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Abstract

Consider the mean-field spin models where the Gibbs measure of
each configuration depends only on its magnetization. Based on the
Stein and Laplace methods, we give a new and short proof for the
scaling limit theorems with convergence rate for the magnetization in
a perturbed model. As an application, we derive the scaling limit
theorems for the maximum likelihood estimator in linear models.

1 INTRODUCTION

The Ising model was originally proposed for the purpose to study the prop-
erties of ferromagnetic materials, but it has become since a prototype spin
model on general graphs, see Ellis (1985); Hofstad (2021+); Niss (2005,
2009). Recently, it has also become a model for describing the pairwise
interactions in networks, see e.g. Contucci and Giardina (2013); Geman and
Graffigne (1986); Green and Richardson (2002) for its application in social
networks, computer vision, and biology. However, in some situations, pair-
wise interaction is not enough to express the dependence of spins in networks,
which motivated the study of higher-order Ising models, where multi-atom
interactions are allowed; see for example Heringa, Blote and Hooglan (1989);
Suzuki (1972); Yamashiro, Ohkuwa, Nishimori and Lidar (2019). As far as
we know, one of the first rigorous results in this direction is due to Mukher-
jee, Son and Bhattacharya (2021), who considered the p-spin Curie-Weiss
model for p > 2, given by the Gibbs measure

np—1
1<i1,...,ip<n

n
(W) o exp 5 Z wil...wip—l—thi , we,={1,-1}",
i=1
(1.1)
where 8 > 0 denotes the inverse temperature and where h € R denotes the
external field; here and below, for any measure p, the notation u(w) o f(w)
means that the value of p(w) is proportional to f(w) up to a normalising
constant that only depends on the model parameters. In (1.1), all possible p-

tuples in the complete graph of size n contribute to the Hamiltonian, and
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hence to the corresponding Gibbs measure, and it can therefore be rewritten

as
w1+ ... +wp
)

pin(w) o exp(n(BoPf + ho)), @@= -

(1.2)

and using this compact form and the Laplace method, Mukherjee, Son and
Bhattacharya (2021) and Mukherjee, Son and Bhattacharya (2021+) inves-
tigated the fluctuation of the magnetization w, as well as the maximum
likelihood estimators for the parameters 8 and h.

In this article, we go further and study the fluctuation of the magnetisa-
tion the case where the interaction can be expressed by a general (smooth
enough) function of @ instead of just being a polynomial of @ as in (1.2).
Consider the generalized linear model

‘{z fwi = 1}’

n

fin (W) o exp(n(ﬁlfl(@r) + ... +5lfl(@+)))7 Wy = , (1.3)
where f1,..., f; are smooth functions and (1, .. ., §; are real-valued model pa-
rameters. Note that w; = (w+1)/2, and so studying @ and @ is equivalent.
Particularly, if we choose [ = 2 and fi(a) = 2a—1, 1 = h, fa(a) = (2a—1)?,
and f2 = 3, we obtain the p-spin Curie-Weiss model in (1.2).

Denoting X,, = [{i : w; = 1}| = nwy, the linear model (1.3) can be
characterized by the simpler model

P[X,, = k] o exp (nF(k/n)) <Z>, 0<k<n,

where
F(a) :ﬁlfl(a)+...+6lfl(a), a & [0, 1].
Observe further that

%log <Z> ~ I(k/n), I(a)=—aloga+ (a—1)log(l—a),

here, I is the entropy function. Combining Stein’s method for normal ap-
proximation and Laplace’s method, we derive a complete description of the
fluctuation of wy (and thus, w). It turns out that the order of the fluc-
tuation depends on the order of regularity of the maximizers of a func-
tion A:[0,1] — R given as

A(a) = F(a) + I(a). (1.4)

For instance, if A has a unique maximizer at, say, a, € (0,1) and if this
maximizer is 2m-regular, that is, if A(k)(a*) =0forl <k <2m-1
and if A®™)(a,) < 0, then our general result implies that @, concentrates
around a, and the order of concentration is n—1/2m)

The second question we address in this article is the construction of
suitable estimators of the model parameters. The maximum likelihood esti-
mators (MLEs) in the p-spin Curie-Weiss model was studied by Comets and
Gidas (1991) for p = 2 and by Mukherjee, Son and Bhattacharya (2021+)
for p > 3, and for Markov random fields on lattices by Comets (1992);
Pickard (1987). The maximum pseudo likelihood estimation problem of the



Ising model on general graphs has been discussed by Chatterjee (2007) and
Ghosal and Mukherjee (2020). We refer to Mukherjee, Son and Bhattacharya
(20214) and the references therein for further discussion on the history and
development of the problem.

In this article, we follow the usual approach to construct the MLE for each
parameter 3; using only one sample w. In fact, we can construct a consistent
estimator ,6A’i7n of §; using only the quantity @y ; see more in Section 4. Apart
from consistency, we can also show that, after suitable scaling, Bz}n — B;
converges to a non-degenerate random variable. A standard approach to
study the fluctuation and scaling limits of Bi,n is to prove limit theorems for
a perturbed model of (1.3); see for example Comets and Gidas (1991) and
Mukherjee, Son and Bhattacharya (2021+) for p-spin Curie-Weiss models.

In the general setting, we consider the perturbed model

P[X, = k] exp(nAn(k:/n) + nl/(2m)Bn(l<:/n)>, 0<k<n, (L5

where A,,, B, : {0, %, ...,1} — R; here, A, is the main term driving the
model and B, is the perturbation. We assume in addition that A,, and B,
are well approximated by smooth functions A, B : [0,1] — R and 2m is the
regularity order of the maximizers of A. Particularly, for the linear model
(1.3), the knowledge of the fluctuation of X,, with A given by (1.4) and B
suitably chosen would lead to the scaling limit of estimators Bl,n, ceey Bl,n of
the linear model (1.3). We refer to Section 4 for detailed proofs.

The usual strategy to investigate the Gibbs measure of the form (1.3)
(or the more general form (1.5)) is using Laplace’s method to prove the
concentration and scaling limit of magnetization around maximizers of A(a).
This approach usually requires many tedious and difficult computations of
exponential functionals. Our main innovation in the study of the perturbed
model (1.5) is exploiting Stein’s method to avoid some of these complicated
computations. Moreover, as a additional bonus of using Stein’s method,
we also obtain the rate of convergence in our limit theorems. We refer to
Section 2 for more details.

We briefly summarize the main findings of this paper.

> In Theorems 2.1-2.3, combining Stein’s and Laplace’s methods, we
give a short proof for scaling limit theorems of the magnetization (or
for X,,) with convergence rate in Wasserstein distance. This distance
measures the difference of random variables over the space of test func-
tions having bounded first derivative.

> In Theorem 4.1, applying the limit theorems of magnetization in per-
tubed models, we show the scaling limits of maximum likelihood esti-
mators of the linear model form (1.3).

1.1 Notation

For any random variables X and Y, we consider the Kolmogorov and Wasser-
stein probability metrics, defined as

dk(X,Y) = sup | B[X < ] — B[V <],
teR



dw(X,Y) = sup |Eh(X) — Eh(Y)|.
IrI<1

For a > 0, we denote by NT(0,a) (resp. N~ (0,a)) the positive (resp. nega-
tive) half-normal distribution, that is the distribution of |N (0, a)| (vesp. —|N(0, a)|).
Let X be a random variable with density p(z). We write p(z) o« f(z) if p(x)
is proportional to f(z) up to a normalizing constant, and in such a case, we
also write X o< f(x) if X has distribution with density given by p(x). Let f
and g be two real functions. We write f = O(g) if there exists a universal con-
stant C' > 0 such that f(z) < Cg(x) for all z in the domain of f and g. We
also write f = g+ O(h) when |f — g| = O(|h|), and write f = exp(g+ O(h))
if |log f — g| = O(|h]). In some cases, we write f = Os(g) to emphasize that
the constant C' may depend on 4.

