3
4n . Define the sequence ai as follow: a0 = 1

2 , and ai+1 = 1
2 (ai(q +

α
2 + 1

4 ) + 1) for i ≥ 0. Let

εai := ∆ai log4ai(1/∆). Since q + α
2 + 1

4 > 1, we have lim
i→∞

ai > 1. Thus, there exists a positive integer h

such that ah ≤ 1 < ah+1. Then we write

I2,2 ≤ 9

4
E

[ ∫ T

0

1
[
d(Ys,Ξ)

]2 1Ξ 3
2
ε1\Ξεa1

(Ys)ds
]
+

9

4
E

[ ∫ T

0

1
[
d(Ys,Ξ)

]2 1Ξεah \Ξ
1
2
ε2
(Ys)ds

]

+
9

4

h−1∑

i=1

E

[ ∫ T

0

1
[
d(Ys,Ξ)

]2 1Ξεai \Ξ
εai+1 (Ys)ds

]

≤ 9

4

h−1∑

i=0

E

[ ∫ T

0

1
[
d(Ys,Ξ)

]2 1Ξ 3
2
εai \Ξ

1
2
εai+1

(Ys)ds
]
+

9

4
E

[ ∫ T

0

1
[
d(Ys,Ξ)

]2 1Ξ 3
2
εah \Ξ

1
2
ε2
(Ys)ds

]
.

Applying Lemma 3.4 with f(x) = 1
(max{ 1

2 εai+1
,x})2

, ε = 3
2εai , we have that for each i = 0, . . . , h− 1,

E

[ ∫ T

0

1
[
d(Ys,Ξ)

]2 1Ξ 3
2
εai \Ξ

1
2
εai+1

(Ys)ds
]
≤ E

[ ∫ T

0

1

max
{

1
2εai+1 , d(Ys,Ξ)

}2 1Ξ 3
2
εai \Ξ

1
2
εai+1

(Ys)ds
]

≤ K5T

∫ 3
2 εai

0

1

(max{ 1
2εai+1 , x})2

dx+K5T
4

ε2ai+1

((3
2
εai

)q+α
2 + 1

4 +∆+∆( 1
4+

α
2 )p
)

≤ K6T (∆
−1 +∆( 1

4+
α
2 )p−2)

1

log4(1/∆)

≤ 2K6T∆
−1 1

log4(1/∆)
,
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where the last estimate follows from the fact that (14 + α
2 )p > 1.

Similarly, applying Lemma 3.4 with f(x) = 1
(max{ 1

2 ε2,x})
2 , ε =

3
2εah

, we have

E

[ ∫ T

0

1
[
d(Ys,Ξ)

]2 1Ξ 3
2
εah \Ξ

1
2
ε2
(Ys)ds

]
≤ E

[ ∫ T

0

1

max
{

1
2ε2, d(Ys,Ξ)

}2 1Ξ 3
2
εah \Ξ

1
2
ε2
(Ys)ds

]

≤ K7T

∫ 3
2 εah

0

1

(max{ 1
2ε2, x})2

dx+K7T
4

ε22

((3
2
εah

)q+α
2 + 1

4 +∆+∆( 1
4+

α
2 )p
)

≤ K8T (∆
−1 +∆( 1

4+
α
2 )p−2)

1

log4(1/∆)

≤ K9T∆
−1 1

log4(1/∆)
.

To estimate I3, applying Lemma 3.4 with f(x) = 1 and ε = ε2, it follows from (23) that

I3 ≤ K10T

∆2 log4(1/∆)

(
ε2 + (ε2 +∆+∆( 1

4+
α
2 )p)

)
≤ K11

T

∆ log4(1/∆)
.

Case 2 : [p0

2 ] ≤ 3
2α+1 (1 + 2α+ 2m).

Applying Lemma 3.4 with f(x) = 1
(max{ 3

2 ε2,x})
2 , ε =

3
2ε1, for all ∆ < ∆0, we have

I2,2 ≤ 9

4
E

[ ∫ T

0

1
[
d(Ys,Ξ)

]2 1Ξ 3
2
ε1
(Ys)ds

]
≤ K12T

∫ 3
2 ε1

0

1

(max{ 3
2ε2, x})2

dx+K12T∆
1
4+

α
2
1

ε22

≤ K13T
1

log4(1/∆)
∆α/2−7/4.

It follows from Lemma 3.4 with f(x) = 1 and ε = ε2, and (23) that

I3 ≤ K14
T

∆ log4(1/∆)
(∆

1
4+

α
2 +∆2 log4(1/∆)) ≤ K15T∆

α/2−7/4.

