
MEAN-FIELD SPIN MODELS � FLUCTUATION OF THE

MAGNETIZATION AND MAXIMUM LIKELIHOOD

ESTIMATOR

Van Hao Can * Adrian Röllin �

Abstract

Consider the mean-�eld spin models where the Gibbs measure of
each con�guration depends only on its magnetization. Based on the
Stein and Laplace methods, we give a new and short proof for the
scaling limit theorems with convergence rate for the magnetization in
a perturbed model. As an application, we derive the scaling limit
theorems for the maximum likelihood estimator in linear models.

1 INTRODUCTION

The Ising model was originally proposed for the purpose to study the prop-
erties of ferromagnetic materials, but it has become since a prototype spin
model on general graphs, see Ellis (1985); Hofstad (2021+); Niss (2005,
2009). Recently, it has also become a model for describing the pairwise
interactions in networks, see e.g. Contucci and Giardina (2013); Geman and
Gra�gne (1986); Green and Richardson (2002) for its application in social
networks, computer vision, and biology. However, in some situations, pair-
wise interaction is not enough to express the dependence of spins in networks,
which motivated the study of higher-order Ising models, where multi-atom
interactions are allowed; see for example Heringa, Blote and Hooglan (1989);
Suzuki (1972); Yamashiro, Ohkuwa, Nishimori and Lidar (2019). As far as
we know, one of the �rst rigorous results in this direction is due to Mukher-
jee, Son and Bhattacharya (2021), who considered the p-spin Curie-Weiss
model for p ⩾ 2, given by the Gibbs measure

µn(ω) ∝ exp

 β

np−1

∑
1⩽i1,...,ip⩽n

ωi1 . . . ωip + h

n∑
i=1

ωi

, ω ∈ Ωn = {1,−1}n,

(1.1)
where β > 0 denotes the inverse temperature and where h ∈ R denotes the
external �eld; here and below, for any measure µ, the notation µ(ω) ∝ f(w)
means that the value of µ(ω) is proportional to f(ω) up to a normalising
constant that only depends on the model parameters. In (1.1), all possible p-
tuples in the complete graph of size n contribute to the Hamiltonian, and
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hence to the corresponding Gibbs measure, and it can therefore be rewritten
as

µn(ω) ∝ exp
(
n
(
βω̄p + hω̄

))
, ω̄ =

ω1 + . . .+ ωn

n
, (1.2)

and using this compact form and the Laplace method, Mukherjee, Son and
Bhattacharya (2021) and Mukherjee, Son and Bhattacharya (2021+) inves-
tigated the �uctuation of the magnetization ω̄, as well as the maximum
likelihood estimators for the parameters β and h.

In this article, we go further and study the �uctuation of the magnetisa-
tion the case where the interaction can be expressed by a general (smooth
enough) function of ω̄ instead of just being a polynomial of ω̄ as in (1.2).
Consider the generalized linear model

µn(ω) ∝ exp
(
n
(
β1f1(ω̄+) + . . .+ βlfl(ω̄+)

))
, ω̄+ =

∣∣{i : ωi = 1}
∣∣

n
, (1.3)

where f1, . . . , fl are smooth functions and β1, . . . , βl are real-valued model pa-
rameters. Note that ω̄+ = (ω̄+1)/2, and so studying ω̄ and ω̄+ is equivalent.
Particularly, if we choose l = 2 and f1(a) = 2a−1, β1 = h, f2(a) = (2a−1)p,
and β2 = β, we obtain the p-spin Curie-Weiss model in (1.2).

Denoting Xn = |{i : ωi = 1}| = nω̄+, the linear model (1.3) can be
characterized by the simpler model

P[Xn = k] ∝ exp
(
nF (k/n)

)(n
k

)
, 0 ⩽ k ⩽ n,

where
F (a) = β1f1(a) + . . .+ βlfl(a), a ∈ [0, 1].

Observe further that

1

n
log

(
n

k

)
≈ I(k/n), I(a) = −a log a+ (a− 1) log(1− a),

here, I is the entropy function. Combining Stein's method for normal ap-
proximation and Laplace's method, we derive a complete description of the
�uctuation of ω̄+ (and thus, ω̄). It turns out that the order of the �uc-
tuation depends on the order of regularity of the maximizers of a func-
tion A : [0, 1] → R given as

A(a) = F (a) + I(a). (1.4)

For instance, if A has a unique maximizer at, say, a∗ ∈ (0, 1) and if this
maximizer is 2m-regular, that is, if A(k)(a∗) = 0 for 1 ⩽ k ⩽ 2m − 1
and if A(2m)(a∗) < 0, then our general result implies that ω̄+ concentrates
around a∗ and the order of concentration is n−1/(2m).

The second question we address in this article is the construction of
suitable estimators of the model parameters. The maximum likelihood esti-
mators (MLEs) in the p-spin Curie-Weiss model was studied by Comets and
Gidas (1991) for p = 2 and by Mukherjee, Son and Bhattacharya (2021+)
for p ⩾ 3, and for Markov random �elds on lattices by Comets (1992);
Pickard (1987). The maximum pseudo likelihood estimation problem of the
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Ising model on general graphs has been discussed by Chatterjee (2007) and
Ghosal and Mukherjee (2020). We refer to Mukherjee, Son and Bhattacharya
(2021+) and the references therein for further discussion on the history and
development of the problem.

In this article, we follow the usual approach to construct the MLE for each
parameter βi using only one sample ω. In fact, we can construct a consistent
estimator β̂i,n of βi using only the quantity ω̄+; see more in Section 4. Apart

from consistency, we can also show that, after suitable scaling, β̂i,n − βi
converges to a non-degenerate random variable. A standard approach to
study the �uctuation and scaling limits of β̂i,n is to prove limit theorems for
a perturbed model of (1.3); see for example Comets and Gidas (1991) and
Mukherjee, Son and Bhattacharya (2021+) for p-spin Curie-Weiss models.

In the general setting, we consider the perturbed model

P[Xn = k] ∝ exp
(
nAn(k/n) + n1/(2m)Bn(k/n)

)
, 0 ⩽ k ⩽ n, (1.5)

where An, Bn : {0, 1
n , . . . , 1} → R; here, An is the main term driving the

model and Bn is the perturbation. We assume in addition that An and Bn

are well approximated by smooth functions A,B : [0, 1] → R and 2m is the
regularity order of the maximizers of A. Particularly, for the linear model
(1.3), the knowledge of the �uctuation of Xn with A given by (1.4) and B
suitably chosen would lead to the scaling limit of estimators β̂1,n, . . . , β̂l,n of
the linear model (1.3). We refer to Section 4 for detailed proofs.

The usual strategy to investigate the Gibbs measure of the form (1.3)
(or the more general form (1.5)) is using Laplace's method to prove the
concentration and scaling limit of magnetization around maximizers of A(a).
This approach usually requires many tedious and di�cult computations of
exponential functionals. Our main innovation in the study of the perturbed
model (1.5) is exploiting Stein's method to avoid some of these complicated
computations. Moreover, as a additional bonus of using Stein's method,
we also obtain the rate of convergence in our limit theorems. We refer to
Section 2 for more details.

We brie�y summarize the main �ndings of this paper.

▷ In Theorems 2.1�2.3, combining Stein's and Laplace's methods, we
give a short proof for scaling limit theorems of the magnetization (or
for Xn) with convergence rate in Wasserstein distance. This distance
measures the di�erence of random variables over the space of test func-
tions having bounded �rst derivative.

▷ In Theorem 4.1, applying the limit theorems of magnetization in per-
tubed models, we show the scaling limits of maximum likelihood esti-
mators of the linear model form (1.3).

1.1 Notation

For any random variablesX and Y , we consider the Kolmogorov and Wasser-
stein probability metrics, de�ned as

dK(X,Y ) = sup
t∈R

|P[X ⩽ t]− P[Y ⩽ t]|,
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dW(X,Y ) = sup
∥h′∥⩽1

|Eh(X)− Eh(Y )|.

For a > 0, we denote by N+(0, a) (resp. N−(0, a)) the positive (resp. nega-
tive) half-normal distribution, that is the distribution of |N(0, a)| (resp.−|N(0, a)|).
Let X be a random variable with density p(x). We write p(x) ∝ f(x) if p(x)
is proportional to f(x) up to a normalizing constant, and in such a case, we
also write X ∝ f(x) if X has distribution with density given by p(x). Let f
and g be two real functions. We write f = O(g) if there exists a universal con-
stant C > 0 such that f(x) ⩽ Cg(x) for all x in the domain of f and g. We
also write f = g+O(h) when |f − g| = O(|h|), and write f = exp(g+O(h))
if | log f − g| = O(|h|). In some cases, we write f = Oδ(g) to emphasize that
the constant C may depend on δ.

2 THE MAGNETIZATION IN PERTURBED MODELS

Let An, Bn : {0, 1/n, . . . , 1} → R and m∗ ∈ N. We consider the integer-
valued random variable Xn de�ned by the model

P[Xn = k] =
1

Zn
exp

(
Hn(k/n)

)
, 0 ⩽ k ⩽ n,

where

Hn(k/n) = nAn(k/n) + nσ∗,nBn(k/n), σ∗,n = n−1+1/(2m∗),

Zn =
n∑

k=0

exp
(
Hn(k/n)

)
.

In what follows, we will make use of various technical assumptions. Let ε∗,
δ∗, and C∗ be positive constants, let (aj ,mj)j∈J be a �nite collection of pairs
with aj ∈ (0, 1) and mj ∈ N for j ∈ J , and let A,B : [0, 1] → R be functions
such that A ∈ C2m∗+1([0, 1]) and B ∈ C2([0, 1]). Consider the following
assumptions:

(A1) (aj)j∈J are all the maximizers of A, and maxj∈J mj = m∗. We
have A′(aj) = . . . = A(2mj−1)(aj) = 0 and max|x−aj |⩽δ∗ A

(2mj)(x) < 0
for all j ∈ J . The intervals (aj − δ∗, aj + δ∗), j ∈ J , are disjoint and
contained in (0, 1).

