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Abstract. We study the representation of nonnegative two variable polynomials on a

certain class of unbounded closed basic semi-algebraic sets (which are called generalized

strips). This class includes the strip [a, b] × R which was studied by Marshall in [10]. A

denominator-free Nichtnegativstellensatz holds true on a generalized strip when the width of

the generalized strip is constant and fails otherwise. As a consequence, we confirm that the

standard hierarchy of SDP relaxations defined for the compact case indeed can be adapted

to the generalized strip with constant width. For polynomial optimization problems on the

generalized strip with non-constant width, we follow Ha-Pham’s work: Solving polynomial

optimization problems via the truncated tangency variety and sums of squares.

1. Introduction

Starting with 17 Hilbert’s Problem, many problems have arisen in Real Algebraic Geome-

try, and many interesting results are known. Given a basic closed semi-algebraic set K in Rn

defined by finitely many polynomial inequalities {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}, where
each gi is a real polynomial, Positivstellensätze are results characterizing all polynomials,

which are positive on K, in terms of sums of squares and the polynomials gi used to describe

K. Theorems about the existence of such representations have various applications, notably

in problems of optimizing polynomial functions on semi-algebraic sets. For a nice survey and

related topics, we refer the reader to [8, 18, 7, 6, 14] with the references therein.

In case K is compact, Schmüdgen [20] has proved that any polynomial, which is positive

on K, is in the preordering T = T (g1, . . . , gm) generated by the gi’s, i.e., T is the set of finite

sums of elements of the form σeg
e1
1 · · · gemm , where ei ∈ {0, 1} and each σe is a sum of squares

of polynomials. Schmüdgen’s Positivstellensätz holds for polynomials, which are positive on

K and satisfy certain extra conditions, see [5, 10, 11, 12, 13, 17], etc. Scheiderer has shown

that Schmüdgen’s Positivstellensätz does not hold if K is not compact and dimK ≥ 3, or

dimK = 2 and K contains a 2-dimensional cone, see [15].
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A stronger problem which has been attracted much attention: Under which conditions is

T saturated? Let us remind that a preordering T is saturated if every polynomial which is

nonnegative onK belongs to T. If the dimension ofK is greater or equal to 3, then Scheiderer

has shown that T is not saturated regardless of compactness of K [18, Proposition 3.1.14].

Therefore, we have to look for saturated preorderings in the case where the dimension of K

is not greater than 2. Some classes of compact (virtually compact) surfaces (curves, respec-

tively) which have saturated preorderings were given in [16, 17]. A remarkable saturated

preordering T for the non-compact case is T (x(1 − x)) (Marshall’s Nichtnegativstellensatz

for the strip [0, 1] × R (see [10])). The main theorem in [10] (or also in [12]) which stated

that a real polynomial which is nonnegative on the strip R× [0, 1] belongs to the preordering

T (y(1 − y)). Recently, Scheiderer and Wenzel [19] have extended [10, Theorem 1.1] on the

cylinder R×C, where C is a nonsingular affine curve over R with C(R) compact. Note that

Schmüdgen’s Positivstellensätz fails if K contains a 2-dimensional cone, hence Marshall’s

Nichtnegativstellensatz is probably an extreme result.

Any semi-algebraic subset of R2 can be decomposed into a finite union of tentacles and

a bounded semi-algebraic set (see [1, Proposition 1.2]). Up to some linear change of coordi-

nates, a tentacle in R2 is assumed to be of the form:

{(x, y) ∈ R2 | β1(x) ≤ y ≤ β2(x), x ≥ R},

where R > 0 and β1, β2 are convergent Puiseux series at infinity such that the sign of β1−β2

is constant on [R,∞] (see [3, 4]). A tentacle is a semi-algebraic set but need not be closed

basic and so it is not clear if it has a finitely generated preordering. Therefore, we look

for a class of tentacles which are possibly changeable to a closed basic semi-algebraic set.

Precisely, we consider a tentacle of the form

M = {(x, y) ∈ R2 | β1(x) ≤ y ≤ β2(x), x ≥ R},

where β1(x), β2(x) have finite terms, that is,

βi(x) =
n∑

j=m

bi,j(
1

x
)j/q, m ≤ n ∈ Z, q ∈ N, bi,j ∈ R, i = 1, 2.

Making the change of variable z = q
√
x, we can assume that q = 1. Then

M = {(x, y) ∈ R2 | xmax {n,0}β1(x) ≤ xmax {n,0}y ≤ xmax {n,0}β2(x), x ≥ R}.

Let gi(x) = xmax {n,0}βi, i = 1, 2. Then g1(x), g2(x) are real polynomials in x and

M = {(x, y) ∈ R2 | g1(x) ≤ xmax {n,0}y ≤ g2(x), x ≥ R}.

If M is unbounded, then there exists a positive number N such that g2(x) − g1(x) > 0 for

every x > N. Thus, in this paper, we consider a class of closed basic semi-algebraic sets of
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the form:

S(g1, g2, α) := {(x, y) ∈ R2 | g1(x) ≤ xαy ≤ g2(x)},

where g1, g2 are real single variable polynomials. In the case α = 0, g1 ≡ 0 and g2 ≡ 1 then

K(0, 1, 0) = R× [0, 1] is the strip mentioned in [10].

An introduction of a class of (unbounded) closed basic semi-algebraic sets S(g1, g2, α)

(these sets are called generalized strips) is written in Section 2. The main results of this

paper are presented in Section 3. The first part of Section 3 presents the representations

of polynomials which are nonnegative on these semi-algebraic sets. We define w(x) :=

g2(x)−g1(x) and call it the width of S(g1, g2, α). In particular, the strip K(0, 1, 0) = R×[0, 1]

has the width w(x) = 1. In this paper, we will point out that the width is a characterization of

the saturated property of the preordering T generated by xαy−g1(x), g2(x)−xαy. Precisely,

if the width w(x) is finite, then every polynomial p(x, y) which is nonnegative on S(g1, g2, α)

belongs to the preordering T provided some technical conditions. In the special case, we

obtain the Marshall’s Nichtnegativstellensatz [10]. On the other hand, if the width w(x) is

infinite, then there exists a polynomial p(x, y) which is positive on S(g1, g2, α) but does not

belong to the preordering T.

