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PRODUCTS OF COMMUTATOR IDEALS OF SOME LIE-ADMISSIBLE

ALGEBRAS

IVAN KAYGORODOV, FARUKH MASHUROV, TRAN GIANG NAM, AND ZERUI ZHANG∗

Abstract. In this article, we mainly study the products of commutator ideals of Lie-admissible alge-
bras such as Novikov algebras, bicommutative algebras, and assosymmetric algebras. More precisely, we
first study the properties of the lower central chains for Novikov algebras and bicommutative algebras.
Then we show that for every Lie nilpotent Novikov algebra or Lie nilpotent bicommutative algebra A,
the ideal of A generated by the set {ab − ba | a, b ∈ A} is nilpotent. Finally, we study properties
of the lower central chains for assosymmetric algebras, study the products of commutator ideals of
assosymmetric algebras and show that the products of commutator ideals have a similar property as
that for associative algebras.

1. Introduction

It is well-known that for an arbitrary algebra A, one can always define a multiplication by
[x, y] = xy − yx, where the juxtaposition denotes multiplication in A. And A is called a Lie-

admissible algebra [1] if (A, [−,−]) is a Lie algebra. In this case, we call (A, [−,−]) the associated Lie

algebra of A. It is well-known that associative algebras, Novikov algebras, bicommutative algebras
and assosymmetric algebras are Lie-admissible. We recall that an algebra B over a field F is called
bicommutative [8] (also known as LR-algebras [5]) if it satisfies the identities

x(yz) = y(xz) (left commutativity)(1.1)

and

(xy)z = (xz)y (right commutativity)(1.2)

for all x, y, z ∈ B; an algebra A over a field F is called assosymmetric [19] if it satisfies the identities

(xy)z − x(yz) = (yx)z − y(xz) (left symmetry)(1.3)

and

(xy)z − x(yz) = (xz)y − x(zy) (right symmetry)(1.4)

for all x, y, z ∈ A; and an algebra N over a field F is called a (left) Novikov algebra [2, 13] if it satisfies
the identities (1.2) and (1.3).

A natural and interesting problem is to determine the structure of a Lie-admissible algebra when
its associated Lie algebra has some properties. Although in general answering this question seems
to be a quite difficult task, there have been obtained a number of interesting results regarding the
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question among which we mention, for example, the following ones. In [14], with a suitable definition of
“commutator ideals”, many of the properties of commutator subgroups had analogues in the theory of
associative algebras. In particular, Jennings [14] was interested in extending the notions of “nilpotent
group” and “solvable group” to rings, and proved that: (1) if A is an associative algebra, not of
characteristic 2 (the latter condition is shown to be indispensable), then A is solvable if its associated
Lie algebra is; (2) if A is an associative algebra whose associated Lie algebra is nilpotent, then the
ideal A ◦ A of A generated by the set {ab − ba | a, b ∈ A} is nilpotent. Sharma and Srivastava [23]
proved that if A is an associative algebra over a field F whose associated Lie algebra is solvable, and
if the characteristic of F is neither 2 nor 3, then A◦A is nil. Riley [22] proved that for an associative
algebra A over a field of characteristic p > 0, the ideal A◦A is nil of bounded index if the associated
Lie algebra of A is either nilpotent or solvable with p > 2.

Novikov algebras, bicommutative algebras, and assosymmetric algebras are important varieties
of Lie-admissible algebras. Unfortunately, there are no new interesting complex finite-dimensional
simple algebras in varieties of Novikov, bicommutative and assosymmetric algebras [9, 19, 28].
Hence, the study of nilpotent and nearby nilpotent algebras attracts very intensive attention. So,
their algebraic and geometric classifications of nilpotent algebras from these varieties are given in
dimension 4 [15–17]. Burde and Graaf [4] classified the complex 4-dimensional Novikov algebras
that have a nilpotent associated Lie algebra. Pokrass and Rodabaugh proved that each solvable
assosymmetric ring of characteristic different from 2 and 3 is nilpotent [21]. Filippov proved that
a Novikov nil algebra is nilpotent [12]. Shestakov and Zhang studied solvability and nilpotency of
Novikov algebras [26]. Dzhumadildaev and Tulenbaev obtained a version of the Engel theorem for
Novikov algebras in [10]. Burde, Dekimpe, and Vercammen showed that if a nilpotent Lie algebra
admits a bicommutative structure, then it admits a complete bicommutative structure, i.e., the right
multiplication for the bicommutative structure is always nilpotent [5]. Very recently, Tulenbaev,
Umirbaev, and Zhelyabin [27] have studied the Lie solvability of Novikov algebras and showed that
over a field of characteristic 6= 2, a Novikov algebra is Lie solvable if and only if its commutator
ideal is right nilpotent. The current paper is a continuation of the investigation of Lie-admissible
algebras such as Novikov algebras, bicommutative algebras, and assosymmetric algebras in terms of
their associated Lie algebras. In particular, we characterize these algebras of finite class and the Lie
nilpotency of these algebras.