(A2) For n large enough and for all k for which |k/n−aj | ⩾ δ∗ for all j ∈ J ,
we have

An(k/n) ⩽ max
x∈[0,1]

A(x)− ε∗, |Bn(k/n)| ⩽ C∗.

(A3) For n large enough and for all k and ℓ for which there is j ∈ J such
that |k/n− aj | < δ∗ and |ℓ/n− aj | < δ∗ , we have

|An(k/n)−A(k/n)|+ |Bn(k/n)−B(k/n)| ⩽ C∗/n,

and ∣∣[An(k/n)−An(ℓ/n)]− [A(k/n)−A(ℓ/n)]
∣∣ ⩽ C∗|k − ℓ|/n2,∣∣[Bn(k/n)−Bn(ℓ/n)]− [B(k/n)−B(ℓ/n)]
∣∣ ⩽ C∗|k − ℓ|/n2.
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(A4) For n large enough and for kj = [naj ], j ∈ J , we have

sup
i,j∈J2

∣∣[An(ki/n)−An(kj/n)]
∣∣ ⩽ C∗

n2σ∗,n
,

where

J1 = {j ∈ J : B(aj) = max
k∈J

B(ak)}, J2 = {j ∈ J1 : mj = max
k∈J1

mk}.

Theorem 2.1 (Weak law of large numbers). Under Assumptions (A1)�(A4),
we have

Xn

n

L−→
∑
j∈J2

pjδaj , (2.1)

where for j ∈ J2,

pj =
qj∑

k∈J2 qk
, qj =

∫
R
exp(cjx

2mj + bjx)dx,

with

cj =
A(2mj)(aj)

(2mj)!
, bj = B′(aj) I[mj = m∗]. (2.2)

Theorem 2.2 (Concentration). Assume (A1)�(A3), and let δ ∈ (0, δ∗) .

There exist a positive constants c such that

P[|Xn/n− aj | > δ for all j ∈ J ] ⩽ exp(−cn) (2.3)

and

P[|Xn/n− aj | > δ for all j ∈ J1] ⩽ exp(−cnσ∗,n). (2.4)

Moreover, for any j2 ∈ J2, there exists a constant C such that if J1 ̸= J2,

P[|Xn/n− aj | > δ for all j ∈ J2] ⩽ C max
j1∈J1\J2

n1/(2mj1
)−1/(2mj2

), (2.5)

and, for any j ∈ J2,

P[|Xn/n− aj | ⩽ δ∗] = pj +O(τ∗,n) + O

(
max

k∈J1\J2
n1/(2mk)−1/(2mj)

)
, (2.6)

where

τ∗,n =
(log n)2m∗+1

n1/(2m∗)
+ n1/(2m∗)−1/(2mj2

) log n I[mj2 ̸= m∗].

Theorem 2.3 (Distributional limit theorem). Under Assumptions (A1)�
(A3), we have for all j ∈ J and l ∈ N that

E
{
|Xn/n− aj |l

∣∣|Xn − naj | ⩽ nδ∗
}
= O

(
n−l/(2mj)

)
;

and for all j ∈ J that

dW
(
L

(
n1/(2mj)(Xn/n− aj)

∣∣|Xn − naj | ⩽ nδ∗
)
,L (Yj)

)
= O

(
n−1/(2mj)

)
+O

(
n1/(2m∗)−1/(2mj) I[mj ̸= m∗]

)
,

where Yj ∝ exp(cjx
2mj + bjx) with cj and bj given as in (2.2).

Remark 2.4. In Theorem 2.1, the Condition (A4) is not needed when A
has a unique maximizer. In fact, Condition (A4) is only required in (3.7) to
prove (2.1), where we compare the Gibbs measure around the maximizers.
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3 PROOFS OF MAIN RESULTS

To simplify notation, we will drop the dependence on n in what follows and
write X, W , σ and τ instead of Xn, Wn, σn and τn, and introduce some
notation

σj = n1/(2mj)−1; J∗ = {j ∈ J : σj = σ∗} = {j ∈ J : mj = m∗}.

In order to prove Theorems 2.1, 2.2 and 2.3, the following result is key.

Proposition 3.1. Assume (A1)�(A3), and let δ ∈ (0, δ∗]. Then for all j ∈
J , we have

Zn,j(δ) :=
∑

|k/n−aj |⩽δ

exp(Hn(k/n))

= (qj +Oδ(τj))σ
−1
j exp(nAn(kj/n) + nσ∗B(aj)),

where kj = [naj ] and τj, qj, cj and bj are given in Theorem 2.1.

The proof of Proposition 3.1 is based on Laplace's method and will be pre-
sented at the end of this section.

3.1 Concentration and weak law of large numbers

Proof of Theorems 2.1 and 2.2. We start by proving the concentration in-
equalities. We �rst show that for any δ ∈ (0, δ∗), one has

P
[
|X/n− aj | > δ for all j ∈ J

]
⩽ exp(−cn), (3.1)

where c = c(δ) > 0 is a constant. Let k be an integer such that |k−naj | ⩾ δn
for all j ∈ J . We claim that there exist i ∈ J and c > 0, such that

An(k/n)−An(ki/n) ⩽ −c, (3.2)

where recall that ki = [nai]. Indeed, if |k − naj | ⩾ δ∗n for all j ∈ J then
let i be an arbitrary element of J and using by (A2) and (A3), we have

An(k/n)−An(ki/n)

= An(k/n)−A(ai) +A(ai)−A(ki/n) +A(ki/n)−An(ki/n)

⩽ −ε∗ +O(|ki/n− ai|) ⩽ −2ε∗/3,

where we have used |ki/n−ai| ⩽ 1/n. Otherwise, suppose that |k−nai| ⩽ δ∗n
for some i ∈ J . Then

An(k/n)−An(ki/n)

= A(k/n)−A(ki/n) + O(1/n) = A(k/n)−A(ai) + O(1/n)

⩽ sup
x:|x−ai|⩽δ∗

A′′(x)δ2∗/2 + O(1/n) ⩽ −c,

where c = c(δ∗) > 0. Here, for the �rst two equations, we used (A3)
and |ki/n − ai| ⩽ 1/n, for the remaining inequalities, we used Taylor ex-
pansion and (A1). The proof of (3.2) is complete.
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Next, note that by (A2), |Bn(k/n)| ⩽ C∗ when |k/n − aj | ⩾ δ∗ for
all j ∈ J , and by (A3) for k such that |k/n − aj | ⩽ δ∗ for some j ∈ J one
has |Bn(k/n)| ⩽ |B(k/n)|+ C∗/n ⩽ 2maxx∈[0,1] |B(x)|. Therefore,

max
0⩽k⩽n

|Bn(k/n)| = O(1). (3.3)

Combining (3.2) and (3.3) yields that for all n su�ciently large

Hn(k/n)−Hn(ki/n)

= n[An(k/n)−An(ki/n)] + nσ∗[Bn(k/n)−Bn(ki/n)]

⩽ −cn+O(nσ∗) ⩽ −cn/2,

(3.4)

and thus

P[X = k] ⩽ exp(−cn/2)P[X = ki] ⩽ exp(−cn/4),

and (3.1) is proved by using the union bound.
By Proposition 3.1, for any �xed δ ∈ (0, δ∗), for all j ∈ J and n su�ciently

large

Zn,j(δ) :=
∑

|k/n−aj |⩽δ

exp(Hn(k/n))

= (qj +Oδ(τj))σ
−1
j exp(nAn(kj/n) + nσ∗B(aj)),

(3.5)

where kj = [naj ] and

τj =
(log n)2m∗+1

nσ∗
+

σ∗ log n

σj
I[j ∈ J \ J∗],

and

qj =

∫
R
exp(cjx

2mj + bjx)dx,

with cj , bj as in (2.2).
Note that nAn(kj/n) = nA(aj)+O(1) = nmaxx∈[0,1]A(x)+O(1) by (A3).

Therefore, the leading terms of (Zn,j)j∈J are the ones at which the se-
quence (B(aj))j∈J attains the maximum. Recall that

J1 = {j ∈ J : B(aj) = max
k∈J

B(ak)}.

Let δ ∈ (0, δ∗) be any �xed constant. By the above, (3.1) and (3.5) yield
that, if J1 ̸= J ,

P
[
|X/n− aj | > δ for all j ∈ J1

]
⩽ exp(−cn) +

∑
j∈J\J1 Zn,j∑
j∈J Zn,j

⩽ exp(−cn) + Oδ(1)
∑

j∈J\J1

σj1
σj

exp(nσ∗(B(aj)−B(aj1)))

⩽ exp(−c1nσ∗),
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where c and c1 are positive constants depending on δ, and j1 is an element
of J1. Similarly, if J2 ̸= J1,

P
[
|X/n− aj | > δ for all j ∈ J2

]
⩽ Oδ(1) max

j1∈J1\J2
σj2/σj1 , (3.6)

with j2 an element of J2. The two above inequalities and (3.1) yields the
concentration estimates in (2.3), (2.4) and (2.5).

We now prove the weak law of large numbers (2.1) and the estimate (2.6).
By (A4) for all i, j ∈ J2

|nAn(ki/n)− nAn(kj/n)| = O(1/nσ∗). (3.7)

Hence, it follows from (3.5) that for any δ ∈ (0, δ∗), and for all j ∈ J2

Zn,j(δ)∑
k∈J2 Zn,k(δ)

= pj +Oδ(τ∗), (3.8)

where
pj =

qj∑
k∈J2 qk

,

and

τ∗ = τj2 =
(log n)2m∗+1

nσ∗
+

σ∗ log n

σj2
I[J2 ̸= J∗],

with j2 an element of J2 (note here that σj2 = σj′2 for all j2, j
′
2 ∈ J2).

Combining (3.8) and (3.6), we have

X/n
L−→

∑
j∈J2

pj δaj ,

and for all j ∈ J2

P[|X/n− aj | ⩽ δ∗] = pj +O(τ∗) + O(1) max
j1∈J1\J2

σj2/σj1 .