Thanks to Schmüdgen’s and Putinar’s Positivstellensätz, the optimal value of a polyno-

mial over a compact semi-algebraic set can be approximated as closely as desired by solving a

hierarchy of semidefinite programs (SDP). However, the convergence of the Lasserre’s hierar-

chy approximations may not be ensured on the case where the feasible sets are non-compact.

In this work, as mentioned above, we obtain a denominator-free Positivstellensätz on a class

of generalized strips with constant width, and as a consequence, the standard hierarchy of

SDP relaxations defined for the compact case indeed can be adapted to this class of feasible

sets. We cannot obtain a denominator-free Positivstellensätz on the generalized strips with

non-constant width. Though, for polynomial optimization problems on the generalized strips

with non-constant width, we follow Ha-Pham’s work: Solving polynomial optimization prob-

lems via the truncated tangency variety and sums of squares [21, 23]. Note that throughout

[21, 23], the constraint S is always supposed to be regular, while in this work, this property

is removed.

The paper is organized as follows. Some basic notations and the definition of generalized

strips in R2 are presented in Section 2. The main results with proofs are written in Section

3.

2. Preliminaries

Notation. Throughout this paper, Z denotes the set of integer numbers, N the set of positive

integer numbers, Z≥0 the set of nonnegative integer numbers and Rn denotes the Euclidean

space of dimension n. We let R[x] denote the ring of real polynomials in n indeterminates
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and a polynomial we always mean a real polynomial. Without of confusing, in many cases,

x stands also for a single variable and so R[x] means the ring of single variable polynomials.

Given a finite set G = {g1, g2, . . . , gm} ⊂ R[x, y], the basic closed semi-algebraic set in

R2 generated by G, denoted as KG, is {(x, y) ∈ R2 : g1(x, y) ≥ 0, . . . , gm(x, y) ≥ 0}. The
quadratic module M(G) = M(g1, . . . , gm) generated by G in the ring R[x, y] is the set

{r0 + r1g1 + · · ·+ rmgm | ri ∈
∑

R[x, y]2},

where
∑

R[x, y]2 is the smallest quadratic module in R[x, y] and is equal to the set of all

finite sums of squares of polynomials. The preordering T (G) = T (g1, . . . , gm) is the quadratic

module generated by the set of finitely distinct product of {g1, . . . , gm}. Hence,M(g1, . . . , gm)

is contained in T (g1, . . . , gm). Some works tried to characterize when M(g1, . . . , gm) is equal

to T (g1, . . . , gm). It is trivial, in the ring R[x, y], that when m = 1 the preordering T (g1) is

the same as the quadratic module M(g1).

We say that M(G) (respectively, T (G)) is saturated if for every f ∈ R[x, y], f nonnegative

onKG implies f ∈ M(G) (respectively, in T (G)). Marshall’s Theorem says that the quadratic

module generated by y − y2 in R[x, y] is saturated.

Tentacle sets. We quote here the definitions and properties of tentacle sets from [1, 2]. By

a Puiseux series at infinity we will mean a series of the form

β =
∞∑
m

bj(
1

x
)
j
q ,

where q ∈ N, m ∈ Z, bj ∈ R for j ≥ m.

If bj ∈ C we call β a complex Puiseux series at infinity. The numbers bj will be called the

coefficients of β. If β ̸= 0, we can assume that the first coefficient bm ̸= 0. If β is nonzero,

we put ord∞β := m/q and call it the order at infinity of β. We also denote ord∞0 = +∞.

The set of Puiseux series at infinity with natural addition and multiplication forms a field.

Suppose β is a Puiseux series at infinity. If there exists a closed half-line I ⊂ R such that

the series β(x) is convergent for x ∈ I we will say that β is a convergent Puiseux series at

infinity. If this is the case, we will consider β : I −→ R both as a Puiseux series and a real

function.

Suppose Γ ⊂ R2 is an unbounded semi-algebraic curve. The convergent Puiseux series at

infinity β is called a special Puiseux parametrization of the semi-algebraic curve at infinity

if there exists a closed half-line I ⊂ R such that

Γ = {(x, β(x)) ∈ R2 | x ∈ I}.

For convenience, we will sometime call such a series a Puiseux parametrization.
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Definition 2.1. An unbounded semi-algebraic set M ⊂ R2 is called a tentacle set if for any

r > 0 the set M \ B(0, r) is connected, where B(0, r) is the ball centered at the origin with

radius r.

Any semi-algebraic subset in R2 has a following decomposition (see [1, Proposition 1.2]):

S = K ∪M1 ∪ . . . ∪Mk,

where K is a bounded semi-algebraic set and Mi(i = 1, 2, ..., k) are pairwise disjoint tentacle

sets which are closed in S, i.e. Mi ∩ S = Mi. The above decomposition is unique in the

following sense (see [1, Remark 1.3]): Given two tentacle decompositions

S = K ∪M1 ∪ . . . ∪Mk = K̃ ∪ M̃1 ∪ . . . ∪ M̃l,

Then k = l and there exists a compact set C such that

Mi \ C = M̃i \ C

for i = 1, . . . , k possibly after rearranging the indices of the tentacles.

Suppose that S is a closed, unbounded semi-algebraic set which does not contain a quad-

rant. The fact that a tentacle of the set S, after some linear change of coordinates and

possibly after leaving out a compact subset, is of the form

{(x, y) ∈ R2 | β1(x) ≤ y ≤ β2(x), x ≥ R}

where R > 0 and β1, β2 are convergent Puiseux series at infinity such that the sign of β1−β2

is constant on [R,∞] (see [3, 4]). A tentacle is a semi-algebraic set. However, it may not

be a closed basic semi-algebraic set and so it is not easy to find a preordering T which is

finitely generated. To avoid such difficulty, we consider a class of tentacles which are possibly

changeable to a closed basic semi-algebraic set. Precisely, we consider a tentacle of the form

M = {(x, y) ∈ R2 | β1(x) ≤ y ≤ β2(x), x ≥ R},

where β1(x), β2(x) have finite terms, that is,

βi(x) =
n∑

j=m

bi,j(
1

x
)j/q, m ≤ n ∈ Z, q ∈ N, bi,j ∈ R, i = 1, 2.