The article is organized as follows: In Section 2, we study central chains of ideals for Novikov
and bicommutative algebras and obtain that that if A is either a Novikov algebra or a bicommutative
algebra that is of finite class, then the commutator ideal A◦A is nilpotent (Theorem 2.5). In Section 3,
based on Theorem 2.5, we show that a Novikov algebra or bicommutative algebra A is Lie nilpotent
if and only if A is of finite class (Theorem 3.4). We describes the products of the commutator
ideals of Novikov algebras and bicommutative algebras that does not hold for associative algebras
in general (Theorem 3.3). In Section 4, we generalizes some properties of associative algebras for
assosymmetric algebras. In particular, we prove that if A be an assosymmetric algebra of finite class,
then A ◦ A is nilpotent of nilpotent index less or equal to the class of A (Theorem 4.5), and show
that Id(A[i])Id(A[j]) ⊆ Id(A[i+j−1]) if i or j is odd for every assosymmetric algebra A (Theorem 4.7).



PRODUCTS OF COMMUTATOR IDEALS OF SOME LIE-ADMISSIBLE ALGEBRAS 3

2. Central chains of ideals for Novikov and bicommutative algebras

The aim of this section is to show that some properties of lower central chain of associative algebras
also hold for Novikov algebras and bicommutative algebras. These properties will be very useful for
the study of Lie nilpotent Novikov algebras and Lie nilpotent bicommutative algebras in the next
section. We begin with some basic facts on Lie-admissible algebras.

Let A be an arbitrary Lie-admissible algebra over a given field F . We define

[a, b] = ab− ba

for all a and b ∈ A. For all subspaces A, B, C of A, we define

[A,B] = span{[a, b] | a ∈ A, b ∈ B}, AB = span{ab | a ∈ A, b ∈ B}

and
(A,B,C) = span{(a, b, c) | a ∈ A, b ∈ B, c ∈ C},

where the associator (a, b, c) means (ab)c − a(bc). We call a space V ⊆ A a Lie ideal of A if we
have [V,A] ⊆ V . Finally, for all subspaces A and B of A, we define

A ◦B = Id([A,B]),

that is, the ideal of A generated by [A,B]. Following the idea of Jennings [14], we call A ◦ B the
commutator ideal of A and B. We clearly have A ◦B = B ◦ A.

Equipped with the notion of commutator ideals, we are now able to recall the notion of central
chains of ideals of a Lie-admissible algebra A.

Let

(2.1) A = A1 ⊇ A2 ⊇ · · · ⊇ Am ⊇ Am+1 = (0)

be a chain of ideals of A. Such a chain is called a central chain of ideals if we have

(2.2) A ◦ Ai ⊆ Ai+1 (i = 1, 2, ...,m).

We shall soon see that Novikov algebras, bicommutative algebras and assosymmetric algebras which
possess central chains of ideals have special properties; we investigate some of them by considering a
particular central chain:

Definition 2.1. For every Lie-admissible algebra A we form a series of ideals

(2.3) H1 := A, Hi+1 := Hi ◦ A for i ≥ 1.

We say that A is of finite class if Hn = (0) for some positive integer n. For the minimal integer n
such that Hn = (0), we call n− 1 the class of A, and call

(2.4) A = H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = (0)

the lower central chain of A. To avoid too many repetitions, we shall fix the notation of Hi for
all i ≥ 1.

With the notations of (2.2) and (2.4), it is straightforward to show that Hi ⊆ Ai by induction on i.
The following lemma provides us with a description of commutator ideals of Novikov algebras or

bicommutative algebras.

Lemma 2.2. Let A be either a Novikov algebra or a bicommutative algebra, and let A and B be two

Lie ideals of A. Then we have A ◦B = [A,B] +A[A,B].
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Proof. Clearly, it suffices to show that [A,B] + A[A,B] is an ideal of A. In either case, A is a
Lie-admissible algebra. So we have

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0

for all x, y, z ∈ A. In particular, for all a ∈ A, b ∈ B and x ∈ A, we have

[a, b]x− x[a, b] = [[a, b], x] = [[a, x], b] + [a, [b, x]].

Since [a, x] ∈ A and [b, x] ∈ B, we obtain that

[a, b]x = x[a, b] + [[a, x], b] + [a, [b, x]] ∈ [A,B] +A[A,B].

For all y ∈ A, by the right commutativity, we obtain that

(x[a, b])y = (xy)[a, b] ∈ [A,B] +A[A,B].

Moreover, since A is Lie-admissible algebra, we have

y(x[a, b]) = y(−[[a, x], b] − [a, [b, x]] + [a, b]x) = −y[[a, x], b]− y[a, [b, x]] + y([a, b]x).

If A is a Novikov algebra, then by left symmetry and by the above reasoning, we deduce

y(x[a, b]) =− y[[a, x], b]− y[a, [b, x]] + y([a, b]x)

=− y[[a, x], b]− y[a, [b, x]] + (y[a, b])x + [a, b](yx)− ([a, b]y)x

=− y[[a, x], b]− y[a, [b, x]] + (yx)[a, b] + [a, b](yx)− ([a, b]y)x

∈ [A,B] +A[A,B].