The proof of (2.1) and (2.6) is complete.

3.2 Stein's method

We �rst state and derive what is needed to implement Stein's method for
target distributions of the form p(y) ∝ exp(cy2m + by). The following result
is a consequence of the general approach of Chaterjee and Shao (2011).

Lemma 3.2. Let m be a positive integer, and let Y be a random variable

with density function p(y) ∝ exp(cy2m + by) with c < 0 and b ∈ R. Then

there exists a positive constant K = K(c, b,m) such that for any random

variable W ,

dW(W,Y ) ⩽ sup
f∈C2

K(R)

∣∣∣E{f ′(W ) + p′(W )
p(W ) f(W )

}∣∣∣,
where

C2
K(R) =

{
f ∈ C2(R) : ∥f∥∞, ∥f ′∥∞, ∥f ′′∥∞ ⩽ K

}
,

with C2(R) the space of twice di�erentiable functions and ∥g∥∞ = supx∈R |g(x)|.
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Proof. Let h be Lipschitz continuous and consider the Stein equation

f ′(w) + p′(w)f(w)/p(w) = h(w)− Eh(Y ). (3.9)

Chaterjee and Shao (2011, Lemma 4.1) showed that the solution fh of the
functional equation (3.9) belongs to C2(R) and satis�es

∥f∥∞ ∨ ∥f ′∥∞ ∨ ∥f ′′∥∞ ⩽ (1 + d1)(1 + d2)(1 + d3)∥h′∥∞,

where

d1 = sup
x∈R

min{P (x), 1− P (x)}
p(x)

, d2 = sup
x∈R

min{P (x), 1− P (x)}p′(x)
p2(x)

,

and d3 = supx∈RQ(x), with P (x) =
∫ x
−∞ p(t)dt and

Q(x) =
1 + |(p′/p)′(x)|

p(x)
min

{
E{Y I[Y ⩽ x]}+ E|Y |P (x),

E{Y I[Y > x]}+ E|Y |(1− P (x))
}
.

We now show that d3 is a �nite constant depending only on c, b and m. The
proof for d1 and d2 is similar but simpler, hence omitted. It is clear that

d3 = max

{
sup
x⩽−C

Q(x), sup
|x|⩽C

Q(x), sup
x⩾C

Q(x)

}
, C = 1 +

4 + |b|
m|c|

. (3.10)

First, consider x ⩾ C; since (p′/p)′(x) = 2m(2m− 1)cx2m−2 and EY < ∞,

Q(x) ⩽ C1
x2m−2

∫∞
x yp(y)dy

p(x)
= C1

x2m−2
∫∞
x yq(y)dy

q(x)
, (3.11)

with C1 = C1(c, b,m) a �nite constant and q(x) = exp(cx2m + bx). Using
integration by parts and the fact that q′(y) = q(y)(2mcy2m−1 + b) < 0
for y ⩾ x ⩾ C,∫ ∞

x
yq(y)dy =

∫ ∞

x

y

2mcy2m−1 + b
d(q(y)) ⩽

∫ ∞

x

y2−2m

mc
d(q(y))

=
x2−2mq(x)

m|c|
+

∫ ∞

x

y1−2m(2− 2m)

mc
q(y)dy

⩽
x2−2mq(x)

m|c|
+

1

2

∫ ∞

x
yq(y)dy,

and hence ∫ ∞

x
yq(y)dy ⩽

2x2−2mq(x)

m|c|
.

Combining this with (3.11) we have supx⩾C Q(x) ⩽ 2C1/(m|c|). The same
inequality holds for supx⩽−C Q(x). Since Q is continuous, it also follows
that sup|x|⩽C Q(x) < ∞ . Hence, by (3.10), we have d3 < ∞.

Finally, considering (3.9) with w replaced by W and taking expectation,
the claim easily follows.
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Lemma 3.3. (i) Let W , Y and Z be random variables such that |W −
Y | ⩽ |Z| almost surely. Then

dK(W,Y ) ⩽ inf
δ>0

(
sup
s∈R

P[s < Y ⩽ s+ δ] + P[|Z| ⩾ δ]
)
.

(ii) Let Y be a random variable satisfying

MY := sup
δ>0

sup
s∈R

1

δ
P[s ⩽ Y ⩽ s+ δ] < ∞.

Then there exists a positive constant C = C(MY ), such that for all

random variable W ,

dK(W,Y ) ⩽ C dW(W,Y )1/2.

Proof. Since Y − |Z| ⩽ W ⩽ Y + |Z|, we have for all s ∈ R and δ > 0

P[Y ⩽ s− δ]− P[|Z| ⩾ δ] ⩽ P[W ⩽ s] ⩽ P[Y ⩽ s+ δ] + P[|Z| ⩾ δ].

Subtracting P[Y ⩽ s] everywhere and taking supremum over s, (i) now easily
follows. Item (ii) is proved by Ross (2011, Proposition 1.2).

3.3 Distributional limit theorem

Proof of Theorem 2.3. We shall prove that for all j ∈ J and l ∈ N,

E
{
|X/n− aj |l

∣∣|X − naj | ⩽ nδ∗
}
= O

(
1/(nσj)

l
)
, (3.12)

and for j ∈ J

dW
(
L (Wj ||X − naj | ⩽ nδ∗),L (Yj)

)
= O(1/(nσj)) + O(σ∗/σj I[j ∈ J \ J∗]),

(3.13)

where
Wj = σj(X − naj), Yj ∝ pj ∝ exp(cjx

2mj + bjx),

with cj and bj given as in (2.2). Let X̃j be a random variable having the
conditional distribution of X given |X − naj | ⩽ nδ∗; that is,

P[X̃j = k] =
exp(Hn(k/n))

Zn,j
, ℓj ⩽ k ⩽ Lj , (3.14)

where

ℓj = ⌈n(aj − δ∗)⌉, Lj = [n(aj + δ∗)], Zn,j = Zn,j(δ∗).

Then
E
{
|X/n− aj |l

∣∣|X − naj | ⩽ nδ∗
}
= E

{
|X̃/n− aj |l

}
, (3.15)

and from Lemma 3.2, we have

dW
(
L (Wj ||X − naj | ⩽ nδ∗),L (Yj)

)
⩽ sup

f∈C2
K(R)

∣∣∣E{f ′(Wj) +
p′
j(Wj)

pj(Wj)
f(Wj)

∣∣|X − naj | ⩽ nδ∗
}∣∣∣

= sup
f∈C2

K(R)

∣∣∣E{f ′(W̃j) +
p′
j(W̃j)

pj(W̃j)
f(W̃j)

}∣∣∣
(3.16)
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where K = K(cj , bj ,mj) is a �nite constant, and

W̃j = σj(X̃ − naj).

Given f ∈ C2
K(R), we de�ne the function g : R → R as

g(x) = f(σj(x− naj)).

For any bounded function h : R → R and δ > 0, let∆δh(x) = h(x+δ)−h(x);
we have

∆1g(X̃j) = ∆σjf(W̃j), g(X̃j) = f(W̃j). (3.17)

For x = (ℓj − 1)/n, ℓj/n, . . . , (Lj − 1)/n, let

Dn(x) = ∆1/nHn(x) = n∆1/nAn(x) + nσ∗∆1/nBn(x),

and also let Dn((ℓj−1)/n) = 0. Note that by (3.14), for ℓj−1 ⩽ k ⩽ Lj−1,

P[X̃j = k + 1]

P[X̃j = k]
= exp

(
D1/n(k/n)

)
.

Hence, (3.17) and straightforward calculations now yield

E∆σjf(W̃j) = E∆1g(X̃j) = E
{
g(X̃j)

[
exp

(
−Dn(

X̃j−1
n )

)
− 1

]}
+ r1, (3.18)

where

r1 =
1

Zn,j

[
−g(Lj + 1) exp

(
Hn(Lj/n)

)
+ g(ℓj) exp

(
Hn(ℓj/n)

)]
.

By (3.4), we have

max{Hn(Lj/n), Hn(ℓj/n)} ⩽ Hn(kj/n)− cn,

for some c > 0. Moreover,

|Hn(kj/n)− nAn(kj/n)− nσ∗B(aj)| = nσ∗|Bn(kj/n)−B(aj)| = O(nσ∗).

Therefore,

max{Hn(Lj/n), Hn(ℓj/n)} ⩽ nAn(kj/n) + nσ∗B(aj)− cn/2.

Combining this estimate with (3.5), we obtain

r1 ⩽ ∥f∥∞ exp(−cn/4). (3.19)

Moreover, by Taylor's expansion,∣∣∣∣ 1σj∆σjf(W̃j)− f ′(W̃j)

∣∣∣∣ ⩽ σj∥f ′′∥∞. (3.20)

It follows from (3.18), (3.19) and (3.20) that∣∣∣∣E{f ′(W̃j)−
1

σj

(
exp

(
−Dn(

X̃j−1
n )

)
− 1

)
f(W̃j)

}∣∣∣∣
11



⩽ ∥f∥∞ exp(−cn/4) + σj∥f ′′∥∞. (3.21)

We now estimate the error when replacing σ−1
j (exp(−Dn(

X−1
n ))−1) by p′

j(Wj)/pj(Wj)
in (3.21). For |k − kj | ⩽ δ∗n, using (A3) and Taylor's expansion we have

An(k/n)−An((k − 1)/n)− n−1A′(k/n)

= [An(k/n)−An((k − 1)/n)]− [A(k/n)−A((k − 1)/n)]

+A(k/n)−A((k − 1)/n)− n−1A′(k/n) = O(n−2).

Thus
n∆1/nAn((k − 1)/n) = A′(k/n) + O(n−1).

Similarly,
n∆1/nBn((k − 1)/n) = B′(k/n) + O(n−1).