2 THE MAGNETIZATION IN PERTURBED MODELS

Let Ap, B, : {0,1/n,...,1} — R and m, € N. We consider the integer-
valued random variable X,, defined by the model

1

where

H,(k/n) = nA,(k/n) + nownBn(k/n), owp= nilH/(Qm*),
Zy = Zexp(Hn(k/n)).
k=0

In what follows, we will make use of various technical assumptions. Let e,
d., and C, be positive constants, let (a;, m;);e.s be a finite collection of pairs
with a; € (0,1) and m; € N for j € J, and let A, B : [0,1] — R be functions
such that A € C?™+1(]0,1]) and B € C?([0,1]). Consider the following
assumptions:

(A1) (aj)jes are all the maximizers of A, and maxje;m; = m,. We
have A'(a;) = ... = A®"~1(q;) = 0 and MaX|; q;|<s, APm5) (1) < 0
for all j € J. The intervals (aj — d«,a; + 0+), j € J, are disjoint and
contained in (0, 1).

(A2) For n large enough and for all £ for which |k/n—a;| > 6, for all j € J,
we have

An(k/n) < m{g}i}A(ﬂv) — &4, |Bn(k/n)| < C..
xe|0,

(A3) For n large enough and for all k& and ¢ for which there is j € J such
that |k/n — a;j| < d, and |¢/n — a;| < 0, , we have

[An(k/n) — A(k/n)| + |Bn(k/n) — B(k/n)| < Ci/n,



(A4) For n large enough and for k; = [na;l], j € J, we have
Ci
sup |[An(ki/n) — Ap(kj/n)]| < 5,

1,J€J2 nN°0xn

where

Ji={jeJ:B(aj) = Iiléi}(B(ak)}, Jo={j€Ji:m;= Iklé:?];;(mk}

Theorem 2.1 (Weak law of large numbers). Under Assumptions (A1)—(A4),
we have

X,
W 2 P 24
je€J2
where for j € Js,
q; / 2m;
[P - — q; = | exp(cjz”™ + bx)dx,
’ Zker K ! R ’ ’
with
A(Qmi)(a]) /
o= gy b= Ble)Tms =m.) (22)

Theorem 2.2 (Concentration). Assume (Al)-(A3), and let § € (0,6,) .
There exist a positive constants ¢ such that

P[| X, /n —a;| > § for all j € J] < exp(—cn) (2.3)
and
P X, /n —aj| > 6 for all j € Ji] < exp(—cnoyp). (2.4)
Moreover, for any jo € Jo, there exists a constant C such that if J1 # Ja,

P|Xn/n —aj| >0 forall j € Jo] < C max nt/(ma)=1/CGmsy) (9 5)
J1€Ji\J2

and, for any j € Js,
B[ X /n — 0] < 8] = pj + O(run) + o( ma nl/@mw—l/@mﬂ), (2.
keJi\J2

where

log n)?m=+1 —1/(2m.
Ten = (Ti/()2m*) + nl/(2m*) 1/(2mys,) lognl[mp 7é m*]

Theorem 2.3 (Distributional limit theorem). Under Assumptions (Al)-
(A3), we have for all j € J and | € N that

E{|X,/n — aj|l“Xn — naj| < nb,} = O(n_l/@mﬁ'));
and for all j € J that
dw (£ (n" ) (X n — a))] | X0 = nay| < né.), 2(Y;))
= o(n—l/(2mj)) + O(nl/(2m*)—1/(2m]’) 1fm; # m.]),
where Y; o< exp(c;x®™i + bjx) with ¢; and b; given as in (2.2).

Remark 2.4. In Theorem 2.1, the Condition (A4) is not needed when A
has a unique maximizer. In fact, Condition (A4) is only required in (3.7) to
prove (2.1), where we compare the Gibbs measure around the maximizers.



3 PROOFS OF MAIN RESULTS

To simplify notation, we will drop the dependence on n in what follows and
write X, W, o and 7 instead of X,,, W, 0, and 7,, and introduce some
notation

oj = nt/mi)-1, Jo={jeJ:oj=0t={je€J:mj=m}.

In order to prove Theorems 2.1, 2.2 and 2.3, the following result is key.

Proposition 3.1. Assume (A1)—(A3), and let 6 € (0,0.]. Then for all j €
J, we have

Znj(6) == Z exp(Hy(k/n))
|k/n—aj|<d

= (gj + Os(y))0; " exp(nAn(k;/n) + no.B(ay)),
where k; = [naj] and 7j, q;, ¢; and b; are given in Theorem 2.1.

The proof of Proposition 3.1 is based on Laplace’s method and will be pre-
sented at the end of this section.

3.1 Concentration and weak law of large numbers

Proof of Theorems 2.1 and 2.2. We start by proving the concentration in-
equalities. We first show that for any § € (0, ), one has

P[|X/n —aj| > 6 for all j € J] < exp(—cn), (3.1)

where ¢ = ¢(6) > 0is a constant. Let k be an integer such that |k—na;| > én
for all j € J. We claim that there exist ¢ € J and ¢ > 0, such that

Ap(k/n) — Ap(ki/n) < —c, (3.2)

where recall that k; = [na;]. Indeed, if |k — na;j| > d,n for all j € J then
let i be an arbitrary element of J and using by (A2) and (A3), we have

Ap(k/n) — Ap(ki/n)
= An(k/n) — A(a;) + A(a;) — A(ki/n) + A(ki/n) — An(ki/n)
< —ex + O(|ki/n — ai]) < —2e4/3,
where we have used |k;/n—a;| < 1/n. Otherwise, suppose that |k—na;| < dn
for some 7 € J. Then
Ap(k/n) — Ap(ki/n)
= A(k/n) — A(ki/n) + O(1/n) = A(k/n) — A(a;) + O(1/n)
< sup  A(2)6%/2+ 0(1/n) < —c,

z:|z—a;|<dx

where ¢ = ¢(dx) > 0. Here, for the first two equations, we used (A3)
and |k;/n — a;| < 1/n, for the remaining inequalities, we used Taylor ex-
pansion and (A1l). The proof of (3.2) is complete.



Next, note that by (A2), |B,(k/n)] < C, when |k/n — a;| > 0, for
all j € J, and by (A3) for k such that |k/n — a;j| < J, for some j € J one
has | By, (k/n)| < |B(k/n)| + Ci/n < 2max,c(o 17 |B(z)|. Therefore,

max |By,(k/n)| = O(1). (3.3)

0<k<n
Combining (3.2) and (3.3) yields that for all n sufficiently large

n[An(k/n) — An(ki/n)] + now B (k/n) — By (ki/n)] (3.4)
< —cn+ O(noy) < —cn/2,

and thus
P[X = k] < exp(—cn/2)P[X = k;] < exp(—cn/4),

and (3.1) is proved by using the union bound.
By Proposition 3.1, for any fixed § € (0, d,), for all j € J and n sufficiently
large

Znj(8):= > exp(Hn(k/n))
|k/n—a;|<6 (3.5)
= (gj + Os(7y))o; " exp(nAn(k;/n) + no.Bl(ay)),

where k; = [na;] and

)2m*+1

(logn o logn I

e T\,

T =
NOo « O'j

and
q; = / exp(cjx2mj + bjx)dx,
R

with ¢;,b; as in (2.2).

Note that nA,(k;/n) = nA(a;)+0(1) = nmax,cjo 1] A(x)+O0(1) by (A3).
Therefore, the leading terms of (Z,;)jes are the ones at which the se-
quence (B(aj)) e attains the maximum. Recall that

Ji={j € J: Bla;) = max B(ay)}-

Let 6 € (0,04) be any fixed constant. By the above, (3.1) and (3.5) yield
that, if J1 75 J,

P[|X/n — a;] > 6 for all j € J]
ZjeJ\Jl Zn,j
ZjeJ Zn»j
o
<exp(—en) +05(1) Y —2exp(no.(B(a;) — Blay,)))
) gj
jeJ\J1

< exp(—cn) +

< exp(—c1noy),



where ¢ and ¢; are positive constants depending on §, and j; is an element
of Ji. Similarly, if Jo # Jy,

P[|X/n — aj| > 6 for all j € J5] < Os5(1) max oj,/0j,, (3.6)
j1€J1\J2

with jo an element of Jo. The two above inequalities and (3.1) yields the
concentration estimates in (2.3), (2.4) and (2.5).

