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AUTOMORPHISMS OF LEAVITT PATH ALGEBRAS: ZHANG

TWIST AND IRREDUCIBLE REPRESENTATIONS

Tran Giang Nam1, Ashish K. Srivastava2 and Nguyen Thi Vien3

Abstract. In this article, we construct (graded) automorphisms fixing all

vertices of Leavitt path algebras of arbitrary graphs in terms of general linear

groups over corners of these algebras. As an application, we study Zhang twist

of Leavitt path algebras and describe new classes of irreducible representations

of Leavitt path algebras of rose graphs Rn with n petals.
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1. Introduction

The study of automorphisms of an algebra has been an important area of research

as it describes the symmetry of underlying algebraic structure. But, determining

the full automorphism group of a noncommutative algebra is, in general, an ex-

tremely difficult problem with very little progress till date. In 1968, Dixmier [19]

described the group of automorphisms of the first Weyl algebra. For higher Weyl

algebras, to find the group of automorphisms is a long standing open problem.

In [13], Bavula described the group of automorphisms for the Jacobson alge-

bra An = K〈x, y〉/(xy − 1) as a semidirect product of the multiplicative group

K∗ of the field K with the general linear finitary group GL∞(K) using some

deep arguments. The same result was recently obtained by Alahmedi, Alsulami,

Jain and Zelmanov in a remarkable work [5] where they approach this problem

from another perspective noting that the Jacobson algebra An is isomorphic to

the Leavitt path algebra of Toeplitz graph and then they describe the group of

automorphisms of this Leavitt path algebra.

Leavitt path algebras were introduced independently by Abrams and Aranda

Pino in [3] and Ara, Moreno and Pardo in [8]. These are certain quotients of

path algebras where the relations are inspired from Cuntz-Krieger relations for

graph C∗-algebras (see [21, 25]). For a graph E that has only one vertex and

n loops, the Leavitt path algebra turns out to be the algebra of type (1, n)
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proposed by Leavitt as an example of a (universal) ring without invariant basis

number (see [23]). Leavitt path algebras have deep connections with symbolic

dynamics and the theory of graph C∗-algebras. For example, the notion of flow

equivalence of shifts of finite type in symbolic dynamics is related to Morita

theory and the Grothendieck group in the theory of Leavitt path algebras, and

ring isomorphism (or Morita equivalence) between two Leavitt path algebras

over the field of the complex numbers induces, for some graphs, isomorphism

(or Morita equivalence) of the respective graph C∗-algebras. As remarked by

Chen in [14], Leavitt path algebras capture the homological properties of both

path algebras and their Koszul dual and hence they form an important class of

noncommutative algebras. Moreover, by Smith’s interesting result ([27, Theorem

1.3]), the Leavitt path algebra construction arises naturally in the context of

noncommutative algebraic geometry. We refer the reader to [1, 2] for a detailed

history and overview of these algebras.

Unfortunately, there are not many constructions known yet for automorphisms

of Leavitt path algebras. In [12, 20], motivated by Cuntz’s idea [18], Szymański et

al. gave a method to construct automorphisms of Leavitt path algebras LK(E) of

finite graphs E without sinks or sources in which every cycle has an exit over inte-

gral domains K of characteristic 0. In [22, Section 2], Kuroda and the first author

gave construction of automorphisms fixing all vertices of Leavitt path algebras

LK(E) of arbitrary graphs E over an arbitrary field K, and gave construction of

Anick type automorphisms of Leavitt path algebras. Anick automorphisms have

an interesting history. For a free associative algebra F 〈x, y, z〉 over a field F of

characteristic zero, the question about the existence of a wild automorphism was

open for a long time. Anick provided a candidate for a wild automorphism in

the case of free associative algebra on three generators. In [29], Umirbaev proved

that the Anick automorphism δ = (x+z(xz−zy), y+(xz−zy)z, z) of the algebra

F 〈x, y, z〉 over a field F of characteristic zero is wild. In this paper, based on

Kuroda and the first author’s work [22, Section 2] and Cuntz’s beautiful paper

[18], we give a construction for graded automorphisms of Leavitt path algebras.

We describe (graded) automorphisms fixing all vertices of Leavitt path algebras

of arbitrary graphs in terms of general linear groups over corners of these al-

gebras (Theorem 2.2 and Corollary 2.3). Consequently, this yields a complete

description of all (graded) automorphisms of the Leavitt path algebra LK(Rn)

of the rose graph Rn with n petals in term of general linear group of degree n

over LK(Rn) (Corollaries 2.5 and 2.6). Moreover, we show that the group of all

graded automorphisms of LK(Rn) contains some special subgroups, for example,

the general linear group of degree n over K (Corollaries 2.7 and 2.8).

As the first application of these constructions for graded automorphisms, we

study twists of Leavitt path algebras. One of the most frequently used tools to

construct new examples of algebras and coalgebras is twisting the multiplicative

structure of original algebra. Classic examples of algebras constructed by twisting
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multiplicative structure include skew polynomial rings and skew group rings.

The twist of Leavitt path algebras that we study here is a twist in the sense of

Artin, Tate and Van den Bergh. A notion of twist of a graded algebra A was

introduced by Artin, Tate, and Van den Bergh in [10] as a deformation of the

original graded product of A with the help of a graded automorphism of A. Let σ

be an automorphism of the graded algebra A = ⊕An. Define a new multiplication

⋆ on the underlying graded K-module ⊕An by a ⋆ b = aσn(b) where a and b are

homogeneous elements in A = ⊕An and deg(a) = n. The new graded algebra

with the same underlying graded K-module ⊕An and the new graded product ⋆

is called the twist of A and is denoted as Aσ.

This notion of twist of a graded algebra was later generalized by Zhang in [30],

where he introduced the concept of twisting of graded product using a twisting

system. Let τ = {τn | n ∈ Z} be a set of graded K-linear automorphisms of

A = ⊕An. Then τ is called a twisting system if τn(yτm(z)) = τn(y)τn+m(z)

for all n,m, l ∈ Z and y ∈ Am, z ∈ Al. For example, if σ is a graded algebra

automorphism of A, then τ = {σn | n ∈ Z} is a twisting system. Thus, the twist

of a graded algebra in the sense of Artin-Tate-Van den Bergh can be viewed as a

special case of the twist introduced by Zhang. Such a twist of a graded algebra

is now known as Zhang twist.

Zhang twist of a graded algebra has played a vital role in the interaction of

noncommutative algebra with noncommutative projective geometry. The funda-

mental idea behind the noncommutative projective scheme defined by Artin and

Zhang [11] is to give up on the actual geometric space and instead generalize

only the category of coherent sheaves to the noncommutative case. In the case

of commutative algebras, Serre’s theorem established that studying the category

of quasi-coherent sheaves on a projective variety is essentially the same as study-

ing the quotient category of graded modules. The definition of noncommutative

projective space is motivated by Serre’s result.

Let A be a right noetherian graded algebra. We denote by Gr−A the cate-

gory of graded right A-modules with morphisms being graded homomorphisms

of degree zero. An element x of a graded right A-module M is called torsion if

xA≥s = 0 for some s. The torsion elements in M form a graded A-submodule

which is called the torsion submodule of M . The torsion modules form a subcat-

egory for which we use the notation Tors(A) := the full subcategory of Gr−A of

torsion modules. We denote QGr−A := the quotient category Gr−A/Tors(A).

We will use the lower case notations gr−A, qgr−A to indicate that we are work-

ing with finitely generated A-modules. Since qgr−A is a quotient category of

gr−A, it inherits two structures: the object A which is the image in qgr−A of

AA, and the shift operator s on qgr−A, which is the automorphism of the cate-

gory qgr−A determined by the shift on gr−A. The triple (qgr−A,A, s) is called

the noncommutative projective scheme associated to A, denoted as proj−A. We

refer the reader to [11] for more details on noncommutative projective scheme.
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One of the main features of the study of Zhang twist of a graded algebra is

that if an algebra B is isomorphic to the Zhang twist of an algebra A, then

their graded module categories Gr−A and Gr−B are equivalent. If the algebra

A is noetherian, then this equivalence restricts to the subcategories of finitely

generated modules to give an equivalence gr−A ∼= gr−B. Moreover, the sub-

categories of modules which are torsion (that is, finite-dimensional over K) also

correspond, and so we have an equivalence between the quotient categories qgr−A

and qgr−B. As a consequence it follows that their noncommutative projective

schemes proj−A and proj−B are equivalent. Since Zhang twist of a commutative

graded algebra by a non-identity automorphism yields a noncommutative graded

algebra, this gives us a tool to construct examples of noncommutative graded al-

gebras whose noncommutative projective schemes are isomorphic to commutative

projective schemes. It is known that many fundamental properties like Gelfand-

Kirillov dimesnion and Artin-Schelter regularity are preserved under Zhang twist

whereas some ring-theoretic properties such as being a prime ring or being a PI

ring are not preserved under Zhang twist.

In this paper we initiate the study of Zhang twist in the context of Leavitt

path algebras with a larger goal to develop the geometric theory of Leavitt path

algebras. In Section 3, we twist the multiplicative structure of Leavitt path alge-

bras with the help of graded automorphisms constructed in Section 2. In a rather

surprising result we show that the Leavitt path algebra LK(E) of an arbitrary

graph E is always a subalgebra of the Zhang twist LK(E)ϕ by any graded au-

tomorphism ϕ introduced in Corollary 2.3 (Proposition 3.2). Geometrically, this

means that any noetherian Leavitt path algebra always embeds in another alge-

bra with the same projective scheme. We also characterize Leavitt path algebras

LK(Rn) of the rose graph Rn with n petals that are rigid to Zhang twist in the

sense that LK(Rn) turns out to be isomorphic to its Zhang twist with respect to

graded automorphisms constructed in Section 2 (Theorem 3.7).

Automorphism of an algebra helps in constructing new twisted irreducible rep-

resentations. It is not difficult to see that if M is an irreducible representation of

an algebra A and ϕ is an automorphism of A then Mϕ is also an irreducible rep-

resentation where Mϕ is the same vector space as M with the module operation

given as a.m = ϕ(a)m for any a ∈ A. This new irreducible representation Mϕ of

A is called a twisted representation. In another application to our constructions

of automorphisms, we study the irreducible representations of the Leavitt path

algebra of rose graph Rn with n petals in the last section of this paper.

In a seminal work [14], Chen constructed irreducible representations of Leavitt

path algebras using infinite paths. For an infinite path p in E, Chen constructed

a simple module V[p] for the Leavitt path algebra LK(E) of an arbitrary graph E

where [p] is the equivalence class of infinite paths tail-equivalent to p. Later, in

[9], Ara and Rangaswamy characterized Leavitt path algebras which admit only

finitely presented irreducible representations. In [7], Ánh and the first author
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constructed a new class of simple LK(E)-modules, Sf
c associated to pairs (f, c)

consisting of simple closed paths c together with irreducible polynomials f ∈

K[x]. We should note that Ara and Rangaswamy [9] classified all simple modules

over the Leavitt path algebra of a finite graph in which every vertex is in at most

one cycle. This result induces our investigation of the study of simple modules

for Leavitt path algebras of graphs having a vertex that is in at least two cycles.

The most important case of this class is the Leavitt path algebra of a rose graph

with n ≥ 2 petals.

For Leavitt path algebra LK(Rn) of the rose graph Rn with n petals, in [22]

Kuroda and the first author constructed additional classes of simple LK(Rn)-

modules by studying the twisted modules of the simple modules Sf
c under Anick

type automorphisms of LK(Rn) mentioned in Corollary 2.8. In Section 4, we

define a new simple left LK(Rn)-module (V[α])
ϕ−1
P which is a twist of the simple

LK(Rn)-module V[α] by the graded automorphism ϕ−1
P mentioned in Corollary

2.6, where α is an infinite path in Rn and P ∈ GLn(K), and classify completely

these simple modules (Theorems 4.2 and 4.5). Moreover, in Theorem 4.2, we show

that V P
[α]

∼= LK(Rn)/
⊕∞

m=0 LK(Rn)(ϕP (ǫm) − ϕP (ǫm+1)) for all irrational path

α = ei1 · · · eim · · · , where ǫ0 := v, ǫm = ei1 · · · eime
∗
im

· · · e∗i1 for all m ≥ 1, and the

graded automorphism ϕP is defined in Corollary 2.6. Consequently, V P
[α] is not

finitely presented. For a simple closed path c in Rn, we show in Theorem 4.5 that

the twisted module V P
[c∞] is a simple left LK(Rn)-module for P ∈ GLn(K) and

V P
[c∞]

∼= LK(Rn)/LK(Rn)(v − ϕP (c)). We conclude this paper by giving a list of

pairwise non-isomorphic simple modules over LK(Rn) in Corollary 4.7.

2. On graded automorphisms of Leavitt path algebras

In this section, based on Kuroda and the first author’s work [22, Section 2] and

Cuntz’s beautiful paper [18], we describe (graded) automorphisms fixing all ver-

tices of Leavitt path algebras of arbitrary graphs in terms of general linear groups

over corners of these algebras (Theorem 2.2 and Corollary 2.3). Consequently, we

obtain a complete description of all (graded) automorphisms of the Leavitt path

algebra LK(Rn) of the rose with n petals graph Rn in term of general linear group

of degree n over LK(Rn) (Corollaries 2.5 and 2.6). Moreover, we show that the

group of all graded automorphisms of LK(Rn) contains some special subgroups,

for example, the general linear group of degree n over K (Corollaries 2.7 and 2.8).

Before giving constructions for automorphisms of Leavitt path algebras, we

begin this section by recalling some useful notions of graph theory. A (directed)

graph is a quadruplet E = (E0, E1, s, r) which consists of two disjoint sets E0

and E1, called the set of vertices and the set of edges respectively, together with

two maps s, r : E1 −→ E0. The vertices s(e) and r(e) are referred to as the

source and the range of the edge e, respectively. A vertex v for which s−1(v) is
5



empty is called a sink ; a vertex v is regular if 0 < |s−1(v)| < ∞; a vertex v is an

infinite emitter if |s−1(v)| = ∞; and a vertex is singular if it is either a sink or

an infinite emitter.

A finite path of length n in a graph E is a sequence p = e1 · · · en of edges

e1, . . . , en such that r(ei) = s(ei+1) for i = 1, . . . , n− 1. In this case, we say that

the path p starts at the vertex s(p) := s(e1) and ends at the vertex r(p) := r(en),

we write |p| = n for the length of p. We consider the elements of E0 to be paths

of length 0. We denote by E∗ the set of all finite paths in E. An edge f is an exit

for a path p = e1 · · · en if s(f) = s(ei) but f 6= ei for some 1 ≤ i ≤ n. A finite path

p of positive length is called a closed path based at v if v = s(p) = r(p). A cycle

is a closed path p = e1 · · · en, and for which the vertices s(e1), s(e2), . . . , s(en) are

distinct. A closed path c in E is called simple if c 6= dn for any closed path d and

integer n ≥ 2. We denoted by SCP (E) the set of all simple closed paths in E.