It follows that [A,B] +A[A,B] is an ideal, and so we have A ◦B = [A,B] +A[A,B] if A is a Novikov
algebra.

If A is a bicommutative algebra, then by left commutativity and by the above reasoning, we have

y(x[a, b]) = −y[[a, x], b] − y[a, [b, x]] + y([a, b]x)

= −y[[a, x], b] − y[a, [b, x]] + [a, b](yx)

∈ [A,B] +A[A,B].

It follows that [A,B] + A[A,B] is an ideal, and so we have A ◦ B = [A,B] + A[A,B] if A is a
bicommutative algebra, thus finishing the proof. �

It is well known (see, e.g., [14, Theorem 2.1]) that an associative algebra is of finite class if and only
if it has a central chain of ideals, the proof of which is quite easy and holds for every Lie-admissible
algebra. In light of this note, we shall focus on the study of properties of the lower central chain of
Novikov algebras and bicommutative algebras that are of finite class.

For associative algebras that are of finite class, Jennings [14] showed nice connections between the
central chains (4.9) and (2.4). In particular, in [14, Theorems 3.3 and 3.4] Jennings proved that
HpAq ⊆ Ap+q−1 and Hp ◦ Aq ⊆ Ap+q for all integers p, q ≥ 1, and the proof was based essentially on
the associativity. In the following theorem (Theorem 2.5), we provide an analogue of this result for
Novikov algebras and bicommutative algebras with new techniques.
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Lemma 2.3. Let A be either a Novikov algebra or a bicommutative algebra, and let A = A1 ⊇ A2 ⊇
· · · ⊇ Am ⊇ · · · be a chain of ideals of A satisfying A ◦ Ai ⊆ Ai+1 for all i ≥ 1. Define a series of

ideals inductively by the rule H1 = A, Hi+1 = A ◦Hi for i ≥ 1. Then we have Hp ◦ Aq ⊆ Ap+q. In

particular, we have Hp ◦Hq ⊆ Hp+q.

Proof. Obviously, for all p, q ≥ 1, all Hp and Aq are Lie ideals of A. We use induction on p to prove
the claim. For p = 1, the claim immediately follows from the definitions of Hp and Aq. Assume
that p > 1. By Lemma 2.2, we have

Hp ◦Aq = [Hp, Aq] +A[Hp, Aq]

and

Hp = [Hp−1,A] +A[Hp−1,A].

Since Ap+q is an ideal of A, it suffices to show [h, a] ∈ Ap+q for all h ∈ Hp, a ∈ Aq. We need to
consider the following cases. Case 1: If h = [hp−1, x] for some elements hp−1 ∈ Hp−1 and x ∈ A, then
by induction hypothesis, we have

[h, a] = [[hp−1, x], a] = [[hp−1, a], x] + [hp−1, [x, a]]

∈ [Ap+q−1,A] + [Hp−1, Aq+1] ⊆ Ap+q−1 ◦ A+Hp−1 ◦Aq+1 ⊆ Ap+q.

Case 2: If h = y[hp−1, x] for some elements hp−1 ∈ Hp−1 and x, y ∈ A, then we denote [hp−1, x] by h′.
Thus we have h′ ∈ Hp and h = yh′. By Case 1, for all a ∈ Aq, we have [h′, a] ∈ Ap+q. In particular,
we have [h′, a]y, y[h′, a], [h′, ya] ∈ Ap+q.

If A is a Novikov algebra, then by induction hypothesis, we obtain

[h, a] =(yh′)a− a(yh′)

=(ya)h′ − (ay)h′ − y(ah′) + (ya)h′

=(ya)h′ − h′(ay) + [h′, ay]− y(h′a) + y[h′, a] + h′(ya)− [h′, ya]

=(ya)h′ − h′(ay)− y(h′a) + (h′y)a+ y(h′a)− (yh′)a+ [h′, ay] + y[h′, a]− [h′, ya]

=− h′(ay) + (h′y)a+ [h′, ay] + y[h′, a]− [h′, ya] (by right commutativity)

=− h′(ay) + (h′a)y + [h′, ay] + y[h′, a]− [h′, ya]

=− h′(ay) + (ah′)y + [h′, a]y + [h′, ay] + y[h′, a]− [h′, ya]

=− h′(ay) + (ay)h′ + [h′, a]y + [h′, ay] + y[h′, a]− [h′, ya]

=[h′, a]y + y[h′, a]− [h′, ya] ∈ Ap+q.

Therefore, we have Hp ◦Aq ⊆ Ap+q, thus finishing the proof for the case when A is a Novikov algebra.
If A is a bicommutative algebra, then by induction hypothesis and by the above reasoning, we

obtain

[h, a] =(yh′)a− a(yh′) = (yh′)a− h′(ya) + h′(ya)− a(yh′)

=(ya)h′ − h′(ya) + y(h′a)− y(ah′) = [ya, h′] + y[h′, a] ∈ Ap+q.

