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ABSTRACT
The problem of determining a term in the right-hand side of
elliptic equations from an observation on a part of the bound-
ary is investigated. The inverse problem is formulated as an
operator equation and then stabilized by Tikhonov regulariza-
tion method. The regularized problem is discretized based on
Hinze’s variational discretization concept and the regulariza-
tion parameter is chosen guaranteeing that when noise level
and the discretization mesh size tend to zero, the solution
of the discretized regularized problem converges to the f∗-
minimum norm solution of the continuous inverse problem.
Some numerical examples are presented for illustrating the
performance of the proposed method.
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1. Introduction

The problem of determining sources in elliptic equations has attracted
researchers for several decades, see e.g. [1–7]. Although there have been many
papers dedicated to this inverse source problem, those with boundary observa-
tions are not many [1–17]. The existence, uniqueness and stability estimates for
this inverse problem from boundary observations have been partially investi-
gated in the above works. It appeared that the uniqueness is not guaranteed if
the sought term in the right-hand side depends on all spatial variables. However,
if this term is independent of one of the spatial variables, the uniqueness can be
established, see. e.g. [7,17,18]. In this paper we consider a numerical method for
solving the problem of reconstructing the right-hand side (source) f (x) in the
Robin problem for elliptic equations of the form:

⎧⎨
⎩
Lu = �(x)f (x)+ g(x), x ∈ �,
∂u
∂ν

+ σu = ϕ, x ∈ ∂�, (1)
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2 D. N. HÀO ET AL.

from the trace of the solution on a part � of the boundary ∂� (boundary
observation):

u = ψ on �. (2)

Here, � ⊂ R
n is a bounded domain with Lipschitz boundary ∂�, the func-

tions �, f , g ∈ L2(�),ϕ ∈ L2(∂�) and ψ ∈ L2(�) are given, and L is an elliptic
operator defined by

Lu = −
n∑

i,j=1
(aijuxi)xj + au,

and

∂u
∂ν

=
n∑

i,j=1
(aijuxi)νj,

where

aij, a ∈ L∞(�), a ≥ ā ≥ 0, σ ≥ σ̄ ≥ 0,
n∑

i,j=1
aijξiξj ≥ λ|ξ |2

Rn , ∀ ξ = (ξ1, . . . , ξn) ∈ R
n,

λ isagivenpositiveconstant.

(3)

Since the inverse problem (1)–(2) may have many solutions, we introduce the
so-called f ∗-minimum norm solution which is nearest the a-priori f ∗ among
all the solutions to it (Definition 2.3). In the next section we will show that the
solution to the above inverse source problem is unstable. We then reformulate
the problem in an abstract setting and study Tikhonov regularization for solv-
ing it. To solve the problem numerically we discretize the regularized problem
by finite-dimensional problems based on Hinze’s variational discretization con-
cept in optimal control [19] to get error estimates. However, we go a little further
than that for optimal control by Hinze, namely, we suggest a choice of the reg-
ularization parameter depending on the noise level in the observation data and
the discretization mesh size which yields the convergence of the solution to the
discretized regularized problem to the solution of the continuous inverse prob-
lem as these quantities tend to zero. This is one of the main contributions of this
paper. Furthermore, with this choice a convergence rate is also established. In
Section 3 we will apply this abstract result to the finite element method (FEM)
for our inverse problem and finally in Section 4 some numerical examples are
presented for illustrating the efficiency of our proposed method.
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2. The inverse source problem and its abstract setting

2.1. The inverse problem as an operator equation

To deal with the inverse problem (1)–(2) we first introduce the notion of weak
solutions to the direct problem (1).

Definition 2.1: A function u ∈ H1(�) is called a weak solution to the boundary
value problem (1) if the following equation holds for all v ∈ H1(�):

∫
�

n∑
i,j=1

aijuxivxjdx +
∫
�

auv dx +
∫
∂�

σuv ds =
∫
�

(�f + g)v dx +
∫
∂�

ϕv ds.

(4)

Denote

a[u, v] =
∫
�

n∑
i,j=1

aijuxivxjdx +
∫
�

auv dx +
∫
∂�

σuv ds,

F(v) =
∫
�

(�f + g)v dx +
∫
∂�

ϕv ds.

Then the weak solution u ∈ H1(�) is defined as the solution to the variational
equation

a[u, v] = F(v), ∀ v ∈ H1(�).

In the rest of this paper, if there is no more additional information required, we
call solution instead of weak solution for brevity. It is well-known that (see [20,
Theorem 2.7, p. 38], for instance):

Proposition 2.2: If a + σ > 0, then for every f , �, g ∈ L2(�) and ϕ ∈ L2(∂�),
problem (4) admits a unique solution u ∈ H1(�). Moreover, there is some constant
cR, independent of �, f , g,ϕ such that

‖u‖H1(�) ≤ cR
(‖�f ‖L2(�) + ‖g‖L2(�) + ‖ϕ‖L2(∂�)

)
. (5)

We denote the solution to (1) by u(x; f ) (or u(f ) if there is no confusion) to
emphasize the dependence of the solution u on f. The inverse source problem is
to seek f ∈ L2(�) such that (2) is satisfied.
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Clearly, (1) can be splitted into the two following problems

Lū = �(x)f (x), x ∈ �, ∂ ū
∂ν

+ σ ū = 0, x ∈ ∂� (6)

and

Lũ = g(x), x ∈ �, ∂ ũ
∂ν

+ σ ũ = ϕ, x ∈ ∂� (7)

for which

u = ū + ũ.

The solution ũ of (7) is well-defined as all the data are given. The solution of the
Robin problem (6) defines a linear bounded operator (the boundedness follows
from (5)): {

A : L2(�) → H
1
2 (�) ↪→ L2(�)

f → Af = ū(f )|� = (u − ũ)|� .
(8)

Since H
1
2 (�) ↪→ L2(�) is a compact embedding, A is a compact operator. Thus,

the inverse source problem (1)–(2), which is equivalent to the operator equation

Af = ψ − ũ|� := ψ̃ (9)

with the compact operator A, is ill-posed.
Now we give an example showing the ill-posedness of the inverse problem.

2.2. Example on the instability.

Let � = (0, 1)× (0, 1), and α, σi, (i = 1, 2, 3, 4) be known positive constants.
Consider the problem of determining f (x) in the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lu := −
u + αu = f (x)�(y), (x, y) ∈ �,
∂u
∂x
(0, y)− σ1u(0, y) = 0, y ∈ [0, 1],

∂u
∂x
(1, y)+ σ2u(1, y) = 0, y ∈ [0, 1]

∂u
∂y
(x, 0)− σ3u(x, 0) = 0, x ∈ [0, 1],

∂u
∂y
(x, 1)+ σ4u(x, 1) = 0, x ∈ [0, 1]

(10)

from the observation

u(x, 0) = ψ(x), x ∈ [0, 1]. (11)
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The problem (10) can be solved by themethod of separation of variables. In doing
so, we consider the eigenvalue problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
u + αu = λu, (x, y) ∈ �,
∂u
∂x
(0, y)− σ1u(0, y) = 0, y ∈ [0, 1],

∂u
∂x
(1, y)+ σ2u(1, y) = 0, y ∈ [0, 1],

∂u
∂y
(x, 0)− σ3u(x, 0) = 0, x ∈ [0, 1],

∂u
∂y
(x, 1)+ σ4u(x, 1) = 0, x ∈ [0, 1].