We now prove the weak law of large numbers (2.1) and the estimate (2.6).
By (A4) for all i,5 € J,

InAy, (ki/n) —nAp(kj/n)| = O(1/noy). (3.7)
Hence, it follows from (3.5) that for any 0 € (0,0,), and for all j € Jo
Zn,j(9)

== =p; + Os(7), (3.8)
Zkeh Zn,k(é) ’
where
p; = -4
! Zker Qk’
and 1 2my+1 1
T*:Tj2: (Ogn) +U* OgnI[JQ#J*],
No Uj2

with jo an element of Jp (note here that oj, = oy, for all J2. 34 € Ja).
Combining (3.8) and (3.6), we have

<
X/n — Z Dy 5aj,
JEJ2
and for all j € Jo

P[|X/n — a;| < 0.] = p;j + O(7) + O(1) max 0y, /0y,.
j1€J1\J2

The proof of (2.1) and (2.6) is complete. O

3.2 Stein’s method

We first state and derive what is needed to implement Stein’s method for
target distributions of the form p(y) o< exp(cy®™ + by). The following result
is a consequence of the general approach of Chaterjee and Shao (2011).

Lemma 3.2. Let m be a positive integer, and let Y be a random variable
with density function p(y) o exp(cy®™ + by) with ¢ < 0 and b € R. Then
there exists a positive constant K = K(c,b,m) such that for any random
variable W,

aw(W,v) < swp [E{yW) + B rom |,
5 p(W)
feCE(R)

where
Ck(R) = {f € C*(R) : || flloos I1f'lloos 1 /|0 < K},
with C?(R) the space of twice differentiable functions and ||gs = supyer |g()|-



Proof. Let h be Lipschitz continuous and consider the Stein equation

7(w) + 9 (w)f (w)/p(w) = h(w) — ER(Y). (3.9)

Chaterjee and Shao (2011, Lemma 4.1) showed that the solution fj of the
functional equation (3.9) belongs to C%(R) and satisfies

oo V1L oo VAL lloo < (1 4+ di)(1 + d2) (1 + da)[|]] oo,

where

4y = sup WP@),1 - Pl@)} 0 win{ (), 12_ Pl (2)
z€R p(x) P ()

I

and d3 = sup,cg Q(x), with P(z) = [*_ p(t)dt and

Qz) = W min{E{YI[Y < 2]} + E|Y|P(x),

E{YI[Y > 2]} + E|Y|(1 - P(x))}.

We now show that ds is a finite constant depending only on ¢, b and m. The
proof for d; and ds is similar but simpler, hence omitted. It is clear that

ds = max{ sup Q(x), sup Q(x), sup Q(:U)}, C=1+ 47:|C|T (3.10)

z<—C |z|<C e

First, consider > C; since (p//p)'(x) = 2m(2m — 1)cx?™~2 and EY < o,

2?2 [ yp(y)dy 2?2 [ yq(y)dy
p(x) q(x)

Q(l‘) < Cl = 01 s (3.11)

with C1 = C1(c,b,m) a finite constant and g(z) = exp(cz®™ + bz). Using
integration by parts and the fact that ¢'(y) = q(y)(2mcy*™ 1 +b) < 0
fory> x> C,

/:O ya(y)dy = / ) < / T )

2mey?m—1 4+ b me
.’EQ_qu(SL‘) 00 yl—Qm(Q _ Qm)
=— +/ ——————q(y)dy
m|c| . mc
:L,2—2mq(x) 1 o0
Tl + 2/ ya(y)dy,
xX

and hence -
/ yq(y)dy <

Combining this with (3.11) we have sup,~c Q(z) < 2C1/(m/|c|). The same
inequality holds for sup, o @(z). Since Q is continuous, it also follows
that supj, <o Q(z) < oo . Hence, by (3.10), we have d3 < oo,

Finally, considering (3.9) with w replaced by W and taking expectation,
the claim easily follows. O

mic|



Lemma 3.3. (i) Let W, Y and Z be random variables such that |W —
Y| < |Z| almost surely. Then

dg(W,Y) < inf (sup]P’[s <Y <s+0]+P)|Z]| > 5])
0>0 \ seR

(1) Let'Y be a random variable satisfying

1
My :=supsup=P[s <Y < s+ 0] < 0.
550 seR 0

Then there exists a positive constant C = C(My), such that for all
random variable W,

dx(W,Y) < Cdw (W, Y)"?.

Proof. Since Y —|Z| < W <Y +|Z|, we have for all s€e R and 6 >0
PlY <s—0] =P[|Z] > 0] <P[W < s] <PY <s+6]+P[|Z] > 4]
Subtracting P[Y” < s] everywhere and taking supremum over s, (i) now easily
follows. Item (i7) is proved by Ross (2011, Proposition 1.2). O

3.3 Distributional limit theorem
Proof of Theorem 2.5. We shall prove that for all j € J and [ € N,
E{|X/n = a;'|[|X = na;| <né.} = O(1/(noy)"), (3.12)
and for j € J
A (LW 1X = nay| < nd), 2(Y;)) 1)
= 0(1/(n03)) + Ofo /o3 T[j € T\ L),
where
W; = 0j(X —naj), Yj x pj exp(cijmf +bjx),

with ¢; and b; given as in (2.2). Let X; be a random variable having the
conditional distribution of X given |X — na;| < ndy; that is,

~ H
P[X; = k] = eXp(Z”W”)), 4 <k<L; (3.14)
nhj
where
tj = [nlaj =61, Lj=[nlaj + 6, Znj = Zn;(6s).
Then
E{|X/n— aj]lHX —naj| < nd,} =E{|X/n— aj\l}, (3.15)
and from Lemma 3.2, we have
dw (L (W] |X — naj| < ndy), Z(Y5))
p; Wj _
S jectm) S0+ Sy V) |1X e < (3.16)
(W]) T
= E - :
reoie) BL 07 + Sy POV

10



where K = K(c;,b;j,m;) is a finite constant, and
Wj = 0;(X — nay).
Given f € C%(R), we define the function g: R — R as
9(x) = f(oj(x — nay)).

For any bounded function h : R — R and § > 0, let Ash(z) = h(z+6)—h(z);
we have

DMig(Xj) = Do, f(W)),  g(X;) = f(W)). (3.17)
For o = (¢; —1)/n,4;/n,...,(L; —1)/n, let

Dy (x) = A1/an(35) = nAl/nAn(x) + nU*Al/an(x),
and also let D,,((¢; —1)/n) = 0. Note that by (3.14), for ;-1 < k < L; —1,

P(X; =k + 1]

PX; =k exp(Dyyn(k/n)).

Hence, (3.17) and straightforward calculations now yield

EAq, f(W;) = EA1g9(X;) = E{g(X)) [exp(—Dn(XJﬁ_l)) — 1]} +r, (3.18)

where

1
Zn,j

ry = [—g(Lj +1) exp(Hn(Lj/n)) +9(¢) exp(Hn(ﬁj/n))].

By (3.4), we have
masc{ Ho(L /), Ha(6; /n)} < Ho(ky/m) — cn,

for some ¢ > 0. Moreover,

|Hn(kj/n) — nAn(kj/n) — nowB(a;)| = now|Bn(kj/n) — Blaj)| = O(now).
Therefore,

max{H, (L;/n), H,({;/n)} < nAy(kj/n) +noB(a;) —cn/2.
Combining this estimate with (3.5), we obtain
11 < 1 fllo exp(—cn/4). (3.19)

Moreover, by Taylor’s expansion,

LA, £ - 1OF)

gj

< 01"l (3.20)

It follows from (3.18), (3.19) and (3.20) that

{507~ L (exn(-pa55) - 1) 070

9j

11



< [[flloc exp(—cn/4) + ol f"lloo-  (3.21)

We now estimate the error when replacing aj_l (exp(—DA%))—l) by p;(W;)/pj(W;)
in (3.21). For |k — k;| < 0.«n, using (A3) and Taylor’s expansion we have
Ap(k/n) — Ap((k —1)/n) —n~ A (k/n)
= [An(k/n) = An((k — 1)/n)] = [A(k/n) — A((k — 1)/n)]
+ A(k/n) — A((k —1)/n) —n ' A (k/n) = O(n2).