Definition 2.1. For an arbitrary graph E = (E0, E1, s, r) and any field K, the

Leavitt path algebra LK(E) of the graph E with coefficients in K is the K-algebra

generated by the union of the set E0 and two disjoint copies of E1, say E1 and

{e∗ | e ∈ E1}, satisfying the following relations for all v,w ∈ E0 and e, f ∈ E1:

(1) vw = δv,ww;

(2) s(e)e = e = er(e) and e∗s(e) = e∗ = r(e)e∗;

(3) e∗f = δe,fr(e);

(4) v =
∑

e∈s−1(v) ee
∗ for any regular vertex v;

where δ is the Kronecker delta.

If E0 is finite, then LK(E) is a unital ring having identity 1 =
∑

v∈E0 v (see,

e.g. [3, Lemma 1.6]). It is easy to see that the mapping given by v 7−→ v for

all v ∈ E0, and e 7−→ e∗, e∗ 7−→ e for all e ∈ E1, produces an involution on the

algebra LK(E), and for any path p = e1e2 · · · en, the element e∗n · · · e
∗
2e

∗
1 of LK(E)

is denoted by p∗. It can be shown ([3, Lemma 1.7]) that LK(E) is spanned as a

K-vector space by {pq∗ | p, q ∈ E∗, r(p) = r(q)}. Indeed, LK(E) is a Z-graded K-

algebra: LK(E) = ⊕n∈ZLK(E)n, where for each n ∈ Z, the degree n component

LK(E)n is the set spanK{pq∗ | p, q ∈ E∗, r(p) = r(q), |p| − |q| = n}. Also, LK(E)

has the following property: if A is a K-algebra generated by a family of elements

{av, be, ce∗ | v ∈ E0, e ∈ E1} satisfying the relations analogous to (1) - (4) in

Definition 2.1, then there exists a K-algebra homomorphism ϕ : LK(E) −→ A

given by ϕ(v) = av, ϕ(e) = be and ϕ(e∗) = ce∗ . We will refer to this property as

the Universal Property of LK(E).

In [18], Cuntz showed that there is a one-to-one correspondence between uni-

tary elements of the Cuntz algebra On and endomorphisms of On via u 7−→ λu

where λu(Si) = uSi, and provided criteria for these endomorphisms to be auto-

morphisms. In [16], motivated by Cuntz’s results, Conti, Hong and Szymański

introduced a class of endomorphisms fixing all vertex projections λu of C∗(E) cor-

responding to unitaries in the multiplier algebra M(C∗(E)) which commute with
6



all vertex projections. Then, they studied localized automorphisms of the graph

algebra C∗(E) of a finite graph without sink (i.e., automorphisms λu correspond-

ing to unitaries u from the algebraic part of the core AF-subalgebra which com-

mute with the vertex projections), and gave combinatorial criteria for localized

endomorphisms corresponding to permutation unitaries to be automorphisms.

Szymański et al. [12, 20] studied permutative automorphisms and polynomial

endomorphisms of graph C∗-algebras C∗(E) and Leavitt path algebras LK(E),

where E is a finite graph without sinks or sources in which every cycle has an exit,

and K is an integral domain of characteristic 0. Kuroda and the first author [22,

Section 2] gave a method to construct endomorphisms and automorphisms fixing

all vertices of Leavitt path algebras LK(E) of arbitrary graphs E over an arbitrary

field K, by using special pairs (P,Q) consisting of matrices in Mn(LK(E)) which

commute with all vertices in E, where n is an arbitrary positive integer.

The first aim of this section is to completely describe endomorphisms intro-

duced in [22], and give criteria for these endomorphisms to be automorphisms.

As usual, for any ring R, for any endomorphism f ∈ End(R) and for any

A ∈ Mn(R), we denote by f(A) the matrix (f(ai,j)) ∈ Mn(R), and denote by Am

the matrix Af(A) · · · fm−1(A) ∈ Mn(R) for every m ≥ 1, where f0 := idR. For

any Z-graded algebra A over a field K, we denote by Endgr(A) the K-algebra of

all graded endomorphisms of A, and denote by Autgr(A) the group of all graded

automorphisms of A.

We are now in a position to provide the main result of this section providing

a method to construct endomorphisms and automorphisms fixing all vertices of

Leavitt path algebras of arbitrary graphs over an arbitrary field in terms of general

linear groups over corners of these algebras.

Theorem 2.2. Let K be a field, n a positive integer, E a graph, and v and w

vertices in E (they may be the same). Let e1, e2, . . . , en be distinct edges in E with

s(ei) = v and r(ei) = w for all 1 ≤ i ≤ n. Let P be an element of GLn(wLK(E)w)

with P = (pi,j) and P−1 = (p′i,j). Then the following statements hold:

(1) There exists a unique injective homomorphism ϕP : LK(E) −→ LK(E) of

K-algebras satisfying

ϕP (u) = u, ϕP (e) = e and ϕP (e
∗) = e∗

for all u ∈ E0 and e ∈ E1 \ {e1, . . . , en}, and

ϕP (ei) =
∑n

k=1 ekpk,i and ϕP (e
∗
i ) =

∑n
k=1 p

′
i,ke

∗
k

for all 1 ≤ i ≤ n.

(2) For every Q ∈ GLn(wLK(E)w), ϕP = ϕQ if and only if P = Q. Conse-

quently, ϕP = idLK (E) if and only if P is the identity matrix of Mn(wLK(E)w).

(3) ϕPϕQ = ϕ
PϕP (Q) for all Q ∈ GLn(wLK(E)w). In particular, ϕm

P = ϕPm

for all positive integer m.

(4) ϕP is an isomorphism if and only if P−1 = ϕP (Q) for some Q ∈ GLn(wLK(E)w).

In this case, ϕ−1
Pm

= ϕQm, Pm = ϕPm(Q
−1
m ) and P−1

m = ϕPm(Qm) for all m ≥ 1.
7



In particular, if ϕP (P ) = P or ϕP (P
−1) = P−1, then ϕP is an isomorphism and

ϕm
P = ϕPm for all integer m.

If, in addition, |s−1(v)| = n, then we have the following:

(5) For every K-algebra homomorphism λ : LK(E) −→ LK(E) with λ(u) =

u, λ(e) = e and λ(e∗) = e∗ for all u ∈ E0 and e ∈ E1 \ {e1, . . . , en}, there exists

a unique matrix P = (pi,j) ∈ GLn(wLK(E)w) such that pi,j = e∗i λ(ej) for all

1 ≤ i, j ≤ n and λ = ϕP .

(6) We denote by Endv,w(LK(E)) the set of all endomorphisms λ of LK(E)

with λ(u) = u, λ(e) = e and λ(e∗) = e∗ for all u ∈ E0 and e ∈ E1 \ {e1, . . . , en}.

Then, the map ϕ : (GLn(wLK(E)w), ⋆) −→ Endv,w(LK(E)), P 7−→ ϕP , is a

monoid isomorphism, where the multiplication law “⋆” is defined by

P ⋆ Q = PϕP (Q)

for all P,Q ∈ GLn(wLK(E)w).

Proof. (1) The existence of a unique homomorphism ϕP : LK(E) −→ LK(E)

of K-algebras with the desired property follows from [22, Theorem 2.2 (i)]. For

the sake of completeness, we give a sketch of the proof. We define the elements

{Qu : u ∈ E0} and {Te, Te∗ : e ∈ E1} by setting Qu = u,

Te =

{ ∑n
k=1 ekpk,i if e = ei for some 1 ≤ i ≤ n

e otherwise.

and

Te∗ =

{ ∑n
k=1 p

′
i,ke

∗
k if e = ei for some 1 ≤ i ≤ n

e∗ otherwise.

and show that these elements form a generating set for LK(E) with the same

relations as defining relations for Leavitt path algebra. Therefore, by the Uni-

versal Property of Leavitt path algebras, there exists a unique homomorphism

ϕP : LK(E) −→ LK(E) of K-algebras satisfying ϕP (u) = Qu, ϕP (e) = Te,

ϕP (e
∗) = Te∗ for all u ∈ E0 and e ∈ E1. Consequently, we have ϕP (u) =

u, ϕP (e) = e and ϕP (e
∗) = e∗ for all u ∈ E0 and e ∈ E1 \ {e1, . . . , en}, and

ϕP (ei) =
∑n

k=1 ekpk,i and ϕP (e
∗
i ) =

∑n
k=1 p

′
i,ke

∗
k

for all 1 ≤ i ≤ n.

We next prove that ϕP is injective by following the proof of [22, Theorem

2.2 (ii)]. To the contrary, suppose there exists a nonzero element x ∈ ker(ϕP ).

Then, by the Reduction Theorem (see, e.g., [2, Theorem 2.2.11]), there exist

a, b ∈ LK(E) such that either axb = u 6= 0 for some u ∈ E0, or axb = p(c) 6= 0,

where c is a cycle in E without exits and p(x) is a nonzero polynomial inK[x, x−1].

In the first case, since axb ∈ ker(ϕP ), this would imply that u = ϕP (u) = 0 in

LK(E); but each vertex is well-known to be a nonzero element inside the Leavitt

path algebra, which is a contradiction.
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So we are in the second case: there exists a cycle c in E without exits such

that axb =
∑m

i=−l kic
i 6= 0, where ki ∈ K, l and m are nonnegative integers, and

we interpret ci as (c∗)−i for negative i, and we interpret c0 as u := s(c). Write

c = g1q2 · · · gt, where gi ∈ E1 and t is a positive integer. If gi ∈ E1 \ {e1, . . . , en}

for all 1 ≤ i ≤ t, then ϕP (c) = c and ϕP (c
∗) = c∗, so 0 6=

∑m
i=−l kic

i =
∑m

i=−l kiϕP (c
i) = ϕP (axb) = 0 in LK(E), a contradiction. Consider the case

that there exists a 1 ≤ k ≤ t such that gk = ei for some i. Then, since c is a cycle

without exits, we must have n = 1 and k is a unique element such that gk = e1.

Let α := gk+1 · · · gtg1 · · · gk−1e1. We have that α is a cycle in E without exits and

s(α) = w. Since n = 1, P = p1,1 and P−1 = p′1,1 are two elements of wLK(E)w

with p1,1p
′
1,1 = w = p′1,1p1,1, so p1,1 is a unit of wLK(E)w with p−1

1,1 = p′1,1. By

[2, Lemma 2.2.7], we have

wLK(E)w = {

h∑

i=l

kiα
i | ki ∈ K, l ≤ h, h, l ∈ Z} ∼= K[x, x−1]

via an isomorphism that sends v to 1, α to x and α∗ to x−1, and so p1,1 = aαs

and p′1,1 = a−1α−s for some a ∈ K \ {0} and s ∈ Z. If s ≥ 0, then

ϕP (c) = ϕP (g1 · · · gk−1e1gk+1 · · · gt) = (g1 · · · gk−1)e1p1,1(gk+1 · · · gt)

= (g1 · · · gk−1e1)aα
s(gk+1 · · · gt) = a(g1 · · · gk−1e1)α

s(gk+1 · · · gt) = acs+1,

and

ϕP (c
∗) = ϕP (g

∗
t · · · g

∗
k+1e

∗
1g

∗
k−1 · · · g

∗
1) = (g∗t · · · g

∗
k+1)p

′
1,1e

∗
1(g

∗
k−1 · · · g

∗
1)

= a−1(g∗t · · · g
∗
k+1)α

−s(e∗1g
∗
k−1 · · · g

∗
1) = (g∗t · · · g

∗
k+1)(α

∗)s(e∗1g
∗
k−1 · · · g

∗
1)

= a−1(c∗)s+1.

If s < 0, then

ϕP (c) = ϕP (g1 · · · gk−1e1gk+1 · · · gt) = (g1 · · · gk−1)e1p1,1(gk+1 · · · gt)

= (g1 · · · gk−1e1)aα
s(gk+1 · · · gt) = a(g1 · · · gk−1e1)(α

∗)−s(gk+1 · · · gt)

= a(c∗)−s−1 = a(c∗)−s−1 = acs+1,

and

ϕP (c
∗) = ϕP (g

∗
t · · · g

∗
k+1e

∗
1g

∗
k−1 · · · g

∗
1) = (g∗t · · · g

∗
k+1)p

′
1,1e

∗
1(g

∗
k−1 · · · g

∗
1)

= a−1(g∗t · · · g
∗
k+1)α

−s(e∗1g
∗
k−1 · · · g

∗
1) = (g∗t · · · g

∗
k+1)(α

∗)−s(e∗1g
∗
k−1 · · · g

∗
1)

= a−1(c∗)−s−1 = a−1cs+1.

Therefore, we obtain that ϕP (c
l) = alcl(s+1) for all l ∈ Z, and

0 6=
m∑

i=−l

kia
ici(s+1) =

m∑

i=−l

kiϕP (c
i) = ϕP (axb) = 0

9



in LK(E), which is a contradiction.

In any case, we arrive at a contradiction, and so we infer that ϕP is injective,

as desired.

(2) Assume that Q = (qi,j) ∈ GLn(wLK(E)w) and ϕP = ϕQ. We then have
∑n

k=1 ekpk,j = ϕP (ej) = ϕQ(ej) =
∑n

k=1 ekqk,j for all 1 ≤ j ≤ n, and so

pi,j = wpi,j = e∗i (

n∑

k=1

ekpk,j) = e∗i (

n∑

k=1

ekqk,j) = wqi,j = qi,j

for all 1 ≤ i, j ≤ n. This implies that P = Q. The converse is obvious.

(3) Suppose Q is an element of GLn(wLK(E)w) with Q = (qi,j) and Q−1 =

(q′i,j). We then have PϕP (Q) ∈ GLn(wLK(E)w) and (PϕP (Q))−1 = ϕP (Q
−1)P−1.

We claim that ϕPϕQ = ϕ
PϕP (Q). It suffices to check that

ϕPϕQ(ei) = ϕ
PϕP (Q)(ei) and ϕPϕQ(e

∗
i ) = ϕ

PϕP (Q)(e
∗
i ) for all 1 ≤ i ≤ n.