Therefore, we have Hp ◦ Aq ⊆ Ap+q, thus finishing the proof. �
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Before going further, we shall show that both Novikov algebras and bicommutative algebras are
two-sided Alia [7]. Note that both (left) Novikov algebras and bicommutative algebras are right
commutative and Lie-admissible, the following lemma can be viewed as a corollary of [7, Proposition
6.1].

Lemma 2.4. [7, Proposition 6.1] Let A be a right commutative Lie-admissible algebra. Then A is a

two-sided Alia algebra, more precisely, we have [x, y]z+[y, z]x+[z, x]y = 0 and x[y, z]+y[z, x]+z[x, y] =
0 for all x, y, z ∈ A. In particular, Novikov algebras and bicommutative algebras are two-sided Alia.

Proof. By right commutativity, we have

[x, y]z + [y, z]x+ [z, x]y =(xy)z − (yx)z + (yz)x− (zy)x+ (zx)y − (xz)y

=(xy)z − (xz)y + (yz)x− (yx)z + (zx)y − (zy)x = 0.

Moreover, since A is Lie-admissible, we have

[x, y]z − z[x, y] + [y, z]x− x[y, z] + [z, x]y − y[z, x] = [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

Therefore, we obtain that

x[y, z] + y[z, x] + z[x, y] = [x, y]z + [y, z]x+ [z, x]y = 0,

thus finishing the proof. �

Recall that for an arbitrary subspace V of a Lie-admissible algebra A, we define V 1 = V and V n =∑
1≤i≤n−1 V

iV n−i for all n ≥ 2. Then V is called nilpotent if V n = (0) for some positive integer n.
We are now in position to provide the main result of this subsection, which shows that if A is a

Novikov algebra (or bicommutative algebra) that is of finite class, then the commutator ideal A ◦ A
is nilpotent.

Theorem 2.5. Retain the hypotheses and notations as Lemma 2.3, we have HpHq ⊆ Hp+q−1 for all

positive integers p and q. Moreover, if A is of finite class, then A ◦ A is nilpotent of nilpotent index

less or equal to the class of A.

Proof. We first use induction on min{p, q} to prove HpHq ⊆ Hp+q−1. If min{p, q} = 1, then it is
clear because Hp and Hq are ideals of A. Assume that p, q ≥ 2. By Lemma 2.3, for all hp ∈ Hp and
hq ∈ Hq, we have

hphq − hqhp = [hp, hq] ⊆ Hp ◦Hq ⊆ Hp+q ⊆ Hp+q−1.

In other words, hphq lies in Hp+q−1 if and only if so does hqhp. Without loss of generality, we may
assume p ≤ q. If hp = x2[hp−1, x1] for some x1, x2 ∈ A and hp−1 ∈ Hp−1, then we have

hphq = (x2[hp−1, x1])hq = (x2hq)[hp−1, x1] = h′q[hp−1, x1]

for h′q = x2hq ∈ Hq. So hphq lies in Hp+q−1 if and only if so does h′q[hp−1, x1]. By the above
reasoning, it suffices to show [hp−1, x1]h

′
q ∈ Hp+q−1. So we may assume hp = [hp−1, x] for some x ∈ A

and hp−1 ∈ Hp−1. By Lemmas 2.3 and 2.4 and by induction hypothesis, we deduce

hphq = [hp−1, x]hq = −[x, hq]hp−1 − [hq, hp−1]x ∈ Hq+1Hp−1 +Hp−1+qx ⊆ Hp+q−1.
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For the second claim, since A ◦ A = H2, we shall use induction on m to show (H2)
m ⊆ Hm+1.

For m = 1, there is nothing to prove. Assume that m ≥ 2. Then by induction hypothesis, we have

(H2)
m =

∑

1≤i≤m−1

(H2)
i(H2)

m−i ⊆
∑

1≤i≤m−1

Hi+1Hm−i+1

⊆
∑

1≤i≤m−1

Hi+1+m−i+1−1 = Hm+1.

Since A is of finite class, we may assume Hm+1 = (0) for some integer m, and so H2 is nilpotent of
index not greater than m, thus finishing the proof. �

3. Lie nilpotent Novikov and bicommutative algebras

In this section, based on Theorem 2.5, we show that a Novikov algebra or bicommutative algebra
A is Lie nilpotent if and only if A is of finite class (Theorem 3.4). We also find a property of Novikov
algebras or bicommutative algebras on the products of commutator ideals that does not hold in general
for associative algebras (Theorem 3.3).

We begin this section by recalling useful notions. Let A be a Lie-admissible algebra. We define

A[1] = A and A[i+1] = [A,A[i]] for all i ≥ 1.

We call Id(A[i]) the ith commutator ideal of A. And the algebra A is called Lie nilpotent if A[i] = (0)
for some integer i.