Making the change of variable z = q
√
x, we can assume that q = 1. Then

M = {(x, y) ∈ R2 | xmax {n,0}β1(x) ≤ xmax {n,0}y ≤ xmax {n,0}β2(x), x ≥ R}.

Let α = max {n, 0}, gi(x) = xαβi(x), i = 1, 2. Then g1(x), g2(x) are real polynomials in x

and

M = {(x, y) ∈ R2 | g1(x) ≤ xαy ≤ g2(x), x ≥ R}. (1)
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If M is unbounded, then there exists a positive number N such that g2(x) − g1(x) > 0 for

every x > N. This implies that the polynomial g2(x)− g1(x) is either a positive constant or

a polynomial of degree at least 1 with the positive highest coefficient.

Definition 2.2. We will call a closed semi-algebraic set of the form

S(g1, g2, α) := {(x, y) ∈ R2 | g1(x) ≤ xαy ≤ g2(x)}

a generalized strip, where g1, g2 are real polynomials in R[x] and 0 ≤ α ∈ Z.

In the case α = 0, g1 ≡ 0 and g2 ≡ 1 then S(0, 1, 0) = R× [0, 1] is the strip mentioned in

[10].

A quadratic module of S(g1, g2, α) is the quadratic module generated by xαy−g1(x), g2(x)−
xαy. If a tentacle M is determined by (1), then M is a closed basic semi-algebraic and it is

called a half generalized strip. In this case M has a quadratic module M(xαy−g1(x), g2(x)−
xαy, x−R).

3. Main results

3.1. Polynomials nonnegative on a generalized strip.

3.1.1. The saturation of the preordering of a a generalized strip. The remarkable result by

Marshall that the quadratic moduleM(y(1−y)) of the strip S(0, 1, 0) = R×[0, 1] is saturated,

see [10, Theorem 1.1]. We have a generalization on S(g1, g2, 0) as the following lemma.

Lemma 3.1. Let g1(x), g2(x) be single variable polynomials and the set

S(g1, g2) := S(g1, g2, 0) = {(x, y) ∈ R2 | g1(x) ≤ y ≤ g2(x)}.

The following statements hold.

(1) If deg(g2 − g1) > 0 and the leading coefficient of g2 − g1 is positive then there exist a

polynomial f(x, y) ∈ R[x, y] which is positive on S(g1, g2) and does not belong to the

preordering generated by y − g1(x), g2(x)− y.

(2) If g2(x)− g1(x) = c, where c is a positive constant then the quadratic module M([y−
g1(x)][g2(x)− y]) is saturated. That is, if f(x, y) is a two variable polynomial which

is nonnegative on S(g1, g2) then there exist r0(x, y), r1(x, y) ∈
∑

R[x, y]2 such that

f(x, y) = r0(x, y) + r1(x, y)(y − g1(x))(g2(x)− y).

Proof. (1) We have

S(g1, g2) = {(x, y) ∈ R2 | 0 ≤ y − g1(x) ≤ g2(x)− g1(x)}.

Make the change of variable z = y − g1(x), we have

(x, y) ∈ S(g1, g2) if and only if (x, z) ∈ S(0, w) = {(x, z) ∈ R2 | 0 ≤ z ≤ w(x)},
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where w(x) = g2(x)− g1(x).

Claim: S(0, w) contains an 2-dimensional cone.

By Claim and [9, Proposition 4.2.3], there exist f̃(x, z) which is positive on S(0, w)

does not belong to T (z, w(x) − z). Set f(x, y) := f̃(x, y − g1(x)). Then f(x, y) is

positive on S(g1, g2) but f(x, y) does not belong to T (y − g1(x), g2(x)− y).

We need to prove Claim above. Indeed, suppose that aw is the coefficient of xs,

where s = deg (w). Then aw > 0 and w(x) ≥ axs ≥ ax for all x ≥ δ where a =
aw
2

and some sufficiently large δ. Then S(0, w) contains the cone (δ, 0) + C where C is

the convex cone generated by (1, 0) and (1, a). This completes the proof.

(2) If g2 − g1 = c, we have S(g1, g2) = {(x, y) ∈ R2 | 0 ≤ c−1(y − g1(x)) ≤ 1}. Observe

that if z = c−1(y − g1(x)), then we have

(x, y) ∈ S(g1, g2) ⇔ (x, z) ∈ R× [0, 1].

For f(x, y) ∈ R[x, y], let us define f̃(x, z) := f(x, cz + g1(x)) ∈ R[x, z]. Then

f̃(x, c−1(y − g1(x))) = f(x, y). If f(x, y) ≥ 0 on S(g1, g2) then for every (x, z) ∈
R × [0, 1], we have f̃(x, z) = f(x, cz + g1(x)) ≥ 0. By [10, Theorem 1.1], there exist

r̃0(x, z), r̃1(x, z) ∈
∑

R[x, z]2 such that

f̃(x, z) = r̃0(x, z) + r̃1(x, z)z(1− z).

Set r0(x, y) := r̃0(x, c
−1(y − g1(x))) and r1(x, y) := c−2r̃1(x, c

−1(y − g1(x))).

Then r0, r1 ∈
∑

R[x, y]2 and

f(x, y) = f̃(x, c−1(y − g1(x)))

= r̃0(x, c
−1(y − g1(x))) + r̃1(x, c

−1(y − g1(x)))c
−1[y − g1(x)][1− c−1(y − g1(x))]

= r0(x, y) + r1(x, y)[y − g1(x)][g2(x)− y].

□

Note that if the leading coefficient of g2(x)−g1(x) in Lemma 3.1 is negative, then S(g1, g2)

is compact when the degree of g2 − g1 is even. In the case that degree of g2 − g1 is odd,

replacing x by −x, we can assume that the leading coefficient of g2 − g1 is positive.

In the polynomial ring R[x, y], since y = y2 + y(1 − y) and 1 − y = (1 − y)2 + y(1 − y),

the preordering T (y, 1− y) is the same as the preordering T (y(1− y)) and so is equal to the

quadratic module M(y(1− y)).

In the case that α > 0, some further conditions are added and we obtain two following

lemmas.