For each 1 ≤ i ≤ n, by definition of ϕQ, ϕQ(ei) =
∑n

k=1 ekqk,i and ϕQ(e
∗
i ) =∑n

k=1 q
′
i,ke

∗
k, so

ϕPϕQ(ei) = ϕP (
n∑

k=1

ekqk,i) =
n∑

k=1

ϕP (ek)ϕP (qk,i) =
n∑

k=1

n∑

l=1

elpl,kϕP (qk,i)

=

n∑

l=1

el(

n∑

k=1

pl,kϕP (qk,i)) = ϕ
PϕP (Q)(ei)

and

ϕPϕQ(e
∗
i ) = ϕP (

n∑

k=1

q′i,ke
∗
k) =

n∑

k=1

ϕP (q
′
i,k)ϕP (e

∗
k) =

n∑

k=1

n∑

l=1

ϕP (q
′
i,k)p

′
k,le

∗
l

=

n∑

l=1

(

n∑

k=1

ϕP (q
′
i,k)p

′
k,l)e

∗
l = ϕ

PϕP (Q)(e
∗
i ),

proving the claim.

We show that ϕm
P = ϕPm for all positive integer m. First, note that Pm ∈

GLn(wLK(E)w) with P−1
m = ϕm−1

P

(
P−1

)
· · ·ϕP

(
P−1

)
P−1. We use induction

on m to establish the fact ϕm
P = ϕPm for all m ≥ 1. If m = 1, then the fact is

obvious. Now we proceed inductively. For m > 1, by the induction hypothesis,

ϕm−1
P = ϕPm−1 , and so

ϕm
P = ϕPϕ

m−1
P = ϕPϕPm−1 = ϕ

PϕP (Pm−1) = ϕPm ,

as desired.

(4) (⇒) Assume that ϕP is an isomorphism, that means, there exists a matrix

Q ∈ GLn(wLK(E)w) such that ϕPϕQ = idLK (E). Then, by item (3), ϕ
PϕP (Q) =

idLK(E), and so PϕP (Q) is the identity of Mn(wLK(E)w) by item (2). This

shows that P−1 = ϕP (Q).

(⇐) Assume that P−1 = ϕP (Q) for some Q ∈ GLn(wLK(E)w). Then, by

item (3), ϕPϕQ = ϕ
PϕP (Q) = ϕPP−1 = idLK(E), and so ϕP is surjective. By item

10



(1), ϕP is always injective, and hence ϕP is an isomorphism with ϕ−1
P = ϕQ.

This implies that idLK(E) = ϕm
P ϕm

Q = ϕPmϕQm = ϕ
PmϕPm

(Qm)
, so ϕ−1

Pm
= ϕQm

and PmϕPm(Qm) = wIn for all m ≥ 1. Consequently, Pm = ϕPm(Q
−1
m ) and

P−1
m = ϕPm(Qm) for all m ≥ 1.

In particular, suppose ϕP (P ) = P . Since ϕP is a K-algebra homomorphism,

PϕP (P
−1) = ϕP (P )ϕP (P

−1) = ϕP (PP−1) = ϕP (wIn) = wIn, so P−1 =

ϕP (P
−1). Similarly, we obtain that if P−1 = ϕP (P

−1), then P = ϕP (P ). Hence,

in any case, we have that P = ϕP (P ) and P−1 = ϕP (P
−1). We then have

PmϕP (P
m) = wIn for all m ∈ Z, so ϕP is an isomorphism and ϕm

P = ϕPm for all

m ∈ Z.

(5) Assume that |s−1(v)| = n and let λ : LK(E) → LK(E) be a K-algebra

homomorphism with λ(u) = u, λ(e) = e and λ(e∗) = e∗ for all u ∈ E0 and

e ∈ E1 \ {e1, . . . , en}. We then have

λ(ei) = λ(eiw) = λ(ei)λ(w) = λ(ei)w

and

λ(e∗i ) = λ(we∗i ) = λ(w)λ(e∗i ) = wλ(e∗i )

for all 1 ≤ i ≤ n, so e∗iλ(ej) and λ(e∗i )ej ∈ wLK(E)w for all 1 ≤ i ≤ n.

Let P = (pi,j) and P ′ = (p′i,j) ∈ Mn(wLK(E)w) with pi,j = e∗i λ(ej) and

p′i,j = λ(e∗i )ej for all 1 ≤ i, j ≤ n. We claim that P ∈ GLn(wLK(E)w) with

P−1 = P ′. Indeed, since |s−1(v)| = n, we must have s−1(v) = {e1, e2, . . . , en}

and v =
∑n

i=1 eie
∗
i , and so

n∑

k=1

pi,kp
′
k,j =

n∑

k=1

e∗i λ(ek)λ(e
∗
k)ej = e∗i λ(

n∑

k=1

eke
∗
k)ej = e∗i λ(v)ej = δi,jw

and
n∑

k=1

p′i,kpk,j =

n∑

k=1

λ(e∗i )eke
∗
kλ(ej) = λ(e∗i )(

n∑

k=1

eke
∗
k)λ(ej) = λ(e∗i ej) = δi,jw

for all 1 ≤ i, j ≤ n, where δ is the Kronecker delta. This implies that PP ′ =

wIn = P ′P , showing the claim.

We show that λ = ϕP . It suffices to check that λ(ei) = ϕP (ei) and λ(e∗i ) =

ϕP (e
∗
i ) for all 1 ≤ i ≤ n. For each 1 ≤ i ≤ n, by definition of ϕP , we have

ϕ(ei) =

n∑

k=1

eke
∗
kλ(ei) = (

n∑

k=1

eke
∗
k)λ(ei) = vλ(ei) = λ(vei) = λ(ei)

and

ϕ(e∗i ) =

n∑

k=1

λ(e∗i )eke
∗
k = λ(e∗i )(

n∑

k=1

eke
∗
k) = λ(ei)v = λ(e∗i v) = λ(e∗i ),

as desired.
11



(6) We always have that (GLn(wLK(E)w), ⋆) is a monoid with identity element

wIn. Then, the statement immediately follows from items (1), (2), (3) and (5),

thus finishing the proof. �

Consequently, we obtain a method to construct graded endomorphisms and

graded automorphisms of Leavitt path algebras of arbitrary graphs over an arbi-

trary field in terms of general linear groups over corners of these algebras.

Corollary 2.3. Let K be a field, n a positive integer, E a graph, and v and

w vertices in E (they may be the same). Let e1, e2, . . . , en be distinct edges in

E with s(ei) = v and r(ei) = w for all 1 ≤ i ≤ n. Let P be an element of

GLn(wLK(E)0w) with P = (pi,j) and P−1 = (p′i,j). Then the following state-

ments hold:

(1) There exists a unique graded homomorphism ϕP : LK(E) −→ LK(E) of

K-algebras satisfying

ϕP (u) = u, ϕP (e) = e and ϕP (e
∗) = e∗

for all u ∈ E0 and e ∈ E1 \ {e1, . . . , en}, and

ϕP (ei) =
∑n

k=1 ekpk,i and ϕP (e
∗
i ) =

∑n
k=1 p

′
i,ke

∗
k

for all 1 ≤ i ≤ n.

(2) ϕP is a graded isomorphism if and only if P−1 = ϕP (Q) for some Q ∈

GLn(wLK(E)0w). In this case, ϕ−1
Pm

= ϕQm, Pm = ϕPm(Q
−1
m ) and P−1

m =

ϕPm(Qm) for all m ≥ 1. In particular, if ϕP (P ) = P or ϕP (P
−1) = P−1, then

ϕP is a graded isomorphism and ϕm
P = ϕPm for all integer m.

(3) Assume that |s−1(v)| = n and we denote by Endgrv,w(LK(E)) the set of all

graded endomorphisms λ of LK(E) with λ(u) = u, λ(e) = e and λ(e∗) = e∗ for

all u ∈ E0 and e ∈ E1\{e1, . . . , en}. Then, the map ϕ : (GLn(wLK(E)0w), ⋆) −→

Endgrv,w(LK(E)), P 7−→ ϕP , is a monoid isomorphism, where the multiplication

law “⋆” is defined by

P ⋆ Q = PϕP (Q)

for all P,Q ∈ GLn(wLK(E)0w).

Proof. (1) By Theorem 2.2, there exists a unique homomorphism ϕP : LK(E) −→

LK(E) of K-algebras satisfying ϕP (u) = u, ϕP (e) = e and ϕP (e
∗) = e∗ for all

u ∈ E0 and e ∈ E1 \ {e1, . . . , en}, and

ϕP (ei) =
∑n

k=1 ekpk,i and ϕP (e
∗
i ) =

∑n
k=1 p

′
i,ke

∗
k

for all 1 ≤ i ≤ n. It is obvious that ϕP (u) has degree 0 for all u ∈ E0. Since pi,j
and p′i,j ∈ LK(E)0 for all 1 ≤ i, j ≤ n, ϕP (e) has degree 1 and ϕP (e

∗) has degree

−1 for all e ∈ E1. Therefore, ϕP is a Z-graded homomorphism.

(2) It immediately follows from Theorem 2.2 (4).

(3) We note that for all P,Q ∈ GLn(wLK(E)0w), we obtain that ϕP (Q) ∈

GLn(wLK(E)0w) (by item (1)) and P ⋆ Q = PϕP (Q) ∈ GLn(wLK(E)0w), and

so GLn(wLK(E)0w) is a submonoid of the monoid (GLn(wLK(E)w), ⋆). Then,
12



by Theorem 2.2 (6), the map ϕ : (GLn(wLK(E)0w), ⋆) −→ Endgrv,w(LK(E)),

P 7−→ ϕP , is a monoid injection.

We claim that ϕ is surjective. Indeed, let λ ∈ Endgrv,w(LK(E)). Then, by

Theorem 2.2 (5), there exists a unique matrix P = (pi,j) ∈ GLn(wLK(E)w)

such that pi,j = e∗i λ(ej) for all 1 ≤ i, j ≤ n and λ = ϕP . Since λ is a graded

homomorphism, λ(ej) has degree 1 for all 1 ≤ j ≤ n, and so pi,j = e∗i λ(ej) ∈

LK(E)0 for all 1 ≤ i, j ≤ n. This implies that P ∈ GLn(wLK(E)0w) and

ϕ(P ) = ϕP = λ, showing the claim. Therefore, we have that ϕ is a monoid

isomorphism, thus finishing the proof. �

For clarification, we illustrate Theorem 2.2 and Corollary 2.3 by presenting the

following example, which describes completely all (graded) endomorphisms and

(graded) automorphism of the Levitt path algebra of the rose R1 with one petal.

Example 2.4. Let K be a field and R1 the following graph.

R1 = •v

e

��

Then LK(R1) ∼= K[x, x−1] via an isomorphism that sends v to 1, e to x and e∗

to x−1. We then have that the group U(LK(R1)) of units of LK(R1) is exactly

the set {aem | a ∈ K \{0},m ∈ Z}. For any P = aem ∈ U(LK(R1)), by Theorem

2.2 (1), we have the endomorphism ϕP defined by: v 7−→ v, e 7−→ aem+1 and

e∗ 7−→ a−1e−m−1. By Theorem 2.2 (6), End(LK(R1)) is exactly the set {ϕP | P ∈

U(LK(R1))}. We note that a−1e−m = P−1 = ϕP (be
l) if and only if m = l = 0

and b = a−1, or m = l = −2 and b = a. By Theorem 2.2 (4), the automorphism

group Aut(LK(R1)) of LK(R1) is exactly the set {ϕa, ϕbe−2 | a, b ∈ K \ {0}}.

We have that LK(R1)0 = K, and so Endgr(LK(R1)) is exactly the set {ϕa |

a ∈ K \ {0}} (by Corollary 2.3 (1)), which is isomorphic to the group K \ {0}.

We also have that Autgr(LK(R1)) is equal to Endgr(LK(R1)).

The next aim of this section is to completely describe (graded) endomorphisms

and (graded) automorphisms of the Leavitt algebra of type (1;n) in terms of the

general linear group of degree n over this algebra.

Let K be a field and n ≥ 2 any integer. Then the Leavitt K-algebra of type

(1;n), denoted by LK(1, n), is the K-algebra

K〈x1, . . . , xn, y1, . . . , yn〉/〈

n∑

i=1

xiyi − 1, yixj − δi,j1 | 1 ≤ i, j ≤ n〉.

Notationally, it is often more convenient to view LK(1, n) as the free associa-

tive K-algebra on the 2n variables x1, . . . , xn, y1, . . . , yn subject to the relations
∑n

i=1 xiyi = 1 and yixj = δi,j1 (1 ≤ i, j ≤ n); see [23] for more details.
13



For any integer n ≥ 2, we let Rn denote the rose with n petals graph having

one vertex and n loops:

Rn = •v e1hh

e2

ss

e3

��

en

RR...

Then LK(Rn) is defined to be theK-algebra generated by v, e1, . . . , en, e
∗
1, . . . , e

∗
n,

satisfying the following relations

v2 = v, vei = ei = eiv, ve
∗
i = e∗i = e∗i v, e

∗
i ej = δi,jv and

∑n
i=1 eie

∗
i = v

for all 1 ≤ i, j ≤ n. In particular v = 1LK(Rn).

By [2, Proposition 1.3.2] (see, also [22, Proposition 2.6]), LK(1, n) ∼= LK(Rn)

as K-algebras, by the mapping: 1 7−→ v, xi 7−→ ei and yi 7−→ e∗i for all

1 ≤ i ≤ n. With this fact in mind, for the remainder of this article we inves-

tigate (graded) automorphisms of the Leavitt algebra LK(1, n) by equivalently

investigating (graded) automorphisms of the Leavitt path algebra LK(Rn).

The following corollary describes completely endomorphisms and automor-

phisms of LK(Rn) in terms of the general linear group of degree n over LK(Rn).

Corollary 2.5. Let n ≥ 2 be a positive integer, K a field and Rn the rose

graph with n petals. Let P be an element of GLn(LK(Rn)) with P = (pi,j) and

P−1 = (p′i,j). Then the following statements hold:

(1) There exists a unique injective homomorphism ϕP : LK(Rn) −→ LK(Rn) of

K-algebras satisfying ϕP (v) = v, ϕP (ei) =
∑n

k=1 ekpk,i and ϕP (e
∗
i ) =

∑n
k=1 p

′
i,ke

∗
k

for all 1 ≤ i ≤ n.

(2) ϕPϕQ = ϕ
PϕP (Q) for all Q ∈ GLn(LK(Rn)). In particular, ϕm

P = ϕPm for

all positive integer m.

(3) ϕP ∈ Aut(LK(Rn)) if and only if P−1 = ϕP (Q) for some Q ∈ GLn(LK(Rn)).

In this case, ϕ−1
Pm

= ϕQm , Pm = ϕPm(Q
−1
m ) and P−1

m = ϕPm(Qm) for all m ≥ 1.