For every integer i ≥ 1, the linear space A[i] is obviously a Lie ideal of A. Therefore, by Lemma 2.2,
we immediately obtain the construction of Id(A[i]) when A is a Novikov algebra or bicommutative
algebra.

Lemma 3.1. Let A be either a Novikov algebra or a bicommutative algebra. Then we have Id(A[i]) =
A[i] +AA[i] for all integer i ≥ 1.

Lots of interests have been attracted by the subject of commutator ideals of associative algebras.
Etingof, Kim and Ma [11] studied the quotient of a free algebra by its i-th commutator ideal, and
studied the products of such commutator ideals. Kerchev [18] studied the filtration of a free algebra
by its associative lower central series. We refer to [3, 6] and the references therein for a detailed history
and overview of this direction. It is worth mentioning that there is also a series of interesting results
on the solvability and nilpotency of Poisson algebras with respect to their Lie structures [20, 24, 25].
In light of these notes, it is natural and interesting to study the commutator ideals of Lie-admissible
algebras. Let us begin with the following easy observation.

Lemma 3.2. Let A be a right commutative Lie-admissible algebra. Then we have A[2]A[i] ⊆ Id(A[i+1])
for all integer i ≥ 1. In particular, for every Novikov algebra or bicommutative algebra A, we have

A[2]A[i] ⊆ Id(A[i+1]) for all integer i ≥ 1.

Proof. For all a, b ∈ A, for all ci ∈ A[i], by Lemma 2.4, we have

[a, b]ci = −[b, ci]a− [ci, a]b ∈ Id(A[i+1]),

thus finishing the proof. �
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Recall that for an arbitrary Lie-admissible algebra, we have H1 = A and Hi+1 = A◦Hi for all i ≥ 1.
In the following theorem we show that Id(A[i]) = Hi if A is either a Novikov algebra or a bicommutative
algebra. In particular, Theorem 2.5 then describes the products of the commutator ideals of A, which
is in general not true for Lie nilpotent associative algebras.

Theorem 3.3. Let A be either a Novikov algebra or a bicommutative algebra. Define a series of ideals

by the rule H1 = A, Hi+1 = A ◦Hi for all i ≥ 1. Then we have Id(A[i]) = Hi for all integer i ≥ 1. In

particular, we have Id(A[p])Id(A[q]) ⊆ Id(A[p+q−1]) for all integers p, q ≥ 1.

Proof. By induction on i, it is straightforward to show Id(A[i]) ⊆ Hi. So it suffices to prove that Hi ⊆
Id(A[i]) for all integer i ≥ 1, and we shall use induction on i to prove this claim. For i ≤ 2, it is clear.
Assume that i ≥ 3. By induction hypothesis and by Lemma 3.1, Hi is generated by

[A,Hi−1] = [A,A[i−1]] + [A,AA[i−1]] = A[i] + [A,AA[i−1]].

Therefore, it suffices to show [A,AA[i−1]] ⊆ Id(A[i]).
If A is a Novikov algebra, then for all a, b, c ∈ A and di−2 ∈ A[i−2], by Lemma 3.2, we deduce

[a, b[c, di−2]] =a(b[c, di−2])− (b[c, di−2])a

=a([b, [c, di−2]] + [c, di−2]b)− (ba)[c, di−2]

=a[b, [c, di−2]] + a([c, di−2]b)− (ba)[c, di−2]

=a[b, [c, di−2]] + (a[c, di−2])b+ [c, di−2](ab) − ([c, di−2]a)b− (ba)[c, di−2]

=a[b, [c, di−2]] + (ab)[c, di−2]− (ba)[c, di−2] + [c, di−2](ab)− ([c, di−2]a)b

=a[b, [c, di−2]] + [a, b][c, di−2] + [c, di−2](ab)− (a[c, di−2])b+ [a, [c, di−2]]b

=a[b, [c, di−2]] + [a, b][c, di−2] + [c, di−2](ab)− (ab)[c, di−2] + [a, [c, di−2]]b

=a[b, [c, di−2]] + [a, b][c, di−2]− [ab, [c, di−2]] + [a, [c, di−2]]b

∈Id(A[i]) +A[2]A[i−1] ⊆ Id(A[i]).

If A is a bicommutative algebra, then for all a, b ∈ A and di−1 ∈ A[i−1], we deduce

[a, bdi−1] =a(bdi−1)− (bdi−1)a

=b(adi−1)− (ba)di−1

=b(adi−1)− b(di−1a) + b(di−1a)− (ba)di−1

=b[a, di−1] + di−1(ba)− (ba)di−1

=b[a, di−1]− [ba, di−1]

∈Id(A[i]).

Therefore, we have Id(A[i]) = Hi for all integer i ≥ 1.
Finally, by Theorem 2.5, we have

Id(A[p])Id(A[q]) = HpHq ⊆ Hp+q−1 = Id(A[p+q−1]),

thus finishing the proof. �

Consequently, we obtain the main theorem of this section, which shows that the notions of “finite
class” and “Lie nilpotency” for Novikov algebras and bicommutative algebras are the same.
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Theorem 3.4. Let A be either a Novikov algebra or a bicommutative algebra. Then A is Lie nilpotent

if and only if A is of finite class. Consequently, the ideal of A generated by {ab − ba | a, b ∈ A} is

nilpotent if A is Lie nilpotent.