Therefore,

|Dn((k − 1)/n)− [A′(k/n) + σ∗B
′(k/n)]| = O(n−1). (3.22)

Furthermore, |eu− ev| = ev|eu−v − 1| ⩽ 2ev|u− v| when |u− v| is su�ciently
small. Hence, by using (3.22) we have for all n large enough∣∣exp(−Dn((k − 1)/n)− exp(−A′(k/n)− σ∗B

′(k/n))
∣∣

⩽ 2 max
|x−aj |⩽δ∗

exp(|A′(x)|+ σ∗|B′(x)|)

× |Dn((k − 1)/n)− [A′(k/n) + σ∗B
′(k/n)]| = O(n−1).

(3.23)

Moreover, by applying Taylor's expansion to the function e−A′(x)−σ∗B′(x)

around x = aj and noting that A(k)(aj) = 0 for all 1 ⩽ k ⩽ 2mj − 1,

exp(−A′(k/n)− σ∗B
′(k/n)) = 1− A(2mj)(aj)

(2mj − 1)!
(k/n− aj)

2mj−1 − σ∗B
′(aj)

+ O
(
(k/n− aj)

2mj + σ∗|k/n− aj |
)
.

Note further that

A(2mj)(aj)

(2mj − 1)!
(X̃j/n− aj)

2mj−1 + σ∗B
′(aj)

= 2mjcj(X̃j/n− aj)
2mj−1 + σ∗B

′(aj)

= σj(2mjcjW̃
2mj−1
j + bj)− σjbj + σ∗B

′(aj)

= σj
p′
j(W̃j)

pj(W̃j)
+ O(σ∗ I[j ∈ J \ J∗]),

since p′
j(w)/pj(w) = 2mjcjw

2mj−1 + bj , and

W̃j = σj(X̃j − naj) = σ
−1/(2mj−1)
j (X̃j/n− aj),

and

|σjbj − σ∗B
′(aj)| =

{
0 if j ∈ J∗

|σ∗B′(aj)| = O(σ∗) if j ∈ J \ J∗.
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Therefore,

exp
(
−A′(X̃j/n)− σ∗B

′(X̃j/n)
)
− 1

= −σj
p′
j(W̃j)

pj(W̃j)
+ O(σ∗ I[j ∈ J \ J∗])

+ O
(
(X̃j/n− aj)

2mj + σ∗|X̃j/n− aj |
)
.

(3.24)

It follows from (3.23) and (3.24), and the fact that σ∗ ⩽ σj that

E
{∣∣∣|σ−1

j

(
exp(−Dn(

X̃j−1
n ))− 1

)
f(W̃j) +

p′
j(W̃j)

pj(W̃j)
f(W̃j)

∣∣∣}
⩽ C∥f∥∞ E

{(
σ−1
j (X̃j/n− aj)

2mj + |X̃j/n− aj |
)}

+ Cσ−1
j σ∗ I[j ∈ J \ J∗],

(3.25)

where C is a positive constant. In order to estimate the above term, we
analyse P[X̃j = k]. By Proposition 3.1, if |k/n− aj | ⩽ δ∗, we have

P[X̃j = k] =
P[Xj = k]

Zn,j(δ∗)

= O(1)σj exp(n(An(k/n) + σ∗Bn(k/n)−An(kj/n)− σ∗B(aj))).

(3.26)

Now,

An(k/n) = A(k/n) + O(1/n) ⩽ A(aj) + αj(k/n− aj)
2mj +O(1/n),

where for the �rst equation, we used (A3), and for the second one, we used
Taylor expansion and (A1) and as well as the fact that

αj := max
|x−aj |⩽δ∗

A(2mj)(x)

(2mj)!
< 0.

Furthermore,

|A(aj)−An(kj/n)| ⩽ |A(aj)−A(kj/n)|+ |An(kj/n)−A(kj/n)| = O(1/n).

Therefore,

An(k/n) ⩽ An(kj/n) + αj(k/n− aj)
2mj +O(1/n).

By (A3),

|Bn(k/n)−B(aj)| ⩽ |Bn(k/n)−B(k/n)|+|B(k/n)−B(aj)| = O(|k/n−aj |).

Using the last two display equations, (3.26) and σj ⩽ σ∗, we have

P[X̃j = k] ⩽ Cσj exp
(
αjn(k/n− aj)

2mj + Cnσj |k/n− aj |
)

13



for some �nite constant C. Next, by using σ
2mj

j = n1−2mj and integral
approximations, we have for all l ∈ N,

E
{
|X̃j/n− aj |l

}
⩽ Cσj

∑
k:|k/n−aj |⩽δ∗

|k/n− aj |l exp
(
αjn(k/n− aj)

2mj + Cnσj |k/n− aj |
)

= O(σj)

∫ nδ∗

−nδ∗

(|x|/n)l exp(αj(xσj)
2mj + C|xσj |)dx

= O((nσj)
−l)

∫ nσjδ∗

−nσjδ∗

|y|l exp(αjy
2mj + C|y|)dy = O((nσj)

−l),

since αj < 0. This estimate and (3.15) implies (3.12). In particular, we have

E
{
σ−1
j (X̃j/n− aj)

2mj + |X̃j/n− aj |
}

= O(σ−1
j (nσj)

−2mj ) + O((nσj)
−1) = O

(
(nσj)

−1
)
,

where we used that σ
2mj

j = n1−2mj . Therefore, by (3.25),

E
{∣∣∣σ−1

j

(
exp(−Dn(

X̃j−1
n ))− 1

)
f(W̃j) +

p′
j(W̃j)

pj(W̃j)
f(W̃j)

∣∣∣} = O
(
∥f∥∞/(nσj)

)
.

Combining the above inequality with (3.21) we yield that for all K > 0

sup
f∈C2

K(R)

∣∣∣E{f ′(W̃j) +
p′
j(W̃j)

pj(W̃j)
f(W̃j)

}∣∣∣
= O(K/(nσj)) + O(σ∗) + O(σj/σ∗ I[j ∈ J \ J∗])
= O(K/(nσj)) + O(σj/σ∗ I[j ∈ J \ J∗]).

Then the desired estimate (3.13) follows from this bound and (3.16).

3.4 Free energy

Proof of Proposition 3.1. Fix a constant δ ∈ (0, δ∗]. We aim to approximate

Zn,j(δ) :=
∑

|k/n−aj |⩽δ

exp(Hn(k/n)).

Let ε ∈ (0, δ) be a suitably small constant chosen later (see (3.29)). For nε ⩽
|k − naj | ⩽ nδ, by (A3)

An(k/n)−An(kj/n) = A(k/n)−A(kj/n) + O(|k − kj |/n2)

⩽ max
ε⩽|x−aj |⩽δ

(A(x)−A(aj)) + O(|kj/n− aj |) + O(|k − kj |/n2) ⩽ −η

with η = η(ε) > 0, since aj is the unique maximizer of the smooth function A
in [aj − δ∗, aj + δ∗]. Therefore, since Bn is uniformly bounded by (3.3),

Hn(k/n)−Hn(kj/n)

= n[An(k/n)−An(kj/n)] + nσ∗[Bn(k/n)−Bn(kj/n)] ⩽ −ηn/2.
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Thus

n∑
k=0

exp(Hn(k/n))

exp(Hn(kj/n))
I[ε ⩽ |k/n− aj | ⩽ δ] ⩽ n exp(−ηn/2). (3.27)

Next, we consider σ−1
j log n ⩽ |k−naj | ⩽ nε. By (A3) for all |k/n−aj | ⩽ δ∗

An(k/n)−An(kj/n) = A(k/n)−A(kj/n) + O(|k − kj |/n2).

Moreover, using Taylor expansion around aj with A(m)(aj) = 0 for 1 ⩽ m ⩽
2mj − 1, we have

A(k/n)−A(kj/n) = A(k/n)−A(aj) +A(aj)−A(kj/n)

= cj(k/n− aj)
2mj +O(|k/n− aj |2mj+1) + O(n−2),

where we recall that cj = A(2mj)(aj)/(2mj)! and |kj/n − aj |2 ⩽ n−2. It
follows from the last two estimates that for all |k − naj | ⩽ nδ∗

An(k/n)−An(kj/n)

= cj(k/n− aj)
2mj +O(|k/n− aj |2mj+1) + O(|k − kj |/n2) + O(n−2).

(3.28)

In particular, there exists a constant C1 = C1(aj , cj , A) > 0 such that

An(k/n)−An(kj/n) ⩽ cj(k/n− aj)
2mj + C1|k/n− aj |2mj+1 + C1/n.

By taking
ε = |cj |/(2C1), (3.29)

we yield that for |k/n− aj | ⩽ ε,

An(k/n)−An(kj/n) ⩽ cj(k/n− aj)
2mj/2 + C1/n, (3.30)

by noting that cj < 0. On the other hand for all |k/n− aj | ⩽ δ∗, by (A3)

nσ∗[Bn(k/n)−Bn(kj/n)] = nσ∗[B(k/n)−B(kj/n)] + O(σ∗|k − kj |/n).

Moreover,

B(k/n)−B(kj/n) = B(k/n)−B(aj) +B(aj)−B(kj/n)

= B′(aj)(k/n− aj) + O(|k/n− aj |2) + O(n−1).

Thus for all |k/n− aj | ⩽ δ∗,

nσ∗[Bn(k/n)−Bn(kj/n)]

= σ∗(k − naj)(B
′(aj) + O(|k/n− aj |)) + O(σ∗).

(3.31)

Hence, using (3.30) and (3.31) and σ∗ ⩽ σj , and noting that σ
2mj

j = n1−2mj ,

Hn(k/n)−Hn(kj/n) ⩽
cj
2
(σj(k − naj))

2mj + Cσj |k − naj |+ C,
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with C some positive constant. Therefore,

n∑
k=0

exp(Hn(k/n))

exp(Hn(kj/n))
I[(log n)/σj ⩽ |k − naj | ⩽ nε]

⩽
∑

|k−naj |⩾(logn)/σj

exp
(cj
2
(σj(k − naj))

2mj + Cσj |k − naj |+ C
)

= O(1)

∫
|x|⩾(logn)/σj

exp
(cj
2
(σjx)

2mj + C|σjx|+ C
)
dx = O(1/n).