When γ < 0, it follows from the uniform boundedness of the moment of Y that the constants (Ki)1≤i≤15

does not depend on T . We conclude the proof.

3.6 Proofs of Theorem 2.2 and Theorem 2.3

The following lemma is needed for the proofs of Theorem 2.2 and Theorem 2.3.

Lemma 3.9. Suppose that Assumptions (A1), (A2) and (A4) hold for some m ≥ 0. Moreover, there exists
a constant C > 0 such that for any solution X of the equation (1), we have

sup
t∈[0,T ]

E[|Xt|2m∨1] ≤ C.

Then, the equation (1) has at most one strong solution.

Proof. Assume that (X ′) is another solution of the equation (1), we will show that E[|Xt −X ′
t|] = 0 for all

t ∈ [0, T ], which implies the uniqueness of the solution.
By applying Itô’s formula for φδε(Xt −X ′

t) and using Property (YW3), we have

|Xt −X ′
t| ≤ ε+

∫ t

0

φ′δε (Xs −X ′
s) [b(Xs)− b(X ′

s)] ds

+
1

2

∫ t

0

φ′′δε (Xs −X ′
s) [σ(Xs)− σ(X ′

s)]
2
ds

+

∫ t

0

φ′δε (Xs −X ′
s) [σ(Xs)− σ(X ′

s)] dWs. (24)
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Using Assumption (A2) and Properties (YW1), (YW2), we get

∫ t

0

φ′δε(Xs −X ′
s)[b(Xs)− b(X ′

s)]ds =

∫ t

0

φ′δε(Xs −X ′
s)

Xs −X ′
s

(Xs −X ′
s)[b(Xs)− b(X ′

s)]ds (25)

≤
∫ t

0

φ′δε(|Xs −X ′
s|)

|Xs −X ′
s|

L1(Xs −X ′
s)

2ds

≤
∫ t

0

|L1||Xs −X ′
s|ds.

Using Assumption (A4), Property (YW5), and Proposition 3.1, we have

E

[ ∫ t

0

φ′′δε (Xs −X ′
s) [σ(Xs)− σ(X ′

s)]
2
ds

]
≤ 2ε2α

log δ
E

[∫ t

0

3L3 + 3L3|Xs|2m + 3L3|X ′
s|2mds

]
≤ K1ε

2α

log δ
,

where K1 depend on neither δ nor ε. Together with (24) and (25), this implies

E[|Xt −X ′
t|] ≤ ε+ |L1|

∫ t

0

E[|Xs −X ′
s|]ds+

K1ε
2α

log δ
.

By letting ε→ 0, δ → ∞, we get

E[|Xt −X ′
t|] ≤ |L1|

∫ t

0

E[|Xs −X ′
s|]ds.

By Gronwall’s inequality, we induce that E [|Xt −X ′
t|] = 0. The proof is complete.

Proof of Theorem 2.2

We will use the localization technique as in [24]. For each N > 1, set

bN (x) =





b(x) if |x| ≤ N,

b
(

Nx
|x|

)
(N + 1− |x|

)
if N < |x| < N + 1,

0 if |x| ≥ N + 1,

and

σN (x) =






σ(x) if |x| ≤ N,(
σ
(

Nx
|x|

)
− 1
)
(N + 1− |x|) + 1 if N < |x| < N + 1,

1 if |x| ≥ N + 1.

It can verify that bN is bounded, and σN is Hölder continuous and uniformly elliptic. Then the equation

XN(t) = x0 +

∫ t

0

bN(Xs)ds+

∫ t

0

σN (Xs)dWs

has a unique strong solution. Moreover, we can verify that xbN (x) + p0−1
2 |σN (x)2| ≤ γ′|x|2 + η′ for some

constants γ′, η′ depending only on γ, η. Hence, it follows from Lemma 3.1 in [LT19] that if p0 ≥ (l + 4) ∨
(2m+ 2α+ 4) and 2 ≤ p ≤ (p0 − (l ∨ (2m+ 2α)))/2, then

E

[
sup

t∈[0,T ]

|XN (t)|p
]
≤ C(x, T, l, p, γ, η,m).