Proof. By Theorem 3.3, we have Id(A[i]) = Hi for all integer i ≥ 1. It follows that A is Lie nilpotent if
and only if A is of finite class. By Theorem 2.5, the second claim follows, thus finishing the proof. �

Theorems 3.3 and 3.4 indicates that bicommutative algebras and Novikov algebras possess lots of
close properties. We also note that over a field of characteristic 6= 2, a Novikov algebra A is Lie-
solvable if and only if the ideal of A generated by {ab − ba | a, b ∈ A} is right nilpotent [27]. But
an analog does not hold for Lie-solvable bicommutative algebras in general. It is well-known that for
every bicommutative algebra B, the subalgebra B2 = {ab | a, b ∈ B} is commutative and associative [8].
So B is Lie-metabelian, namely, for all a, b, c, d ∈ B, we have [[a, b], [c, d]] = 0. However, it is easy to
see that for the free bicommutative algebra B generated by more than two elements, the ideal of B
generated by {ab− ba | a, b ∈ B} is not right/left nilpotent.

We conclude this section with an example constructed by S. Pchelintsev, which shows that some
conditions are missing in [14, Theorem 6.6]. More precisely, it is claimed [14, Theorem 6.6] that an
associative algebra is Lie nilpotent if and only if it is of finite class, but the following example shows
that this theorem does not hold in general.

Example 3.5. (S. Pchelintsev) Let A be the Grassmann algebra generated by the infinite set {ei |
i ∈ N} over a field of characteristic not 2. Then A is Lie nilpotent of index 3, namely, [[A,A],A] = 0,
but A is not of finite class and A ◦ A is not nilpotent.

Proof. Note that the set X := {ei1 . . . ein | i1 < · · · < in, n ≥ 1} forms a linear basis of A (if we
assume that A is non-unital). Moreover, elements in X of the form ei1 . . . ei2n lies in the center of A.
It follows immediately that [[A,A],A] = 0.

We claim that e1e2...e2n lies in Hn+1, where Hn+1 is defined in Definition 2.1. For n = 1, we
have [e1, e2] = e1e2 − e2e1 = 2e1e2 ∈ H2. Since the characteristic of the underlying field is not 2, it
follows that e1e2 ∈ H2. By induction hypothesis, e1e2...e2n ∈ Hn+1 and thus e1e2...e2ne2n+1 ∈ Hn+1.
It follows that [e1e2...e2ne2n+1, e2n+2] ∈ Hn+2 and thus e1e2...e2ne2n+1e2n+2 ∈ Hn+2. Finally, note
that e2i−1e2i = (1/2)[e2i−1, e2i] ∈ A ◦ A and e1e2...e2n 6= 0. The result follows. �

4. Commutator ideals of assosymmetric algebras

In this section we mainly study assosymmetric algebras of finite class and study commutator ideals
of assosymmetric algebras. We show that some of the properties for associative algebras also hold
for assosymmetric algebras, namely, for such properties the associativity is not necessary and can be
replaced by left symmetry and right symmetry.

4.1. Assosymmetric algebras of finite class. The aim of this subsection is to study assosymmetric
algbras of finite class. We shall show that assosymmetric algbras of finite class have properties similar
to that of associative algebras. Since the associativity does not hold for assosymmetric algebras, new
techniques are needed. Recall that for all x, y, z in an algebra A, the associator (x, y, z) means (xy)z−
x(yz). So in every assosymmetric algebra A, we have (y, x, z) = (x, y, z) = (x, z, y) for all x, y, z ∈ A.
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From now on, A always means an assosymmetric algebra over a field F . It is proved in [19] that
for all x, y, z, w in an assosymmetric algebra A, we have

(4.1) ([x, y], z, w) = 0 if char(F ) 6= 2, 3.

By the same technique developed in [19], we obtain some more identities as follows when char(F ) = 2
or 3.

Lemma 4.1. For all x, y, z, w in an assosymmetric algebra A, we have

(4.2) (x, y, z) = −[x, y]z + x[y, z] + [xz, y];

(4.3) ([w, x], y, z) = [w, (x, y, z)] + [x, (w, y, z)] if char(F ) = 2;

(4.4) [xy, z] = −[yz, x]− [zx, y] if char(F ) = 3;

Proof. (i) Proof of identity (4.2). Note that

(x, y, z) = −(x, y, z) + (y, x, z) + (x, z, y)

= −(xy)z + x(yz) + (yx)z − y(xz) + (xz)y − x(zy)

= −(xy)z + (yx)z + x(yz)− x(zy) + (xz)y − y(xz)

= −[x, y]z + x[y, z] + [xz, y].

The proof of identity (4.2) is completed.
(ii) Proof of identity (4.3). Following [19], we define

f(w, x, y, z) = (wx, y, z) − x(w, y, z) − (x, y, z)w.