Thus

nAypAn((k—1)/n) = A'(k/n) + O(n™").
Similarly,

niyj,Ba((k —1)/n) = B'(k/n) + O(n™1).
Therefore,

|[Dn((k = 1)/n) = [A'(k/n) + 0. B'(k/n)]| = O(n™"). (3.22)

Furthermore, |e* —e¥| = e”[e" ™" — 1] < 2e|u — v| when |u —v| is sufficiently
small. Hence, by using (3.22) we have for all n large enough

|exp(—Dy((k —1)/n) — exp(—A'(k/n) — 0.B'(k/n))|
<2 max exp(|4(z)| + o« B'(z)]) (3.23)

lz—a;|<ox

% | Dn((k = 1)/n) — [A'(k/n) + 0. B'(k/n)]| = O(n™").

Moreover, by applying Taylor’s expansion to the function e~ A (2)=0.B'(z)

around z = a; and noting that A(k)(aj) =0forall 1 <k<2m;—1,
AP™3)(ay)
(2TTLj — 1)'
+ O((k/n — a;)*™ + oylk/n — aj).

exp(—4'(k/n) - 0.B'(k/n)) = 1 - (k/n —a;)*™ " — 0. B (a))

Note further that
A(?mj)(aj)
(Qmj — 1)'
= 2mjc; (Xj/n — aj)*™ ™" + 0.B'(a;)

= Uj(2ijjV~Vj2mj71 + bj) — Ujbj + J*B,(CLJ’)

(Xj/n —a;)*™ ! + 0,8 (a)

wW) .
=0 pj(Wj) + O(O'* I[j S J\J*]),

since pj(w)/p;j(w) = 2mjc;w?™i~t 4 b;, and

-1/2m;—1) , o
Wj = 0j(X; — nay) = o; /Y (X /0 — ay),
and
0 if j € Jy

b, —o0.B'(a;)] =
|O'JJ g ((1])| {|U*B/(aj):O(U*) jfjeJ\J*.
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Therefore,
exp(~ (% /) — 0. (/) 1
= —0; EiEMWé; +O(o.1[j € T\ Ji]) (3.24)
+O((Xj/n — a;j)*™ + 0. Xj/n — a]).

It follows from (3.23) and (3.24), and the fact that o, < o; that

B{|lo; ! (exp(-Da(20) = 1) 70F;) + BC2 (1)}
< Il E{(UJﬂ(f(j/n a2 4 (% - aj,)} (3.25)
+ Ca;la* I[j € J\ Ji,

where C' is a positive constant. In order to estimate the above term, we
analyse P[X; = k|. By Proposition 3.1, if |k/n — a;| < d., we have

N )
= O(1)o; exp(n(An(k/n) + 0. Bn(k/n) — An(k;/n) — 0.B(a;))).
(3.26)
Now,

An(k/n) = A(k/n) + O(1/n) < A(az) + aj(k/n — a;)*™ + O(1/n),

where for the first equation, we used (A3), and for the second one, we used
Taylor expansion and (Al) and as well as the fact that

A2m;)
Qj = max A < 0.
|z—a;|<0x (2m3)'

Furthermore,
[Alay) = Aulks/m)| < [Ala;) = Alks /m)| + [ A (ks /m) = Alky/m)| = O(L/m).
Therefore,

An(k/n) < An(kj/n) + a;(k/n — a;)*™ +O(1/n).
By (A3),
|Bn(k/n)—B(a;)| < |Bn(k/n)—B(k/n)|+|B(k/n)—B(a;)| = O(|k/n—aj|).
Using the last two display equations, (3.26) and 0; < o, we have

P[X; = k] < Cojexp(ajn(k/n — a;)*™ + Cnojlk/n — a;)
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for some finite constant C'. Next, by using a?mj = n'=2m and integral

approximations, we have for all [ € N,
E{|X;/n—a;|'}
< Coj Z \k/n—aj]lexp<ajn(k/n—aj)2mj —i—Cnaj]k/n—aj\)

ki|k/n—a;|<d«

ndx
= 0(0y) [ (lal /' expla(wo; P + Clao;

—nds

najé*
— O((no;)™) / lyl' explagy®™ + Clyl)dy = O((no;) ™),

—no;jdx

since o;j < 0. This estimate and (3.15) implies (3.12). In particular, we have

E{Ufl(ffj/n —a;)*™ + | Xj/n — aj\}
= O(o; ' (na;)7>™) + O((noy) ') = O((nay) "),

where we used that a?mj = n'=2™mj_ Therefore, by (3.25),

£{ o5 (exp(=Da(57)) = 1) 707;) + 20 £(375) [} = O (1o (7).

Combining the above inequality with (3.21) we yield that for all K > 0

E 11T i p;(VE/J) T .
fes%im\ {#07) + 252 r o)}

= O(K/(naj)) + O(0+) + O(aj/0x1[j € J\ J.])
= O(K/(naj)) + O(aj/ou1]j € J\ Ji]).

Then the desired estimate (3.13) follows from this bound and (3.16). O

3.4 Free energy
Proof of Proposition 3.1. Fix a constant ¢ € (0,0,]. We aim to approximate
Znj(8) =Y exp(Hy(k/n)).
|k/n—aj|<d

Let € € (0,0) be a suitably small constant chosen later (see (3.29)). For ne <
|k — naj| < nd, by (A3)
An(k/n) = An(kj/n) = A(k/n) — A(k;/n) + O(|k — kj| /n®)
< _max_ (A(z) — A(ay) + O(lkj/n — aj]) + O(lk — kjl /n®) < —n

e<|z—a,;|<é

with n = n(e) > 0, since a; is the unique maximizer of the smooth function A
in [a; — 0y, a; + d.]. Therefore, since B,, is uniformly bounded by (3.3),

Hy(k/n) — Hn(kj/n)
= n[An(k/n) = An(kj/n)] + now[Bn(k/n) — Bn(k;/n)] < —in/2.
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Thus

Zn: exp(Hn(k/n))

2 oxp(Hy (ky/n))

Ile < |k/n —aj] < 0] < nexp(—nn/2). (3.27)

Next, we consider 0]71 logn < |k—na;| < ne. By (A3) for all |k/n—a;| < 0
Ap(k/n) = Ap(kj/n) = A(k/n) — A(kj/n) + O(|k — kj| /n®).

Moreover, using Taylor expansion around a; with Alm) (aj) =0for 1 <m <
2m; — 1, we have

A(k/n) — A(kj/n) = A(k/n) — A(a;) + A(a;) — A(k;/n)
= cj(k/n —a;)*™ + O(|k/n — a;**1) + O(n™?),

where we recall that ¢; = A®™)(a;)/(2m;)! and |k;/n — a;|> < n72. It
follows from the last two estimates that for all |k — na;| < nd.

An(k/n) — An(k;/n)
= ¢j(k/n = a;)*™ + O(|[k/n — a;*™™) + O(|k — k;|/n?) + O(n?).
(3.28)

In particular, there exists a constant C = C(aj, ¢j, A) > 0 such that
An(k/n) — An(k;i/n) < cj(k/n —a;)*™ + Cilk/n — a;|*™ T + Cy /n.

By taking
g = |Cj’/(201), (329)

we yield that for |k/n —a;| <e,
An(k/n) — An(ki/n) < cj(k/n —a;)*™i /2 + Cy/n, (3.30)
by noting that ¢; < 0. On the other hand for all |k/n — a;| < d, by (A3)
noy[Bp(k/n) — Bp(kj/n)] = no«[B(k/n) — B(kj/n)] + O(olk — kj|/n).
Moreover,

B(k/n) — B(kj/n) = B(k/n) — B(a;) + B(a;) — B(k;/n)
= B'(a;)(k/n — aj) + O(|k/n — a;|*) + O(n~").