Lemma 3.2. Let g1, g2 and S(g1, g2, α) be as in Definition 2.2. Assume that

g2(x)− g1(x) = c > 0 and g1(0) < 0 < g2(0).
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Then the quadratic module M([xαy − g1(x)][g2(x)− xαy]) is saturated.

Proof. We write

S(g1, g2, α) = {(x, y) ∈ R2 | 0 ≤ xαy − g1(x) ≤ c}.

Observe that if z = c−1(xαy − g1(x)), then y =
cz + g1(x)

xα
for all x ̸= 0. So, we have

∀x ̸= 0 : (x, y) ∈ S(g1, g2, α) ⇔ (x, z) ∈ R× [0, 1].

Take any two variables polynomial f(x, y) which is nonnegative on S(g1, g2, α). Let us define

f̃(x, z) := f(x,
cz + g1(x)

xα
) ∀x ̸= 0 then f̃(x, c−1(xαy − g1(x))) = f(x, y). Hence, for every

(x, z) ∈ R∗ × [0, 1], we have f̃(x, z) = f(x,
cz + g1(x)

xα
) ≥ 0, where R∗ = R \ {0}. There

exists k ∈ Z≥0 such that x2kf̃(x, z) becomes a polynomial in R[x, z] and x2kf̃(x, z) ≥ 0 on

R∗ × [0, 1]. Since the density of R∗ × [0, 1] in R× [0, 1] and the continuity of the polynomial

x2kf̃(x, z), we have x2kf̃(x, z) ≥ 0 on R× [0, 1].

By [10, Theorem 1.1], there exist r̃0(x, z), r̃1(x, z) ∈
∑

R[x, z]2 such that

x2kf̃(x, z) = r̃0(x, z) + r̃1(x, z)z(1− z).

Set r0(x, y) := r̃0(x, c
−1(xαy − g1(x))) and r1(x, y) := c−2r̃1(x, c

−1(xαy − g1(x))). Then

r0(x, y), r1(x, y) ∈
∑

R[x, y]2 and

x2kf(x, y) = x2kf̃(x, c−1(xαy − g1(x)))

= r0(x, y) + r1(x, y)[x
αy − g1(x)][g2(x)− xαy].

If k ̸= 0 then let x = 0, we get r0(0, y) + r1(0, y)[−g1(0)]g2(0) = 0 ∀y ∈ R. By the as-

sumption g1(0) < 0 < g2(0), we have r0(0, y) = 0, r1(0, y) = 0 ∀y ∈ R. So r0(x, y) =

x2r̄0(x, y); r1(x, y) = x2r̄1(x, y) and therefore

x2k−2f(x, y) = r̄0(x, y) + r̄1(x, y)[x
αy − g1(x)][g2(x)− xαy].

Repeat this procedure, we obtain the following presentation.

f(x, y) = s0(x, y) + s1(x, y)[x
αy − g1(x)][g2(x)− xαy],

where s0, s1 ∈
∑

R[x, y]2. □

Lemma 3.3. Let g1(x), g2(x) be single variable polynomials and α is a positive integer

number. Suppose that the degree of g2(x) − g1(x) is at least one, the leading coefficient

of g2(x) − g1(x) is positive and g1(0) < g2(0). Then there exist a polynomial f(x, y) ∈
R[x, y] which is positive on S(g1, g2, α) and does not belong to the preordering generated by

xαy − g1(x), g2(x)− xαy.
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Proof. Make the change of variables z = xαy, we have

(x, y) ∈ S(g1, g2, α) =⇒ (x, z) ∈ S(g1, g2, 0) = {(x, z) ∈ R2 | g1(x) ≤ z ≤ g2(x)}

and

(x, z) ∈ S(g1, g2, 0) \ {0× R} =⇒ (x, y) ∈ S(g1, g2, α).

By Lemma 3.1, there exist f̃(x, z) which is positive on S(g1, g2, 0) does not belong to T (z −
g1(x), g2(x)−z). Set f(x, y) := f̃(x, xαy). We will show that f(x, y) is positive on S(g1, g2, α)

but f(x, y) does not belong to T (xαy − g1(x), g2(x)− xαy).

Since f̃(x, z) > 0 on S(g1, g2, 0), we have f(x, y) = f̃(x, xαy) > 0 on S(g1, g2, α). We

suppose that f(x, y) in T (xαy − g1(x), g2(x)− xαy), that is

f(x, y) = r0(x, y)+r1(x, y)[x
αy − g1(x)] + r2(x, y)[g2(x)− xαy]

+r3(x, y)[x
αy − g1(x)][g2(x)− xαy],

where ri(x, y) ∈
∑

R[x, y]2; i = 1, 2, 3. Hence, for all (x, z) ∈ R2, x ̸= 0, we have

f̃(x, z) = f(x,
z

xα
) = r0(x,

z

xα
)+r1(x,

z

xα
)[z − g1(x)] + r2(x,

z

xα
)[g2(x)− z] (2)

+r3(x,
z

xα
)[z − g1(x)][g2(x)− z].

So, there exists k ∈ Z≥0 such that x2kri(x,
z

xα
) = r̃i(x, z), where r̃i(x, z) ∈

∑
R[x, z]2; i =

1, 2, 3 and

x2kf̃(x, z) = r̃0(x, z)+r̃1(x, z)[z − g1(x)] + r̃2(x, z)[g2(x)− z] (3)

+r̃3(x, z)[z − g1(x)][g2(x)− z].

By the equality (2) is true for all x ̸= 0, the equality (3) is also true for all x ̸= 0. However,

the equality (3) holds on R2 since the continuity of x2kf̃(x, z) and the density of R2 \{0}×R
in R2. Let x = 0, by (3), we have

0 = r̃0(0, z) + r̃1(0, z)[z − g1(0)] + r̃2(0, z)[g2(0)− z] + r̃3(0, z)[z − g1(0)][g2(0)− z]. (4)

Since the equality (4) is true for all z ∈ [g1(0), g2(0)], we have r̃i(0, z) = 0, i = 1, 2, 3. So

r̃i(x, z) = x2r′i(x, z), where r′i(x, z) ∈
∑

R[x, y]2; i = 1, 2, 3. Therefore,

x2k−2f̃(x, z) = r′0(x, z)+r′1(x, z)[z − g1(x)] + r′2(x, z)[g2(x)− z]

+r′3(x, z)[z − g1(x)][g2(x)− z].