(12)

The eigenvalues and eigenfunctions λm,n, um,n(x, y) are determined by the
method of separation of variables. Following [21, p. 660], the eigenvalues have
the form

λm,n = μ2
m + ρ2n + α,

where μm and ρn are respectively the non-negative roots of the following equa-
tions

tanμ = (σ1 + σ2)μ

μ2 − σ1σ2
, (13)

and

tan ρ = (σ3 + σ4)ρ

ρ2 − σ3σ4
. (14)

The corresponding eigenfunctions are

um,n(x, y) = X̃m(x)Ỹn(y),

where

X̃m(x) = (μm cosμmx + σ1 sinμmx)
1√

μ2
m + σ 2

1

,

Ỹn(y) = (ρn cos ρny + σ3 sin ρny)
1√

ρ2n + σ 2
3

.

For simplicity we suppose that σ1σ2 = √
π/2. In Equation (13), on each interval

(−π/2 + 2mπ ,π/2 + 2mπ),m = 0, 1, . . . , the tangent function monotonically
increases from −∞ to ∞. Meanwhile, on the interval [0, σ 2

1 σ
2
2 ) = [0,π/2),

the right-hand side of (13) monotonically decreases from zero to −∞ and on
(π/2,∞) it monotonically decreases from+∞ to zero. Therefore, on each inter-
val (−π/2 + 2mπ ,π/2 + 2mπ),m = 0, 1, . . . , there always exists a unique root
μn to (13), and μm → +∞ as m → +∞. Similarly, if we suppose that σ3σ4 =
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√
π/2, then on each interval (−π/2 + 2mπ ,π/2 + 2mπ),m = 0, 1, . . . , there

always exists a unique root ρm to (14), and ρm → +∞ asm → +∞. Set

Xm(x) = X̃m(x)
‖X̃m‖L2(0,1)

,

Ym(y) = Ỹn(y)
‖Ỹn‖L2(0,1)

,

vm,n(x, y) = um,n(x, y)
‖um,n‖L2(�)

.

Then vm,n(x, y),m, n = 0, 1, 2, . . . form an orthonormal basis system of the sub-
space consisting functions in H1(�) which fulfill the boundary conditions
in (10). Therefore, the solution to (10) has the form

u(x, y) =
∞∑

m,n=0
cm,nvm,n(x, y), (15)

where cm,n are constants to be determined. Substituting u(x, y) into the first
equation of (10) and noticing that Lvmn = λmnvmn, we have

+∞∑
m,n=0

λmncmnvmn(x, y) = f (x)�(y). (16)

Multiplying the two sides of (15) by vmn(x, y) and integrating the product over
�, we obtain

λmncmn = 〈f (x)�(y), vmn〉L2(�) =
∫ 1

0

∫ 1

0
f (x)�(y)Xm(x)Yn(y) dx dy = fm�n.

Hence

cmn = 1
λmn

fm�n, m, n = 0, 1, 2, . . . ,

with fm = 〈f ,Xm〉L2(0,1) and �n = 〈�,Yn〉L2(0,1). Substituting cmn into (11) and
taking inner product the two sides by X̃m, we have

ψm = 〈ψ ;Xm〉L2(�) =
+∞∑
n=1

1
λmn

fm�nYn(0), m = 0, 1, 2, . . .

where

Ỹn(0) =
ρn√
ρ2n+σ 23√

1
2 + (σ1+σ2)(μ2

m+σ1σ2)
(μ2

m+σ 21 )(μ2
m+σ 22 )

≤ √
2.
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Using the Cauchy–Schwarz inequality, withm = 1, 2, . . . , we have

|ψm|2 = |fm|2
(+∞∑
n=0

1
λmn

|�n||Yn(0)|
)2

≤ 2|fm|2
+∞∑
n=0

1
λ2mn

+∞∑
n=1

�
2
n = 2|fm|2

+∞∑
n=1

1
(μ2

m + ρ2n + α)2
‖�‖2L2(0,1)

≤ 2|fm|2
+∞∑
n=0

1
λ2mn

+∞∑
n=0

�
2
n = 2|fm|2

+∞∑
n=0

1
4μ2

mρ
2
n
‖�‖2L2(0,1)

= 1
2μ2

m
|fm|2‖�‖2L2(�)

+∞∑
n=0

1
ρ2n

.

Here, we note that since μm ∈ (−π/2 + 2mπ ,π/2 + 2mπ), the sum
∑+∞

n=0
1
ρ2n

converges. It follows that

|fm| ≥
√
2μm|ψm|

‖�‖L2(0,1)
√∑+∞

n=0
1
ρ2n

. (17)

Since μm tends to +∞ as m tends to +∞, a small perturbation in ψ may cause
a very large error in fm which means that our inverse source problem is unstable.

2.3. The non-uniqueness of the solution

As said above, there are some examples showing the non-uniqueness of the
inverse source problem [7,17,18] but not for the Robin problem. Now we
present an example for this case. Let � be the rectangle [a, b] × [c, d]. Sup-
pose that (u∗, f∗) is a solution to problem (1)–(2). Then with an arbitrary
function T(x1, x2) ∈ H1(�), the pair (u = u∗ + ξ , f = f∗ + Lξ

�
), where ξ =

T(x1, x2)(x1 − a)2(x1 − b)2(x2 − c)2(x2 − d)2, is also a solution to this prob-
lem. Similarly, if the term f (x) depends only on x1 but u is given on the x2-axis,
then the solution to the inverse problem is also not unique. For example, with
h(x) = 1, g(x) = 0 and f (x) = f (x1) in problem (1), if (u∗, f∗) is a solution to the
inverse source problem, then we can easily see that (u = u∗ + ξ1, f = f∗ + Lξ1)
is also a solution to it. Here ξ1 = (a − x1)2(b − x1)2S(x1) with S(x1) being an
arbitrary function in H1[a, b].

2.4. Discretization of linear ill-posed problems

LetX be aHilbert spacewith scalar product 〈·, ·〉X and norm ‖ · ‖X ,Y be aHilbert
space with scalar product 〈·, ·〉Y and norm ‖ · ‖Y , and A ∈ L(X,Y) be a compact



8 D. N. HÀO ET AL.

linear operator. Consider the linear operator equation

Af = v. (18)

This is an ill-posed problem, since A is compact.
Suppose that v is imprecisely given by vε :

‖v − vε‖Y ≤ ε, (19)

where ε > 0 is the noise level.
As the problem (18) may have many solutions, we introduce the concept of

f ∗-minimum norm least squares solution to (18):

Definition 2.3: Let f ∗ ∈ X be a priori given. The element f̂ ∈ X is called f ∗-
minimum norm least squares solution (f ∗-minimum norm solution for short)
of problem (18) if

‖f̂ − f ∗‖X ≤ ‖f − f ∗‖X
among those f minimizing the functional ‖Af − v‖2Y .