Thus for all |k/n — a;| < ds,

now[Bn(k/n) — Bn(k;j/n)]

= 0'*(]{3 — naj)(B/(aj) + O(|k:/n - (Ij’)) + O(O'*) (331)

Hence, using (3.30) and (3.31) and o, < 0, and noting that aj.mj = pl=2m;

Ha(k/n) = Ho(k;/m) < F(o;(k = na;))*™ + Colk — nay| + C.
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with C some positive constant. Therefore,

I[(logn)/o; < |k —naj| < ne]

" exp(H,(k/n))
2 cp(H k)

< Z exp(%(aj(k —na;))*™ 4 Cojlk — na;j| + C)

|k—na;|>(logn)/o;

k

G

= O(l)/ exp(—(aja:)2mj + Clojz| + C)dm = O(1/n).
2> (logn)/a; N2
(3.32)

Here, in the last inequality we have used f‘y|>logn exp(cijmj +Cy+C)dy =
O(n™2) since ¢j < 0 and m; > 1. It follows from (3.27) and (3.32) that

Zj(8) = (L+O(L/n)) > exp(Halk/n))
g&:gaé)'/ﬂj

= (140(1/n)) exp(Hu(kj/n)) Y m

|k—na;|
<(logn)/o;
= (1+ O(0+)) exp(ndy(k;/n) + no.B(a;))
exp(Hn(k/n))
>< T T 1 N
2 el (k)
<(logn)/a;

(3.33)

where for the last equation we used (A3) to derive that
’nAn(k‘j/n) + noB(aj) — Hn(kj/n)‘ = ’na*(Bn(k‘j/n) - B(aj))’ = O(o4).
By (3.31), if |k — na;| < a;l logn then
now[Bn(k/n) — Bn(kj/n)]
= B'(aj)o.(k — naj) + O((log n)2a*/na]2~) + O(o+)
=bjoj(k —naj) + O(o«(logn)/o;lo; # 0.])
+ 0((log n)%. fno?) + O(0.),
since b; = B'(a;)I[o; = 04]. Similarly, by (3.28) for |k — na;| < aj_l logn,
n[An(k/n) = An(kj/n)] = ¢jn(k/n — a;)*™ + O((log n)*™*! /noy)
= ¢j(0(k — na;))*™ + O((logn)*™*! /nay).
Therefore,
Hy(k/n) — Hy(kj/n) = ¢j(0(k —naj))*™ +bjoj(k —naj) +O(7;), (3.34)

where
(logn)?™itl  o,logn

T = no; + s I[Uj %O'*]
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We now compute

Y ex(ei(oj(k = nay))™™ + bjo(k - nay))
|k—na;]|

<(logn)/o; (335)
=Y exp(c;(io;)™ + bj(io;)),

i€ly

where I'), = {k —na; : k € Z, |k — na;j| < (logn)/o;}. Denote by h(x) =
exp (cijmj + bjzv). Then for all ¢ € I'y,, by Taylor expansion

) (i+1)o;
’h(iaj) —o; / h(m)dw‘ < 0 sup |R(z)].
ioj to;<x<(i+1)o;
Hence,

> ntioy) - 0].1/

h(x)daj‘
i€y R

(3.36)
< 0 Z sup |h'(z)] +/ h(z)dx.
|z|>log n

i€l 10 éxé(i#»l)oj

Since ' (z) = exp(c;z*™i + bjz)(2mjc;x*™~1 +b;) with ¢; < 0, we can find
a positive constant C' = C(c;, mj,b;), such that if |y| > C then

sup |V (z)| < C, sup |W ()| < exp(—c;jy*™i /2).
z€R y<z<y+1

Therefore, we have

sup  |W'(2)] <207 /o5 + ) exp(—c;(io;)*™ /2)

ier,, 10iSes(it+1)o; i€ly,
< O(1/0y) +/ exp(—cj(za;)?™ /2)dx
|z|<(logn)/a;
= O(1/a;),
which together with (3.36) yields that

> hio) = aj—l/

2 A h(z)dx + O(1) + / h(x)dx

|z|>logn

= Uj'_IQj + 0(1)7

since ¢j = [p h(x)dz. Combining this with (3.34) and (3.35) we obtain that

> m = (1+0())o; 'q; + O(1) = (14 O(7))o; gy,

lk—na|
<(logn)/o;

since 7; > (logn)*™ 1 /(no;) > oj. We finally deduce (3.5) from the above
estimate and (3.33). O
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4 MAXIMUM LIKELITHOOD ESTIMATOR OF LINEAR MODELS

We first recall the generalized linear model (1.3) given as

(@) = Zln ep(Ha(@)),  we Q= {+1,-1}",

where

Zu=3" exp(Ho(w)),

(«UGQH

and

’{i:wi = 1}’

n

Hy(w) = n(Bifi(@s) +...+ Bfilwy)), @4 =

Since we construct the estimator for each parameter 5; considering the oth-
ers ()i to be known, for simplicity we rewrite

Ho(w) = n(Bf (@) + 9(@+)), (4.1)

where f, g : [0,1] — R are non-constant smooth enough and known functions.
Our aim is to estimate the parameter 8. In order to build the MLE of 3, we
compute the log-likelihood function of the model as

Ln(B,0) = - log pm(w) = B (@) + 9(@+) — ou(5)
with )
n(f) = - log Zy.

Then the MLE of 3, denoted by Bn, is a solution of

0=0gLy = f(wy) — u(B),
where
u(B) = Oppn = Egf(wy)
with [Eg the Gibbs expectation with respect to u, for given 3. Note that
dpu = Egf(@4)” —Eg{f(@+)}* >0

since f is non-constant. Therefore, w is strictly increasing in £, and thus

B = u” (f(@4))- (4.2)

Before stating the main result of this section, recall the entropy function I :
[0,1] — R defined as I(a) = —aloga + (a — 1)log(1 — a) for a € [0,1] with
the convention that 0-log0 = 0.

Theorem 4.1. Consider the mazimum likelihood estimator B, as in (4.2) of
the linear model having Hamiltonian given by (4.1) with f,g € C?*™T1([0,1])
and m, € N. Suppose that the function A : [0,1] — R given as A(a) =
Bf(a) + g(a) + I(a) has finite mazimizers, denoted by (aj)jer, satisfying
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that A®)(a;) =0 for all 1 <k < 2mj — 1 and A®™)(a;) <0 for all j € J,
with (mj)jc; C N and m, = maxje;m;. Define

J1+ ={jeJ: f(a;) = max f(ar)}, J2Jr ={je Jl+ :mj = max my},
keJ keJ

Jy ={j€J: flaj) =min f(ax)}, Jy ={j€J] :m; = maxmy}.
keJ keJ;

Assume that (J; UJS) C Ju:={j € J: m; = m,}, and assume that there
erist j € Jy and k € J5 such that

f'(a;)f'(ax) # 0. (4.3)

Then
(Bn _ 5)n1—1/(2m*) Z, U,

where the distribution of U is given as in (4.22)—(4.24).

Proof. For simplicity we omit the subscript n in all involved terms. Let

X = now,, oj = ntCm)=1 gor i e g, o, = pl/@ma)—1,

For v € R, we call P, the Gibbs measure at parameter v and [, the corre-
sponding expectation. With X = nw,, we have for 0 < k£ < n that

o[ = 1] o exp(a(5 (/) + (/) ) = exptcta /),

where A, : {0,1/n,...,1} — R is defined as
Anh/n) = 3 (/) + g(0/m) + o ).

Recall that A(a) = Bf(a) + g(a) + I(a) and L log (}) is well approximated
by I(k/n). Let B € C%([0,1]) and define B,, : {0,1/n,...,1} — Ras B, (k/n) =
B(k/n) for 0 < k < n. Then it is straightforward to check that there ex-
ist €4, d, and C, such that (Al)-(A4) hold. For any j € J, we define the
event

Aj ={|X/n — a;] <6},
and for ¢t € R define the random variable
Yj(t) o exp(cjz®™ + thx),
where

~ AC™I (a))

— / . N
G = (2mj)! ’ bj=B (a])l[j € Ji|.