Repeat this procedure, we get

f̃(x, z) = s0(x, z)+s1(x, z)[z − g1(x)] + s2(x, z)[g2(x)− z]

+s3(x, z)[z − g1(x)][g2(x)− z],
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where s0, s1, s2, s3 are sums of squares. That is f̃(x, z) ∈ T (z − g1(x), g2(x) − z), we get a

contradiction.

□

Let us denote by w(x) = g2(x)−g1(x) and call it the width of S(g1, g2, α). In particular, the

strip S(0, 1, 0) = R × [0, 1] has the width w(x) = 1. Since w(x) is a polynomial, lim
x→∞

w(x)

is either infinite or constant. The width of S(x2, x3, 0) = {(x, y) ∈ R2 : x2 ≤ y ≤ x3} is

w(x) = x3−x2 and lim
x→+∞

w(x) = ∞. This set can not be enclosed in any strip with arbitrary

constant width. We see later that the preordering T (y − x2, x3 − y) of S(x2, x3, 0) is not

saturated.

Theorem 3.1. Let g1(x), g2(x), α and S(g1, g2, α) be as in Definition 2.2. The following

statements hold.

(1) Suppose that either lim
x→+∞

w(x) = +∞ or lim
x→−∞

w(x) = +∞. Then there exist a

polynomial f(x, y) ∈ R[x, y] which is positive on S(g1, g2, α) and f does not belong to

the preordering generated by xαy − g1(x), g2(x)− xαy provided that w(0) > 0.

In the case α = 0, the hypothesis ‘w(0) > 0’ can be removed.

(2) If lim
x→∞

w(x) = c > 0 and g1(0) < 0 < g2(0) then the quadratic module M([xαy −
g1(x)][g2(x)− xαy]) is saturated.

In the case α = 0, the hypothesis ‘g1(0) < 0 < g2(0)’ can be removed.

Proof. (1) If lim
x→+∞

w(x) = +∞ then deg(w) > 0 and the leading coefficient of w is

positive. So if w(0) > 0 then by Lemma 3.3 we get the conclusion. Similarly, in the

case α = 0, we apply Lemma 3.1 (1) instead of Lemma 3.3.

If lim
x→−∞

w(x) = +∞, we put t = −x and w̄(t) = w(−t) then lim
t→+∞

w̄(t) = +∞ and

the problem becomes to the above case.

(2) If lim
x→+∞

w(x) = c > 0 then g2(x)− g1(x) ≡ c > 0. Now we apply Lemma 3.2 and we

get the proof. In the case α = 0, we use Lemma 3.1 (2) instead of Lemma 3.2.

□

Example 3.1. Consider the set S = S(x2, x3, 0) = {(x, y) ∈ R2 : x2 ≤ y ≤ x3} . According
to the theorem above, there exists the polynomial f ≥ 0 on S but f does not belong to the

preordering T (x3 − y, y − x2).

We know that if a semi-algebraic set S contains a open cone then the Positivstellensätz

fails. However, in this case, S does not contain any open cone. Indeed, assume that S

contains a convex cone C, then S contains a half line d. This is impossible.

On the other hand, put u = y − x2, then the set S̃ = {(x, u) ∈ R2 : 0 ≤ u ≤ x3 − x2}
contains the open cone C̃ = {(x, u) ∈ R2 : 0 ≤ u ≤ x− 1;x ≥ 1}.
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Example 3.2. Let the set

S(x2, x2 + x+ 1, 2) = {(x, y) ∈ R2| x2 ≤ x2y ≤ x2 + x+ 1}.

We have w(x) = x + 1, lim
x→+∞

w(x) = +∞ and w(0) = 1 > 0. Hence, by Theorem 3.1 (1),

there exist a polynomial f(x, y) ∈ R[x, y] which is positive on S(x2, x2+x+1, 2) and f does

not belong to the preordering generated by x2y − x2, x2 + x+ 1− x2y.

Example 3.3. Consider the set

S(x− 1, x+ 1, 2) = {(x, y) ∈ R2| x− 1 ≤ x2y ≤ x+ 1}.

In this case, w(x) = 2 > 0, g1(0) = −1 < 0 < g2(0) = 1. So, according to Theorem 3.1 (2),

the quadratic module M(x2y − x+ 1, x+ 1− x2y) is saturated.

3.2. Polynomial Optimization on the generalized strips.

3.2.1. Standard hierarchy of semidefinite relaxations for constrained optimization problem.

For reader’s convenience, we recall the Lasserre’s hierarchy of semidefinite relaxations in

polynomial optimization as follows. Fix a basic closed semialgebraic set K in Rn and f ∈
R[x]. We wish to compute lower bounds for

f∗ = inf{f(x) | x ∈ K}.

Fix a finite set G = {g1, g2, . . . , gm} ⊂ R[x], recall that the basic closed semi-algebraic set

in Rn generated by G, denoted as K = KG, is {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}. The
quadratic module M = M(G) := M(g1, . . . , gm) generated by G in the ring R[x] is the set{

m∑
i=0

sigi | si ∈
∑

R[x]2, g0 = 1

}
,

where
∑

R[x]2 is the smallest quadratic module in R[x] and is equal to the set of all finite

sums of squares of polynomials. Denote by χ the set of all linear maps L : R[x] → R
sastisfying L(1) = 1 and L ≥ 0 on M. Setfmomt := inf {L(f) | L ∈ χ} ,

fsos := sup {r ∈ R | f − r ∈ M} .

For convenience, we denote supremum of the empty set is −∞. Fix an integer d ≥ deg(f).

Define M(G)[d] ⊂ M[G] the set of elements of the form
∑m

i=0 sigi where si ∈
∑

R[x]2 and

deg(si) ≤ 2d, i = 0, 1, 2, ...,m. Set

fsos,d = sup
{
r ∈ R | f − r ∈ M(G)[d]

}
.

It is clearly that

fsos,d ≤ fsos,d+1 ≤ fsos ≤ fmomt ≤ f∗.
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Proposition 3.1. Suppose that every polynomial which is positive on KG must belong to

M(G) (Here we do not assumed that M(G) is Archimedean). Then for f ∈ R[x], f∗ =

fsos = lim
d→+∞

fsos,d.