(3.32)

Here, in the last inequality we have used
∫
|y|⩾logn exp(cjy

2mj +Cy+C)dy =

O(n−2) since cj < 0 and mj ⩾ 1. It follows from (3.27) and (3.32) that

Zn,j(δ) =
(
1 + O(1/n)

) ∑
|k−naj |
⩽(logn)/σj

exp(Hn(k/n))

=
(
1 + O(1/n)

)
exp(Hn(kj/n))

∑
|k−naj |
⩽(logn)/σj

exp(Hn(k/n))

exp(Hn(kj/n))

=
(
1 + O(σ∗)

)
exp(nAn(kj/n) + nσ∗B(aj))

×
∑

|k−naj |
⩽(logn)/σj

exp(Hn(k/n))

exp(Hn(kj/n))
,

(3.33)

where for the last equation we used (A3) to derive that∣∣nAn(kj/n) + nσ∗B(aj)−Hn(kj/n)
∣∣ = ∣∣nσ∗(Bn(kj/n)−B(aj)

)∣∣ = O(σ∗).

By (3.31), if |k − naj | ⩽ σ−1
j log n then

nσ∗[Bn(k/n)−Bn(kj/n)]

= B′(aj)σ∗(k − naj) + O((log n)2σ∗/nσ
2
j ) + O(σ∗)

= bjσj(k − naj) + O(σ∗(log n)/σj I[σj ̸= σ∗])

+ O((log n)2σ∗/nσ
2
j ) + O(σ∗),

since bj = B′(aj) I[σj = σ∗]. Similarly, by (3.28) for |k − naj | ⩽ σ−1
j log n,

n[An(k/n)−An(kj/n)] = cjn(k/n− aj)
2mj +O((log n)2mj+1/nσj)

= cj(σj(k − naj))
2mj +O((log n)2mj+1/nσj).

Therefore,

Hn(k/n)−Hn(kj/n) = cj(σj(k− naj))
2mj + bjσj(k− naj) +O(τj), (3.34)

where

τj =
(log n)2mj+1

nσj
+

σ∗ log n

σj
I[σj ̸= σ∗].
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We now compute∑
|k−naj |
⩽(logn)/σj

exp
(
cj(σj(k − naj))

2mj + bjσj(k − naj)
)

=
∑
i∈Γn

exp
(
cj(iσj)

2mj + bj(iσj)
)
,

(3.35)

where Γn = {k − naj : k ∈ Z, |k − naj | ⩽ (log n)/σj}. Denote by h(x) =
exp

(
cjx

2mj + bjx
)
. Then for all i ∈ Γn, by Taylor expansion

∣∣∣h(iσj)− σ−1
j

∫ (i+1)σj

iσj

h(x)dx
∣∣∣ ⩽ σj sup

iσj⩽x⩽(i+1)σj

|h′(x)|.

Hence, ∣∣∣ ∑
i∈Γn

h(iσj)− σ−1
j

∫
R
h(x)dx

∣∣∣
⩽ σj

∑
i∈Γn

sup
iσj⩽x⩽(i+1)σj

|h′(x)|+
∫
|x|⩾logn

h(x)dx.

(3.36)

Since h′(x) = exp(cjx
2mj + bjx)(2mjcjx

2mj−1 + bj) with cj < 0, we can �nd
a positive constant C = C(cj ,mj , bj), such that if |y| ⩾ C then

sup
x∈R

|h′(x)| ⩽ C, sup
y⩽x⩽y+1

|h′(x)| ⩽ exp(−cjy
2mj/2).

Therefore, we have∑
i∈Γn

sup
iσj⩽x⩽(i+1)σj

|h′(x)| ⩽ 2C2/σj +
∑
i∈Γn

exp(−cj(iσj)
2mj/2)

⩽ O(1/σj) +

∫
|x|⩽(logn)/σj

exp(−cj(xσj)
2mj/2)dx

= O(1/σj),

which together with (3.36) yields that∑
i∈Γn

h(iσj) = σ−1
j

∫
R
h(x)dx+O(1) +

∫
|x|⩾logn

h(x)dx

= σ−1
j qj +O(1),

since qj =
∫
R h(x)dx. Combining this with (3.34) and (3.35) we obtain that

∑
|k−naj |
⩽(logn)/σj

exp(Hn(k/n))

exp(Hn(kj/n))
= (1 + O(τj))σ

−1
j qj +O(1) = (1 + O(τj))σ

−1
j qj ,

since τj ⩾ (log n)2mj+1/(nσj) ⩾ σj . We �nally deduce (3.5) from the above
estimate and (3.33).
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4 MAXIMUM LIKELIHOOD ESTIMATOR OF LINEAR MODELS

We �rst recall the generalized linear model (1.3) given as

µn(ω) =
1

Zn
exp(Hn(ω)), ω ∈ Ωn = {+1,−1}n,

where
Zn =

∑
ω∈Ωn

exp(Hn(ω)),

and

Hn(ω) = n
(
β1f1(ω̄+) + . . .+ βlfl(ω̄+)

)
, ω̄+ =

∣∣{i : ωi = 1}
∣∣

n
.

Since we construct the estimator for each parameter βi considering the oth-
ers (βj)j ̸=i to be known, for simplicity we rewrite

Hn(ω) = n
(
βf(ω̄+) + g(ω̄+)

)
, (4.1)

where f, g : [0, 1] → R are non-constant smooth enough and known functions.
Our aim is to estimate the parameter β. In order to build the MLE of β, we
compute the log-likelihood function of the model as

Ln(β, ω) =
1

n
logµn(ω) = βf(ω̄+) + g(ω̄+)− φn(β)

with

φn(β) =
1

n
logZn.

Then the MLE of β, denoted by β̂n, is a solution of

0 = ∂βLn = f(ω̄+)− u(β),

where
u(β) = ∂βφn = Eβf(ω̄+)

with Eβ the Gibbs expectation with respect to µn for given β. Note that

∂βu = Eβf(ω̄+)
2 − Eβ{f(ω̄+)}2 > 0

since f is non-constant. Therefore, u is strictly increasing in β, and thus

β̂n = u−1(f(ω̄+)). (4.2)

Before stating the main result of this section, recall the entropy function I :
[0, 1] → R de�ned as I(a) = −a log a + (a − 1) log(1 − a) for a ∈ [0, 1] with
the convention that 0 · log 0 = 0.

Theorem 4.1. Consider the maximum likelihood estimator β̂n as in (4.2) of
the linear model having Hamiltonian given by (4.1) with f, g ∈ C2m∗+1([0, 1])
and m∗ ∈ N. Suppose that the function A : [0, 1] → R given as A(a) =
βf(a) + g(a) + I(a) has �nite maximizers, denoted by (aj)j∈J , satisfying
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that A(k)(aj) = 0 for all 1 ⩽ k ⩽ 2mj − 1 and A(2mj)(aj) < 0 for all j ∈ J ,
with (mj)j∈J ⊂ N and m∗ = maxj∈J mj. De�ne

J+
1 = {j ∈ J : f(aj) = max

k∈J
f(ak)}, J+

2 = {j ∈ J+
1 : mj = max

k∈J+
1

mk},

J−
1 = {j ∈ J : f(aj) = min

k∈J
f(ak)}, J−

2 = {j ∈ J−
1 : mj = max

k∈J−
1

mk}.

Assume that (J−
2 ∪ J+

2 ) ⊂ J∗ := {j ∈ J : mj = m∗}, and assume that there

exist j ∈ J−
2 and k ∈ J+

2 such that

f ′(aj)f
′(ak) ̸= 0. (4.3)

Then

(β̂n − β)n1−1/(2m∗) L−→ U,

where the distribution of U is given as in (4.22)�(4.24).

Proof. For simplicity we omit the subscript n in all involved terms. Let

X = nω̄+, σj = n1/(2mj)−1 for j ∈ J , σ∗ = n1/(2m∗)−1.

For γ ∈ R, we call Pγ the Gibbs measure at parameter γ and Eγ the corre-
sponding expectation. With X = nω̄+, we have for 0 ⩽ k ⩽ n that

Pβ[X = k] ∝ exp
(
n
(
βf(k/n) + g(k/n)

))(n
k

)
= exp(nAn(k/n)),

where An : {0, 1/n, . . . , 1} → R is de�ned as

An(k/n) = βf(k/n) + g(k/n) +
1

n
log

(
n

k

)
.

Recall that A(a) = βf(a) + g(a) + I(a) and 1
n log

(
n
k

)
is well approximated

by I(k/n). LetB ∈ C2([0, 1]) and de�neBn : {0, 1/n, . . . , 1} → R asBn(k/n) =
B(k/n) for 0 ⩽ k ⩽ n. Then it is straightforward to check that there ex-
ist ε∗, δ∗ and C∗ such that (A1)�(A4) hold. For any j ∈ J , we de�ne the
event

Aj = {|X/n− aj | ⩽ δ∗},

and for t ∈ R de�ne the random variable

Yj(t) ∝ exp(cjx
2mj + tbjx),

where

cj =
A(2mj)(aj)

(2mj)!
, bj = B′(aj) I[j ∈ J∗].

Fix t < 0, by the de�nition of β̂ and the monotonicity of u we have

Pβ[(β̂ − β)/σ∗ ⩽ t]

= Pβ

[
u−1(f(X/n)) ⩽ β + tσ∗

]
= Pβ[f(X/n) ⩽ u(β + tσ∗)].
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Part 1. We start by estimating u(β + tσ∗). Note that u(β + tσ∗) =
Eβ+tσ∗f(X/n), and in the application of Theorem 2.1, the measure Pβ+tσ∗

corresponds to the case B = tf . Hence, with t < 0, we have J1 ≡ J−
1

and J2 ≡ J−
2 . Thus by Theorem 2.1,

X/n
Pβ+tσ∗−→

∑
j∈J−

2

p−j (t)δaj ,

where for j, i ∈ J−
2 , we have

p−j (t) =
qj(t)∑

i∈J−
2
qi(t)

, qi(t) =

∫
R
exp(cix

2mi + tbix)dx.