Fix t < 0, by the definition of B and the monotonicity of u we have

Psl(B - B)/o. < 1
= Ps[u} (f(X/n)) < B+ to,] = Palf(X/n) < u(B + to,))
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Part 1. We start by estimating u(S + to,). Note that w(5 + to,) =
Egtts, f(X/n), and in the application of Theorem 2.1, the measure Pg_4,,
corresponds to the case B = tf. Hence, with ¢ < 0, we have J; = J|
and Jy = J, . Thus by Theorem 2.1,

Pstiox —
X/TL Bi) Z p] (t)éaja
jeJy

where for j,i € J; , we have

q;(t)

p; (t) = Sy 6

qi(t) = / exp(ciz®™ + thx)da.
R

Note that b; = B'(aj)1[j € J] = B'(aj) for j € J;, since we assume
that J, C J.. This assumption also yields that o, = o, for all jo € J; .
Therefore, using Theorem 2.2, we have
Potto. [Aj] =p; (1) + O(mu +7,7) forall j € Jy, (4.4)
Paiio, [Aj] = O(oy /o) forall j e J \ Jy,
Pgtto. [ﬂjeJ;.Aﬂ < exp(—cnoy),

where ¢ is a positive constant and

7o = (logn)?*™ ™ /(no,), 7.7 = max o./0;.
JE€I NIy

In addition, Theorem 2.3 yields that for any j € J,

Ep 10, {(X/n = aj)?|A;} = O(1/(noy)?), (4.7)
and
dw (Lpyy,,, (05(X = naj)|A;), Z(Y;(t)))
= O(1/(noy)) + O(o+/0;1[j & J.]).
We remark that here and below the notation O depends on || Bl|cc = [t]]| ]l
and ||Alloc. Let A= = minjecy f(a;). Then A_ = f(a;) for all j € J;, and
therefore
u(B +tos) = Ao = Egro, { f(X/0) = A}
= 3 Eprin {F(X/n) = F(a) | Ay YPpio. [A]
jedy
+ Eﬁ-l—ta*{(f(X/n) - )‘—) I[mjeJ;A;] }

(4.8)

(4.9)

For j € J, by Taylor’s expansion,

Egtto {f(X/n) — f(a;)|A;j}
= Egtio, { ' (aj)0r(X — naj)|A;}/(noj) + O(1)Ep i, {(X/n — a;)?|A;}.
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In addition, by (4.8),
Eg+to.{f'(aj)0j(X — na;)[A;}
= f(a;)EY;(t) + O(1/(noy)) + Olow/o;1[j & J.]).
The last two estimates and (4.7) yields that
Epti0. {f(X/n) = f(a;)|Aj}
= f'(a))EY;(t)/(no;) + O(1/(n0;)*) + O(ow/nof 1[j & J.]).

Combining this with (4.4) and the fact that o; = o, forall j € J; ,and J;, C
Jy, we obtain that

> Esrio {F(X/0) = F(a;)|Aj}Ps40 [Aj]
JjEJS
= (o)t D f(a)EY;(t)p; () + O((r +72) /no).
keJy
Using (4.5) and (4.10), we have
> Eprto {F(X/n) = f(a;)|Aj}Ps10, [A)]
JEJT \Jy

=0(1) Z G*/na? = O(7, /noy),

JeEJT\Jy

(4.10)

and by (4.6)
Eﬂ+ta*{(f(X/n) — Af)I[ﬂjejl—Aﬂ } < exp(—cno./2).

It follows from the last three display equations and (4.9) that

nox(u(f+tox) —A_) =e_(t) + O(ru + 7, ), (4.11)
where
()= 3 Fa)EY;(p; (0. (4.12)
jety
Note that

>jery Jo (@) exp(c;z®™i 4t f'(aj)x)dx
2jer; Jr exp(c;z®™ +tf'(a;)z)dz

Moreover, if f/(a;) # 0 by changing variable y = tf'(a;)z,

e_(t) =

/f’(aj)a:exp(ijQmj +tf'(aj)z)dz
R
 sen(tf'(ay))
t2f'(a)
since t < 0 and [ yexp(cy®™ + y)dy > 0 for all ¢ < 0 and m € N. In

addition, by the assumption (4.3) there exists j € J; such that f/(a;) # 0.
Thus by the two above display equations, we have

e_(t) € (—00,0)

/Ryexp(cjyzmj/(tf’(aj))zmj +y)dy <0,

is a negative and finite constant.
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Part 2. We proceed to compute Pg[f(X/n) < u(f + toy)]. In the ap-
plication of Theorem 2.1, the measure Pg corresponds to the case B = 0,
or J1 = J and Js = J,. Hence, by Theorem 2.1, we have

P
X/n -2 ijda].,
JEJx

where for ¢ and j in J,

q; ;
== g = / exp(c;z?™)dz.
R

el g’
Moreover, by Theorem 2.2,
PslAj] =pj + O(ru +7.) foralljeJ.,, Pglnjes AS] =O(7l), (4.13)
where 7, = max;c \ s, 0+/0;. By Theorem 2.3,
EB{(X/n—aj)2}Aj} ZO((nt)_Q), (4.14)
and
dw (Lo, (0j(X —nay)|A;), Z(Y;)) = O((noy) ™), (4.15)
where Y; = Y;(0)  exp(c;z*™). Tt follows from (4.13) that

Ps[f(X/n) < u(B + toy)]

= Z Pglf(X/n) < u(B +toy)|Ajlp; + O(r + 71). (4.16)
je.

By Lemma 3.3 (ii) and (4.15)

Ak (Lp, (05(X — naj)|4;), Z(V5)) < dw(Lp,(05(X —naj)|A;), L (Y;)"/?
= O((nay)~'?).
(4.17)
In particular, for all § > 0

sup Pg[s < f'(a;)0(X — naj) < s+ 6] 4]
seR

<supPs s < f'(a;)Y; < s+ 6] + O((noy)™V/?%) = O(8) + O((noy)~'/?),
seR

since Y; has the bounded density. Using the inequality that |f(x) — f(a) —
f(a)(x —a)| < ||fllo(z — a)?/2 and Lemma 3.3(7), and the above estimate,
we have

d (Lp, [noj (f(X/n) = fa;))|A;), £ (' (a;)05(X — naj)[A;))

< inf (supIP’ﬁ[s < f(aj)o;(X — naj) < s+ 8| Aj]
9>0 \ seR

+ Polllf" oo (no; (X/n = a;)?) > 23].4,])
= O(1) inf {6 + Py |l f"lloc(n0j (X/n — 0j)*) > 20| A;] } + O((ne)~1/%).
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Moreover, by Markov’s inequality and (4.14)
Ps [/ |oo(noj (X/n — a;)?) > 26| Aj]
= O(l)]E{an(X/n — aj)Q‘.Aj}/(S = O((énaj)_l).

~1/2

Combining the two above estimates and taking § = (no;) , we obtain

di (Lp; (o (£(X/n) = f(a;))| A7), Z(f'(a;)05(X — naj)|A;))
= O((na;)~'/%),
which together with (4.17) implies that for all j € J
di (Lo, (no;(f(X/n) = f(a))| A7), Z(f'(a;)Y;)) = O((noy)~"/?). (4.18)

If j € Jo\ J; then by the definition of J;, we have f(a;) > A_. Hence,
by (4.11),
w(B+10,) = A +o(1) < (flag) + A)/2.