Of course, since fsos ≤ fmomt ≤ f∗, this also implies that fmomt = f∗.

Proof. If f is not bounded below on KG, then
{
r ∈ R | f − r ∈ M(G)[d]

}
= ∅. Hence fsos,d =

−∞ for all d.

Suppose that f∗ is finite. For any r ∈ R and r < f∗, then f − r > 0 on KG so, by the

assumption, we have f − r ∈ M(G). Thus fsos ≥ r. That implies fsos ≥ f∗. □

It is known that fsos,d can be computed by semidefinite programming problems.

3.2.2. PO on a generalized strip or half strip with constant width. Given g1(x), g2(x) single

variable polynomials, α ∈ Z≥0 and f(x, y) two variables polynomial, consider the optimiza-

tion problem:

f∗ := inf {f(x, y) | (x, y) ∈ S(g1, g2, α)} ,

where S(g1, g2, α) = {(x, y) ∈ R2 | g1(x) ≤ xαy ≤ g2(x)} and lim
x→∞

(g2(x)− g1(x)) is finite.

By Lemma 3.2 and Proposition 3.1, we can obtain the following corollary.

Corollary 3.1. Let g1, g2 be single variable polynomials, α ∈ Z≥0 and the set

S(g1, g2, α) := {(x, y) ∈ R2 | g1(x) ≤ xαy ≤ g2(x)}.

Assume that g2(x)− g1(x) = c > 0 and g1(0) < 0 < g2(0). If f ∈ R[x, y] is bounded below

on S(g1, g2, α), then the sequence {fsos,d}d∈N converges monotonically increasing to the f∗

where f∗ := inf {f(x, y) | (x, y) ∈ S(g1, g2, α)} ,

fsos,d := sup
{
r ∈ R | f − r ∈ M ((xαy − g1(x))(g2(x)− xαy))[d]

}
.

In the case α = 0, the hypothesis ‘g1(0) < 0 < g2(0)’ can be removed.

3.2.3. PO on a generalized strip with non-constant width. In this subsection, we consider the

polynomial optimization problem:

f∗ := inf {f(x, y) | (x, y) ∈ S(g1, g2, α)} ,

where S(g1, g2, α) = {(x, y) ∈ R2 | g1(x) ≤ xαy ≤ g2(x)}, g1(x), g2(x) ∈ R[x] be single

polynomials and lim
x→∞

(g2(x)−g1(x)) = +∞. Then S(g1, g2, α) is a nonempty and unbounded

set. In this case, By Theorem 3.1, Putinar’s Positivstellensätz does not hold anymore. To

solve the optimization problem in this case, we will follow Ha-Pham’s ideas in [21, 23]. A

little improvement here is that we do not require regularity of the constraint. We recall some

notations and rewrite the useful results in [21, 23] as follows.
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Definition 3.1. For any polynomial f ∈ R[x] and subset K ⊂ Rn, the set R∞(f,K) of

asymptotic values of f on K consists of all y ∈ R for which there exists a sequence {xk}k∈N
of points xk ∈ K such that limk→∞ ∥xk∥ = +∞ and limk→∞ f(xk) = y.

Theorem 3.2. [22, Theorem 9] Let f, g1, g2, ..., gm ∈ R[x] and the set

K := {x ∈ Rn | g1(x) ≥ 0, g2(x) ≥ 0, ..., gm(x) ≥ 0}.

Suppose that

(i) f is bounded on K;

(ii) R∞(f,K) is a finite subset of R>0 := {y ∈ R | y > 0}; and
(iii) f > 0 on K.

Then f ∈ T (g1, g2, ..., gm).

We will aplly Theorem 3.2 to obtain a weakly version of denominator-free Positivstel-

lensätz on a generalized strip. To use this theorem, we need to ensure 2 assumptions (i)

and (ii). In [24], we studied the boundedness of a polynomial on a generalized strip (so it

is bounded on its tangency variety on that strip). For a general polynomial, we replace its

tangency variety by its truncated tangency variety (see the difinition by eq. (7)) then the

boundedness of the polynomial is still hold. Next, we will show that the asymptotic values

set of a given polynomial on its tangency variety is finite.

Let f(x, y) ∈ R[x, y] be a non-constant polynomial and α be a non-negative integer

number. Then the tangency variety of f on S(g1, g2, α) (see the definition in [23]) can be

written as

Γ(f, S(g1, g2, α)) =

{
(x, y) ∈ S(g1, g2, α)| [xαy − g1(x)][x

αy − g2(x)][y
∂f

∂x
− x

∂f

∂y
] = 0

}
(5)

Hence, we can write Γ(f, S(g1, g2, α)) = Γ1 ∪ Γ2 ∪ Γ3, where

Γ1 := {(x, y) ∈ S(g1, g2, α)| xαy − g1(x) = 0} ;

Γ2 := {(x, y) ∈ S(g1, g2, α)| xαy − g2(x) = 0} ;

Γ3 := {(x, y) ∈ S(g1, g2, α)| there exists a real number λ such that ∇f(x, y) = λ(x, y)} .

Theorem 3.3. The set Γ(f, S(g1, g2, α)) is a nonempty, unbounded algebraic set, and

inf {f(x, y) | (x, y) ∈ S(g1, g2, α)} = inf {f(x, y) | (x, y) ∈ Γ(f, S(g1, g2, α))} . (6)

Proof. By the definition of Γ(f, S(g1, g2, α)) and by the assumption lim
x→+∞

w(x) = +∞ or

lim
x→−∞

w(x) = +∞, Γ(f, S(g1, g2, α)) is a nonempty, unbounded and algebraic set.

Now, we prove the equality (6).

Case 1: Assume that f∗ = f(x∗, y∗) at some point (x∗, y∗) ∈ S(g1, g2, α). We will show that

(x∗, y∗) ∈ Γ(f, S(g1, g2, α)).
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• If (x∗, y∗) belongs to ∂S(g1, g2, α) = Γ1∪Γ2. Then obviously (x∗, y∗) ∈ Γ(f, S(g1, g2, α)).