It is standard to prove that if (18) has solutions, there exists a unique f ∗-
minimum norm solution to it. The problem of minimizing the functional ‖Af −
v‖2Y itself is an ill-posed problem. So, in practice, f̂ is approximated by f εα ∈ X
which solves the regularized problem:

Jεα(f ) = 1
2
‖Af − vε‖2Y + α

2
‖f − f ∗‖2X → min (20)

with α > 0 being the regularization parameter which has to be determined. It is
proved that the problem (20) is well-posed and its unique solution f εα satisfies the
equation

Jεα(f )
′ = A∗(Af − vε)+ α(f − f ∗) = 0 (21)

and f εα is given by

f εα = (A∗A + αI)−1(A∗vε + αf ∗)

withA∗ being the adjoint operator ofA.Moreover, there are rules of choosingα =
α(ε) such thatwhen ε tends to 0, f εα converges to f̂ . If certain source conditions are
available, we have the rate of convergence as follows (see, e.g. [22, Theorem 2.12,
p. 39]):

Assume that there exists a constant θ > 0 and w ∈ X such that

‖f ∗ − f̂ ‖X = (A∗A)θw. (22)

(a) Case 1: If 0 ≤ θ ≤ 1, then there exist positive constants C1,C2 such that

‖f εα − f̂ ‖X ≤ C1√
α
ε + C2α

θ . (23)
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(b) Case 2: If θ ≥ 1, then there exists a positive constant C3 such that

‖f εα − f̂ ‖X ≤ C1
ε√
α

+ C3α. (24)

Remark 2.1: (a) To obtain an optimal convergence rate, we choose α =
Oε 2

2θ+1 , then f εα converges to f̂ with the rate of ε
2θ

2θ+1 as ε tends to 0.
(b) In case θ = 1

2 , (A
∗A)

1
2w = |A|w, the convergence rate is ε

1
2 . Because the

range of (A∗A)
1
2 and that of A∗ are the same, there exists w1 ∈ Y such that

f ∗ − f̂ = |A|w1 = A∗w1. Then

‖f 0α − f̂ ‖ ≤ α(A∗A + αI)−1A∗w1 ≤ 1
2
√
α‖w1‖ = C4

√
α.

Hence,

‖f εα − f̂ ‖ ≤ C1
ε√
α

+ C4
√
α.

Taking α = Oε, we obtain that f εα converges to f̂ with the rate of ε
1
2 which

is the optimal rate in this particular case.
(c) In case θ ≥ 1, choosing α = Oε 2

3 we get the optimal rate of ε
2
3 .

Now we will combine these results with Hinze’s method [19] to get regular-
ization parameters for the discretized regularized problem. In [19], Hinze has
proven the following result.

Theorem 2.4: Suppose that Yh ⊂ Y is a finite dimensional Hilbert subspace of Y,
Ah : X → Yh is a linear, bounded operator, A∗

h : Yh → Y is the adjoint operator of
Ah, f+ and f+h are respectively solutions to the problems

‖Af − v‖2Y + α‖f − f ∗‖2X → min (25)

and

‖Ahf − v‖2Y + α‖f − f ∗‖2X → min . (26)

If

‖(A∗ − A∗
h)v‖X ≤ ch2‖v‖Y ,

‖(A∗A − A∗
hAh)f+‖X ≤ ch2‖f+‖X ,

(27)

then

‖f+ − f+h ‖X ≤ c1h2(‖f+‖X + ‖v‖Y). (28)

with h being the mesh size of the discretization method.
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The solution to (26) satisfies the optimality condition

A∗
h(Ahf − v)+ α(f − f ∗) = 0. (29)

Since A∗
h is a linear finite dimensional operator, it follows that, if f ∗ ∈ Xh, then

f+h ∈ Xh.

Remark 2.2: The result in the above theorem is still true if we substitute Ah by
its approximation Ãh with ‖Ah − Ãh‖ < δ < α

‖Ah‖ .

Indeed, we have

A∗(Af+ − v)+ α(f+ − f ∗) = 0, (30)

Ã∗
h(Ahf+h − v)+ α(f+h − f ∗) = 0. (31)

Subtracting the second equation from the first one, we have

α(f+ − f+h ) = −(A∗A − Ã∗
hAh)f+ − Ã∗

hAh(f+ − f+h )+ (A∗ − Ã∗
h)v. (32)

Taking the inner product of both sides of (32) with f+ − f+h , we have

α〈f+ − f+h , f+ − f+h 〉X
= −〈(A∗A − Ã∗

hAh)f+, f+ − f+h 〉X − 〈(Ã∗
h − A∗

h)Ah(f+ − f+h ), f
+ − f+h 〉X

− 〈A∗
hAh(f+ − f+h ), f

+ − f+h 〉X + 〈(A∗ − Ã∗
h)v, f

+ − f+h 〉X
= −〈(A∗A − Ã∗

hAh)f+, f+ − f+h 〉X − 〈Ah(f+ − f+h ), (Ãh − Ah)(f+ − f+h )〉X
− 〈Ah(f+ − f+h ),Ah(f+ − f+h )〉Y + 〈(A∗ − Ã∗

h)v, f
+ − f+h 〉X .

Since 〈Ah(f+ − fh),Ah(f+ − fh)〉Y = ‖Ah(f+ − f+h )‖2Y ≥ 0, using Theorem 2.4
and the Cauchy–Schwarz inequality, we get

α‖f+ − f+h ‖2X ≤ ch2‖f+‖X‖f+ − f+h ‖X + ‖Ah‖‖Ãh − Ah‖‖f+ − f+h ‖2X
+ ch2‖v‖Y‖f+ − f+h ‖X ≤ ch2‖f+‖X‖f+ − f+h ‖X + δ‖Ah‖‖f+

− f+h ‖2X + ch2‖v‖Y‖f+ − f+h ‖X .
Hence,

(α − δ‖Ah‖)‖f+ − f+h ‖2X ≤ ch2(‖f+‖X + ‖v‖Y)‖f+ − f+h ‖X .
For δ < α

‖Ah‖ , we have the inequality

‖f+ − f+h ‖X ≤ c1h2(‖f+‖X + ‖v‖Y), (33)

with c1 = C
α−δ‖Ah‖ .
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Remark 2.3: (1) If we replace assumptions (27) by

‖(A∗ − A∗
h)v‖X ≤ Chβ1‖v‖Y ,

‖(A∗A − A∗
hAh)f+‖X ≤ Chβ2‖f+‖X ,

(34)

for β1,β2 > 0, then the estimate (28) has the form

‖f+ − f+h ‖X ≤ Chβ(‖f+‖X + ‖v‖Y), β = min{β1,β2}. (35)

(2) Supposing similar assumptions:

‖(A∗ − A∗
h)v‖X ≤ O(hβ1),

‖(A∗A − A∗
hAh)f+‖ ≤ O(hβ2),

(36)

we have

‖f+ − f+h ‖X ≤ O(hβ), β = min{β1,β2}. (37)

The following theorem provides rules for choosing a priori regularization
parameters depending on the mesh size h and error level ε which guarantees that
the solution to the discretized regularized problem converges to the f ∗-minimum
norm least squares solution of the continuous inverse problem. Furthermore,
if the source condition (22) is satisfied, then the rate of convergence can be
obtained.

Theorem 2.5: Let X, Y be Hilbert spaces, and A be a compact operator in L(X,Y).
Suppose that Yh ⊂ Y is a finite dimensional subspace, Ah : X → Yh is a linear,
bounded operator and A∗

h : Yh → X is the adjoint operator of Ah. Furthermore,
suppose that A and Ah satisfy the assumption (34). Let f ε

αh be the solution of the
variational problem

‖Ahf − vε‖2Y + α‖f − f ∗‖2X → min . (38)

Assume that the source condition (22) is satisfied. Then the following statements
hold.

(a) If 0 ≤ θ ≤ 1 and α = O(ε 2
2θ+1 + h

β
θ+1 ), then f ε

αh converges to the f ∗-
minimum norm solution of problem (18) in X-normwith the convergence rate
O(ε 2θ

2θ+1 + h
βθ
θ+1 ).