In particular, if ϕP (P ) = P or ϕP (P
−1) = P−1, then ϕP is an isomorphism and

ϕm
P = ϕPm for all integer m.

(4) The map ϕ : (GLn(LK(Rn)), ⋆) −→ End(LK(Rn)), P 7−→ ϕP , is a monoid

isomorphism, where the multiplication law “⋆” is defined by

P ⋆ Q = PϕP (Q)

for all P,Q ∈ GLn(LK(Rn)).

Proof. It immediately follows from Theorem 2.2. �

The following corollary describes completely graded endomorphisms and graded

automorphisms of LK(Rn) in terms of the general linear group of degree n over

LK(Rn)0.

Corollary 2.6. Let n ≥ 2 be a positive integer, K a field and Rn the rose

graph with n petals. Let P be an element of GLn(LK(Rn)0) with P = (pi,j) and

P−1 = (p′i,j). Then the following statements hold:
14



(1) There exists a unique graded homomorphism ϕP : LK(Rn) −→ LK(Rn) of

K-algebras satisfying ϕP (v) = v, ϕP (ei) =
∑n

k=1 ekpk,i and ϕP (e
∗
i ) =

∑n
k=1 p

′
i,ke

∗
k

for all 1 ≤ i ≤ n.

(2) ϕP ∈ Autgr(LK(Rn)) if and only if there exists a matrix Q ∈ GLn(LK(Rn)0)

such that P−1 = ϕP (Q). In this case, ϕ−1
Pm

= ϕQm , Pm = ϕPm(Q
−1
m ) and

P−1
m = ϕPm(Qm) for all m ≥ 1. In particular, if ϕP (P ) = P or ϕP (P

−1) = P−1,

then ϕP is a graded isomorphism and ϕm
P = ϕPm for all integer m.

(3) The map ϕ : (GLn(LK(Rn)0), ⋆) −→ Endgr(LK(Rn)), P 7−→ ϕP , is a

monoid isomorphism, where the multiplication law “⋆” is defined by

P ⋆ Q = PϕP (Q)

for all P,Q ∈ GLn(LK(Rn)0).

Proof. It immediately follows from Corollary 2.3. �

The following corollary gives that the general linear group GLn(K) of degree

n over a field K may be considered as a subgroup of the graded automorphism

group Autgr(LK(Rn)) of LK(Rn).

Corollary 2.7. Let n ≥ 2 be a positive integer, K a field and Rn the rose graph

with n petals. Then, there exists an injective homomorphism ϕ : GLn(K) −→

Autgr(LK(Rn)) of groups such that ϕ(P ) = ϕP for all P ∈ GLn(K).

Proof. By Corollary 2.6 (3), the map ϕ : (GLn(LK(Rn)0), ⋆) −→ Endgr(LK(Rn)),

defined by P 7−→ ϕP , is a monoid isomorphism, where the multiplication law “⋆”

is defined by

P ⋆ Q = PϕP (Q)

for all P,Q ∈ GLn(LK(Rn)0). For all P and Q ∈ GLn(K), since ϕP (Q) = Q,

we must have P ⋆ Q = PQ, so GLn(K) is a subgroup of the group of units

of the monoid (GLn(LK(Rn)0), ⋆). Moreover, since ϕP (P ) = P for all P ∈

GLn(K), and by Corollary 2.6, ϕP ∈ Autgr(LK(Rn)) for all P ∈ GLn(K). From

these observations, we obtain that ϕ|GLn(K) : GLn(K) −→ Autgr(LK(Rn)) is an

injective homomorphism of groups, thus finishing the proof. �

In [22, Corollary 2.8] Kuroda and the first author introduced Anick type auto-

morphisms of LK(Rn). We reproduce here these automorphisms. Namely, for

any integer n ≥ 2 and any field K, we denote by ARn(e1, e2) the K-subalgebra

of LK(Rn) generated by

v, e1, e3, . . . , en, e
∗
2, . . . , e

∗
n.

We should note that by [6, Theorem 1] (see, also [24, Theorem 3.7]), the

following elements form a basis of the K-algebra ARn(e1, e2): (1) v, (2) p =

ek1 · · · ekm, where ki ∈ {1, 3, . . . , n}, (3) q∗ = e∗t1 · · · e
∗
th
, where ti ∈ {2, 3, . . . , n},

(4) pq∗, where p and q∗ are defined as in items (2) and (3), respectively.
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For any p ∈ ARn(e1, e2), let

Up =








1 p 0 . . . 0

0 1 0 . . . 0
...

...
...

...
...

0 0 0 . . . 1








.

We then have Up ∈ GLn(LK(Rn)) with U−1
p = U−p and

UpUq = Up+q

for all p, q ∈ ARn(e1, e2). Also, for any p ∈ ARn(e1, e2), by Theorem 2.2, we

obtain the endomorphism ϕUp of LK(Rn) defined by: v 7−→ v, ei 7−→ ei for all

i ∈ {1, 3, . . . , n}, e∗j 7−→ e∗j for all 2 ≤ j ≤ n, e2 7−→ e2 + e1p and e∗1 7−→ e∗1 − pe∗2.

For convenience, we denote ϕp := ϕUp . We note that ϕp(q) = q for all q ∈

ARn(e1, e2), and so ϕp(Uq) = Uq for all q ∈ ARn(e1, e2). By Theorem 2.2, ϕp is

an automorphism and ϕm
p = ϕmp for all p ∈ ARn(e1, e2) and m ∈ Z. Moreover, if

p ∈ ARn(e1, e2) ∩ LK(Rn)0, then ϕp is a graded automorphism by Corollary 2.6.

From these observations, we have the following interesting note.

Corollary 2.8. Let n ≥ 2 be a positive integer, K a field and Rn the rose graph

with n petals. Then, there exists an injective homomorphism ϕ : (ARn(e1, e2),+) −→

Aut(LK(Rn)) of groups such that ϕ(p) = ϕp for all p ∈ ARn(e1, e2), and

ϕ|ARn (e1,e2)∩LK(Rn)0 : (ARn(e1, e2) ∩ LK(Rn)0,+) −→ Autgr(LK(Rn))

is an injective homomorphism of groups.

Proof. By Corollary 2.5 (4), the map ϕ : (GLn(LK(Rn)), ⋆) −→ End(LK(Rn)),

defined by P 7−→ ϕP , is a monoid isomorphism, where the multiplication law “⋆”

is defined by

P ⋆ Q = PϕP (Q)

for all P,Q ∈ GLn(LK(Rn)). Since ϕp(Uq) = ϕUp(Uq) = Uq for all p, q ∈

ARn(e1, e2), we must have

Up ⋆ Uq = UpUq = Up+q

for all p, q ∈ ARn(e1, e2). This implies that the map from (ARn(e1, e2),+) to

the group of units of the monoid (GLn(LK(Rn)), ⋆), defined by p 7−→ Up, is an

injective homomorphism of groups. Hence, the group (ARn(e1, e2),+) may be

viewed as a subgroup of the group of units of the monoid (GLn(LK(Rn)), ⋆), and

so

ϕ|ARn (e1,e2)
: (ARn(e1, e2),+) −→ Aut(LK(Rn))

is an injective homomorphism of groups satisfying the desired statements, thus

finishing the proof. �

We close this section with the following remark describing all automorphisms

of LK(Rn) in terms of its group of units, which was introduced by Cuntz in [18].
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Remark 2.9. Let n ≥ 2 be a positive integer, K a field, Rn the rose graph with

n petals, and U(LK(Rn)) the group of units of LK(Rn). Let u be an element

of U(LK(Rn)). We then have uIn ∈ GLn(LK(Rn)) with (uIn)
−1 = u−1In. By

Corollary 2.5 (1), there exists a unique injective endomorphism ϕuIn of LK(Rn)

such that ϕuIn(v) = v, ϕuIn(ei) = eiu and ϕuIn(e
∗
i ) = u−1e∗i for all 1 ≤ i ≤ n.

For simplicity, we denote ϕu := ϕuIn . Moreover, by Corollary 2.5 (3), ϕu is an

automorphism if and only if there exists a matrix Q = (qi,j) ∈ GLn(LK(Rn))

such that u−1In = ϕu(Q) = (ϕu(qi,j)). In this case, ϕ−1
uIn

= ϕQ. We note

that u−1In = (ϕu(qi,j)) if and only if ϕu(qi,j) = δi,ju
−1 for all 1 ≤ i, j ≤ n,

if and only if qi,j = δi,jϕ
−1
u (u−1) for all 1 ≤ i, j ≤ n (since ϕu is injective),

if and only if Q = wIn, where w = ϕ−1
u (u−1) ∈ U(LK(Rn)). In other words,

ϕu ∈ Aut(LK(Rn)) if and only if u−1 = ϕu(w) for some w ∈ U(LK(Rn)). In this

case, ϕ−1
u = ϕw. This shows that

Aut(LK(Rn)) = {ϕu | u ∈ U(LK(Rn)) and u−1 ∈ Im(ϕu)}

and

Autgr(LK(Rn)) = {ϕu ∈ Aut(LK(Rn)) | u ∈ U(LK(Rn)0)}.

3. Application: Zhang twist of Leavitt path algebras

In this section we study Zhang twist of Leavitt path algebras. More precisely, we

twist the multiplicative structure of Leavitt path algebras LK(E) over any graph

E with the help of graded automorphisms constructed in the previous section.

Definition 3.1. Let σ be a graded automorphism of Leavitt path algebra LK(E)

over any arbitrary graph E. We know that LK(E) has a Z-graded structure as

LK(E) = ⊕nLn. We twist the multiplicative structure of ⊕nLn as a ⋆ b = aσn(b)

for any a ∈ Ln, b ∈ Lm. The same underlying graded vector space ⊕Ln with

this new graded product ⋆ is called the Zhang twist of LK(E) and denoted as

LK(E)σ.

In a rather surprising result we note that the Leavitt path algebra LK(E) of an

arbitrary graph E is always a subalgebra of the Zhang twist LK(E)ϕP by any

graded automorphism ϕP introduced in Corollary 2.3.

Proposition 3.2. Let K be a field, n a positive integer, E a graph, and v and w

vertices in E (they may be the same). Let e1, e2, . . . , en be distinct edges in E with

s(ei) = v and r(ei) = w for all 1 ≤ i ≤ n. Let P = (pij) and Q = (qij) be elements

of GLn(wLK(E)0w) with PϕP (Q) = In, P−1 = (p
(−1)
ij ) and Q−1 = (q

(−1)
ij ).

Then, there exists a graded injective homomorphism θP : LK(E) −→ LK(E)ϕP

of K-algebras satisfying

θP (u) = u, θP (e) = e and θP (f
∗) = f∗

for all u ∈ E0, e ∈ E1 and f ∈ E1 \ {e1, . . . , en}, and

θP (e
∗
i ) =

∑n
k=1 q

(−1)
ik e∗k

17



for all 1 ≤ i ≤ n, where the graded automorphism ϕP is defined in Corollary 2.3.

Proof. We first note that ϕP (u) = u, ϕP (e) = e and ϕP (e
∗) = e∗ for all u ∈ E0

and e ∈ E1 \ {e1, . . . , en}, and

ϕP (ei) =
∑n

k=1 ekpki and ϕP (e
∗
i ) =

∑n
k=1 p

(−1)
ik e∗k

for all 1 ≤ i ≤ n, and ϕ−1
P = ϕQ.

We define the elements {Qu | u ∈ E0} and {Te, Te∗ | e ∈ E1} of LK(E)ϕP by

setting Qu = u, Te = e and

Te∗ =

{
∑n

k=1 q
(−1)
ik e∗k if e = ei for some 1 ≤ i ≤ n

e∗ otherwise.

We claim that {Qu, Te, Te∗ | u ∈ E0, e ∈ E1} is a family in LK(E)ϕP satisfying

the relations analogous to (1) - (4) in Definition 2.1. Indeed, we have Qu ∗Qu′ =

QuQu′ = uu′ = δu,u′u = δu,u′Qu for all u, u′ ∈ E0, showing relation (1).

For (2), we always have Qs(e) ∗ Te = Qs(e)Te = Te = TeTr(e) = Te ∗ Tr(e) for

all e ∈ E1 and Tf∗ ∗ Qs(f) = Tf∗ϕ−1(Qs(f)) = Tf∗Qs(f) = Tf∗ = Qr(f)Tf∗ =

Qr(f) ∗ Tf∗ for all f ∈ E1 \ {e1, . . . , en}. For each 1 ≤ i ≤ n, since

vek = ekw = ek, we∗k = e∗kv = e∗k, and wq
(−1)
ik = q

(−1)
ik

for all k, we have

Qw ∗ Te∗i
= QwTe∗i

= w

n∑

k=1

q
(−1)
ik e∗k =

n∑

k=1

wq
(−1)
ik e∗k =

n∑

k=1

q
(−1)
ik e∗k = Te∗i

,

Te∗i
∗Qv = Te∗i

ϕ−1
P (Qv) = Te∗i

Qv =

n∑

k=1

q
(−1)
ik e∗kv =

n∑

k=1

q
(−1)
ik e∗k = Te∗i

.