Note that bj = B′(aj) I[j ∈ J∗] = B′(aj) for j ∈ J−
2 , since we assume

that J−
2 ⊂ J∗. This assumption also yields that σj2 = σ∗ for all j2 ∈ J−

2 .
Therefore, using Theorem 2.2, we have

Pβ+tσ∗ [Aj ] = p−j (t) + O(τ∗ + τ−∗ ) for all j ∈ J−
2 , (4.4)

Pβ+tσ∗ [Aj ] = O(σ∗/σj) for all j ∈ J−
1 \ J−

2 , (4.5)

Pβ+tσ∗

[
∩j∈J−

1
Ac

j

]
⩽ exp(−cnσ∗), (4.6)

where c is a positive constant and

τ∗ = (log n)2m∗+1/(nσ∗), τ−∗ = max
j∈J−

1 \J−
2

σ∗/σj .

In addition, Theorem 2.3 yields that for any j ∈ J ,

Eβ+tσj

{
(X/n− aj)

2
∣∣Aj

}
= O(1/(nσj)

2), (4.7)

and

dW
(
L Pβ+tσ∗

(σj(X − naj)|Aj),L (Yj(t))
)

= O(1/(nσj)) + O(σ∗/σj I[j ̸∈ J∗]).
(4.8)

We remark that here and below the notation O depends on ∥B∥∞ = |t|∥f∥∞
and ∥A∥∞. Let λ− = minj∈J f(aj). Then λ− = f(aj) for all j ∈ J−

1 , and
therefore

u(β + tσ∗)− λ− = Eβ+tσ∗

{
f(X/n)− λ−

}
=

∑
j∈J−

1

Eβ+tσ∗

{
f(X/n)− f(aj)

∣∣Aj

}
Pβ+tσ∗ [Aj ]

+ Eβ+tσ∗

{
(f(X/n)− λ−) I

[
∩j∈J−

1
Ac

j

]}
.

(4.9)

For j ∈ J , by Taylor's expansion,

Eβ+tσ∗{f(X/n)− f(aj)|Aj}
= Eβ+tσ∗

{
f ′(aj)σk(X − naj)

∣∣Aj

}
/(nσj) + O(1)Eβ+tσ∗

{
(X/n− aj)

2
∣∣Aj

}
.
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In addition, by (4.8),

Eβ+tσ∗

{
f ′(aj)σj(X − naj)

∣∣Aj

}
= f ′(aj)EYj(t) + O(1/(nσj)) + O(σ∗/σj I[j ̸∈ J∗]).

The last two estimates and (4.7) yields that

Eβ+tσ∗{f(X/n)− f(aj)|Aj}
= f ′(aj)EYj(t)/(nσj) + O(1/(nσj)

2) + O(σ∗/nσ
2
j I[j ̸∈ J∗]).

(4.10)

Combining this with (4.4) and the fact that σj = σ∗ for all j ∈ J−
2 , and J−

2 ⊂
J∗, we obtain that∑

j∈J−
2

Eβ+tσ∗{f(X/n)− f(aj)|Aj}Pβ+tσ∗ [Aj ]

= (nσ∗)
−1

∑
k∈J−

2

f ′(aj)EYj(t)p−j (t) + O((τ∗ + τ−∗ )/nσ∗).

Using (4.5) and (4.10), we have∑
j∈J−

1 \J−
2

Eβ+tσ∗{f(X/n)− f(aj)|Aj}Pβ+tσ∗ [Aj ]

= O(1)
∑

j∈J−
1 \J−

2

σ∗/nσ
2
j = O(τ−∗ /nσ∗),

and by (4.6)

Eβ+tσ∗

{
(f(X/n)− λ−) I

[
∩j∈J−

1
Ac

j

]}
⩽ exp(−cnσ∗/2).

It follows from the last three display equations and (4.9) that

nσ∗(u(β + tσ∗)− λ−) = e−(t) + O(τ∗ + τ−∗ ), (4.11)

where
e−(t) =

∑
j∈J−

2

f ′(aj)EYj(t)p−j (t). (4.12)

Note that

e−(t) =

∑
j∈J−

2

∫
R f ′(aj)x exp(cjx

2mj + tf ′(aj)x)dx∑
j∈J−

2

∫
R exp(cjx2mj + tf ′(aj)x)dx

.

Moreover, if f ′(aj) ̸= 0 by changing variable y = tf ′(aj)x,∫
R
f ′(aj)x exp(cjx

2mj + tf ′(aj)x)dx

=
sgn(tf ′(aj))

t2f ′(aj)

∫
R
y exp

(
cjy

2mj/(tf ′(aj))
2mj + y

)
dy < 0,

since t < 0 and
∫
R y exp(cy2m + y)dy > 0 for all c < 0 and m ∈ N. In

addition, by the assumption (4.3) there exists j ∈ J−
2 such that f ′(aj) ̸= 0.

Thus by the two above display equations, we have

e−(t) ∈ (−∞, 0)

is a negative and �nite constant.
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Part 2. We proceed to compute Pβ[f(X/n) ⩽ u(β + tσ∗)]. In the ap-
plication of Theorem 2.1, the measure Pβ corresponds to the case B ≡ 0,
or J1 = J and J2 = J∗. Hence, by Theorem 2.1, we have

X/n
Pβ−→

∑
j∈J∗

pjδaj ,

where for i and j in J ,

pj =
qj∑
i∈J∗ qi

, qi =

∫
R
exp(cix

2mi)dx.

Moreover, by Theorem 2.2,

Pβ[Aj ] = pj +O(τ∗ + τ ′∗) for all j ∈ J∗, Pβ

[
∩j∈J∗Ac

j

]
= O(τ ′∗), (4.13)

where τ ′∗ = maxj∈J\J∗ σ∗/σj . By Theorem 2.3,

Eβ

{
(X/n− aj)

2
∣∣Aj

}
= O

(
(nσj)

−2
)
, (4.14)

and
dW

(
L Pβ

(σj(X − naj)|Aj),L (Yj)
)
= O

(
(nσj)

−1
)
, (4.15)

where Yj = Yj(0) ∝ exp(cjx
2mj ). It follows from (4.13) that

Pβ[f(X/n) ⩽ u(β + tσ∗)]

=
∑
j∈J∗

Pβ[f(X/n) ⩽ u(β + tσ∗)|Aj ]pj +O(τ∗ + τ ′∗).
(4.16)

By Lemma 3.3 (ii) and (4.15)

dK(L Pβ
(σj(X − naj)|Aj),L (Yj)) ⩽ dW(L Pβ

(σj(X − naj)|Aj),L (Yj))
1/2

= O((nσj)
−1/2).

(4.17)

In particular, for all δ > 0

sup
s∈R

Pβ

[
s ⩽ f ′(aj)σj(X − naj) ⩽ s+ δ

∣∣Aj

]
⩽ sup

s∈R
Pβ

[
s ⩽ f ′(aj)Yj ⩽ s+ δ

]
+O((nσj)

−1/2) = O(δ) + O((nσj)
−1/2),

since Yj has the bounded density. Using the inequality that |f(x)− f(a)−
f ′(a)(x− a)| ⩽ ∥f∥∞(x− a)2/2 and Lemma 3.3(i), and the above estimate,
we have

dK
(
L Pβ

[nσj(f(X/n)− f(aj))|Aj ],L (f ′(aj)σj(X − naj)
∣∣Aj)

)
⩽ inf

δ>0

(
sup
s∈R

Pβ[s ⩽ f ′(aj)σj(X − naj) ⩽ s+ δ|Aj ]

+ Pβ[∥f ′′∥∞(nσj(X/n− aj)
2) ⩾ 2δ|Aj ]

)
= O(1) inf

δ>0

{
δ + Pβ

[
∥f ′′∥∞(nσj(X/n− aj)

2) ⩾ 2δ
∣∣Aj

]}
+O

(
(nσj)

−1/2
)
.
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Moreover, by Markov's inequality and (4.14)

Pβ

[
∥f ′′∥∞(nσj(X/n− aj)

2) ⩾ 2δ
∣∣Aj

]
= O(1)E

{
nσj(X/n− aj)

2
∣∣Aj

}
/δ = O

(
(δnσj)

−1
)
.

Combining the two above estimates and taking δ = (nσj)
−1/2, we obtain

dK
(
L Pβ

(nσj(f(X/n)− f(aj))|Aj),L (f ′(aj)σj(X − naj)|Aj)
)

= O((nσj)
−1/2),

which together with (4.17) implies that for all j ∈ J

dK
(
L Pβ

(nσj(f(X/n)− f(aj))|Aj),L (f ′(aj)Yj)
)
= O((nσj)

−1/2). (4.18)

If j ∈ J∗ \ J−
1 then by the de�nition of J−

1 , we have f(aj) > λ−. Hence,
by (4.11),

u(β + tσ∗) = λ− + o(1) ⩽ (f(aj) + λ−)/2.

Thus

Pβ[f(X/n) ⩽ u(β + tσ∗)|Aj ]

⩽ Pβ[f(X/n) ⩽ (λ− + f(aj))/2|Aj ]

= Pβ[nσj(f(X/n)− f(aj)) ⩽ nσj(λ− − f(aj))/2|Aj ]

⩽ dK
(
L Pβ

(nσj(f(X/n)− f(aj))|Aj),L (f ′(aj)Yj)
)

+ P[f ′(aj)Yj ⩽ nσj(λ− − f(aj))/2] = O((nσj)
−1/2),

by using (4.18) and the following estimate

P[f ′(aj)Yj ⩽ nσj(λ− − f(aj))/4] ⩽ exp(−c(nσj)
2),

for some c > 0, since Yj ∝ exp(cjx
2mj + bjx) with cj < 0, and λ− < f(aj).

Next, assume that j ∈ J∗∩J−
1 . Then σj = σ∗ and f(aj) = λ−. Therefore,

Pβ[f(X/n) ⩽ u(β + tσ∗)|Aj ]

= Pβ

[
nσj(f(X/n)− f(aj)) ⩽ nσ∗(u(β + tσ∗)− λ−)

∣∣Aj

]
.