Using the argument in the proof of Theorem 3.1.i in [24], we can show that when N → ∞, XN will converge
in probability to a process X which satisfies the equation (1).
It remains to prove the uniqueness of the solution. Let ϕ be the function defined in Theorem 2.5. Note
that from the properties (P1)–(P3), ϕ−1 exists and has bounded and Lipschitz continuous derivative. Let
b := Ψ ◦ ϕ−1 and σ := (ϕ′.σ) ◦ ϕ−1. It can be verified that b and σ satisfy the following properties: for any
x, y ∈ R,

(x− y)(b(x)− b(y)) ≤ C(x − y)2,
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and
|σ(x) − σ(y)| ≤ C|x− y|α+1/2(1 + |x|m+1 + |y|m+1)

for some positive constant C. Let Ut := ϕ(Xt). Using Itô’s formula and Property (P4), we obtain

dUt = b(Ut)dt+ σ(Ut)dWt. (26)

It follows from Lemma 3.1 and Property (P2) that

E[|Ut|2m+2] ≤ C1 + C1E[|Xt|2m+2] < +∞.

Then it follows from Lemma 3.9 that there exists at most one solution to equation (26). Since ϕ is strictly
increasing, we obtain the uniqueness for solution of equation (1). This concludes the proof of Theorem 2.2.

Proof of Theorem 2.3

For the proof of Theorem 2.3, we need the following result.

Lemma 3.10. Suppose that Assumptions (A1)–(A5) hold for m = l = α = 0, and b is bounded by ‖b‖∞ <
+∞. Then the equation (1) has a unique strong solution.

Proof. For each N > 1
ε0
, we define

bN(x) =





b(x) if d(x,Ξ) > 1
N ,

b(ξi − 1
N ) +

(
x−ξi+

1
N

)(
b(ξi+

1
N )−b(ξi−

1
N )
)

2/N if d(x, ξi) ≤ 1
N for some i ∈ {1, . . . , k}.

(27)

One can verify that bN is locally Lipschitz continuous, and there exists a constant K not depending on
N such that

sup
x∈Ξε0

(
|b(x)− bN(x)| + |bM (x) − bN(x)|

)
≤ K, for any M,N >

1

ε0
, (28)

and

(x− y)(bN (x) − bN(y)) ≤ |L1|(x− y)2, for any x, y ∈ R, N >
1

ε0
. (29)

From (28) and Assumption (A3), we have

|bN (x)− bN (y)| ≤ L′
2 + 2K + 3L′

2|x− y|. (30)

Also, from Assumption (A1) and (28),

xbN (x) +
p0 − 1

2
σ2(x) ≤ Kmax{|ξk|, |ξ1|}+ η + γx2. (31)

By using Theorem 3.1 in [24], the following SDE

XN(t) = x0 +

∫ t

0

bN (XN (s))ds+

∫ t

0

σ(XN (s))dWs

has a unique strong solution.
For any N > M > 1

ε0
and u ≤ T , we have φδε(XM (u)−XN (u)) = J1 +

1
2J2 + J3, where

J1 =

∫ u

0

φ′δε(XM (t)−XN (t))(bM (XM (t))− bN (XN (t)))dt,

J2 =

∫ u

0

φ′′δε(XM (t)−XN (t))[σ(XM (t))− σ(XN (t))]2dt,

J3 =

∫ u

0

φ′δε(XM (t)−XN (t))[σ(XM (t))− σ(XN (t))]dWt.

First, by using Assumption (A4), the Cauchy-Schwarz inequality, and Property (YW5), we have

E[J2] ≤
∫ u

0

9L2
3E

[
2

|XM (t)−XN (t)| log δ 1{|XM(t)−XN (t)|≤ε}|XM (t)−XN(t)|
]
dt ≤ 18L2

3T

log δ
.
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Next, we write J1 = J1,1 + J1,2, where

J1,1 =

∫ u

0

φ′δε(XM (t)−XN (t))(bM (XM (t))− bM (XN (t)))dt,

J1,2 =

∫ u

0

φ′δε(XM (t)−XN (t))(bM (XN (t))− bN (XN (t)))dt.

Using (29) and Properties (YW1) and (YW2),

J1,1 =

∫ u

0

φ′δε(XM (t)−XN (t)

XM (t)−XN (t))
(XM (t)−XN (t))(bM (XM (t))− bM (XN (t)))dt

≤
∫ u

0

φ′δε(|XM (t)−XN (t)|)
|XM (t)−XN (t))| |L1|(XM (t)−XN (t))2dt ≤ |L1|

∫ u

0

|XM (t)−XN(t)|dt.