Then it is obvious that

(4.5) f(w, x, y, z) = f(w, x, z, y).

We also note that [19] in any algebra we have

(4.6) (wx, y, z) − (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z.

By identity (4.6), we deduce

f(w, x, y, z) + f(z, w, x, y)

=(wx, y, z) − x(w, y, z) − (x, y, z)w + (zw, x, y) −w(z, x, y) − (w, x, y)z

=(wx, y, z) − x(w, y, z) − (x, y, z)w + (zw, x, y) − (wx, y, z) + (w, xy, z) − (w, x, yz)

=− x(w, y, z) − (x, y, z)w + (zw, x, y) + (w, xy, z) − (w, x, yz)

=− x(w, y, z) − (x, y, z)w + (xy, z, w) − (x, yz, w) + (x, y, zw) = 0.

Combining this with identity (4.5), we obtain

(4.7) f(w, x, y, z) = −f(z, w, x, y) = f(y, z, w, x),

and thus

(4.8) f(w, x, y, z) = f(y, z, w, x) = f(y, z, x, w) = f(x,w, y, z).

Therefore, if char(F ) = 2, we obtain

0 = 2f(w, x, y, z)
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= f(w, x, y, z) + f(x,w, y, z)

= (wx, y, z) + x(w, y, z) + (x, y, z)w + (xw, y, z) + w(x, y, z) + (w, y, z)x

= ([w, x], y, z) + [w, (x, y, z)] + [x, (w, y, z)].

The proof of identity (4.3) is completed.
(iii) Proof of identity (4.4). If char(F ) = 3, then we have

[xy, z] + [yz, x] + [zx, y] = (xy)z − z(xy) + (yz)x− x(yz) + (zx)y − y(zx)

= (x, y, z) + (y, z, x) + (z, x, y) = 3(x, y, z) = 0.

Identity (4.4) follows immediately. �

Now we begin to study associators involving Lie ideals of an assosymmetric algebra A.

Lemma 4.2. Let A and B be Lie ideals of A. Then the following statements are true:

(i) For all x ∈ B, y, z ∈ A, (y, x, z) ∈ A[B,A] + [B,A]; In particular, (y, x, z) is contained in the

ideal of A generated by [B,A];
(ii) A ◦B = [A,B] +A[A,B] = [A,B] + [A,B]A.

Proof. (i) By identity (4.2), we deduce

(y, x, z) = −[y, x]z + y[x, z] + [yz, x] = −[[y, x], z] − z[y, x] + y[x, z] + [yz, x]

∈ A[B,A] + [B,A].

The proof is completed.
(ii) Clearly, [A,B] is an Lie ideal of A. It follows that

[A,B]A ⊆ A[A,B] + [[A,B],A] ⊆ A[A,B] + [A,B].

In particular, [A,B] +A[A,B] is an ideal of A if and only if so does [A,B] + [A,B]A.
By (i), for all x, y ∈ A, a ∈ A, b ∈ B, we have

(x, [a, b], y) ∈ [[A,B],A] +A[[A,B],A] ⊆ A[A,B] + [A,B].

It follows that

x(y[a, b]) = (xy)[a, b]− (x, y, [a, b]) = (xy)[a, b]− (x, [a, b], y) ∈ A[A,B] + [A,B].

Therefore, we deduce

(x[a, b])y = (x, [a, b], y) + x([a, b]y) = (x, [a, b], y) + x(y[a, b]) + x[[a, b], y] ∈ A[A,B] + [A,B].

The proof is completed. �

Corollary 4.3. Let {Ap | p ≥ 1} be a family of ideals of A such that A ◦Ap ⊆ Ap+1 for every p ≥ 1.
Then for all a ∈ Ap, for all x, y ∈ A, we have (x, a, y) ∈ Ap+1.

Proof. By Lemma 4.2, we have

(x, a, y) ∈ [Ap,A] +A[Ap,A] = A ◦ Ap ⊆ Ap+1.

The proof is completed. �
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Let

(4.9) A = A1 ⊇ A2 ⊇ · · · ⊇ Am ⊇ Am+1 = (0)

be a central chain of ideals of A. And let Hi (i ≥ 1) be as in Definition 2.1. When A is assosymmetric,
we have the following analogs as those for associative algebras. Again, as the associativity does not
hold, new techniques are necessary.

Lemma 4.4. Let A be an assosymmetric algebra. Then we have HpAq ⊆ Ap+q−1, AqHp ⊆ Ap+q−1,

[Hp, Aq] ⊆ Ap+q and (Hp, Aq,A) ⊆ Ap+q. In particular, we have HpHq ⊆ Hp+q−1.

Proof. Since Hp ⊆ Ap, Ap+q ⊆ Ap+q−1 and AqHp ⊆ [Aq,Hp] + HpAq, it suffices to prove HpAq ⊆
Ap+q−1, [Hp, Aq] ⊆ Ap+q and (Hp, Aq,A) ⊆ Ap+q.