Combining this with (4.18) yields that

Pβ

[
f(X/n) ⩽ u(β + tσ∗)

∣∣Aj

]
= P

[
f ′(aj)Yj ⩽ nσ∗(u(β + tσ∗)− λ−)

]
+O(1/(nσ∗)

1/2).
(4.19)

Recall that by (4.11)

nσ∗(u(β + tσ∗)− λ−) = e−(t) + O(τ∗ + τ−∗ ),

where e−(t) ∈ (−∞, 0) is given in (4.12). Hence, if f ′(aj) = 0 then

P[f ′(aj)Yj ⩽ nσ∗(u(β + tσ∗)− λ−)] = 0. (4.20)
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If f ′(aj) ̸= 0, since Yj has the symmetric law with bounded density,

P[f ′(aj)Yj ⩽ nσ∗(u(β + tσ∗)− λ−)]

= P
[
Yj ⩽ nσ∗(u(β + tσ∗)− λ−)/f

′(aj)
]

= P
[
Yj ⩽ e−(t)/f

′(aj) + O(τ∗ + τ−∗ )
]

= P
[
Yj ⩽ e−(t)/f

′(aj)
]
+O(τ∗ + τ−∗ ).

Combining this with (4.19), we obtain that if f ′(aj) ̸= 0 then

Pβ[f(X/n) ⩽ u(β + tσ∗)|Aj ]

= P
[
Yj ⩽ e−(t)/f

′(aj)
]
+O(τ∗ + τ−∗ ) + O(1/(nσ∗)

1/2).
(4.21)

Part 3. We now combine the results from Parts 1 and 2. Using (4.12),
(4.16), (4.20) and (4.21) we have for any �xed negative real number t,

P[(β̂ − β)/σ∗ ⩽ t]

= Pβ[f(X/n) ⩽ u(β + tσ∗)]

=
∑
j∈J∗

Pβ[f(X/n) ⩽ u(β + tσ∗)|Aj ]pj +O(τ∗ + τ ′∗)

=
∑
j∈J−

2

P

Yj ⩽ ∑
k∈J−

2

f ′(ak)

f ′(aj)
p−k (t)EYk(t)

pj I[f ′(aj) ̸= 0]

+ O((nσ∗)
−1/2) + O(τ∗ + τ ′∗).

Note here that τ−∗ ⩽ τ ′∗. Similarly, for t > 0

P[(β̂ − β)/σ∗ > t]

=
∑
j∈J+

2

P

Yj > ∑
k∈J+

2

f ′(ak)

f ′(aj)
p+k (t)EYk(t)

pj I[f ′(aj) ̸= 0]

+ O((nσ∗)
−1/2) + O(τ∗ + τ ′∗),

where for k ∈ J+
2

p+k (t) =
qk(t)∑

i∈J+
2
qi(t)

, qi(t) =

∫
R
exp(cix

2mi + tbix)dx.

We recall that the term O depends on t, ∥f∥∞ and ∥g∥∞. Hence, for any
�xed real number t ̸= 0, there is a positive constant C = C(t), such that for
all n su�ciently large

|P[(β̂ − β)/σ∗ ⩽ t]− P[U ⩽ t]| ⩽ C[(nσ∗)
−1/2 + θ− + θ+] = o(1),

where U has the distribution as

P[U ⩽ t]

=
∑
j∈J−

2

pj I[f
′(aj) ̸= 0]P

[
Yj ⩽

∑
k∈J−

2

f ′(ak)

f ′(aj)
p−k (t)EYk(t)

]
, t < 0, (4.22)
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P[U > t]

=
∑
j∈J+

2

pj I[f
′(aj) ̸= 0]P

[
Yj >

∑
k∈J+

2

f ′(ak)

f ′(aj)
p+k (t)EYk(t)

]
, t > 0, (4.23)

P[U = 0]

= 1− 1

2

∑
j∈(J+

2 ∪J−
2 )

pj I[f
′(aj) ̸= 0]. (4.24)

Note that the value P[U = 0] = 1 − P[U < 0] − P[U > 0] is obtained as
follows. Letting t → 0+ and t → 0− in the formulas of P[U ⩽ t] and P[U > t],
since EYk(0) = 0 and P[Yj ⩽ 0] = 1/2, we have

P[U < 0] =
1

2

∑
j∈J−

2

pj I[f
′(aj) ̸= 0], P[U > 0] =

1

2

∑
j∈J+

2

pj I[f
′(aj) ̸= 0].

We �nally conclude that

(β̂ − β)/σ∗
L−→ U,

and �nish the proof of Theorem 4.2.

Remark 4.2. We consider some special cases. If |J | = 1 then J+
2 = J−

2 = J ,
and we denote by a∗ the unique maximizer and assume that f ′(a∗) ̸= 0. In
this case, the distribution of U is as follows. For all t ∈ R,

P[U ⩽ t] = P[Y ⩽ EY (t)],

where, by denoting m∗ the order of regularity of a∗,

Y = Y (0), Y (t) ∝ exp(c∗x
2m∗ + tf ′(a∗)x), c∗ =

A2m∗(a∗)

(2m∗)!
< 0.

Note that if m∗ = 1 then Y (t) ∼ N
(
tf ′(a∗)/2|c∗|, 1/2|c∗|

)
, and we can

compute
U = N

(
0, 2|c∗|/f ′(a∗)

2
)
.

Next, consider the case all the maximizers have the same order of regularity,
i.e. mj = m∗ for all j ∈ J . Then J−

2 = J−
1 = J− = {j ∈ J : f(aj) =

mink∈J f(ak)}, and J+
2 = J+

1 = J+ = {j ∈ J : f(aj) = maxk∈J f(ak)}, and
we assume that there exist j ∈ J− and k ∈ J+ such that f ′(aj)f

′(ak) ̸= 0.
The law of U is given as in (4.22)�(4.24) when replacing J−

2 and J+
2 by J−

and J+.
Finally, we consider the case mj = 1 for all j ∈ J , and

cj = ck = c−, f ′(aj) = f ′(ak) = d− for all k, j ∈ J−,

cj = ck = c+, f ′(aj) = f ′(ak) = d+ for all k, j ∈ J+.

Then for j ∈ J− and t < 0, we have p−j (t) = 1/|J−|, and Yj(t) ∼ N( td−
2|c−| ,

1
2|c−|).

Therefore, for t ∈ R−,

P[U ⩽ t] = p− P
[
N
(
0, 1

2|c−|

)
⩽ td−

2|c−|

]
= p− P

[
N
(
0, 2|c−|

d2−

)
⩽ t

]
,
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where
p− =

∑
j∈J−

pj I[f
′(aj) ̸= 0].

Similarly for t ∈ R+,

P[U > t] = P
[
N
(
0, 2|c+|

d2+

)
> t

]
p+, p+ =

∑
j∈J+

pj I[f
′(aj) ̸= 0].

Thus

U = p−
2 N−

(
0, 2|c−|

d2−

)
+ p+

2 N+
(
0, 2|c+|

d2+

)
+
(
1− p−+p+

2

)
δ0,

where recall that N−(0, σ2) (resp. N+(0, σ2)) is negative (resp. positive)
half-normal distribution.

5 SOME EXAMPLES

In this section, we apply Theorems 2.1, 2.3 and 4.1 to the p-spin Curie-
Weiss model and the annealed Ising model on random regular graphs. We
say that a maximizer a∗ of a smooth function A is 2m-regular (with m ∈ N)
if A(k)(a∗) = 0 for k = 1, . . . , 2m− 1 and A(2m)(a∗) < 0.

5.1 p-spin Curie-Weiss model

Let 2 ⩽ p ∈ N, we consider the p-spin Curie-Weiss model with Hamiltonian

Hn(ω) =
β

np−1

∑
1⩽i1,...,ip⩽n

ωi1 . . . ωip + h
n∑

i=1

ωi = nfβ,h(ω̄+),

with
fβ,h(a) = β(2a− 1)p + h(2a− 1), a ∈ [0, 1]. (5.1)

We now study the maximizers of

A(a) = fβ,h(a) + I(a), a ∈ [0, 1].

Mukherjee, Son and Bhattacharya (2021) have fully characterized the maxi-
mizers of the function A by showing that the parameter space (β, h) ∈ R+×R
is partitioned into disjoint regions:

(i) regular region R1 = {(β, h) : A has an unique maximizer a∗ ∈ (0, 1)}
(in this case a∗ is 2-regular);

(ii) p-critical curve R2 = {(β, h) : A has multiple maximizers in (0, 1)}
(in this case all the maximizers are 2-regular);

(iii) p-special pointsR3 = {(β, h) : A has an unique maximizer a∗ ∈ (0, 1),A′′(a∗) =
0} (in this case a∗ is 4-regular).
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We refer the reader to Appendix B of Mukherjee, Son and Bhattacharya
(2021) for a complete picture of the partition (R1, R2, R3).

Now, given the additional parameters (β̄, h̄), Mukherjee, Son and Bhat-
tacharya (2021+) considered the perturbed Hamiltonians

Hr
n(ω) = nfβ,h(ω̄+) +

√
nB(ω̄+)

Hs
n(ω) = nfβ,h(ω̄+) + n1/4B(ω̄+),

where
B(a) = fβ̄,h̄(a), a ∈ [0, 1],

with fβ̄,h̄ de�ned as in (5.1). Denoting the corresponding Gibbs measures
by µr

n and µs
n and using Theorems 2.1 and 2.3, we obtain the following result.

Theorem 5.1. Consider the magnetization Mn =
∑n

i=1 ωi under the per-

turbed measures µr
n and µs

n. Corresponding to the cases (i)�(iii) we have the
following.

(I) If (β, h) ∈ R1 then

dW

(
L µr

n
(Wn), N

(
2B′(a∗)
|A′′(a∗)| ,

4
|A′′(a∗)|

))
= O(n−1/2),

where

Wn =
Mn − n(2a∗ − 1)√

n
.