Note that for N > M , bN (x) = bM (x) when d(x,Ξ) > 1
M . This implies that

E[J1,2] ≤
∫ u

0

2KE
(
1{XN (t)∈Ξ1/M}

)
dt =

k∑

i=1

∫ u

0

2KE
[
1{ξi− 1

M ≤XN (t)≤ξi+
1
M }

]
dt.

We will prove that there exists a constant c not depending on M,N such that for all M,N ≥ 1
ε0
,

∫ u

0

E
[
1{ξi− 1

M ≤XN (t)≤ξi+
1
M }

]
dt ≤ c

M
. (32)

Indeed, thanks to Tanaka’s formula, for all a ∈ R we have

|XN (u)− a| = |x0 − a|+
∫ u

0

sgn(XN (t)− a)bN(XN (t))ds +

∫ u

0

sgn(XN (t)− a)σ(XN (t))dWt + La
u(XN ).

Hence

|La
u(XN )| ≤ |XN (u)− x0|+

∣∣∣∣
∫ u

0

sgn(XN(t)− a)bN (XN (t))dt

∣∣∣∣+
∣∣∣∣
∫ u

0

sgn(XN(t)− a)σ(XN (t))dWt

∣∣∣∣ . (33)

By taking expectation on both sides of the above estimate, using Doob’s inequality, Proposition 3.1, Assump-
tions (A3), (A4), the estimates (31) and (30), there exists a constant c1 that does not depend on N and a
such that

E[|La
u(XN )|] ≤E

[∣∣∣∣
∫ u

0

bN(XN (t))dt

∣∣∣∣
]
+ E

[∣∣∣∣
∫ u

0

σ(XN (t))dWt

∣∣∣∣
]

+ E

[∣∣∣∣
∫ u

0

sgn(XN (t)− a)bN(XN (t))dt

∣∣∣∣
]
+ E

[∣∣∣∣
∫ u

0

sgn(XN (t)− a)σ(XN (t))dWt

∣∣∣∣
]

≤2

∫ u

0

E [|bN(XN (t))|] dt+ 2

[∣∣∣∣
∫ u

0

E
[
σ2(XN (t))

]
dt

∣∣∣∣
]1/2

≤2

∫ T

0

E [|bN(XN (t))|] dt+ 2

[∣∣∣∣∣

∫ T

0

E
[
σ2(XN (t))

]
dt

∣∣∣∣∣

]1/2
≤ c1.

By using the occupation time formula, we obtain

E

[ ∫ u

0

1[ξi− 1
M ,ξi+

1
M ](XN (t))dt

]
≤ 1

ν2
E

[ ∫ u

0

1[ξi− 1
M ,ξi+

1
M ](XN (t))σ2(XN (t))dt

]

=
1

ν2

∫ +∞

−∞

1[ξi− 1
M ,ξi+

1
M ](a)E[L

a
u(XN )]da ≤ c1

ν2
2

M
=

c

M
,

where c = 2c1
ν2 . Note that E[J3] = 0. In summary, by the Property (YW3),

E
[
|XM (u)−XN (u)|

]
≤ ε+ E

[
φδε(XM (u)−XN (u))

]
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≤ ε+
2kKc

M
+

18L2
3T

log δ
+ |L1|

∫ u

0

E
[
|XM (t)−XN (t)|

]
dt.

By letting ε→ 0 and δ → ∞, we get

E
[
|XM (u)−XN(u)|

]
≤2kKc

M
+ |L1|

∫ u

0

E
[
|XM (t)−XN (t)|

]
dt.

Using Gronwall’s inequality, we have

E[|XM (u)−XN (u)|] ≤ 2kKc

M
e|L1|u for all N > M >

1

ε0
.

Then XM (u) is a Cauchy sequence in L1(Ω), and it converges to a random variable X(u). By letting
N → +∞, it follows from Fatou’s lemma that

E[|X(u)−XM (u)|] ≤ 2kKc

M
e|L1|u, for all u ≤ T.

From here, by using Assumption (A4), Hölder’s inequality and Young’s inequality, we have

E

[(∫ u

0

σ(XN (t))dWt −
∫ u

0

σ(X(t))dWt

)2
]
= E

[∫ u

0

(σ(XN (t)− σ(X(t)))
2
dt

]

≤9L2
3E

[∫ u

0

|XN (t)−X(t)|dt
]
≤ 18L2

3kKcu

N
e|L1|u. (34)

Next, from (32), we obtain

E

[∫ u

0

|b(XN(t)) − bN(XN (t)|dt
]
≤ K

k∑

i=1

E

[ ∫ u

0

1[ξi− 1
N ,ξi+

1
N ](XN (t))dt

]
≤ Kkc

N
.