(b) If θ ≥ 1 and α = O(ε 2
3 + h

β
2 ), then f ε

αh converges to the f
∗-minimum norm

solution of problem (18) with the convergence rateO(ε 2
3 + h

β
2 ).
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Proof: We have

‖f εαh − f̂ ‖X ≤ ‖f εαh − f εα‖X + ‖f εα − f̂ ‖X , (39)

where f εα and f ε
αh are the solutions of

A∗(Afα − vε)+ α(fα − f ∗) = 0 and

A∗
h(Ahfαh − vε)+ α(fαh − f ∗) = 0,

, respectively. From these equations, we obtain

α(f εα − f εαh) = A∗
hAh(f εαh − f εα )+ (A∗

hAh − A∗A)f εα + (A∗ − A∗
h)v

ε . (40)

Taking the inner product both sides of (40) with f εα − f ε
αh, we get

α‖f εα − f εαh‖2X
= −〈A∗

hAh(f εαh − f εα ), f
ε
αh − f εα 〉X

− 〈(A∗A − A∗
hAh)f εα , f

ε
α − f εαh〉X + 〈(A∗ − A∗

h)v
ε , f εα − f εαh〉X

= −‖Ah(f εα )− f εαh)‖2X − 〈(A∗A − A∗
hAh)f εα , f

ε
α − f εαh〉X

+ 〈(A∗ − A∗
h)v

ε , f εα − f εαh〉X ≤ ‖(A∗A − A∗
hAh)f εα‖X‖f εα − f εαh‖X

+ ‖(A∗ − A∗
h)v

ε‖X‖f εα − f εαh‖X .
Hence

‖f εα − f εαh‖X ≤ 1
α

(‖(A∗A − A∗
hAh)f εα‖X + ‖(A∗ − A∗

h)v
ε‖X

)
≤ 1
α
(Chβ‖f εα‖X + Chβ‖vε‖Y) = Bhβ

α
,

If the source condition (22) is satisfied, using estimates (23) and (24), we have

(a) If 0 ≤ θ ≤ 1 :

‖f εαh − f̂ ‖X ≤ C1ε√
α

+ C2α
θ + Bhβ

α
.

Clearly, with α = O(ε 2
2θ+1 + h

β
θ+1 ), we have

‖f εαh − f̂ ‖X ≤ O
(
ε

2θ
2θ+1 + h

βθ
θ+1
)
.

(b) If θ ≥ 1, then

‖f εαh − f̂ ‖X ≤ C1ε√
α

+ C2α + Bhβ

α
.

In this case, with α = O(ε 2
3 + h

β
2 ), we have

‖f εαh − f̂ ‖X ≤ O
(
ε

2
3 + h

β
2

)
.

In the next section we will applied these results to the inverse problem of
determining f in (1)–(2). �
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3. The inverse source problem and its finite element approximation

3.1. The inverse problem

In the previous section, we showed that the problem of determining the right-
hand side f in (1)–(2) can be rewritten as the operator equation (9). Suppose that
ψ is imprecisely given by ψε such that

‖ψ − ψε‖L2(�) ≤ ε. (41)

Suppose that f ∗ is an a priori prediction for f. Then following the above section,
the regularized problem for determining f from the noisy data ψε has the form

min
f∈L2(�)

Jα(f ) = min
f∈L2(�)

{
1
2
‖u(f )|� − ψε‖2L2(�) + α

2
‖f − f ∗‖2L2(�)

}

:= min
f∈L2(�)

{
1
2
‖Af − ψ̃ε‖2L2(�) + α

2
‖f − f ∗‖2L2(�)

}
. (42)

Here, A is defined by (8), ψ̃ε = ψε − ũ|� , α > 0 is the Tikhonov regularization
parameter.

By the standard scheme, it can be proved that (42) has a unique solution, the
functional Jα is Fréchet differentiable and its derivative has the form

J′α(f ) = A∗(Af − ψ̃ε)+ α(f − f ∗). (43)

HereA∗ : L2(�) → L2(�) is the adjoint operator ofA. To defineA∗(Af − ψ̃ε) =
A∗(u(f )− ψε), we consider the adjoint problem to (6):⎧⎪⎨

⎪⎩
Lp = 0, x ∈ �,
∂p
∂ν

+ σp =
{
�(x), x ∈ �,
0, x ∈ ∂� \ �.

(44)

Lemma 3.1: The adjoint operator A∗ : L2(�) → L2(�) of A is defined by

A∗� = �p,

where p = p(x) is the solution to the adjoint problem (44).

Proof: Since p is the solution to (44), for all ξ ∈ H1(�), we have∫
�

n∑
i,j=1

aijpxiξxjdx +
∫
�

a(x)pξ(x) dx +
∫
∂�

σ(x)pξ(x) ds =
∫
�

φ(x)ξ(x) ds.

(45)
Similarly, ū = ū(x) is the solution of (6) if following equality satisfies for all v ∈
H1(�)∫

�

n∑
i,j=1

aijūxivxjdx +
∫
�

aūv dx +
∫
∂�

σ ūv ds =
∫
�

�(x)f (x)v(x) dx. (46)
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Substituting ξ(x) in (45) by the solution ū(x) of (46) and v(x) in (46) by the
solution p(x) of (45), we have∫

�

�(x)f (x)p(x) dx =
∫
�

�(x)ū(x) ds =
∫
�

�(x)Af ds.

Hence,

〈�p, f 〉L2(�) = 〈Af ,�(x)〉L2(�) = 〈A∗�(x), f 〉L2(�).
The above result indicates that

A∗�(x) = �(x)p(x)

with p(x) is the solution to Equation (44). �

We summarize these results in the following theorem.

Theorem 3.2: The functional Jα(f ) is Fréchet differential and its derivative has the
form

J′α(f ) = �(x)p(x)+ α(f − f ∗),

where p(x) is the solution to the adjoint system⎧⎪⎨
⎪⎩
Lp = 0, x ∈ �,
∂p
∂ν

+ σp =
{
u(f )− ψε(x), x ∈ �,
0, x ∈ ∂� \ �.

(47)

The solution to the variational problem (42) is the solution to the equation J′α(f ) =
0.

Remark 3.1: In this case, the source conditions can be represented as follow:

(1) The first source condition: There exists � ∈ L2(∂�) such that f − f ∗ =
�(x)p(x) in which p is the solution of problem (44).

(2) The second source condition: There exists φ ∈ L2(�) such that f − f ∗ =
A∗Aφ. Similarly, we can state this condition by the existence of φ ∈ L2(�)
such that f − f ∗ = �p, with p being the solution of the problem:⎧⎪⎨

⎪⎩
Lp = 0, x ∈ �,
∂p
∂ν

+ σp =
{
v̄(x), x ∈ �,
0, x ∈ ∂� \ �.

(48)

Here, v̄(x) = v(x)|� , with v(x) being the solution of the problem⎧⎨
⎩
Lv = �(x)φ(x), x ∈ �,
∂v
∂ν

+ σv = 0, x ∈ ∂�. (49)
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3.2. Conjugate gradientmethod

In this part, we will present the conjugate gradient method for solving the mini-
mization problem (42). Assume that f k is an approximate of f at the kth iteration,
then the next one is

f k+1 = f k + νkdk,

where

dk =
{

−∇Jα(f k) if k = 0,
−∇Jα(f k)+ γ kdk−1 if k > 0,

(50)

and

γ k =
‖∇Jα(f k)‖2L2(�)

‖∇Jα(f k−1)‖2L2(�)
and νk = argminν>0Jα(f

k + νdk). (51)

To evaluate νk, let us rewrite Jα(f k + νdk) as follows:

Jα(f k + νdk) = 1
2
‖u(f k + νdk)|� − ψε‖2L2(�) + α

2
‖f k + νdk − f ∗‖2L2(�)

= 1
2
‖A(f k + νdk)− (ψε − ũ|�)‖2L2(�) + α

2
‖f k + νdk − f ∗‖2L2(�)

= 1
2
‖νAdk + Af k − (ψε − ũ|�)‖2L2(�) + α

2
‖νdk + f k − f ∗‖2L2(�).