For (3), we obtain that Te∗ ∗Tf = e∗ϕ−1
P (f) = e∗ϕQ(f) = e∗f = δe,fr(e) for all

e, f ∈ E1 \ {e1, . . . , en}. For each f ∈ E1 \ {e1, . . . , en} and 1 ≤ i ≤ n, we have

Te∗i
∗ Tf = Te∗i

ϕ−1
P (Tf ) = Te∗i

ϕQ(Tf ) =

n∑

k=1

qike
∗
kf = 0

and

Tf∗ ∗ Tei = Tf∗ϕ−1
P (Tei) = Tf∗ϕQ(Tei) =

n∑

k=1

f∗ekpki = 0,

since e∗kf = f∗ek = 0. For i, j ∈ {1, . . . , n}, we have

Te∗i
∗ Tej = Te∗i

ϕ−1
P (Tej ) = Te∗i

ϕQ(Tej ) =

n∑

k=1

n∑

l=1

q
(−1)
ik e∗kelqlj

=
n∑

k=1

n∑

l=1

q
(−1)
ik δk,lwplj =

n∑

k=1

q
(−1)
ik pkj = δi,jw = δi,jQw,

since e∗kel = δk,lw and wplj = plj.
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For (4), let u be a regular vertex in E. If u 6= v, then
∑

e∈s−1(u) Te ∗ Te∗ =
∑

e∈s−1(u) TeϕP (Te∗) =
∑

e∈s−1(u) ee
∗ = u = Qu. Consider the case when u = v,

that is, v is a regular vertex. Write

s−1(v) = {e1, . . . , en, en+1, . . . , em}

for some distinct en+1, . . . , em ∈ E1 with n ≤ m < ∞. We note that Tek ∗ Te∗
k
=

TekϕP (Te∗
k
) = eke

∗
k for all n+ 1 ≤ k ≤ m, and

Tei ∗ Te∗i
= eiϕP (

n∑

k=1

q
(−1)
ik e∗k) = ei

n∑

k=1

ϕP (q
(−1)
ik )ϕP (e

∗
k)

= ei

n∑

k=1

pik(

n∑

t=1

p
(−1)
kt e∗t ) (since ϕP (Q

−1) = P )

= ei

n∑

t=1

(

n∑

k=1

pikp
(−1)
kt )e∗t = ei(

n∑

k=1

pikp
(−1)
ki )e∗i = eiwe

∗
i

= eie
∗
i (since ei = eiw)

for all 1 ≤ i ≤ n, and so, we have

∑

e∈s−1(v)

Te ∗ Te∗ =

m∑

i=1

Tei ∗ Te∗i
=

m∑

i=1

eie
∗
i = v = Qv,

thus showing the claim. Then, by the Universal Property of LK(E), there exists

a K-algebra homomorphism θP : LK(E) −→ LK(E)ϕP , which maps u 7−→ Qu,

e 7−→ Te and e∗ 7−→ Te∗ . It is obvious that Qu and Te have degree 0 and 1

respectively for all u ∈ E0 and e ∈ E1. Since q
(−1)
ij ∈ LK(E)0 for all 1 ≤

i, j ≤ n, Te∗ has degree −1 for all e ∈ E1. This implies that ϕP is a Z-graded

homomorphism, whence the injectivity of θP is guaranteed by [28, Theorem 4.8],

thus finishing the proof. �

As a consequence, we have the following.

Corollary 3.3. If E is a finite graph and no cycle of E has an exit, then the

Leavitt path algebra LK(E) is a subalgebra of a K-algebra A such that the quotient

categories qgr−L(E) and qgr−A are equivalent. Consequently, their noncommu-

tative projective schemes proj−LK(E) and proj−A are equivalent.

Proof. Take A = LK(E)ϕP . Then by above theorem LK(E) is a subalgebra of

A. By [30], the graded module categories Gr−LK(E) and Gr−A are equivalent.

If E is a finite graph and no cycle of E has an exit, then LK(E) is noetherian.

So, the equivalence Gr−LK(E) ∼= Gr−A restricts to the subcategories of finitely

generated modules to give an equivalence gr−LK(E) ∼= gr−A. Moreover, the

subcategories of modules which are torsion also correspond, and so we have an

equivalence between the quotient categories qgr−LK(E) and qgr−A. As a con-

sequence it follows that their noncommutative projective schemes proj−LK(E)

and proj−A are equivalent (see [11]).
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The remainder of this section is to investigate Zhang twists LK(Rn)
λ of Leavitt

path algebras LK(Rn) by their graded automorphisms λ where Rn is the rose

graph with n petals. We first note that for any λ ∈ Autgr(LK(Rn)), by Corol-

lary 2.6, there exists a unique pair (P,Q) consisting of elements P and Q of

GLn(LK(Rn)0) such that P−1 = ϕP (Q), λ = ϕP and λ−1 = ϕQ. In light of this

note and for convenience, we denote

LK(Rn)
P,Q := LK(Rn)

ϕP = LK(Rn)
λ

for any such pair (P,Q). As a corollary of Proposition 3.2, we obtain that LK(Rn)

is a K-subalgebra of all Zhang’s twists LK(Rn)
P,Q.

Corollary 3.4. Let n ≥ 2 be a positive integer, K a field and Rn the rose

graph with n petals. Let P = (pij) and Q = (qij) be elements of GLn(LK(Rn)0)

with PϕP (Q) = In and Q−1 =
(

q
(−1)
ij

)

. Then, there exists a graded injective

homomorphism θP : LK(Rn) −→ LK(Rn)
P,Q of K-algebras satisfying

θP (v) = v, θP (ei) = ei and θP (e
∗
i ) =

n∑

k=1

q
(−1)
ik e∗k

for all 1 ≤ i ≤ n.

Proof. It immediately follows from Proposition 3.2. �

Next we give criteria for the homomorphism θP in Corollary 3.4 to be isomor-

phic. In order to do so, we need the following useful fact.

Lemma 3.5. Let n ≥ 2 be a positive integer, K a field and Rn the rose graph

with n petals. Let P = (pij) and Q = (qij) be elements of GLn(LK(Rn)0) with

PϕP (Q) = In. For a positive integer m, let Pm =
(

p
(m)
ij

)

, P−1
m =

(

p
(−m)
ij

)

,

Qm =
(

q
(m)
ij

)

and Q−1
m =

(

q
(−m)
ij

)

. Then, the following statements hold:

(1) ei = ϕm
P

(
n∑

k=1

ekq
(m)
ki

)

,

(2) e∗i = ϕm
P

(
n∑

k=1

q
(−m)
ik e∗k

)

,

(3) e∗i = ϕ−m
P

(
n∑

k=1

p
(−m)
ik e∗k

)

,

for all 1 ≤ i ≤ n and m ≥ 1.

Proof. We first note that since PϕP (Q) = In and by Corollary 2.6 (2), we obtain

that ϕ−1
Pm

= ϕQm , Pm = ϕPm(Q
−1
m ) and P−1

m = ϕPm(Qm) for all m ≥ 1. Con-

sequently, ϕQm(P
−1
m ) = ϕQm(ϕPm(Qm)) = ϕ−1

Pm
(ϕPm(Qm)) = Qm for all m ≥ 1.

Then, for all 1 ≤ i ≤ n and m ≥ 1, we have
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ϕm
P

(
n∑

k=1

ekq
(m)
ki

)

= ϕPm

(
n∑

k=1

ekq
(m)
ki

)

=

n∑

k=1

ϕPm (ek)ϕPm

(

q
(m)
ki

)

=
n∑

k=1

(
n∑

t=1

etp
(m)
tk

)

p
(−m)
ki (since ϕPm(Qm) = P−1

m )

=

n∑

t=1

et

(
n∑

k=1

p
(m)
tk p

(−m)
ki

)

= ei

(
n∑

k=1

p
(m)
ik p

(−m)
ki

)

= eiv = ei,

and

ϕm
P

(
n∑

k=1

q
(−m)
ik e∗k

)

= ϕPm

(
n∑

k=1

q
(−m)
ik e∗k

)

=

n∑

k=1

ϕPm

(

q
(−m)
ik

)

ϕPm (e∗k)

=

n∑

k=1

p
(m)
ik

(
n∑

t=1

p
(−m)
kt e∗t

)

(since ϕPm(Q
−1
m ) = Pm)

=

n∑

t=1

(
n∑

k=1

p
(m)
ik p

(−m)
kt

)

e∗t =

(
n∑

k=1

p
(m)
ik p

(−m)
ki

)

e∗i

= ve∗i = e∗i ,

and

ϕ−m
P

(
n∑

k=1

p
(−m)
ik e∗k

)

= ϕm
Q

(
n∑

k=1

p
(−m)
ik e∗k

)

= ϕQm

(
n∑

k=1

p
(−m)
ik e∗k

)

=

n∑

k=1

ϕQm

(

p
(−m)
ik

)

ϕQm (e∗k)

=
n∑

k=1

q
(m)
ik

(
n∑

t=1

q
(−m)
kt e∗t

)

(since ϕQm(P
−1
m ) = Qm)

=

n∑

t=1

(
n∑

k=1

q
(m)
ik q

(−m)
kt

)

e∗t =

(
n∑

k=1

q
(m)
ik q

(−m)
ki

)

e∗i

= ve∗i = e∗i ,

thus proving items (1), (2) and (3). This completes the proof of the lemma. �

Definition 3.6. A graded algebra A is called rigid to Zhang twist by graded

automorphism σ if A is isomorphic to its Zhang twist Aσ.

We are now in a position to characterize when is LK(Rn) rigid to its Zhang

twist by graded automorphisms developed in previous section.

Theorem 3.7. Let n ≥ 2 be a positive integer, K a field and Rn the rose graph

with n petals. Let P = (pij) and Q = (qij) be elements of GLn(LK(Rn)0) with
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PϕP (Q) = In. For a positive integer m, let Pm =
(

p
(m)
ij

)

, P−1
m =

(

p
(−m)
ij

)

,

Qm =
(

q
(m)
ij

)

and Q−1
m =

(

q
(−m)
ij

)

. Then, the K-algebra homomorphism θP :

LK(Rn) −→ LK(Rn)
P,Q, defined in Corollary 3.4, is an isomorphism if and only

if p
(−m)
ij , q

(m)
ij , q

(−m)
ij ∈ Im(θP ) for all m ≥ 1 and 1 ≤ i, j ≤ n.

Proof. (=⇒) It is obvious.

(⇐=) By Corollary 3.4, θP is always injective, and so it suffices to show that

θP is surjective. We first claim that α and α∗ ∈ Im(θP ) for all α ∈ (Rn)
∗. We use

induction on |α| to establish the claim. If |α| = 1, then since ei = θP (ei) ∈ Im(θP )

for all 1 ≤ i ≤ n, α ∈ Im(θP ). Since θP (e
∗
i ) =

n∑

k=1

q
(−1)
ik e∗k for all 1 ≤ i ≤ n, we

have






θP (e
∗
1)

...

θP (e
∗
n)




 =












n∑

k=1

q
(−1)
1k e∗k

...
n∑

k=1

q
(−1)
nk e∗k












= Q−1






e∗1
...

e∗n




 ,

and so





e∗1
...

e∗n




 = Q






θP (e
∗
1)

...

θP (e
∗
n)




 .

This follows that e∗i =

n∑

k=1

qikθP (e
∗
k) =

n∑

k=1

qik ∗ θP (e
∗
k) for all 1 ≤ i ≤ n (since

qij ∈ LK(Rn)0 for all 1 ≤ i, j ≤ n). By our hypothesis, qij ∈ Im(θP ) for all

1 ≤ i, j ≤ n, and so e∗i =

n∑

k=1

qik ∗ θP (e
∗
k) ∈ Im(θP ) for all 1 ≤ i ≤ n, that means,

α∗ ∈ Im(θP ).

Now we proceed inductively, that means, we have α and α∗ ∈ Im(θP ) for all

α ∈ (Rn)
∗ with 1 < |α| ≤ m. For α ∈ (Rn)

∗ with |α| ≥ m+ 1, we write α = βei0
for some β ∈ (Rn)

∗ with |β| = m and for some 1 ≤ i0 ≤ n. By the induction

hypothesis, β ∈ Im(θP ). By Lemma 3.5 (1), we have ei0 = ϕm
P

(
n∑

k=1

ekq
(m)
ki0

)

, and

so

α = βei = βϕm
P (

n∑

k=1

ekq
(m)
ki0

) = β ∗ (

n∑

k=1

ekq
(m)
ki0

).

On the other hand, since ϕ−1
Q = ϕP , we have

Qm = QϕQ(Q) · · ·ϕm−1
Q (Q) = ϕP (ϕQ(Q)ϕ2

Q(Q) · · ·ϕm
Q (Q)) = ϕP (Q

−1Qm+1),
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so q
(m)
ki0

= ϕP (

n∑

t=1

q
(−1)
kt q

(m+1)
ti0

). This shows that

α = β ∗ (

n∑

k=1

ekϕP (

n∑

t=1

q
(−1)
kt q

(m+1)
ti0

)) = β ∗ (

n∑

k=1

(ek ∗

n∑

t=1

q
(−1)
kt q

(m+1)
ti0

))

= β ∗ (

n∑

k=1

(ek ∗ (

n∑

t=1

q
(−1)
kt ∗ q

(m+1)
ti0

))) ∈ Im(θP ) (by our hypothesis).

Write α∗ = γ∗e∗t0 for some 1 ≤ t0 ≤ n and γ ∈ (Rn)
∗ with |γ| = m. By

the induction hypothesis, γ∗ ∈ Im(θP ). By Lemma 3.5 (3), we have that e∗t0 =

ϕ−m
P

(
n∑

k=1

p
(−m)
t0k

e∗k

)

, and hence

α∗ = γ∗e∗t0 = γ∗ϕ−m
P (

n∑

k=1

p
(−m)
t0k

e∗k) = γ∗ ∗ (
n∑

k=1

p
(−m)
t0k

e∗k)

= γ∗ ∗ (

n∑

k=1

p
(−m)
t0k

∗ e∗k) ∈ Im(θP ) (by our hypothesis),

thus showing the claim.

We next prove that αβ∗ ∈ Im(θP ) for all α and β ∈ (Rn)
∗ with m := |α| ≥ 1

and s := |β| ≥ 1. We use induction on |β| to establish the fact. If |β| = 1, then

by the above claim, α and e∗k ∈ Im(θP ) for all 1 ≤ k ≤ n, and so

αβ∗ = αe∗i = αϕm
P (

n∑

k=1

q
(−m)
ik e∗k) (by Lemma 3.5 (2))

= α ∗ (

n∑

k=1

q
(−m)
ik e∗k) = α ∗ (

n∑

k=1

q
(−m)
ik ∗ e∗k) ∈ Im(θP ) (by our hypothesis).

Now we proceed inductively. We need to show that αβ∗e∗i ∈ Im(θP ) for all

1 ≤ i ≤ n. We should note that by the induction hypothesis, αβ∗ ∈ Im(θP ). If

m− s = 0, we have

αβ∗e∗i = αβ∗ ∗ e∗i ∈ Im (θP ) .

If m− s > 0, then we obtain that

αβ∗e∗i = αβ∗ϕm−s
P (

n∑

k=1

q
(−m+s)
ik e∗k) = αβ∗ ∗ (

n∑

k=1

q
(−m+s)
ik e∗k)

= αβ∗ ∗ (
n∑

k=1

q
(−m+s)
ik ∗ e∗k) ∈ Im(θP ).
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If m− s < 0, then we receive that

αβ∗e∗i = αβ∗ϕm−s
P (

n∑

k=1

p
(m−s)
ik e∗k) = αβ∗ ∗ (

n∑

k=1

p
(m−s)
ik e∗k

= αβ∗ ∗ (

n∑

k=1

p
(m−s)
ik ∗ e∗k) ∈ Im(θP ),

proving the fact. From these observations, we immediately get that αβ∗ ∈ Im(θP )

for all α and β ∈ (Rn)
∗. It is obvious that LK(Rn)

P,Q is spanned as a K-vertor

space by {αβ∗ | α, β ∈ (Rn)
∗}. This implies that Im(θP ) = LK(Rn)

P,Q, that

means, θP is surjective, thus finishing the proof. �

Consequently, we provide a simpler criterion for the homomorphism θP be to

isomorphic in the case when ϕP (P ) = P .