(II) If (β, h) ∈ R2 then A has multiple maximizers, say 0 < a1 < a2 <
. . . < ak < 1. Let δ∗ > 0 be a constant such that the intervals ((ai −
δ∗, ai + δ∗))

k
i=1 are disjoint. Then under µr

n,

Mn/n
L−→

k∑
i=1

piδ2ai−1,

with (pi)
k
i=1 being explicit constants. Moreover, for 1 ⩽ i ⩽ k,

dW

(
L µr

n
(Wn,i|ω̄+ ∈ (ai − δ∗, ai + δ∗)), N

(
2B′(ai)
|A′′(ai)| ,

4
|A′′(ai)|

))
= O(n−1/2),

where

Wn,i =
Mn − n(2ai − 1)√

n
.

(III) If (β, h) ∈ R3, then under µs
n,

dW(Wn, Y ) = O(n−1/4), Wn =
Mn − n(2a∗ − 1)

n3/4
,

where

Y ∝ exp
(c∗x4

16
+

b∗x

2

)
, c∗ =

A(4)(a∗)

24
, b∗ = B′(a∗).
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Remark that here we transfer our results for Xn to Mn via the relation
Mn = 2Xn − n. The above theorem covers Theorem 2.1 of Mukherjee, Son
and Bhattacharya (2021) (the main result in this paper) and Theorem 3.1
of Mukherjee, Son and Bhattacharya (2021+) (the key result leading to the
maximum likelihood estimators).

Now we aim to apply Theorem 4.1 to �nd the scaling limits of MLEs.
First, we have to check the non-degeneracy condition in (4.3). Observe that
this condition is always true for the parameter h, since the corresponding
function fh(a) = 2a− 1 is not degenerated at any a ∈ [0, 1]. However, that
condition for β does not hold when β ⩽ β̃p and h = 0, where β̃p = sup{β ⩾
0 : supa∈[0,1]A(a) = 0}. In fact, in this case a = 1/2 is a maximizer of A
that belongs to the set J−, and the corresponding function fβ(a) = (2a−1)p

is degenerated at this point. In summary, we have the following.

Theorem 5.2. Consider the maximum likelihood estimators of the p-spin
Curie-Weiss model denoted by β̂n and ĥn.

(Ia) If (β, h) ∈ R1, then

√
n(ĥn − h)

L−→ N(0, σh),

with σh a positive constant.

(Ib) If (β, h) ∈ R1 \ {(β, 0) : β ⩽ β̃p}, then

√
n(β̂n − β)

L−→ N(0, σβ),

with σβ a positive constant.

(IIa) If (β, h) ∈ R2, then √
n(ĥn − h)

L−→ Uh,

where

Uh = p−hN
−(0, σ−

h ) + p+hN
+(0, σ+

h ) + (1− p−h − p+h )δ0,

with p±h , σ
±
h positive constants.

(IIb) If (β, h) ∈ R2 \ {(β̃p, 0)}, then

√
n(β̂n − β)

L−→ Uβ,

where

Uβ = p−βN
−(0, σ−

β ) + p+βN
+(0, σ+

β ) + (1− p−β − p+β )δ0,

with p±β , σ
±
β positive constants.

(III) If (β, h) ∈ R3, then

n3/4(β̂n − β)
L−→ Zβ, n3/4(ĥn − h)

L−→ Zh,
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where for γ ∈ {β, h} the random variable Zγ has the distribution

P[Zγ ⩽ t] = P[Yγ(0) ⩽ EYγ(t)],

where

Yγ(t) ∝ exp
(
c∗y

4 + tf ′
γ(a∗)y

)
,

with c∗ = A(4)(a∗)/24, and fβ(a) = (2a− 1)p and fh(a) = (2a− 1).

Note that in (IIb), all the points (β, 0) with β < β̃p are not in R2 (in
fact, these points are in R1). The above result covers Theorems 2.2�2.7
of Mukherjee, Son and Bhattacharya (2021+), except for the estimator β̂n
when h = 0 and β ⩽ β̃p, which is corresponding to the results (2.19), (2.22)
and (2.26) in this paper.

Remark 5.3. A natural extension of the homogeneous p-spin Curie-Weiss
model is the mixed spin model with Hamiltonian given as

Hn(ω) = nfp,β(ω̄+),

where β = (β1, . . . , βk) ∈ Rk and p = (p1, . . . , pk) ∈ Nk and

fp,β(a) =

k∑
i=1

βi(2a− 1)pi .

This Hamiltonian satis�es the conditions (A1)�(A4). Hence, we can apply
our theorems to this model. The remaining task is to analyze the maximizers
of A(a) and check the non-degeneracy condition of fβi

(a) = (2a − 1)pi at
these points. This problem is non-trivial, hence left for future research.

5.2 Annealed Ising model on random regular graphs

Let Gn = (Vn, En) be the random regular graph of degree d ⩾ 3 with n
vertices Vn = {v1, . . . , vn}. The Gibbs measure of annealed Ising model is
de�ned as follows. For ω ∈ {1,−1}n,

µn(ω) ∝ E{exp(Hn(ω))}, Hn(ω) = β
∑

(vi,vj)∈En

ωiωj + h
n∑

i=1

ωi,

where expectation is taken over the space of random regular graphs with
respect to a uniform distribution. Can (2019, Eq. (3.2) and Lemma 2.1)
proved that if ω̄+ = k/n then

µn(ω) ∝ exp(2hk)g(β, dk, dn),

where {g(β,m, l)}m⩽l satis�es that∣∣l−1 log g(β,m, l)− gβ(m/l)
∣∣ = O(1/l), (5.2)∣∣(l−1 log g(β,m, l)− gβ(m/l)

)
−
(
l−1 log g(β, k, l)− gβ(k/l)

)∣∣ = O
(
|k −m|/l2

)
,
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with

gβ(a) =

a∧(1−a)∫
0

e−2β(1− 2s) +
√
1 + (e−4β − 1)(1− 2s)2

2(1− s)
ds.

Therefore, with Xn = nω̄+, we have

µn(Xn = k) ∝ exp(nAn(k/n))

with

An

(
k/n

)
= 2hk/n+

1

n
log g(β, dk, dn) +

1

n
log

(
n

k

)
.

By (5.2) the function An is well approximated by A : [0, 1] → R given as

A(a) = 2ha+ dgβ(a) + I(a).

In particular, we can �nd positive constants ε∗, δ∗ and C∗ such that the
conditions (A1)�(A3) hold. Can (2019, Claim 1*) and Can (2017, Lemma
2.2) showed that

(i) if (β, h) ∈ U = {(β, h) : β > 0, h ̸= 0, or 0 < β < βc, h = 0} then A
has a unique 2-regular maximizer a∗ ∈ (0, 1);

(ii) if β > βc and h = 0 then A has two 2-regular maximizers 0 < a− <
a+ = 1− a− < 1;

(iii) if β = βc and h = 0 then A has the unique 4-regular maximizer a∗ =
1/2.

Here βc is the critical value of the model βc = atanh(1/(d − 1)). We now
verify (A4) for the case (ii). Since h = 0, the model is symmetric and
thus µn(ω) = µn(−ω) and

µn(Xn = k) = µn(Xn = n− k). (5.3)

Let k− = [na−] and k+ = [na+]; we need to show

|An(k−/n)−An(k+/n)| = O(n−3/2). (5.4)

Indeed, using (5.3) and (A3)∣∣An(k−/n)−An(k+/n)
∣∣

=
∣∣An((n− k−)/n)−An(k+/n)

∣∣
=
∣∣A((n− k−)/n)−A(k+/n)

∣∣+O(|n− k− − k+|/n2)

= O
(
((n− k−)/n− a+)

2
)
+O

(
(k+/n− a+)

2
)
+O

(
|n− k− − k+|/n2

)
= O(n−2).

Here, for the third line, we used Taylor expansion at a+ and A′(a+) = 0,
and for the last one, we used k± = [na±] and a− + a+ = 1. Therefore, (5.4)
holds when h = 0 and β > βc.

In conclusion, all the conditions (A1)�(A4) hold, and thus using Theo-
rems 2.1 and Mn = 2Xn − n, we have the following.
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Theorem 5.4. Consider the annealed Ising model on a random regular

graph.

(I) If (β, h) ∈ U then

dW

(
L (Wn), N

(
0, 4

|A′′(a∗)|

))
= O(n−1/2),

where

Wn =
Mn − n(2a∗ − 1)√

n
.

(II) If β > βc and h = 0 then

Mn/n
L−→ 1

2
δ2a−−1 +

1

2
δ2a+−1.

Moreover,

dW

(
L

(
W±

n

∣∣|Mn
n − (2a± − 1)| ⩽ δ∗

)
, N

(
0, 4

|A′′(a±)|

))
= O(n−1/2),

where

W±
n =

Mn − n(2a± − 1)√
n

.

(III) If β = βc and h = 0 then

dW
(
Wn, Y

)
= O(n−1/4), Wn =

Mn

n3/4
,

where Y ∝ exp(c∗y
4/16) with c∗ = A(4)(1/2)/24.

Parts (I) and (II) are the main results of Can (2019, Theorem 1.3) and
Part (III) is the main result of Can (2017, Theorem 1.3) with a convergence
rate. The model is not linear in β but linear in h, and hence we can also
prove the following.

Theorem 5.5. Consider the maximum likelihood estimator ĥn of the an-

nealed Ising model on random regular graphs.

(I) If (β, h) ∈ U then
√
n(ĥn − h)

L−→ N(0, σh),

with σh a positive constant.

(II) If β > βc and h = 0 then
√
n(ĥn − h)

L−→ Uh,

where

Uh = p−hN
−(0, σ−

h ) + p+hN
+(0, σ+

h ) + (1− p−h − p+h )δ0,

with p±h , σ
±
h positive constants.

(III) If β = βc, h = 0 then

n3/4(ĥn − h)
L−→ Zh,

where Zh has the distribution as

P[Zh ⩽ t] = P[Yh(0) ⩽ E[Yh(t)]]

with Yh(t) ∝ exp(c∗y
4 + 2ty) and c∗ = A(4)(1/2)/24.
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