Differentiating of Jα(f k+1) respect to ν, we get

∂Jα(f k + νdk)
∂ν

= ‖Adk‖2L2(�)ν + 〈Adk,Af k − (ψε − ũ|�)〉L2(�)
+ α‖dk‖2L2(�)ν + α〈dk, f k − f �〉L2(�)

Letting

∂Jα(f k + νdk)
∂ν

= 0,

we have

νk = − 〈dk,∇Jα(f k)〉L2(�)
‖Adk‖2L2(�) + α‖dk‖2L2(�)

.

The CG method is summarized as follows

(1) Step 1:
(a) Initiate f 0.
(b) Solve the direct problem to compute u(f 0)⎧⎨

⎩
Lu = �f 0 + g, x ∈ �,
∂u
∂ν

+ σu = ϕ, x ∈ ∂�.
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(c) Calculate ∇Jα(f 0) = �p0, where p0 solves the adjoint problem⎧⎪⎨
⎪⎩
Lp = 0, x ∈ �,
∂p
∂ν

+ σp =
{
u(f 0)− ψε , x ∈ �,
0, x ∈ ∂� \ �.

(d) Calculate

d0 = −∇Jα(f 0), ν0 =
‖∇Jα(f 0)‖2L2(�)

‖Ad0‖2L2(�) + α‖d0‖2L2(�)
.

Update

f 1 = f 0 + ν0d0.

(2) Step 2: For k = 1, 2, . . .
(a) Solve the direct problem to calculate u(f k)⎧⎨

⎩
Lu = �f k + g, x ∈ �,
∂u
∂ν

+ σu = ϕ, x ∈ ∂�.

(b) Calculate ∇Jα(f k) = �pk, where pk solves the adjoint problem⎧⎪⎨
⎪⎩
Lp = 0, x ∈ �,
∂p
∂ν

+ σp =
{
u(f k)|� − ψε , x ∈ �,
0, x ∈ ∂� \ �.

(c) Calculate

γ k =
‖∇Jα(f k)‖2L2(�)

‖∇Jα(f k−1)‖2L2(�)
, dk = −∇Jα(f k)+ γ kdk−1,

(d) Solve the direct problem⎧⎨
⎩
Lvk = �dk, x ∈ �,
∂vk

∂ν
+ σvk = 0, x ∈ ∂�.

(e) Calculate

Adk = vk|� , νk =
‖∇Jα(f k)‖2L2(�)

‖Adk‖2L2(�) + α‖dk‖2L2(�)
.

(3) Step 3: Update

f k+1 = f k + νkdk.

To apply this schemewe need to solve the direct and adjoint problems. For this
purpose, we use the finite element method (FEM).



OPTIMIZATION 17

3.3. Finite elementmethod for the direct problem

We use spaces of piecewise polynomial functions as approximation spaces
Xh of X ⊂ L2(�). Suppose that the bounded domain � ⊂ R

n, n = 1, 2, 3, is
divided into subdivisions Th = {K}. For n = 1, the elements K are inter-
vals, for n = 2 they are triangles or quadrilaterals and for n = 3 they are
tetrahedrons for instance. The approximation space Xh is assumed to satisfy
Xh ⊂ H1(�). This condition is equivalent to Xh ⊂ C0(�̄), where C0(�̄) = {v :
visacontinuousfunctiondefinedon�̄}.

We first consider the case X = H1(�) and Xh = {v ∈ V : v|K ∈ P1(K), ∀K ∈
Th}, where Th = {K} is a triangulation of � ⊂ R

2, i.e. Xh is the standard finite
element space of piecewise linear functions on triangles K. For K ∈ Th we call
hK the longest side of K, dK is the diameter of the circle inscribed in K and h =
maxK∈Th{hK}. We further require that there is a positive constant β independent
of K ∈ Th such that dK

hK ≥ β , ∀K ∈ Th.

Definition 3.3: A functionuh = uh(x) ∈ Xh is called an FE (finite element) solu-
tion to the boundary problem (1) in Xh if for all vh = vh(x) ∈ Xh, the following
equality holds∫
�

N∑
i,j=1

aijuhxi vhxjdx +
∫
�

auhvhdx +
∫
∂�

σuhvhds =
∫
�

(�(x)f (x)+ g(x))vhdx

+
∫
∂�

ϕ(x)vhds. (52)

Denote by

a[uh, vh] =
∫
�

⎛
⎝ n∑

i,j=1
aij(x)uhxi vhxj + a(x)uh(x)vh(x)

⎞
⎠

× dx +
∫
∂�

σ(x)uh(x)vh(x) ds(x),

F(vh) =
∫
�

(
(f (x)�(x)+ g(x)

)
vh(x) dx +

∫
∂�

ϕ(x)vh ds(x),

k = 1, 2, . . .N.

Then uh is the solution to Equation (52) if the following variational equation
holds

a[uh, vh] = F(vh)

for all vh ∈ Xh. Let {ϕ1,ϕ2, . . . ,ϕN} be a basis for Xh. Then uh has the unique
representation

uh =
N∑
l=1

ξlϕl, ξl ∈ R, (53)
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which leads to the system

N∑
l=1

a[ϕk,ϕl]ξl = F(ϕk), k = 1, 2, . . . ,N. (54)

Denoting

A = (Alk)N×N , with Alk = a[ϕl,ϕk],B = (Bk)N×1 with

Bk = F(ϕk) and � = (ξl)N×1.

(54) can be represented by

A� = B. (55)

It is standard to prove that A is positive definite and therefore (55) is uniquely
solvable.

Theorem 3.4 ([23, p. 91]): If� is an open, bounded domain in R
n, u and uh are

respectively the weak solution and the FE solution to Equation (1), then there is a
constant C independent on u and h such that

‖u − uh‖L2(�) ≤ Ch‖u‖H1(�). (56)

The FE solution to (6) denoted by ūh defines a linear operator

Ah :L2(�) → L2(�),

f �→ Ah(f ) = ūh(f )|� .

We see that Ah is an approximation of A and its adjoint A∗
h approximates A∗.

Proposition 3.5: The adjoint operator to Ah is defined by

A∗
h :L

2(�) → L2(�),

φ �→ A∗
hφ = �(x)ph(x),

with ph(x) being the FE solution of (44).

Proof: The proof of this assertion is similar to that of Theorem 3.1.
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Since ph is the FE solution of (44), for all ξ(x) ∈ Xh, we have∫
�

n∑
i,j=1

aijphxiξxjdx +
∫
�

a(x)phξ(x) dx +
∫
∂�

σ(x)phξ(x) ds =
∫
�

φ(x)ξ(x) ds.