Corollary 3.8. Let n ≥ 2 be a positive integer, K a field and Rn the rose graph

with n petals. Let P = (pi,j) be an element of GLn (LK(Rn)0) with ϕP (P ) =

P and P−1 = (p
(−1)
ij ). Then, the K-algebra homomorphism θP : LK(Rn) −→

LK(Rn)
P,P−1

, defined by

θP (v) = v, θP (ei) = ei and θP (e
∗
i ) =

∑n
k=1 pike

∗
k for all 1 ≤ i ≤ n,

is an isomorphism if and only if pij, p
(−1)
ij ∈ Im(θP ) for all 1 ≤ i, j ≤ n.

Proof. (=⇒) It is obvious.

(⇐=) Since ϕP (P ) = P and by Corollary 2.6 (2), ϕP is a graded automorphism

of LK(Rn) such that ϕP

(
P−1

)
= P−1 and ϕm

P = ϕPm for all integer m. This

implies that

ϕm
P (P ) = P and ϕm

P−1(P
−1) = P−1

for all m ≥ 0, and so

Pm = PϕP (P ) · · ·ϕm−1
P (P ) = Pm

and

P−1
m = P−1ϕP−1

(
P−1

)
· · ·ϕm−1

P−1

(
P−1

)
= P−m

for all m ≥ 0. Since pij, p
(−1)
ij ∈ LK(Rn)0, we must have

Pm = P ∗ P ∗ · · · ∗ P
︸ ︷︷ ︸

m times

and P−m = P−1 ∗ P−1 ∗ · · · ∗ P−1
︸ ︷︷ ︸

m times

in Mn(LK(Rn)
P ), that means, Pm and P−m are exactly the mth powers of P

and P−1 in Mn(LK(Rn)
P ), respectively. Then, since pij , p

(−1)
ij ∈ Im(θP ) for all

1 ≤ i, j ≤ n, all entries of both Pm and P−m lie in Im(θP ) for all m ≥ 1. By

Theorem 3.7, we immediately obtain that θP is an isomorphism, thus finishing

the proof. �

The first consequence of Corollary 3.8 is to show that the Zhang twist LK(Rn)
P

is isomorphic to LK(Rn) for all P ∈ GLn(K).
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Corollary 3.9. Let n ≥ 2 be a positive integer, K a field and Rn the rose

graph with n petals. Then, for every P ∈ GLn(K), the K-algebra homomorphism

θP : LK(Rn) −→ LK(Rn)
P,P−1

, defined in Corollary 3.8, is an isomorphism.

Proof. Let P be an arbitrary element of GLn(K). By Corollary 2.7, ϕP is a

graded automorphism of LK(Rn) with ϕP (P ) = P . Moreover, it is obvious that

all entries of both P and P−1 lie in Im(θP ). Then, by Corollary 3.8, θP is an

isomorphism, thus finishing the proof. �

The second consequence of Corollary 3.8 is to show that the Zhang twist of

LK(Rn) by Anick type graded automorphisms ϕp mentioned in Corollary 2.8 are

isomorphic to LK(Rn).

Corollary 3.10. Let n ≥ 2 be a positive integer, K a field and Rn the rose

graph with n petals. Then, for every p ∈ ARn(e1, e2) ∩ LK(Rn)0, the K-algebra

homomorphism θp : LK(Rn) −→ LK(Rn)
ϕp, defined by

θp(v) = v, θp(ei) = ei, θp(e
∗
j ) = e∗j and θp(e

∗
1) = e∗1 + pe∗2

for all 1 ≤ i ≤ n and 2 ≤ j ≤ n, is an isomorphism.

Proof. Let p be an arbitrary element of ARn(e1, e2) ∩ LK(Rn)0. By Corollary

2.8, ϕp = ϕUp is a graded automorphism of LK(Rn) with ϕp(q) = q for all

q ∈ ARn(e1, e2) ∩ LK(Rn)0, where

Up =








1 p 0 . . . 0

0 1 0 . . . 0
...

...
...

...
...

0 0 0 . . . 1








∈ GLn(LK(Rn)0 and U−1
p = U−p.

By Theorem 3.7, θp := θUp is a K-algebra homomorphism satisfying θp(v) = v,

θp(ei) = ei, θp(e
∗
j ) = e∗j and θp(e

∗
1) = e∗1 + pe∗2 for all 1 ≤ i ≤ n and 2 ≤ j ≤ n.

We claim that θp(p) = p. Indeed, write p =
∑

αβ∗ where |α| = |β| = t

and α = ek1ek2 · · · ekt , β∗ = e∗s1e
∗
s2
· · · e∗st with eki ∈ {e1, e3, . . . en} and e∗si ∈

{e∗2, e
∗
3, . . . , e

∗
n}. Since ϕp(q) = q for all q ∈ ARn(e1, e2)∩LK(Rn)0, we must have

ϕp(eki) = eki and ϕp(e
∗
si
) = e∗si for all 1 ≤ i ≤ t. Then, we have that

θp(αβ
∗) = θp(α) ∗ θp(β

∗) = θp (ek1ek2 · · · ekt) ∗ θp
(
e∗s1e

∗
s2
· · · e∗st

)

= θp (ek1) ∗ θp (ek2) ∗ · · · θp (ekt) ∗ θp
(
e∗s1
)
∗ θp

(
e∗s2
)
∗ · · · ∗ θp

(
e∗st
)

= ek1 ∗ ek2 ∗ · · · ∗ ekt ∗ e
∗
s1

∗ e∗s2 ∗ · · · ∗ e
∗
st

= ek1ek2 · · · ekte
∗
s1
e∗s2 · · · e

∗
st

(since ϕp(eki) = eki , ϕp(e
∗
si
) = e∗si)

= αβ∗,

and so p = θp(p) ∈ Im (θP ). This shows that all entries of both Up and U−1
p lie

in Im(θP ). By Corollary 3.8, θp is an isomorphism, thus finishing the proof. �
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By Remark 2.9, for any u ∈ U(LK(Rn)0), there exists a unique graded endo-

morphism ϕu of LK(Rn) such that ϕu(v) = v, ϕu(ei) = ei and ϕu(e
∗
i ) = e∗i for all

1 ≤ i ≤ n. Moreover, ϕu is a graded automorphism if and only if u−1 = ϕu(w)

for some w ∈ U(LK(Rn)0). In this case, by Remark 2.9 and Theorem 3.7, there

exists a graded injective homomorphism

θu := θuIn : LK(Rn) −→ LK(Rn)
ϕu

of K-algebras satisfying θu(v) = v, θu(ei) = ei and θu(e
∗
i ) = w−1e∗i for all 1 ≤

i ≤ n. For a positive integer m, we always have

um := uϕu (u) · · ·ϕ
m−1
u (u) ∈ U(LK(Rn)0) and u−1

m = ϕm−1
u (u−1) · · ·ϕu(u

−1)u−1.

As a corollary of Theorem 3.7, we obtain a criterion for the Zhang twist

(LK(Rn)
ϕu of LK(Rn) by a graded automorphism ϕu to be isomorphic to LK(Rn).

Corollary 3.11. Let n ≥ 2 be a positive integer, K a field and Rn the rose with

n petals. Let u be an element of U(LK(Rn)0) such that u−1 = ϕu(w) for some

w ∈ U(LK(Rn)0). Then the following statements hold:

(1) The K-algebra homomorphism θu : LK(Rn) −→ LK(Rn)
ϕu, defined by

v 7−→ v, ei 7−→ ei and e∗i 7−→ w−1e∗i for all 1 ≤ i ≤ n, is an isomorphism if and

only if u−1
m , wm, w−1

m ∈ Im(θu) for all m ≥ 1.

(2) If, in addition, ϕu(u) = u, then θu is an isomorphism if and only if u,

u−1 ∈ Im(θu).

Proof. (1) By Theorem 3.7, θu is an isomorphism if and only if all entries of

(uIn)
−1
m , (wIn)m and (wIn)

−1
m lie in Im(θu) for all m ≥ 1; equivalently, u−1

m , wm,

w−1
m ∈ Im(θu) for all m ≥ 1.

(2) It follows from Corollary 3.8, thus finishing the proof. �

We end this section by presenting the following example which illustrates Corol-

lary 3.11.

Example 3.12. Let K be a field and u = e1e
∗
2 + e2e

∗
1 ∈ LK(R2)0. We then have

u ∈ U(LK(R2)0) and u−1 = u. By Remark 2.9, we have the graded endomor-

phism ϕu of LK(R2) defined by: v 7−→ v, ei 7−→ eiu and e∗i 7−→ u−1e∗i for all

1 ≤ i ≤ 2. We also have

ϕu(u) = ϕu (e1e
∗
2 + e2e

∗
1) = ϕu(e1)ϕu(e

∗
2) + ϕu(e2)ϕu(e

∗
1)

= e1uu
−1e∗2 + e2uu

−1e∗1 = e1e
∗
2 + e2e

∗
1 = u,

which yields a graded K-algebra homomorphism θu : LK(R2) −→ LK(R2)
ϕu such

that θu(v) = v, θ(ei) = ei and θu(e
∗
i ) = ue∗i . But then

θu(u) = θu (e1e
∗
2 + e2e

∗
1) = θu(e1) ∗ θu(e

∗
2) + θu(e2) ∗ θu(e

∗
1)

= e1 ∗ (ue
∗
2) + e2 ∗ (ue

∗
1) = e1ϕu(ue

∗
2) + e2ϕu(ue

∗
1)

= e1uu
−1e∗2 + e2uu

−1e∗1 = e1e
∗
2 + e2e

∗
1 = u,
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which gives that u−1 = u ∈ Im(θu). By Corollary 3.11, we immediately obtain

that θu is an isomorphism.

4. Application: Irreducible representations of LK(Rn)

The study of irreducible representations of Leavitt path algebras is still in its early

stage. Chen in his remarkable paper [14] initiated the study of simple modules

over Leavitt path algebras. To understand his construction of simple modules,

let us first recall some terminologies. Let E be an arbitrary graph. An infinite

path p := e1 · · · en · · · in a graph E is a sequence of edges e1, . . . , en, . . . such that

r(ei) = s(ei+1) for all i. We denote by E∞ the set of all infinite paths in E. For

p := e1 · · · en · · · ∈ E∞ and n ≥ 1, Chen ([14]) defines τ>n(p) = en+1en+2 · · · , and

τ≤n(p) = e1e2 · · · en. Two infinite paths p, q are said to be tail-equivalent (written

p ∼ q) if there exist positive integers m,n such that τ>n(p) = τ>m(q). Clearly ∼

is an equivalence relation on E∞, and we let [p] denote the ∼ equivalence class

of the infinite path p.

Let c be a closed path in E. Then the path ccc · · · is an infinite path in E,

which we denote by c∞. Note that if c and d are closed paths in E such that

c = dn, then c∞ = d∞ as elements of E∞. The infinite path p is called rational

in case p ∼ c∞ for some closed path c. If p ∈ E∞ is not rational we say p is

irrational. We denote by E∞
rat and E∞

irr the sets of rational and irrational paths

in E, respectively.

Given a field K and an infinite path p, Chen ([14]) defines V[p] to be the K-

vector space having {q ∈ E∞ | q ∈ [p]} as a basis, that is, having basis consisting

of distinct elements of E∞ which are tail-equivalent to p. V[p] is made a left

LK(E)-module by defining, for all q ∈ [p] and all v ∈ E0, e ∈ E1,

1) v · q = q or 0 according as v = s(q) or not;

2) e · q = eq or 0 according as r(e) = s(q) or not;

3) e∗ · q = τ1(q) or 0 according as q = eτ1(q) or not.

In [14, Theorem 3.3] Chen showed that V[p] is a simple left LK(E)-module; and

V[p]
∼= V[q] if and only if p ∼ q, which happens precisely when V[p] = V[q]. This

provides us with the following two classes of simple modules for the Leavitt path

algebra LK(E):

• V[α], where α ∈ E∞
irr;

• V[β], where β ∈ E∞
rat.

We note that for any β ∈ E∞
rat, V[β] = V[c∞] for some c ∈ SCP (E). By [4, Theorem

2.8], we have V[β] = V[c∞]
∼= LK(E)v/LK(E)(c − v) as left LK(E)-modules, i.e.,

it is finitely presented; while V[α] (α ∈ E∞
irr) is, in general, not finitely presented

by [7, Corollary 3.5] (see, also [26, Proposition 4.1]).

Let c = e1 · · · et be a closed path in E based at v and f(x) = a0+a1x+· · ·+anx
n

a polynomial in K[x]. We denote by f(c) the element

f(c) := a0v + a1c+ · · ·+ anc
n ∈ LK(E).
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We denote by Irr(K[x]) the set of all irreducible polynomials in K[x] written

in the form 1 − a1x − · · · − anx
n and by Πc the set of all the following closed

paths c1 := c, c2 := e2 · · · ete1, . . . , cn := ene1 · · · en−1. In [7, Theorems 4.3 and

4.7] Ánh and the first author proved that for any pair (f, c) consisting of simple

closed paths c ∈ SCP (E) together with irreducible polynomials f ∈ Irr(K[x]),

the cyclic left LK(E)-module Sf
c generated by z subject to z = (a1c+· · ·+anc

n)z,

is simple, and

Sf
c
∼= LK(E)v/LK(E)f(c),

as left LK(E)modules, via the map z 7−→ v + LK(E)f(c). Moreover, for any

g ∈ Irr(K[x]) and any d ∈ SCP (E), Sf
c
∼= Sg

d as left LK(E)-modules if and only

if f = g and d ∈ Πc.

In [22] Kuroda and the first author constructed additional classes of simple

LK(Rn)-modules by studying the twisted modules of the simple modules Sf
c under

Anick type automorphisms of LK(Rn) mentioned in Corollary 2.8, where Rn is

the rose graph with n petals.

For any integer n ≥ 2, we denote by Cs(Rn) the set of simple closed paths of

the form c = ek1ek2 · · · ekm , where ki ∈ {1, 3, . . . , n} for all 1 ≤ i ≤ m − 1 and

km = 2, in Rn. For any c ∈ Cs(Rn), p ∈ ARn(e1, e2) and f ∈ Irr(K[x]), we have

a left LK(Rn)-module Sf, p
c , which is the twisted module (Sf

c )ϕp , where ϕp is the

automorphism of LK(Rn) defined in Corollary 2.8. By [22, Theorem 3.6], the

LK(Rn)-module Sf, p
c is always simple.