For N > M , we write E

[∫ u

0

|b(Xt)− b(XN (t))|dt
]
= I1 + I2, where

I1 =E

[∫ u

0

|b(Xt)− b(XN (t))|1{Xt∈Ξ1/2M}dt

]
,

I2 =E

[∫ u

0

|b(Xt)− b(XN (t))|1{Xt /∈Ξ1/2M}dt

]
.

From (32), by letting N → ∞,

E

[ ∫ u

0

1[ξi− 1
2M ,ξi+

1
2M ](X(t))dt

]
≤ lim sup

N→∞
E

[ ∫ u

0

1(ξi− 1
M ,ξi+

1
M )(XN (t))dt

]
≤ c

M
,

implying that

E

[ ∫ u

0

1{Xt∈Ξ1/2M}dt
]
≤ ck

M
. (35)

By using the boundedness of b and (35), we have

I1 ≤ 2‖b‖∞
∫ u

0

E[1{Xt∈Ξ1/2M}] ≤ 2‖b‖∞
ck

M
.

To estimate I2, we write

I2 = E

[∫ u

0

|b(Xt)− b(XN(t))|1{Xt /∈Ξ1/2M}1{(Xt,XN (t))∈S}dt

]

+ E

[∫ u

0

|b(Xt)− b(XN(t))|1{Xt /∈Ξ1/2M}1{(Xt,XN (t))/∈S}dt

]
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≤ 3L2

∫ u

0

E[|X(t)−XN (t)|]dt+ 2‖b‖∞
∫ u

0

E[|1{|Xt−XN (t)|>1/2M}]dt

≤ 3L2

∫ u

0

E[|X(t)−XN (t)|]dt+ 4‖b‖∞M
∫ u

0

E[|Xt −XN (t)|]dt

≤ (3L2 + 4M‖b‖∞)
2kKc

N
e|L1|u.

By choosing N =M2 → ∞, we have

lim
N→∞

E

[∫ u

0

|b(X(t))− bN (XN (t)|dt
]
= 0.

Together with (34), this concludes the existence of solution to equation (1). The uniqueness of solution is
obtained by using Lemma 3.9.

Now we are ready to prove Theorem 2.3. For any N > max{|ξ1|, |ξk|}, let’s denote

bN (x) =






b(x) if |x| ≤ N,

b
(

Nx
|x|

)
(N + 1− |x|

)
if N < |x| < N + 1,

0 if |x| ≥ N + 1,

and

σN (x) =





σ(x) if |x| ≤ N,

σ
(

Nx
|x|

)
(N + 1− |x|) if N < |x| < N + 1,

0 if |x| ≥ N + 1.

One can check that bN and σN satisfy all conditions of Lemma 3.10, with the note that a compactly supported
(α+ 1/2)-Hölder continuous function is also a 1/2-Hölder continuous function. Then the equation

{
dXN (t) = bN(Xt)dt+ σN (Xt)dWt

XN
0 = x0 ∈ R

,

has a unique strong solution. Moreover, we can verify that xbN (x) + p0−1
2 |σN (x)2| ≤ γ′|x|2 + η′ for some

constant γ′, η′ which depend only on γ, η. Hence, it follows from Lemma 3.1 in [23] that if p0 ≥ (l ∨m) + 4
and 2 ≤ p ≤ (p0 − (l ∨m))/2, then

E

[
sup

t∈[0,T ]

|XN
t |p
]
≤ C(x, T, l, p, γ, η,m).

Again, by following the argument in the proof of Theorem 3.1.i in [24], we can show that XN will converge
in probability to a process X which satisfies equation (1).

The uniqueness of solution is obtained by using Lemma 3.9. We conclude the proof.

4 Numerical analysis

In this section, we conduct the proposed algorithm for several SDEs to support our theory. Recall that if
X is the unique strong solution of the SDE (1) and Y ∆ is our approximation scheme corresponding to the
step-size parameter ∆, then under the conditions stated in Theorem 2.4 and Theorem 2.5, for α ∈ (0, 1/2],
we have

sup
0≤t≤T

E
[
|Y ∆

t −Xt|
]
≤ C∆α

for some C ∈ (0,∞) and for all ∆ ∈ (0,∆0). Hence, by using the triangle inequality, we obtain

sup
0≤t≤T

E
[
|Yt2

−(k+1)∆0 − Yt
2−k∆0 |

]
≤ C2−kα

for some positive constant C.
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If we denote rk := |Yt2
−(k+1)∆0 − Yt

2−k∆0 |, then we can use r̃k := 1
Nk

∑Nk

n=1 rk,n as an approximation for

E[rk], in which rk,n is the nth numerical path of rk for all n = 1, 2, ..., Nk. The main issue here is that the
simulations of the fine and coarse paths in the formula of rk have to share the same driving Brownian motion
during the overlap time interval. To do this, we adapt a simulating method from Fang and Giles (see [4]).