(57)
Similarly, ūh = ūh(x) is the solution of (6) if following equality is satisfied for all
v = v(x) ∈ Xh(�)∫

�

n∑
i,j=1

aijūhxivxjdx +
∫
�

aūhv dx +
∫
∂�

σ ūhv ds =
∫
�

�(x)f (x)v(x) dx. (58)

Substituting ξ(x) in (57) by the solution ūh(x) of (58) and v(x) in (46) by the
solution ph(x) of (57), we have∫

�

h(x)f (x)ph(x) dx =
∫
�

�(x)ūh(x) ds =
∫
�

�(x)Ahf ds.

Hence,

〈�ph, f 〉L2(�) = 〈Ahf ,�(x)〉L2(�) = 〈A∗
h�(x), f 〉L2(�).

The above result indicates that

A∗
h�(x) = �(x)ph(x)

with ph(x) being the solution to Equation (44). �

We now prove that A,A∗,Ah and A∗
h satisfy Assumptions (27).

Proposition 3.6: With A,A∗,Ah,A∗
h being operators defined above, for every

y ∈ L2(�) and f ∈ L2(�), there exist constants C1 independent of y, h and C2
independent of f, h such that

‖(A∗ − A∗
h)y‖L2(�) ≤ C1h‖y‖L2(�),

‖(A∗A − A∗
hAh)f ‖L2(�) ≤ C2h‖f ‖L2(�).

(59)

Proof: Indeed, recall that for y ∈ L2(�), A∗y = h(x)p(x) and A∗
hy = h(x)ph(x),

where p(x) and ph(x) are the exact solution and FE solution to the problem:⎧⎪⎨
⎪⎩
Lp = 0,
∂p
∂ν

+ σp =
{
y, x ∈ �,
0, x ∈ ∂� \ �.

Therefore,

‖(A∗ − A∗
h)y‖L2(�) = ‖�(p − ph)‖L2(�) ≤ ‖�‖L2(�)‖p − ph‖L2(�).
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Since �(·) ∈ L2(�), it follows from the estimate (5) that there is a constant C1
which depends only on �(x), f (x) and the coefficients of Equation (1) such that

‖(A∗ − A∗
h)y‖L2(�) ≤ C1h‖y‖L2(�). (60)

For all f ∈ L2(�), we have

‖(A∗A − A∗
hAh)f ‖L2(�) ≤ ‖A∗(A − Ah)f ‖L2(�) + ‖(A∗ − A∗

h)Ahf ‖L2(�).
The second term is easy to evaluate as we can directly apply (60):

‖(A∗ − A∗
h)Ahf ‖L2(�) ≤ C1h‖Ahf ‖L2(�) ≤ C1h‖Ah‖‖f ‖L2(�). (61)

To estimate the first term, we notice that Af = ū(f )|� and Ahf = ūh(f )|� with ū
and ūh being the weak solution and FE solution, respectively, to the problem⎧⎨

⎩
Lū = �(x)f (x),
∂ ū
∂ν

+ σ ū = 0, x ∈ ∂�,

and Ahf is its FE approximation or Ahf = ūh|� . Hence
‖(A − Ah)f ‖L2(�) = ‖(ū − ūh)(f )‖L2(�) ≤ ‖ū − ūh‖‖f ‖L2(�) ≤ Ch‖f ‖L2(�).

Furthermore, A∗(A − Ah)f = �(x)p(x) in which p(x) solves the following prob-
lem ⎧⎪⎨

⎪⎩
Lp = 0,
∂p
∂ν

+ σp =
{
(A − Ah)f , x ∈ �,
0, x ∈ ∂� \ �.

Therefore,

‖A∗(A − Ah)f ‖L2(�) ≤ ‖�‖L2(�)‖p‖L2(�) ≤ ‖�‖L2(�)‖(A − Ah)f ‖L2(�)
≤ C2h‖f ‖L2(�). (62)

From the estimates (61) and (62), the assertion follows. �

If the right-hand side and the boundary conditions of (1) are more regular,
then is so u.

Proposition 3.7 ([24, Corollary 2.2.2.4, p. 91, Corollary 2.2.2.6, p. 92 and
Theorem 2.3.3.6, p. 110)]): Let � be a bounded open set with a C1,1 boundary,
A = (aij) is Lipschitz in �̄. If σ is Lipschitz in �̄,ϕ ∈ H

1
2 (∂�), then there exists a

unique weak solution u to (1) in H2(�) such that

‖u‖H2(�) ≤ C
(
‖�f ‖L2(�) + ‖g‖L2(�) + ‖ϕ‖

H
1
2 (∂�)

)
. (63)
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Under the conditions of the above proposition, we can get a better error esti-
mate of the FEM for (1). Precisely, there exists a constant C independent of h, u,
such that [23, p. 91]

‖u − uh‖L2(�) ≤ Ch2‖u‖H2(�) ≤ Ch2‖u‖H2(�).

Applying Proposition 3.7, we can prove that in this case, Hinze’s assumptions are
fulfilled as follows:

Proposition 3.8: With A,A∗,Ah,A∗
h being operators defined above, for every

v ∈ H
1
2 (�) and f ∈ L2(�), there exist constants C1 independent on v, h and C2

independent on f, h such that

‖(A∗ − A∗
h)v‖L2(�) ≤ C1h2‖v‖H 1

2 (�)
,

‖(A∗A − A∗
hAh)f ‖L2(�) ≤ C2h2‖f ‖L2(�).

(64)

The proof of this proposition is similar to that of Proposition 3.6.

3.4. Regularized discretized variational problem

The discretized version of the optimization problem (42) has the form

min
f∈L2(�)

Jhα(f ) = min
f∈L2(�)

{
1
2
‖uh(f )|� − ψε‖2L2(�) + α

2
‖f − f ∗‖2L2(�)

}
. (65)

This problem has a unique solution f εh,α . Furthermore, based on the above
analysis, we can conclude that f εh,α satisfies the optimality condition

uh = uh(x) := uh(f ) ∈ Xh,∫
�

N∑
i,j=1

aijuhxi vhxjdx +
∫
�

auhvhdx +
∫
∂�

σuhvhds

=
∫
�

(�(x)f (x)+ g(x))vhdx +
∫
∂�

ϕvhds, forall vh = vh(x) ∈ Xh,

(66)

ph = ph(x) ∈ Xh,∫
�

N∑
i,j=1

aijphxiξxjdx +
∫
�

a(x)phξ(x) dx +
∫
∂�

σphξ ds

=
∫
�

(uh(f )− ψε)ξ ds, forall ξ ∈ Xh, (67)

�(x)ph(x)+ α(f − f ∗) = 0. (68)
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The regularization parameter α is now chosen according to Theorem 2.5 that
guarantees the convergence of f εh,α to f

+ of the inverse source problem (1)–(2) as
ε and h tend to zero.

4. Numerical examples

In this section we present some numerical examples for two cases: that with
uniqueness and that without uniqueness.We test these examples for observations
on the whole boundary or on a part of it, and for the sought-for term of different
smoothness. We note that it is very difficult to verify the source condition (22),
therefore we first test our examples without knowing it. Next, we will provide
some examples in which the source condition is satisfied in some approximate
sense.

Consider problem (1)–(2) with � = (0, 1)× (0, 1) ⊂ R
2,�1 := (0, 1)× {0},

�2 := {0} × (0, 1),�3 := (0, 1)× {1},�4 := {1} × (0, 1), ∂� = �̄1 ∪ �̄2 ∪ �̄3 ∪
�̄4 and Lu = −∑2

i,j=1(aijuxi)xj + au with
{
a11 = x1 + x22 + 1, a12 = a21 = x1x2, a22 = x22 + 2,
a(x) = 1 + x1 + x2.