For each pair (f, c) ∈ Irr(K[x]) × Cs(Rn), we define an equivalence relation

≡f,c on ARn(e1, en) as follows. For all p, q ∈ ARn(e1, en), p ≡f,c q if and only if

p− q = rf(c) for some r ∈ LK(Rn). We denote by [p] the ≡f,c equivalence class

of p. The following theorem provides us with a list of pairwise non-isomorphic

simple LK(Rn)-modules.

Theorem 4.1 ([22, Theorem 3.8]). Let K be a field, n ≥ 2 a positive integer,

and Rn the rose graph with n petals. Then, the following set

{V[α] | α ∈ (Rn)
∞
irr} ⊔ {Sf

Πc
| c ∈ SCP (Rn), f ∈ Irr(K[x])}⊔

⊔ {Sf, p
d | d ∈ Cs(Rn), f ∈ Irr(K[x]), [0] 6= [p] ∈ ARn(e1, e2)/ ≡f,d}

consists of pairwise non-isomorphic simple left LK(Rn)-modules.

The remainder of this section is to investigate the twisted modules (V[α])
ϕP

of the simple LK(Rn)-modules V[α] by graded automorphisms ϕP mentioned in

Corollary 2.6, where p is an infinite path in Rn and P ∈ GLn(K). For conve-

nience, we denote

V P
[α] := (V[α])

ϕ−1
P = (V[α])

ϕ
P−1

for any α ∈ (Rn)
∞ and P ∈ GLn(K). Denoting by · the module operation in

V P
[α], we have v · β = ϕ−1

P (v)β = vβ = β,
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ei · β = ϕ−1
P (ei)β = ϕP−1(ei)β = (

n∑

t=1

p′tiet)β

and

e∗i · β = ϕ−1
P (e∗i )β = ϕP−1(e∗i )β = (

n∑

t=1

pite
∗
t )β in V[α]

for all β ∈ [α] and 1 ≤ i ≤ n, where P = (pij) and P−1 = (p′ij) ∈ GLn(K).

We note that the symmetric group Sn acts on the set (Rn)
∞ by setting:

(σ, p = ei1ei2 · · · eim · · · ) 7−→ σ · p = eσ(i1)eσ(i2) · · · eσ(im) · · ·

for all σ ∈ Sn and p = ei1ei2 · · · eim · · · ∈ (Rn)
∞. The orbit of p is the set

{σ · p | σ ∈ Sn} and denoted by Sn · p. The set of orbits of points p in (Rn)
∞

under the action of Sn form a partition of (Rn)
∞. The associated equivalence

relation is defined by saying p ∼ q if and only of there exists an element σ ∈ Sn

such that q = σ · p. Moreover, we have that (Rn)
∞
irr is an invariant subset of

(Rn)
∞, that means,

Sn · (Rn)
∞
irr := {σ · p | p ∈ (Rn)

∞
irr} = (Rn)

∞
irr.

We denote by (Rn)
∞
irr−eeri the set of all irrational paths p = ei1ei2 · · · eim · · · such

that each edge is repeated infinitely many times in the path, that is,

|{m ∈ N | eim = eij}| = ∞

for all 1 ≤ j ≤ n. It is not hard to see that (Rn)
∞
irr−eeri is an invariant subset of

(Rn)
∞, and (R2)

∞
irr−eeri = (R2)

∞
irr.

We also have a group action of Sn on the general linear group GLn(K) defined

by:

(σ,A = [a1 a2 · · · an]) 7−→ σ ·A := [aσ(1) aσ(2) · · · aσ(n)]

for all σ ∈ Sn and A = [a1 a2 · · · an] ∈ GLn(K), where aj is the jth column of

A. In the following theorem, we describe simple LK(Rn)-modules V P
[α] associated

to pairs (α,P ) ∈ (Rn)
∞
irr−eeri ×GLn(K).

Theorem 4.2. Let K be a field, n ≥ 2 a positive integer, and Rn the rose

graph with n petals. Let P = (pij) ∈ GLn(K) be an arbitrary element and

α = ei1ei2 · · · eim · · · ∈ (Rn)
∞
irr−eeri. Then, the following statements hold:

(1) V P
[α] is a simple left LK(Rn)-module;

(2) EndLK(Rn)(V
P
[α])

∼= K;

(3) V P
[α]

∼= LK(Rn)/
⊕∞

m=0 LK(Rn)(ϕP (ǫm)− ϕP (ǫm+1)), where ǫ0 := v, ǫm =

ei1 · · · eime
∗
im

· · · e∗i1 for all m ≥ 1, and the graded automorphism ϕP is defined in

Corollary 2.6. Consequently, V P
[α] is not finitely presented.

(4) For any β ∈ (Rn)
∞
irr−eeri, V[β]

∼= V P
[α] if and only if there exist an element

σ ∈ Sn and a diagonal matrix D ∈ GLn(K) such that P = σ ·D and σ · β ∼ α.
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(5) For any β ∈ (Rn)
∞
irr−eeri and any Q ∈ GLn(K), V Q

[β]
∼= V P

[α] if and only

if there exist an element σ ∈ Sn and a diagonal matrix D ∈ GLn(K) such that

Q−1P = σ ·D and σ · β ∼ α.

Proof. (1) It follows from the fact that V[α] is a simple left LK(Rn)-module (by

[14, Theorem 3.3 (1)]) and ϕP−1 is an automorphism of LK(Rn) (by Corollary

2.6).

(2) By [14, Theorem 3.3 (1)], we have EndLK(Rn)(V[α]) ∼= K, which yields that

EndLK(Rn)(V
P
[α])

∼= K.

(3) Since V[α] is a simple left LK(Rn)-module, V[α] = LK(Rn)α. By [7, Theorem

3.4], we obtain that

{r ∈ LK(Rn) | rα = 0 in V[α]} =

∞⊕

m=0

LK(Rn)(ǫm − ǫm+1),

where ǫ0 := v and ǫm = ei1 · · · eime
∗
im

· · · e∗i1 ∈ LK(Rn) for all m ≥ 1. By

item (1), V P
[α] is a simple left LK(Rn)-module, and so V P

[α] = LK(Rn) · α, that

means, every element of V P
[α] is of the form r · α = ϕP−1(r)α, where r ∈ LK(Rn).

We next compute annLK(Rn)(α) := {r ∈ LK(Rn) | r · α = 0}. Indeed, let

r ∈ annLK(Rn)(α). We then have ϕP−1(r)α = r · α = 0 in V[α], which gives that

ϕP−1(r) =
∑k

i=1 ri(ǫmi
− ǫmi+1), where k ≥ 1 and ri ∈ LK(Rn) for all 1 ≤ i ≤ k,

and so

r = ϕP (ϕP−1(r)) =
k∑

i=1

ϕP (ri) (ϕP (ǫmi
)− ϕP (ǫmi+1)) .

This implies that

annLK(Rn)(α) ⊆
∞⊕

m=0

LK(Rn)(ϕP (ǫm)− ϕP (ǫm+1)).

Conversely, assume that r ∈
⊕∞

m=0 LK(Rn)(ϕP (ǫm) − ϕP (ǫm+1)); i.e., r =
∑k

i=1 ri(ϕP (ǫmi
) − ϕP (ǫmi+1)), where k ≥ 1 and ri ∈ LK(Rn) for all 1 ≤ i ≤ k.

We then have

r · α = ϕP−1(r)α = (

k∑

i=1

ϕP−1(ri) (ǫmi
− ǫmi+1))α = 0

in V[α], and so r ∈ annLK(Rn)(α), showing that

∞⊕

m=0

LK(Rn)(ϕP (ǫm)− ϕP (ǫm+1)) ⊆ annLK(Rn)(α).

Hence
⊕∞

m=0 LK(Rn)(ϕP (ǫm)− ϕP (ǫm+1)) = annLK(Rn)(α). This implies that

V P
[α]

∼= LK(Rn)/

∞⊕

m=0

LK(Rn)(ϕP (ǫm)− ϕP (ǫm+1)).
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Assume that V P
[α] is finitely presented. This shows that

⊕∞
m=0 LK(Rn)(ϕP (ǫm)−

ϕP (ǫm+1)) is finitely generated, whence there exists an integer k ≥ 1 such that

ϕP (ǫm) = ϕP (ǫm+k) for all m ≥ 0; equivalently, ǫm = ǫm+k for all m ≥ 0 (since

ϕP is an automorphism), but this cannot happen in LK(Rn). Therefore, V P
[α] is

not finitely presented.

(4) (⇐) Assume that there exist an element σ ∈ Sn and a diagonal matrix

D ∈ GLn(K) such that P = σ · D and σ · α ∼ β. We then have σ · α =

eσ(i1)eσ(i2) · · · eσ(im) · · · ∈ (Rn)
∞ and V[β]

∼= V[σ·α] (by Theorem 4.1). By [7,

Theorem 3.4], V[σ·α]
∼= LK(Rn)/

⊕∞
m=0 LK(Rn)(λm − λm+1), where λ0 = v and

λm = eσ(i1) · · · eσ(im)e
∗
σ(im) · · · e

∗
σ(i1)

for all m ≥ 1.

On the other hand, by Item (3), V P
[α]

∼= LK(Rn)/
⊕∞

m=0 LK(Rn)(ϕP (ǫm) −

ϕP (ǫm+1)), where ǫ0 := v, ǫm = ei1 · · · eime
∗
im

· · · e∗i1 for allm ≥ 1. Write P = (pij)

and P−1 = (qij). Then, since P = σ · D, we have piσ(i) 6= 0 and pij = 0 for all

1 ≤ i, j ≤ n and j 6= σ(i). This implies that qσ(i)i = p−1
iσ(i) and qki = 0 for all

1 ≤ i, k ≤ n and k 6= σ(i), and so

ϕP (ei) =
∑n

k=1 pkiek = pkσ(k)ek and ϕP (e
∗
i ) =

∑n
k=1 qike

∗
k = qσ(k)ke

∗
k

for all 1 ≤ i ≤ n, where i = σ(k). This shows that

ϕP (ǫm) = ϕP

(
ei1 · · · eime

∗
im · · · e∗i1

)
= ϕP (ei1) · · ·ϕP (eim)ϕP

(
e∗im
)
· · ·ϕP

(
e∗i1
)

= pi1σ(i1)eσ(i1) · · · pimσ(im)eσ(im)qσ(im)ime
∗
σ(im) · · · qσ(i1)i1e

∗
σ(i1)

= eσ(i1) · · · eσ(im)e
∗
σ(im) · · · e

∗
σ(i1)

= λm

for all m ≥ 1, and so

V P
[α]

∼= LK(Rn)/

∞⊕

m=0

LK(Rn)(λm − λm+1) ∼= V[σ·α]
∼= V[β],

as desired.

(⇒) Assume that θ : V[β] −→ V P
[α] is an isomorphism of left LK(Rn)-modules.

Let q ∈ [β] be an element such that θ(q) =
∑m

i=1 kiαi, where m is minimal

such that ki ∈ K \ {0} and all the αi are pairwise distinct in [α]. Write q =

et1et2 · · · etk · · · ∈ (Rn)
∞
irr−eeri and αi = eji1eji2 · · · ejik · · · ∈ (Rn)

∞
irr−eeri, where

1 ≤ ti, jik ≤ n. By the minimality of m, we have

0 6= θ(τ>1(q)) = θ(e∗t1q) = e∗t1 · θ(q) = (

n∑

j=1

pt1je
∗
j )(

m∑

i=1

kiαi) =

m∑

i=1

k
(1)
i τ>1(αi),

where k
(1)
i = kipt1ji1 ∈ K \ {0} for all 1 ≤ i ≤ m, and all the τ>1(αi) are pairwise

distinct in [α]. For all s 6= t1, we have

0 = θ(e∗sq) = e∗s · θ(q) = (

n∑

j=1

psje
∗
j )(

m∑

i=1

kiαi) =

m∑

i=1

kipsji1τ>1(αi).
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Since all the τ>1(αi) are pairwise distinct, they are linearly independent in V P
[α],

and so kipsji1 = 0 for all 1 ≤ i ≤ m, this yields psji1 = 0 for all 1 ≤ i ≤ m

and s 6= t1; that means, for each 1 ≤ i ≤ n, the jthi1 -column of P has only the

(t1, ji1)-entry is nonzero. Assume that there exist two numbers 1 ≤ i 6= k ≤ m

such that τ≤1(αi) 6= τ≤1(αk), i.e, eji1 6= ejk1 . We then have pt1ji1 6= 0, pt1jk1 6= 0

and psji1 = 0 = psjk1 for all s 6= t1, and so A is not invertible, a contradiction.

This implies that τ≤1(αi) = τ≤1(αj) for all 1 ≤ i, j ≤ m, and the tth1 -row of P

has only the (t1, ji1)-entry is nonzero.

If et2 = et1 , we then have

0 6= θ(τ>2(q)) = θ(e∗t2τ>1(q)) = e∗t2 · θ(τ>1(q)) =

m∑

i=1

k
(2)
i τ>2(αi),

where k
(2)
i = k

(1)
i pt1ji1 ∈ K \ {0} for all 1 ≤ i ≤ m. By the minimality of m, all

the τ>2(αi) are pairwise distinct in [α] and τ≤1(τ>2(αi)) = τ≤1(τ>2(αk)) for all

1 ≤ i, k ≤ m.

If et2 6= et1 , then by using using the quality

0 6= θ(τ>1(q)) =

m∑

i=1

k
(1)
i τ>1(αi)

and repeating the above same argument which was done for et1 , we obtain that

the jthi1 -column and tth2 -row of P have only that the (t2, ji2)-entry is nonzero, all

the τ>2(αi) are pairwise distinct in [α] and τ≤1(τ>2(αi)) = τ≤1(τ>2(αk)) for all

1 ≤ i, k ≤ m. Therefore, in any case, we have that all the τ>2(αi) are pairwise

distinct in [α] and τ≤2(αi) = τ≤2(αk) for all 1 ≤ i, k ≤ m.

By repeating this process, we obtain that τ≤l(αi) = τ≤l(αj) for all l ≥ 1 and

1 ≤ i, j ≤ m, and every row and every column of P has only a nonzero entry

(since q ∈ (Rn)
∞
irr−eeri). Then, since all the τ≤l(αi) are the same for all l ≥ 1, and

all the αi are pairwise distinct, we must have m = 1. Since every row and every

column of P has only a nonzero entry, there exists an element σ ∈ Sn such that

piσ(i) 6= 0 for all 1 ≤ i ≤ n. This implies that P = σ ·D for some diagonal matrix

D ∈ GLn(K) and σ · q = eσ(t1)eσ(t2) · · · eσ(tk) · · · = α1, this yields σ · q ∼ α. Since

q ∼ β, there exists natural numbers s and l such that τ>s(q) = τ>l(β), and so

σ · β ∼ σ · τ>l(β) = σ · τ>s(q) ∼ σ · q ∼ α,

as desired.