• If (x∗, y∗) belongs to intS(g1, g2, α) = {(x, y) ∈ R2 | g1(x) < xαy < g2(x)}. Then
∇f(x∗, y∗) = 0. That means (x∗, y∗) ∈ Γ3 ⊂ Γ(f, S(g1, g2, α)).

Case 2: Assume that f does not attain its infimum on S(g1, g2, α). For all large enough r > 0,

we consider the set Br := {(x, y) ∈ S(g1, g2, α) | x2 + y2 = r2}, then Br is nonempty and

compact. There exists (xr, yr) ∈ Br such that

f(xr, yr) = inf {f(x, y) | (x, y) ∈ Br} .

We show that (xr, yr) ∈ Γ(f, S(g1, g2, α)) for all large enough r.We divide it into the following

cases:

• If (xr, yr) belongs to ∂S(g1, g2, α) of S(g1, g2, α) then (xr, yr) obviously belongs to

Γ(f, S(g1, g2, α)).

• Otherwise, (xr, yr) ∈ B′
r := {(x, y) ∈ R2 | g1(x) < xαy < g2(x), x

2 + y2 = r2}. Then
there exists a real number λ such that ∇f(xr, yr) = λ(xr, yr). Therefore, (xr, yr) ∈
Γ(f, S(g1, g2, α)).

It is clear that f∗ = limr→∞ f(xr, yr) ≥ inf{f(x, y) | (x, y) ∈ Γ(f, S(g1, g2, α))}. On the other

hand, since Γ(f, S(g1, g2, α)) ⊂ S(g1, g2, α), we obtain the reverse inequality. □

Lemma 3.4. R∞(f,Γ(f, S(g1, g2, α))) is a finite set.

Proof. We have Γ(f, S(g1, g2, α)) = Γ1 ∪ Γ2 ∪ Γ3, where

Γ1 := {(x, y) ∈ S(g1, g2, α)| xαy − g1(x) = 0} ;

Γ2 := {(x, y) ∈ S(g1, g2, α)| xαy − g2(x) = 0} ;

Γ3 := {(x, y) ∈ S(g1, g2, α)| there exists a real number λ such that ∇f(x, y) = λ(x, y)} .

Therefore,

R∞(f,Γ(f, S(g1, g2, α))) = R∞(f,Γ1) ∪R∞(f,Γ2) ∪R∞(f,Γ3).

We show thatR∞(f,Γ1) is a finite set. Let {(xk, yk)}k∈N ⊂ Γ1 such that limk→∞ ∥(xk, yk)∥ =

+∞.

If there are infinitely many xk ̸= 0, then

lim
k→∞

f(xk, yk) ∈
{

lim
t→+∞

f(t,
g1(t)

tα
), lim

t→−∞
f(t,

g1(t)

tα
), lim

t→0
f(t,

g1(t)

tα
)

}
.

Otherwise, if xk = 0 for all but finitely many k, then

lim
k→∞

f(xk, yk) ∈
{

lim
t→+∞

f(0, t), lim
t→−∞

f(0, t)

}
.

14



Hence, the set R∞(f,Γ1) is finite. Similarly, we can show that R∞(f,Γ2) is a finite set.

Since Γ3 ⊂ Γ(f) := {(x, y) ∈ R2| there exists a real number λ such that ∇f(x, y) = λ(x, y)} ,
R∞(f,Γ3) ⊂ R∞(f,Γ(f)). By [23, Corollary 2], R∞(f,Γ(f)) is a finite set. So R∞(f,Γ3) is

also a finite set. □

In what follows, we shall fix a real number M = f(x, y) for some (x, y) ∈ S(g1, g2, α).

Then by truncated tangency variety of f on S(g1, g2, α) we mean the set

ΓM(f, S(g1, g2, α)) :={(x, y) ∈ Γ(f, S(g1, g2, α)) | M − f(x, y) ≥ 0} (7)

={(x, y) ∈ R2|xαy − g1(x) ≥ 0, g2(x)− xαy ≥ 0,

[xαy − g1(x)][x
αy − g2(x)][y

∂f

∂x
− x

∂f

∂y
] = 0, M − f(x, y) ≥ 0}.

Corollary 3.2. We have

inf {f(x, y) | (x, y) ∈ S(g1, g2, α)} = inf {f(x, y) | (x, y) ∈ ΓM(f, S(g1, g2, α))} . (8)

Proof. By Theorem 3.3, we have

inf {f(x, y) | (x, y) ∈ S(g1, g2, α)} = inf {f(x, y) | (x, y) ∈ Γ(f, S(g1, g2, α))}

= inf {f(x, y) | (x, y) ∈ ΓM(f, S(g1, g2, α))} .

□

Lemma 3.5. Let f be a real polynomial in two variables. If

inf {f(x, y) | (x, y) ∈ ΓM(f, S(g1, g2, α))} > 0

then

f(x, y) =s0(x, y) + s1(x, y) [x
αy − g1(x)] + s2(x, y) [g2(x)− xαy]

+ s3(x, y) [M − f(x, y)] + t(x, y)[xαy − g1(x)][x
αy − g2(x)][y

∂f

∂x
− x

∂f

∂y
], (9)

where the si(x, y) are sum of squares in R[x, y] and t(x, y) ∈ R[x, y].

Proof. It is clear from the assumption that f is bounded and strictly positive on ΓM(f, S(g1, g2, α)).

Moreover, the following inclusion holds:

R∞(f,ΓM(f, S(g1, g2, α))) ⊂ R∞(f,Γ(f, S(g1, g2, α))).

Thus, Lemma 3.4 implies that R∞(f,ΓM(f, S(g1, g2, α))) is a finite set of R>0. Then the

lemma follows now from Theorem 3.2. □

Now, we are ready to state the main results of this article.

Theorem 3.4. Let S(g1, g2, α) be as above and f be a real polynomial in two variables. Then

the following conditions are equivalent:
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(i) f ≥ 0 on S(g1, g2, α);

(ii) f ≥ 0 on ΓM(f, S(g1, g2, α));

(iii) For every ϵ > 0, there are sums of squares si (0 ≤ i ≤ 3) and a polynomial t in

R[x, y] such that

f(x, y) + ϵ =s0(x, y) + s1(x, y) [x
αy − g1(x)] + s2(x, y) [g2(x)− xαy]

+ s3(x, y) [M − f(x, y)] + t(x, y)[xαy − g1(x)][x
αy − g2(x)][y

∂f

∂x
− x

∂f

∂y
].