(69)

We prescribe u = x1 sinπx2 + x1 + 2x22 − 1, σ(x) = x21 + x2 + 1, and �(x) = 1.
Then, on the boundary ∂� we have the boundary condition ∂u

∂ν
+ σu = ϕ with

ϕ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−2πx1 + (x21 + 1)(x1 − 1), x2 ∈ �1,
(x22 + 2)(sinπx2 + 1)+ x2(π cos(πx2)+ 4x2)

+(x2 + 2)(sinπx2 + 2x22), x ∈ �2,
x1 + 3(−πx1 + 4)+ (x21 + 2)(x1 + 1), x ∈ �3,
−(x22 + 1)(sin(πx2)+ 1)+ (x2 + 1)(2x22 − 1), x ∈ �4.

(70)

Since u is given, we have

Lu(x) =− sinπx2 − x2(πx1 cosπx2 + 4x2)−πx1x2 cosπx2 − x1(sinπx2 + 1)

− 2x2(π cosπx2 + 4x2)

+ (x22 + 2)(π2x1 sinπx2 − 4)+ (1 + x1 + x2)

× (x1 sinπx2 + x1 + 2x22 − 1)− 1.

Thus, Lu(x) = f (x)+ g(x). For numerical experiments, we choose f and thus
have g(x) = Lu(x)− f (x), and try to reconstruct it from an observation of u on
a part of the boundary of�.

For the finite element discretization we use a uniform triangulation of the
domain� into 65536 elements.
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Table 1. Example 4.1: L2-error in the smooth case.

Relative noise (%) 0.1 1 0.1 1 0.1

Observation �1 ∪ �2 �1 ∪ �2 � � �2 ∪ �4
L2-error 0.0778591 0.0844967 0.042706 0.0579043 0.172632

Example 4.1 (The solution is unique): To guarantee the uniqueness, we assume
that f is independent of one spatial variable: f (x) = f (x1). The observation on the
boundary is assigned as follows

(a) On the whole boundary:

ψ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 − 1, x ∈ �1,
sinπx2 + 2x22, x ∈ �2,
x1 + 1, x ∈ �3,
2x22 − 1, x ∈ �4.

(b) On a part of boundary (1) (observation is on x1 axis):

ψ(x) =
{
x1 − 1, x ∈ �1,
x1 + 1, x ∈ �3,

or observation is on �1 only:

ψ(x) = x1 − 1, x ∈ �1.
(c) On a part of boundary (2): (observation is on x2 axis)

ψ(x) =
{
sinπx2 + 2x22, x ∈ �2
2x22 − 1, x ∈ �4

(d) or observation is on �4 only

ψ(x) = x1 − 1, x ∈ �4.

From the exact value of ψ we generate noise data as follows: first we discrete
ψ which we denote by the same symbol, then we generates ψε = ψ + ε rand(·).
Here rand(·) is a random vector with L2-norm equalling 1. The relative error of
the data is defined by ‖ψ − ψε‖/‖ψ‖, where ‖ · ‖ is the Euclidean norm of a
vector (Table 1) .

We test these cases for the sought-for term f (x) = f (x1) of different smooth-
ness:

Case 1: f (x) is a very smooth function

f (x) = f1(x1) = (x21 − 1) sinπx1

and g(x) = g1(x) = Lu − f1(x1).
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Figure 1. Example 4.1: Reconstruction of the smooth source function f1(x1).

Case 2: f (x) is a continuous but non-smooth function

f (x) = f2(x1) =

⎧⎪⎪⎨
⎪⎪⎩
2x1, x1 ∈

(
0,
1
2

]
× (0, 1),

1 − 2x1, x1 ∈
(
1
2
, 1
)

× (0, 1)

and g(x) = g2(x) = Lu − f2(x1).
Case 3: f (x) = f3(x1) is a discontinuous function

f (x) = f3(x1) =
{
0, x1 ∈ (0, 0.3] × (0, 1) ∪ [0.7, 1)× (0, 1),
1, x1 ∈ (0.3, 0.7)× (0, 1)

and g(x) = g3(x) = Lu − f3(x). In all of three above examples, the initial guess
f ∗ is the mean value of f (x) in�:

f ∗(x) = 1
|�|

∫
�

f (x) dx.

Figure 1(a) shows the reconstructed source term for different observations, on
�1 ∪ �2, �2 ∪ �4 and ∂�, in comparison with the exact one. The noise level is
1% and the regularization parameter is 10−5. Figure 1(b) depicts the numerical
results for the observation on the whole boundary but with different noise levels,
0.1%, 0.5% and 1%. The regularization parameter is chosen to be 10−5, 10−6 or
10−7, respectively. From these figures we see that the observation in the whole
boundary gives the best reconstruction. The worst case is when the observation
is on �2 or �4 or on �2 ∪ �4. The reason is that we have to find the function f
depending on x1 but the observation is a function of the variable x2. It is also clear
that if the noise level is small, the error in the reconstruction is also small. The
numerical error of the tests is presented in Tables 2 and 3.
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Table 2. Example 4.1: L2-error in the non-smooth but continuous case with α = 10−5.

Noise(%) 0.1 0.5 0.1 0.5

Observation �1 ∪ �2 �1 ∪ �2 � �

L2-error 0.04117 0.110359 0.0024 0.0092

Table 3. Example 4.1: L2-error in the discontinuous casewith different regularization parameters.

Noise(%) 0.001 0.001 0.01 0.01

Regularization parameter 10−7 10−6 10−7 10−5

L2-error 0.114505 0.157848 0.180393 0.221967

Figure 2. Example 4.1: Reconstruction of the continuous and non-smooth source function f2(x1).

Figure 3. Example 4.1: Reconstruction of the discontinuous source function f3(x1).

In the next two figures we present the numerical results for cases 2 and 3. We
see that, although the examples are harder, but numerical results are still pretty
good (Figures 2 and 3) .

In this example we have taken the initial guess f ∗ of the sought-for source f by
its average value. However, the choice of f ∗ does not affect much the numerical
solutions. For example, in Example 4.1, case 1, taking α = 10−4 for the relative
noise 1%, and α = 10−5 for the relative noise 0.1%, we see that the numerical
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Figure 4. Example 4.1, case 1: Exact and approximation solutions with f∗ = 0, 10 and 20. (a)
Numerical results with relative noise 0.1%; (b) Numerical results with relative noise 1%.

Table 4. Example 4.1, case 1: L2 error between the exact solution andnumerical oneswith relative
noise 0.1%, 1% for f∗ = 0, 10, and 20.

f∗ 0 10 20

L2 error with relative noise 0.1% 0.020617 0.0198382 0.0239629
L2 error with relative noise 1% 0.057949 0.071723 0.100642

results with f ∗ = 0, 10 and 20 presented in Figure 4 and Table 4 are not much
different from each other. However, the choice of f ∗ is very important for the
case of many solutions as the next example shows.