(5) We note that

V Q
[β]

∼= V P
[α] ⇐⇒ (V[α])

ϕ
P−1 ∼= (V[β])

ϕ
Q−1 ⇐⇒ (V[β])

ϕ
Q−1 )ϕQ ∼= (V[α])

ϕ
P−1 )ϕQ

⇐⇒ V[β]
∼= (V[α])

ϕ
P−1Q = V Q−1P

[α] .

Using this note and Item (4), we immediately get the statement, thus finishing

the proof. �
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For any integer n ≥ 2, we define an equivalent relation ≡ on (Rn)
∞
irr−eeri as

follows. For all α, β ∈ (Rn)
∞
irr−eeri, α ≡ β if and only if σ · α ∼ β for some

σ ∈ Sn. We denote by [α]≡ the ≡ equivalent class of α. The following corollary

shows that all simple LK(Rn)-modules V P
[α] may be parameterized by the set

((Rn)
∞
irr−eeri/ ≡)× GLn(K).

Corollary 4.3. Let K be a field, n ≥ 2 a positive integer and Rn the rose graph

with n petals. Then, the set

{V P
[α] | [α]≡ ∈ (Rn)

∞
irr−eeri/ ≡ and P ∈ GLn(K)}

consists of pairwise non-isomorphic simple left LK(Rn)-modules.

Proof. Let α and β be elements of (Rn)
∞
irr−eeri such that [α]≡ 6= [β]≡. We then

have that σ · α is not tail-equivalent to β for all σ ∈ Sn. By Theorem 4.2 (5),

V P
[α] ≇ V Q

[β] as left LK(Rn)-modules for all P,Q ∈ GLn(K), which yields the

statement, thus finishing the proof. �

For any integer n ≥ 2 and any field K, we denote by Un(K) the subgroup of

GLn(K) consisting all upper-triangle matrices with 1’s along the diagonal. As

the second corollary of Theorem 4.2, we obtain that all simple LK(Rn)-modules

V P
[α] associated to pairs (α,P ) ∈ (Rn)

∞
irr−eeri × Un(K) may be parameterized by

the set ((Rn)
∞
irr−eeri/ ∼)× Un(K).

Corollary 4.4. Let K be a field, n ≥ 2 a positive integer, Rn the rose graph

with n petals and Un(K) the subgroup of GLn(K) consisting all upper-triangle

matrices with 1’s along the diagonal. Let α and β be elements of (Rn)
∞
irr−eeri and

let P and Q be elements of Un(K). Then, V P
[α]

∼= V Q
[β] if and only if α ∼ β and

P = Q. Consequently, the set

{V P
[α] | α ∈ (Rn)

∞
irr−eeri and P ∈ Un(K)}

consists of pairwise non-isomorphic simple left LK(Rn)-modules.

Proof. (⇒) Assume that V P
[α]

∼= V Q
[β]. Then, by Theorem 4.2 (5), there exist an

element σ ∈ Sn and a diagonal matrix D ∈ GLn(K) such that Q−1P = σ ·D and

σ · β ∼ α. Since P,Q ∈ Un(K), we have σ ·D = Q−1P ∈ Un(K), and so σ = 1Sn

and D = In. This implies that P = Q and α ∼ β.

(⇐) It immediately follows from Theorem 4.2 (5), thus finishing the proof. �

In the following theorem, we describe simple LK(Rn)-modules V P
[c∞] associated

to pairs (c, P ) ∈ SCP (Rn)×GLn(K).

Theorem 4.5. Let K be a field, n ≥ 2 a positive integer, and Rn the rose

graph with n petals. Let P = (pij) ∈ GLn(K) be an arbitrary element and

c ∈ SCP (Rn). Then, the following statements hold:

(1) V P
[c∞] is a simple left LK(Rn)-module;

(2) EndLK(Rn)(V
P
[c∞])

∼= K;
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(3) V P
[c∞]

∼= LK(Rn)/LK(Rn)(v − ϕP (c)), where the graded automorphism ϕP

is defined in Corollary 2.6.

(4) For any d ∈ SCP (Rn), V[d∞]
∼= V P

[c∞] if and only if d = ϕP (β) for some

β ∈ Πc.

(5) For any d ∈ SCP (Rn) and any Q ∈ GLn(K), V Q
[d∞]

∼= V P
[c∞] if and only if

ϕQ(d) = ϕP (β) for some β ∈ Πc.

Proof. (1) It follows from the fact that V[c∞] is a simple left LK(Rn)-module (by

[14, Theorem 3.3 (1)]) and ϕP−1 is an automorphism of LK(Rn) (by Corollary

2.6).

(2) By [14, Theorem 3.3 (1)], we have EndLK(Rn)(V[c∞]) ∼= K, which yields

that EndLK(Rn)(V
P
[c∞])

∼= K.

(3) Since V[c∞] is a simple left LK(Rn)-module, V[c∞] = LK(Rn)c
∞. By [7,

Theorem 4.3] (see also [4, Theorem 2.8]), we obtain that

{r ∈ LK(Rn) | rc
∞ = 0 in V[c∞]} = LK(Rn)(v − c).

By item (1), V P
[c∞] is a simple left LK(Rn)-module, and so V P

[c∞] = LK(Rn) · c
∞,

that means, every element of V P
[c∞] is of the form r · c∞ = ϕP−1(r)c∞, where

r ∈ LK(Rn). We next compute annLK(Rn)(c
∞) := {r ∈ LK(Rn) | r · c∞ = 0}.

Indeed, let r ∈ annLK(Rn)(c
∞). We then have ϕP−1(r)c∞ = r · c∞ = 0 in V[c∞],

which gives that ϕP−1(r) = s(v − c) for some s ∈ LK(Rn), and so

r = ϕP (ϕP−1(r)) = ϕP (s) (v − ϕP (c)) .

This implies that

annLK(Rn)(c
∞) ⊆ LK(Rn)(v − ϕP (c)).

Conversely, assume that r ∈ LK(Rn)(v − ϕP (c)); i.e., r = x(v − ϕP (c)) for some

x ∈ LK(Rn). We then have

r · c∞ = ϕP−1(r)c∞ = ϕP−1(x(v − ϕP (c)))c
∞ = ϕP−1(x) (v − c) c∞ = 0

in V[α], and so r ∈ annLK(Rn)(c
∞), showing that

LK(Rn)(v − ϕP (c)) ⊆ annLK(Rn)(c
∞).

Hence LK(Rn)(v − ϕP (c)) = annLK(Rn)(c
∞). This implies that

V P
[c∞]

∼= LK(Rn)/LK(Rn)(v − ϕP (c)),

as desired.

(4) (⇐) Assume that d = ϕP (β) for some β ∈ Πc. Then, by [7, Theorem 4.3]

(see also [4, Theorem 2.8]), V[d∞]
∼= LK(Rn)/LK(Rn)(v − d). Since β ∈ Πc and

by Theorem 4.1, V[c∞]
∼= V[β∞], and so

V P
[c∞] = (V[c∞])

ϕ
P−1 ∼= (V[β∞])

ϕ
P−1 = V P

[β∞].

By Item (3), we have

V P
[β∞]

∼= LK(Rn)/LK(Rn)/LK(Rn)(v−ϕP (β)) = LK(Rn)/LK(Rn)(v−d) ∼= V[d∞],
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and so V[d∞]
∼= V P

[c∞], as desired.

(⇒) Assume that θ : V[d∞] −→ V P
[c∞] is an isomorphism of left LK(Rn)-modules.

Let q ∈ [d∞] be an element such that θ(q) =
∑m

i=1 kiαi, where m is minimal such

that ki ∈ K \ {0} and all the αi are pairwise distinct in [c∞]. By repeating the

method done in the proof of the direction (⇒) of Theorem 4.2 (4), we obtain that

τ≤l(αi) = τ≤l(αj) for all l ≥ 1 and 1 ≤ i, j ≤ m. Since all the αi are pairwise

distinct, we must have m = 1. Since q ∈ [d∞], τ>l(p) = d∞ for some l ≥ 0, and

so

θ(d∞) = θ(τ≤l(q)
∗q) = τ≤l(q)

∗ · θ(q) = k1ϕP−1(τ≤l(q)
∗)α1 = kα,

where k ∈ K \ {0} and α = τ>l(α1). This implies that

kα = θ(d∞) = θ(dtd∞) = dt · θ(d∞) = kϕP−1(dt)α

for all t ≥ 1, and so α = β∞ for some β ∈ SCP (Rn) and ϕP−1(d) = β. This

shows that d = ϕP (ϕP−1(d)) = ϕP (β). Since α ∈ [c∞], we have [β∞] = [c∞], and

so β ∈ Πc, as desired.

(5) We note that

V Q
[d∞]

∼= V P
[c∞] ⇐⇒ (V[d∞])

ϕ
P−1 ∼= (V[c∞])

ϕ
Q−1 ⇐⇒ (V[d∞])

ϕ
Q−1 )ϕQ ∼= (V[c∞])

ϕ
P−1 )ϕQ

⇐⇒ V[d∞]
∼= (V[c∞])

ϕ
P−1Q = V Q−1P

[c∞] .

Using this note and Item (4), we immediately get the statement, thus finishing

the proof. �

In light of Theorem 4.5, we define an equivalent relation ≡ on SCP (Rn) ×

GLn(K) as follows: For all (c, P ) and (d,Q) ∈ SCP (Rn) × GLn(K), (c, P ) ≡

(d,Q) if and only if ϕQ(d) = ϕP (β) for some β ∈ Πc. We denote by [(c, P )] the

≡-equivalent class of (c, P ). We should mention that [(c, P )] 6= [(d,Q)] for all

(P,Q) ∈ GLn(K)×GLn(K) and (c, d) ∈ SCP (Rn)× SCP (Rn) with |c| 6= |d|.

As a corollary of Theorem 4.5, we obtain that all simple LK(Rn)-modules V P
[c∞]

associated to pairs (α,P ) ∈ SCP (Rn) × GLn(K) may be parameterized by the

set (SCP (Rn)×GLn(K))/ ≡.

Corollary 4.6. Let K be a field, n ≥ 2 a positive integer and Rn the rose graph

with n petals. Then, the set

{V P
[c∞] | [(c, P )] ∈ (SCP (Rn)×GLn(K))/ ≡}

consists of pairwise non-isomorphic simple left LK(Rn)-modules.

Proof. It immediately follows from Theorem 4.5 (5). �

Using Theorems 4.1, 4.2 and 4.5, we obtain a list of pairwise non-isomorphic

simple modules for the Leavitt path algebra LK(Rn).

Corollary 4.7. Let K be a field, n ≥ 2 a positive integer and Rn the rose graph

with n petals. Then, all the following simple left LK(Rn)-modules
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(1) V[α], where α ∈ (Rn)
∞
irr;

(2) Sf
Πc
, where c ∈ SCP (Rn) and f ∈ Irr(K[x]);

(3) Sf,p
d , where d ∈ Cs(Rn), f ∈ Irr(K[x]) with deg(f) ≥ 2, [0] 6= [p] ∈

ARn(e1, e2)/ ≡f,d;

(4) V P
[α], where [α]≡ ∈ (Rn)

∞
irr−eeri/ ≡ and In 6= P ∈ GLn(K);

(5) V P
[c∞], where [(c, P )] ∈ (SCP (Rn)×GLn(K))/ ≡ and P 6= In

are pairwise non-isomorphic.

Proof. By Theorem 4.1, all the simple modules V[α], S
f
Πc

and Sf,p
d are pairwise

non-isomorphic. By Corollary 4.3, all V P
[α] ([α]≡ ∈ (Rn)

∞
irr−eeri/ ≡ and P ∈

GLn(K)) are pairwise non-isomorphic. By Corollary 4.6, all V P
[c∞] ([(c, P )] ∈

(SCP (Rn) × GLn(K))/ ≡) are pairwise non-isomorphic. By Theorem 4.2 (3),

V P
[α] is not finitely presented for all α ∈ (Rn)

∞
irr−eeri and P ∈ GLn(K). While

by Theorem 4.5 (3), V P
[c∞] is finitely presented for all c ∈ SCP (Rn) and P ∈

GLn(K). By [22, Theorem 3.6 (5)], all Sf,p
d are finitely presented. By [7, The-

orem 4.3] (see also [22, Theorem 3.2]), all Sf
Πc

are finitely presented. There-

fore, each V P
[α] is neither isomorphic to any Sf

Πc
nor any V P

[c∞]. By Theorem 4.5

(2), EndLK(Rn)(V
P
[c∞])

∼= K for all c ∈ SCP (Rn) and P ∈ GLn(K). While by

[22, Theorem 3.6 (4)], EndLK(Rn)(S
f,p
d ) ∼= K[x]/K[x]f(x) for all d ∈ Cs(Rn),

f ∈ Irr(K[x]) and p ∈ ARn(e1, e2). Therefore, each V P
[c∞] is not isomorphic to any

Sf,p
d with deg(f) ≥ 2, thus finishing the proof. �

We end this article by presenting the following example which illustrates Corol-

lary 4.7.

Example 4.8. Let R be the field of real numbers and R2 the rose with 2 petals.

We then have (R2)
∞
irr−eeri = (R2)

∞
irr, and Cs(R2) = {em1 e2 | m ∈ Z, m ≥ 0} and

AR2(e1, e2) is the R-subalgebra of LR(R2) generated by v, e1, e
∗
2, that means,

AR2(e1, e2) = {

n∑

i=1

rie
mi

1 (e∗2)
li | n ≥ 1, ri ∈ R, mi, li ≥ 0},

where e01 = v = (e∗2)
0, and R[e1] ⊆ AR2(e1, e2). By Corollary 4.7, all the following

simple left LR(R2)-modules

(1) V[α], where α ∈ (R2)
∞
irr;

(2) Sf
Πc
, where c ∈ SCP (R2) and f ∈ Irr(R[x]);

(3) Sf,p
em1 e2

, where m ≥ 0, f = 1− bx− ax2 ∈ R[x] with a 6= 0 and b2 +4a < 0,

and 0 6= p ∈ R[e1];

(4) V P
[α], where [α]≡ ∈ (R2)

∞
irr/ ≡ and I2 6= P ∈ GL2(R);

(5) V P
[c∞], where [(c, P )] ∈ (SCP (R2)×GL2(R))/ ≡ and P 6= I2

are pairwise non-isomorphic.
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