Thus

Pslf(X/n) < u(B + to.)|Ay]
<Pf(X/n) < (A= + flay))/2]|A)]
= Pglno;(f(X/n) — f(a;)) < noj(A- — f(a;))/2|A;]
< dx (Lp, (naj(f(X/n) = f(a)|Aj), L (f (a;)Y;))
+P[f'(a;)Y; < noj(A- — f(ay))/2] = O((noy)~'/?),

by using (4.18) and the following estimate
P[f"(a;)Y; < noj(A- — f(a;))/4] < exp(—c(nay)?),

for some ¢ > 0, since Y; o exp(c;z*™ + bjx) with ¢; < 0, and A_ < f(a;).
Next, assume that j € J,NJ; . Then o; = o, and f(a;) = A_. Therefore,

Ps[f(X/n) < u(B +to.)|Aj]
= Pg[no;(f(X/n) — f(a;)) < now(u(B + to.) — A-)[Aj].

Combining this with (4.18) yields that

Py [f(X/n) < u(B + to.)|Aj]

= P7(6)% < non(u(B+ 1)~ )] + 001 /o)D),
Recall that by (4.11)
now(u(f 4 t02) ~ A) = e (t) + Ofr + 77,
where e_(t) € (—00,0) is given in (4.12). Hence, if f(a;) = 0 then
P (a;)Y] < nos(u(B + toy) — A_)] = 0. (4.20)
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If f'(aj) # 0, since Y; has the symmetric law with bounded density,

P{f'(a)Y; < now(u(B + toy) — )\_)]
=P[Yj < now(u(B +to.) — A=)/ f'(a;)]
[J<47/fmﬂ+0ﬁw+fﬂ
[ i<e-()/f (%)}“‘O(T*“'T* )-

Combining this with (4.19), we obtain that if f'(a;) # 0 then

Pg[f(X/n) < (5+t0*)|«4']

4.21
=P[Y; <e-(8)/f'(a))] + O + 7)) + O(1/(no)'/?). 2

Part 3. We now combine the results from Parts 1 and 2. Using (4.12),
(4.16), (4.20) and (4.21) we have for any fixed negative real number ¢,

]P)[(B _5)/0* X ]
= Pg[f(X/n) < u(p +to.)]

= > Paf(X/n) < u(B +to.)|Ajlp; + O(rs + 71)

jeJi
=> P ]\Z T(a ) Pr DBV )] 1[f(az) # 0]
JEJy kedy

+omwn”%+om+¢»
Note here that 7, < 7/. Similarly, for ¢ > 0

P((3 — B) /o« > 1]

=Y Ply;> Z T p (OEY(t) | pj I[f (a;) # 0]
jegt keJf
+0((no)™?) + O(r, + 71),
where for k € J5
+ Qk(t) / 2m;
pr(t) = =———"——, qi(t) = [ exp(cz™™ + thix)dz.

We recall that the term O depends on ¢, ||f||s and ||g|lcc- Hence, for any
fixed real number t # 0, there is a positive constant C' = C(t), such that for

all n sufficiently large
P8 — B) /o= < 1] = PIU < ]| < O(now) ™2+ 6- +6.] = o(1),

where U has the distribution as

OEYL(1)|, t<o0, (422)

jedy ke J’
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= 2 willf'tas) # 0P [Y>Z piﬁ (DEY;()|, >0, (4:23)

jegy ke J+

=1-5 Y pllf(e)#0] (4.24)
JEWS UTy)
Note that the value P[U = 0] = 1 — P[U < 0] — P[U > 0] is obtained as

follows. Letting ¢ — 0" and ¢ — 07 in the formulas of P[U < ] and P[U > ],
since EY%(0) = 0 and P[Y; < 0] = 1/2, we have

PlU < 0] = ij "(aj) # 0], PU > 0] = ij "(aj) #0].

JGJQ jEJ2

We finally conclude that

5 %
(/8 - /B)/U* — U7
and finish the proof of Theorem 4.2. O

Remark 4.2. We consider some special cases. If |J| = 1 then J,© = J; = J,
and we denote by a, the unique maximizer and assume that f/(a.) # 0. In
this case, the distribution of U is as follows. For all t € R,

P[U < t] =P[Y <EY (¢)],
where, by denoting m, the order of regularity of a.,

G <

Y =Y(0), Y (1) o exp(cea®™ +tf (a)x), o=
Note that if m, = 1 then Y (t) ~ N(tf'(ax)/2|ci],1/2|ci|), and we can
compute

U= N(0,2|cs|/f(as)?).

Next, consider the case all the maximizers have the same order of regularity,
ie. mj = my forall j € J. Then J, = J; =J_ ={j e J: fla;) =
mingey flag)}, and Jy = J;7 = Jy = {j € J : f(a;) = maxgey f(ak)}, and
we assume that there exist j € J_ and k € Jy such that f'(a;)f'(ar) # 0.
The law of U is given as in (4.22)—(4.24) when replacing J, and J3 by J_
and J.

Finally, we consider the case m; = 1 for all j € J, and

cij=cp=c_, f'(aj)=f"(ax)=d- foralk,jeJ_,
ci=cr=cy, faj)=f'(ax)=dy foralk,je Ji.

Then for j € J_ and t < 0, we have p; (t) = 1/|J_|, and Y;(t) ~ N( td_ 1
Therefore, for t € R_,

P[U < 1] :p,IP[N(o, 2|017|) < ;‘i:‘] :p,P{N(O,%) < t},



where

Zpa "(aj) # 0],

JjeEJ-

Similarly for t € Ry,

P{U>t]=P[N<07 2‘;”) >t}p+, pr =Y pillf'(a;) #0).
JeJ4

Thus

U= 2N~ (0,25 4 v (o, %ﬂ) + (1= 52 ),

where recall that N~(0,02) (resp. NT(0,02)) is negative (resp. positive)
half-normal distribution.

5 SOME EXAMPLES

In this section, we apply Theorems 2.1, 2.3 and 4.1 to the p-spin Curie-
Weiss model and the annealed Ising model on random regular graphs. We
say that a maximizer a, of a smooth function A is 2m-regular (with m € N)
if A®)(a,)=0fork=1,...,2m —1 and A®™(a,) < 0.

5.1 p-spin Curie-Weiss model

Let 2 < p € N, we consider the p-spin Curie-Weiss model with Hamiltonian

H,(w) = 6_1 Z Wiy - Wy, + thi =nfgn(ws),

1<i1,nyip<n i=1

with
fan(a) =B(2a —1)P + h(2a — 1), a € 0,1]. (5.1)

We now study the maximizers of
A(a) = fap(a) +1I(a), ac€0,1].

Mukherjee, Son and Bhattacharya (2021) have fully characterized the maxi-
mizers of the function A by showing that the parameter space (8, h) € Ry xR
is partitioned into disjoint regions:

(7) regular region Ry = {(B,h) : A has an unique maximizer a, € (0,1)}
(in this case a, is 2-regular);

(13) p-critical curve Ry = {(B,h) : A has multiple maximizers in (0,1)}
(in this case all the maximizers are 2-regular);

(7i1) p-special points Rs = {(3,h) : A has an unique maximizer a, € (0,1), A”(a.) =
0} (in this case a, is 4-regular).
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We refer the reader to Appendix B of Mukherjee, Son and Bhattacharya
(2021) for a complete picture of the partition (R1, Ra, R3).

Now, given the additional parameters (3, h), Mukherjee, Son and Bhat-
tacharya (2021+) considered the perturbed Hamiltonians

Hy(w) = nfan(@s) +vnB(wy)
H;(w) = nfgn(@s) +n'*B@y),

where
B(a) = fzpla), a€]0,1],

with f5; defined as in (5.1). Denoting the corresponding Gibbs measures
by p;, and ) and using Theorems 2.1 and 2.3, we obtain the following result.

Theorem 5.1. Consider the magnetization M, = >, w; under the per-

turbed measures p), and s . Corresponding to the cases (i)—(iii) we have the
following.