Example 4.2 (The solution is not unique): In general, if f (x1, x2) depends on
both variables x1 and x2, the solution is not unique. As described above, (u0, f 0)
is a solution to our inverse (1)–(2) with{

u0 = x1 sinπx2 + x1 + 2x22 − 1,
f 0 = (x21 + 1) sinπx2

with the observation of u being taken on the whole boundary of � as in Exam-
ple 4.1. From Section 2.3, for any function T(x1, x2) ∈ H1(�), the pair (uT , f T),
defined by

uT = u0 + ξT , f T = f 0 + LξT

�
, ξT = T(x1, x2)x21(x1 − 1)2x22(x2 − 1)2,

(71)
is also a solution to the same inverse source problem. In this case, as the num-
ber of solutions is infinite, the prediction f ∗ to the sought-for term f plays an
important role for selecting the solution. It has been proved in Theorem 2.5 that,
if the regularization parameter is properly chosen, then the regularized solution
f ε
αh converges to the unique f ∗-solution of the inverse problem. It is difficult to
represent the f ∗-minimum norm solution in an explicit form, we therefore do
some numerical tests for simulating it (Table 5) .
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Table 5. Example 4.2: L2-errors with f∗ close to exact solutions.

Exact solution f 20x1+x2 f 0 f−5 sinπx2 f−100x1

L2-error 0.200252 0.050917 0.068730 0.740671

Figure 5. Example 4.2: f 20x1+x2 and its numerical solution after 35 iterations with f∗ close to
f 20x1+x2 . (a) f 20x1+x2 ]; (b) Numerical solution with f∗ close to f 20x1+x2 ; (c) Error between f 20x1+x2

and the numerical solution with f∗ close to f 20x1+x2 .

We test for T = 0, T = 20x1 + x2 and T = −5 sinπx2. We choose α = 10−5,
and noise level of 1%. By varying f ∗ being near f 0, f 20x1+x2 and f−5sinπx2 ,
we see that our algorithm can reconstruct the corresponding f ∗-minimum
norm solution, but the others. Indeed, first we choose f ∗ = (0.9 + 0.01 ∗
rand (−1, 1))f 20x1+x2 , then after 35 iterations theL2-normerror between f 20x1+x2

and its numerical solution reduces from 1.77696 to 0.200263 (Figure 5(c)).
Thus, the numerical solution in this case approximates well f 20x1+x2 , but f 0 and
f−5 sinπx2 , see Figure 5.

Similarly, if we choose f ∗ by (0.9 + 0.01 ∗ rand (−1, 1))f 0 or (0.9 + 0.01 ∗
rand (−1, 1))f−5 sinπx2 , then numerical solutions approximate well f 0 and
f−5 sinπx2 , respectively (see Figures 6 and 7). In these tests we see that the a priori
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Figure 6. Example 4.2: f 0 and the numerical solution with f∗ close to f 0. (a) f 0; (b) Numerical
solution with f∗ close to f 0; (c) Error between the numerical solution and f 0 with f∗ close to f 0.

information is crucial for selecting the solution in the case of many solutions to
the inverse source problem.

As we noted above, it is difficult to provide explicit examples for the inverse
problem (1)–(2) where f satisfies the source condition (22). For illustrating
theoretical results of Theorem 2.5, we construct such examples numerically as
follows.

Example 4.3 (The source condition (22) for θ = 1/2): We have to find an f of
the form f = f ∗ + A∗�, where f ∗ ∈ L2(�) is an a priori information on f and�
is an arbitrary function in L2(�). For this purpose we proceed as follows.

(1) Solve the problem ⎧⎪⎨
⎪⎩
Lp = 0in�,
∂p
∂ν

+ σp =
{
� on �,
0 on ∂� \ �,

. (72)

From the definition of A in (8), we see that A∗� = �p.
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Figure 7. Example 4.2: f−5 sinπx2 and the numerical solution with f∗ close to f−5 sinπx2 . (a)
f− sin(πx2); (b) Numerical solution with f∗ close to f−5 sin(πx2); (c) Error between the numerical
solution and f−5 sinπx2 with f∗ close to f−5 sinπx2 .

(2) For the chosen f ∗, from Lemma 3.1 we see that f = f ∗ + A∗� = f ∗ + �p
satisfies the source condition (22) for θ = 1/2.

(3) Solve the problem
⎧⎨
⎩
Lu = f ∗ + �p in�,
∂u
∂ν

+ σu = 0 on ∂�,
(73)

and set ψ := u|� .

To test our algorithm due Theorem 2.5 we add some random noise with noise
level ε to ψ to get the data ψε (see the description in Example 4.1) and then
choose

α = O(ε 3
2 + h

1
2 ),

where h is the mesh size of the FEM in (65).
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Figure 8. Example 3: Numerical results for f satisfying the source condition (22) with θ = 1/2.
Relative noise= 0.01%. (a) Exact solution; (b) Numerical solution; (c) Error between the exact and
the numerical solution.

Table 6. Example 3: L2-error behaviour.

Relative noise(%) 0.001 0.005 0.01
number of elements on the bound-
ary/number of interior elements in
the whole domain

632/99856 384/36864 224/12544

ε 0.000227827 0.00113913 0.00227827
h 0.00185375 0.00305097 0.00523024
α 4.55655e–05 2.27827e–04 4.55649-04
L2-error 0.0369446 0.235932 0.391248

For numerical tests, we take � = 1, f ∗ = 0, and � = ∂�,

� = 3 sin(5πx1)(8 cos(πx1x2)+ 3)− 5 cos 2πx1 cos(3πx2(x2 + 9)).

We take h
4
3 = O(ε) and thus α = O(ε). From Theorem 2.5, the L2-error of the

method is of O(ε 1
2 ). This theoretical result is confirmed by the performance of

the algorithm is presented in Figure 8 and Table 6.
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Figure 9. Example 4: Numerical results for f satisfying the source condition (22) with θ = 1. Rel-
ative noise= 0.01%.(a) Exact solution; (b) Numerical solution; (c) Error between the exact and the
numerical solution.

Example 4.4 (The source condition (22) for θ = 1): We have to find an f of
the form f = f ∗ + A∗Aφ, where f ∗ ∈ L2(�) is an a priori information on f and
φ is an arbitrary function in L2(�). As in the previous example, we proceed as
follows:

(1) Solve the problem ⎧⎨
⎩
Lv = φ in�,
∂v
∂ν

+ σv = 0 on ∂�.
(74)

From the definition of A in (8), we see that Aφ = v|� .
(2) Solve the problem

⎧⎪⎨
⎪⎩
Lp = 0 in�,
∂p
∂ν

+ σp =
{
v|� on �,
0 on ∂� \ �,

. (75)
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Table 7. Example 4: L2-error behaviour.

Relative noise(%) 0.01 0.05 0.1
number of elements on the bound-
ary/number of interior elements in
the whole domain

320 / 25600 120 / 3600 72 / 1296

ε 0.000227826 0.00113914 0.00227795

h 0.00366116 0.00976311 0.0162718
α 0.00111907 0.00327208 0.00519378
L2-error 0.00565496 0.0408677 0.0938595

From Lemma 3.1 we have that A∗v|� = A∗Aφ = �p.
(3) For the chosen f ∗, we see that f = f ∗ + �p satisfies the source condition (22)

for θ = 1.
(4) Solve the problem ⎧⎨

⎩
Lu = f ∗ + �p in�,
∂u
∂ν

+ σu = 0 on ∂�,
(76)

and set ψ := u|� .

With ψ in hand, we then proceed as in Example 3. In this example, we take
� = 1, f ∗ = 0, and � = ∂�,

φ(x) = 8(4 + x1)(cos(2πx1)+ 3)+ 3(4 + x2)(cos 2πx2 + 3)

and

f ∗ = 2 sin(πx) cos(2πy).

We take h = O(ε 2
3 ) and thus α = O(ε 2

3 ). From Theorem 2.5, the L2-error is
O(ε 2

3 ). This theoretical result is confirmed by the performance of the algorithm
is presented in Figure 9 and Table 7.
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