Proof. The implication (i) ⇐⇒ (ii) is straightforward by Corollary 3.2. The implication

(iii) =⇒ (ii) is immediate. For the implication (ii) =⇒ (iii), we only have to apply Lemma

3.5 to f + ϵ instead of f. □

Note that in Theorem 3.4, we do not need the regularity of S(g1, g2, α) (compare with

[21, Theorem 4.1]). For example,

S(x2, x3, 0) = {(x, y) ∈ R2 | x2 ≤ y ≤ x3}

is not regular, so we cannot apply [21, Theorem 4.1]. However, we can use the above theorem

to obtain a representation of polynomial positive on S(x2, x3, 0).

Definition 3.2. Let f ∈ R[x, y] and k ∈ N. Define fk
∗ ∈ R ∪ {±∞} as the supremum over

all a ∈ R such that f − a can be written as a sum

f(x, y)− a =s0(x, y) + s1(x, y) [x
αy − g1(x)] + s2(x, y) [g2(x)− xαy]

+ s3(x, y) [M − f(x, y)] + t(x, y)[xαy − g1(x)][x
αy − g2(x)][y

∂f

∂x
− x

∂f

∂y
],

where s0, s1, s2, s3, t are polynomials of degree at most 2k and s0, s1, s2, s3 are sums of squares

in R[x, y].

As is well known, the problem of computing the supremum fk
∗ can be reduced to an SDP.

Moreover, by Theorem 3.4, we have

fk
∗ ≤ fk+1

∗ ≤ f∗, ∀k ∈ N.

We have the following general result concerning the convergence of lower bounds.

Theorem 3.5. Let S(g1, g2, α) be as above and f a real polynomial in two variables. Then

the sequence {fk
∗ }k∈N converges monotonically increasing to the infimum f∗.

Proof. The same proof of [21, Theorem 5.2]. □

Example 3.4. Consider the set S := S(x2, x3 + 2, 2) = {(x, y) ∈ R2 : x2 ≤ x2y ≤ x3 + 2} .
We have w(x) = x3 − x2 + 2, lim

x→+∞
w(x) = +∞ and w(0) = 2 > 0. By Theorem 3.1,

T (x2y − x2, x3 + 2− x2y) is not saturated. On the other hand, S is not regular in the sense

of [21, Definition 3.1].
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(a) Let f(x, y) = x + 1 ∈ R[x, y]. It is clear that the polynomial f is nonnegative on

S(x2, x3+2, 2). However, we show that f does not belong to T (x2y−x2, x3+2−x2y).

Indeed, assume that x+ 1 ∈ T (x2y − x2, x3 + 2− x2y), then

x+ 1 =σ0(x, y) + σ1(x, y)(x
2y − x2) + σ2(x, y)(x

3 − x2y + 2)

+ σ3(x, y)(x
2y − x2)(x3 − x2y + 2),

where σ0, σ1, σ2, σ3 ∈
∑

R[x, y]2. Evaluating at y = 1, this yields

x+ 1 = σ0(x, 1) + σ2(x, 1)(x
3 − x2 + 2).

Setting x = −1, we have 0 = σ0(−1, 1) + σ2(−1, 1), hence σ0(−1, 1) = σ2(−1, 1) = 0

since σ0, σ2 ∈
∑

R[x, y]2. It follows that x + 1 divides σ0(x, 1) and σ2(x, 1). Since

they are sums of squares, we have (x+1)2 divides σ0(x, 1) and σ2(x, 1). This implies

that there exist β0, β2 ∈
∑

R[x]2 such that

x+ 1 = β0(x)(x+ 1)2 + β2(x)(x+ 1)2(x3 − x2 + 2).

Dividing both sides by x+ 1 yields

1 = (x+ 1)(β0(x) + β2(x)(x
3 − x2 + 2)).

This is the contradiction.

Now, by using MATLAB2014a and SOSTOOLS.303 [25] with the following proce-

dure, we can approximate the infimum of f(x, y) = x+ 1 on S(x2, x3 + 2, 2).

clear; echo on;

syms x y gam;

vartable = [x, y];

degree=10

prog = sosprogram(vartable);

prog = sosdecvar(prog,[gam]);

f =x+1;

prog = sosineq(prog,(f-gam));

prog = sossetobj(prog,-gam);

solver_opt.solver = ’sedumi’;

prog = sossolve(prog,solver_opt);

% Finally, get solution

SOLgamma = sosgetsol(prog,gam)

[gam,vars,opt] = findbound(f,[1-f,y*x^2-x^2,x^3+2-x^2*y,

(x^2*y-x^2)*(x^3+2-x^2*y)*y,

-(x^2*y-x^2)*(x^3+2-x^2*y)*y],degree);

echo off
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Then, gam = 6.065753531728744e− 08 = f10. It is straightforward to see that

f∗ = min{x+ 1| (x, y) ∈ S(x2, x3 + 2, 2)} = f(−1, 1) = 0.

(b) Consider the infimum problem of g(x, y) = x2 + (xy − 1)2 on S := S(x2, x3 + 2, 2).

We see that g(x, y) ≥ 0 on S but there is not (x, y) ∈ S such that g(x, y) = 0.

However, there is the sequence {(1
k
, k)}k∈N ⊂ S and limk→+∞ g(

1

k
, k) = 0. Hence,

inf{g(x, y)|(x, y) ∈ S} = 0 and there is no minimizer.

Take M = g(0, 0) = 1, then

ΓM(g, S) ={(x, y) ∈ R2|M − g(x, y) ≥ 0, x2y − x2 ≥ 0;x3 + 2− x2y ≥ 0;

(x2y − x2)(x3 + 2− x2y)[(x2 − y2)(xy − 1)− xy] = 0}

By using MATLAB2014a and SOSTOOLS.303 [25], we can approximate the infimum

of g(x, y) on S(x2, x3 + 2, 2) by g10 = 0.0384; g14 and no optimizer.
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