(1) If (B,h) € Ry then

(L, W) N (B patay) ) = O72),

where

M, —n(2a, — 1)
Y '
(1I) If (B,h) € Ry then A has multiple mazimizers, say 0 < a1 < az <

... <ap < 1. Let §, > 0 be a constant such that the intervals ((a; —
Oxya; + 04))F_, are disjoint. Then under uf,,

W, =

k
<
Mn/n ? E pi62ai—l>
=1

with (p;)¥_, being explicit constants. Moreover, for 1 <i <k,

dw (Dg'u;1 (Wn,i|@+ € (ai o 5*’ ai + 5*))7 N(|2ABj/((5:))\7 \AN%M)‘)) - O(n—l/Q)’
where
M,, — n(2a; — 1)

Whi =
) \/?L

(11I) If (B, h) € R3, then under pu,

dw(Wy,Y) = O(n~ %), W, =

where
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Remark that here we transfer our results for X,, to M, via the relation
M,, = 2X,, —n. The above theorem covers Theorem 2.1 of Mukherjee, Son
and Bhattacharya (2021) (the main result in this paper) and Theorem 3.1
of Mukherjee, Son and Bhattacharya (2021+) (the key result leading to the
maximum likelihood estimators).

Now we aim to apply Theorem 4.1 to find the scaling limits of MLEs.
First, we have to check the non-degeneracy condition in (4.3). Observe that
this condition is always true for the parameter h, since the corresponding
function fj,(a) = 2a — 1 is not degenerated at any a € [0,1]. However, that
condition for 5 does not hold when £ < Bp and h = 0, where Bp = sup{f >
0 : supgepo,1) A(a) = 0}. In fact, in this case a = 1/2 is a maximizer of A
that belongs to the set J_, and the corresponding function fz(a) = (2a —1)?
is degenerated at this point. In summary, we have the following.

Theorem 5.2. Consider the magimum likelthood estimators of the p-spin
Curie- Weiss model denoted by 3, and hy,.

(Ia) If (B,h) € Ry, then
Vin(hy = h) = N(0,a,).
with oy, a positive constant.
(Ib) If (B,h) € R\ {(8,0): B < By}, then
Vir(B = B) 5 N(0,0),
with og a positive constant.

(IIa) If (B,h) € Ry, then
Vb, —h) 5 Uy,

where
Un=p, N (0,04) +py N7(0,077) + (1 = p, — )0,
with pf, 0'2: positive constants.
(I1b) If (B,h) € Ry \ {(B,,0)}, then
A <
where
Us =ps N~ (0,05) +ps Nt (0,05) + (1 = ps —p)do,
with pg, aﬁi positive constants.

(111) If (B, h) € R3, then

03By — B) s Zg, 03— h) > 7,
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where for v € {8, h} the random variable Z. has the distribution
P[Zv <] = P[Y’Y(O) < IEYV(t)],

where
Yi(t) oc expleay + £ (a2)y),

with ¢, = AW (a,)/24, and fz(a) = (2a — 1)? and fy(a) = (2a — 1).

Note that in (IIb), all the points (8,0) with 3 < f, are not in Ry (in
fact, these points are in Rj). The above result covers Theorems 2.2-2.7
of Mukherjee, Son and Bhattacharya (2021+), except for the estimator Bn
when h = 0 and 8 < f3,, which is corresponding to the results (2.19), (2.22)
and (2.26) in this paper.

Remark 5.3. A natural extension of the homogeneous p-spin Curie-Weiss
model is the mixed spin model with Hamiltonian given as

Hy(w) = nfpp(@+),
where 8 = (B1,...,8) € R¥ and p = (p1,...,pr) € NF and

k

fppla) =) Bi(2a —1)7.

i=1

This Hamiltonian satisfies the conditions (A1)—(A4). Hence, we can apply
our theorems to this model. The remaining task is to analyze the maximizers
of A(a) and check the non-degeneracy condition of fs,(a) = (2a — 1) at
these points. This problem is non-trivial, hence left for future research.

5.2 Annealed Ising model on random regular graphs

Let G,, = (Vy, Ey) be the random regular graph of degree d > 3 with n
vertices V,, = {v1,...,v,}. The Gibbs measure of annealed Ising model is
defined as follows. For w € {1,—1}",

tn(w) o< E{exp(H,(w))}, Hy(w)=7p Z wiw; + thi,
(vi,vj)EER i=1

where expectation is taken over the space of random regular graphs with
respect to a uniform distribution. Can (2019, Eq. (3.2) and Lemma 2.1)
proved that if w; = k/n then

pin(w) o< exp(2hk)g (B, dk, dn),
where {g(8,m, 1)}« satisfies that

1 log g(8,m. 1) — gs(m /)] = O/, (52)
|(17 1og g(8,m, 1) — gg(m/1)) — (1" 1og g(8, k,1) — ga(k/D))| = O(|k — m|/1?),
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with

a/\(lfa)6725 s et a2
e s T,
0

Therefore, with X,, = nw,, we have
pn (X = k) x exp(nd,(k/n))
with
1 1 n
Ap(k/n) = 2hk/n + - log g(B, dk,dn) + - log i)
By (5.2) the function A,, is well approximated by A : [0,1] — R given as
A(a) = 2ha + dgg(a) + I(a).

In particular, we can find positive constants e,, §, and C, such that the
conditions (A1l)-(A3) hold. Can (2019, Claim 1*) and Can (2017, Lemma
2.2) showed that

(1) if (B,h) eUd ={(B,h) : B >0,h #0,0r 0 < 8 < fBc,h =0} then A
has a unique 2-regular maximizer a, € (0,1);

(13) if B > B. and h = 0 then A has two 2-regular maximizers 0 < a_ <
ar =1—-a_ <1

(7i1) if B = B. and h = 0 then A has the unique 4-regular maximizer a, =
1/2.

Here 5. is the critical value of the model . = atanh(1/(d — 1)). We now
verify (A4) for the case (i7). Since h = 0, the model is symmetric and
thus pn(w) = pn(—w) and

pn(Xn = k) = pn(X, =n — k). (5.3)
Let k_ = [na_] and k4 = [nay]; we need to show
Ak /) = A(ks /m)] = O(n~3/2). (5.4)

Indeed, using (5.3) and (A3)

| An (/) — Au(ks /)]
[ An((n — k) /) — An(ky /)]
~[A((n = k) /m) = Ak /m) [+ O(In — k- — ky|/n?)
=0(((n—k=)/n—ay)?) + O((ks/n — ay)?) + O(|n — k— — ki|/n?)
=0(n7?).
Here, for the third line, we used Taylor expansion at ay and A’(ay) = 0,
and for the last one, we used ki = [na4] and a_ + ay = 1. Therefore, (5.4)
holds when h = 0 and 8 > (..

In conclusion, all the conditions (Al)—(A4) hold, and thus using Theo-
rems 2.1 and M,, = 2X,, — n, we have the following.
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Theorem 5.4. Consider the annealed Ising model on a random regqular
graph.

(I) If (B,h) € U then
v (L W), N (0, grtyy)) = O 72),

where
M, —n(2a, — 1)

W, =
NG

(1I) If B > B. and h = 0 then

7 1 1
My /n — 55&1,—1 + §5Qa+—1-

Moreover,
dw(.z(WniH% — (204 —1)| < 5*),N(o, m)) _ OV,
where

M, —n(2ay+ — 1)
W, = :
n \/ﬁ
(111) If B = B. and h =0 then

_ n
T op3/4’

where Y o< exp(c.y*/16) with ¢, = A®W(1/2)/24.
Parts (I) and (II) are the main results of Can (2019, Theorem 1.3) and
Part (I11) is the main result of Can (2017, Theorem 1.3) with a convergence
rate. The model is not linear in 8 but linear in h, and hence we can also
prove the following.

dw (W, Y) = O~ YY, W,

Theorem 5.5. Consider the mazimum likelihood estimator hy, of the an-
nealed Ising model on random regular graphs.

(I) If (B,h) € U then
Vinlhy = h) =5 N(0.0,).
with oy, a positive constant.
(IT) If B > B. and h =0 then
Virlhn —h) = Us,
where
Up =p, N7(0,0,) +p,y N*(0,05) + (1 = p,, — py;)do,
with p}jl:, a}f positive constants.
(III) If B = B¢, h =0 then
0?4 (hy — h) 55 2,
where Zy, has the distribution as
P[Zp < t] = P[Y3(0) < E[Y,(t)]]
with Yy, (t) oc exp(cey® + 2ty) and c. = AW(1/2)/24.
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