To determine the convergence rate α for each numerical example, observe that since

r̃k ≤ c2−kα

when the approximation r̃k is relatively good, i.e. when Nk is sufficiently large, we also have

log r̃k ≤ log c− α(k log 2).

Therefore, we can estimate the rate α by computing the slope of the regression line for the pairs (−k log 2, log r̃k),
i.e. it should be no more than an empirical rate α̃ which satisfies − log r̃k = − log c+ α̃(k log 2) + o(1).

In Theorem 2.6, we have provided the rate of the computation cost ζ satisfying E[NT ] ≤ CT∆ζ for our
scheme. This theoretical rate can also be estimated by an empirical rate ζ̃ in the same way as above.

The two SDEs that we consider in Table 1 satisfy the conditions in Theorem 2.4, while those in Table 2
satisfy the conditions provided in Theorem 2.5. For each example, we compute r̃k for k = 1, 2, 3, 4, 5 with
∆0 = 1.8 · 10−4. The number of samples is Nk = 103 for k = 1, 2, 3, 4. The results for the case T = 1 are
summarized in Table 3.

Example b(x) σ(x) x0 p0 l m α γ L1

1

{
−x− x3 if x ≥ 0,

1− x− x3 if x < 0.
(1 + x)(1 + x2/3)1[−1,∞)(x) 0 20 2 1

1

6
-1 -1

2

{
−1 + x− x3 if x ≥ 0,

x− x3 if x < 0.
(1 + x)(1 + x2/3)1[−1,∞)(x) 0 20 2 1

1

6
1 1

Table 1: Examples of SDEs satisfying the conditions in Theorem 2.4.

Example b(x) σ(x) x0 p0 l m α γ L2

3






1 + x− x3 if x > 2,

x2 + 1 if 0 ≤ x ≤ 2,

x− x3 if x < 0.

1 +

√
x4 + x4/3

14
0.2 26 2 1

1

6
-1 -1

4






1 + x− x2/3 if x > 2,

x2 + 1 if 0 ≤ x ≤ 2,

x if x < 0.

1 + x2/3 0 20 1
4

3

1

6
1 1

Table 2: Examples of SDEs satisfying the conditions in Theorem 2.5.

Example α̃ 95% CI for α̃ ν̃ 95% CI for ζ̃
1 0.557 [0.422, 0.692] -1.131 [−1.286,−0.977]
2 0.534 [0.376, 0.692] -1.139 [−1.279,−0.999]
3 0.601 [0.463, 0.739] -1.252 [−1.375,−1.129]
3 0.608 [0.485, 0.731] -1.094 [−1.137,−1.052]

Table 3: Estimation for the rates α and ζ in Example 1,2, 3 and 4 for T = 1.

In these examples, for T = 1, the empirical rate of convergence is larger than the theoretical rate 1/6, and
the empirical rate of computation cost is almost the same as the theoretical rate −1. Hence, the numerical
results support the theoretical findings.
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Example T = 1 T = 5
1 -4.390 -4.184
3 -1.925 -1.878

Table 4: The intercepts of the regression line for the pairs (−k log 2, log r̃k) in Example 1 and 3.

In addition, since γ < 0 in Example 1 and 3, the constant C in the estimates (4) and (5) does not depend
on T . Hence, the intercept of the regression line for the pairs (−k log 2, log r̃k) should not change drastically
when the time T is adjusted. This can be verified when we compare the values of this intercept in the case
T = 1 and T = 5 for both examples. The results are shown in Table 4.

It has been shown that when γ < 0, the constant C in Theorem 2.6 does not depend on T either. To
demonstrate this, we note that the intercept of the regression line in the estimation of ζ is logC+logT . The
values of this intercept for Example 1 in the case T = 1 and T = 5 are 7.082 and 7.675, respectively. We can
see that 7.645− 7.082 ≈ log 5, which suggests that the constant C does not depend on T .
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