We use induction on p to prove these claims. For p = 1, we have H1Aq ⊆ Aq, [H1, Aq] ⊆ Aq+1 and
by Corollary 4.3, we obtain

(H1, Aq,A) ⊆ (A, Aq,A) ⊆ A ◦ Aq ⊆ Aq+1.

Now we assume p ≥ 2. If hp = [hp−1, x] for some hp−1 ∈ Hp−1 and x ∈ A, then for every a ∈ Aq, by
induction hypothesis, we have

hpa = [hp−1, x]a

(4.2)
= −(hp−1, x, a) + hp−1[x, a] + [hp−1a, x]

∈ (Hp−1, Aq,A) +Hp−1Aq+1 + [Hp−1Aq,A]

⊆ Ap+q−1.

By the Jacobi identity and induction hypothesis, we obtain

[hp, a] = [[hp−1, x], a] = [[hp−1, a], x] + [hp−1, [x, a]] ∈ [Ap+q−1,A] + [Hp−1, Aq+1] ⊆ Ap+q.

We continue to show ([hp−1, x], a, w) ∈ Ap+q for every w ∈ A. There are several cases to
discuss depending on the characteristic of the field. If char(F ) 6= 2, 3, then by identity (4.1), we
have ([hp−1, x], a, w) = 0 ∈ Ap+q. If char(F ) = 2, then by identity (4.3) and by Corollary 4.3, we have

([hp−1, x], a, w) = [hp−1, (x, a,w)] + [x, (hp−1, a, w)] ∈ [Hp−1, Aq+1] + [A, Ap+q−1] ⊆ Ap+q.

If char(F ) = 3, then by identities (4.2) and (4.4) and by the above reasoning, we have

([hp−1, x], a, w)

=− [[hp−1, x], a]w + [hp−1, x][a,w] + [[hp−1, x]w, a]

=− [[hp−1, x], a]w + [hp−1, x][a,w] − [wa, [hp−1, x]]− [a[hp−1, x], w]

∈Ap+q + [hp−1, x]Aq+1 + [Ap+q−1,A] ⊆ Ap+q.

Now we prove for the case when p ≥ 2 and hp = [hp−1, x]y for some elements hp−1 ∈ Hp−1

and x, y ∈ A. By the above reasoning and by the right-symmetric identity, we have

hpa = ([hp−1, x], y, a) + [hp−1, x](ya) = ([hp−1, x], a, y) + [hp−1, x](ya) ∈ Ap+q−1.

By identity (4.2) and by the above reasoning, we obtain

[hp, a] = [[hp−1, x]y, a] = ([hp−1, x], a, y) + [[hp−1, x], a]y − [hp−1, x][a, y]

∈ Ap+q + [hp−1, x]Aq+1 ⊆ Ap+q.
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Finally, by the above reasoning and by induction hypothesis, for every w ∈ A, we deduce

([hp−1, x]y, a, w)
(4.2)
= −[[hp−1, x]y, a]w + ([hp−1, x]y)[a,w] + [([hp−1, x]y)w, a]

∈ [Hp, Aq]A+HpAq+1 + [Hp, Aq] ⊆ Ap+q.

The proof is completed. �

By Lemma 4.4 and by a similar reasoning as the proof for Theorem 2.5, we immediately obtain the
following description for assosymmetric algebras that generalizes the corresponding result of associative
algebras.

Theorem 4.5. Let A be an assosymmetric algebra of finite class. Then A◦A is nilpotent of nilpotent

index less or equal to the class of A.

4.2. Products of commutator ideals of assosymmetric algebras. The aim of this subsection is
to study products of commutator ideals of an arbitrary assosymmetric algebra A over a field F such
that char(F ) 6= 2, 3. We shall prove that Id(A[i])Id(A[j]) ⊆ Id(A[i+j−1]) if i is odd or j is odd, which
generalizes the corresponding result [3, Corollary 1.4] for associative algebras. The main idea of this
subsection comes from [3]. But since the associativity does not hold, we need new techniques.

For all x, y ∈ A, we define

x ∗ y = xy + yx and [x, y] = xy − yx.

The main difference for the above mentioned result between associative algebras and assosymmetric
algebras is the proof of the following lemma.

Lemma 4.6. Let A be an assosymmetric algebra over a field F such that char(F ) 6= 2, 3. For every

positive odd integer j, we have [Id(A[j]),A] ⊆ A[j+1]. Moreover, we have [Id(A[j]),A[i]] ⊆ A[i+j].

Proof. For all x, y, z ∈ A, we have [x, [y, z]] = [[x, y], z] − [[x, z], y]. So the second claim follows
immediately from the first one. We use induction on j to prove the lemma. For j = 1, the claim
follows immediately by the definition of A[2] and by the above reasoning if i ≥ 2. Now we assume that j
is an odd integer such that j ≥ 3. For all x, y, z, u, v ∈ A, it suffices to show [x[y, [z, u]], v] ∈ A[j+1]

if u ∈ A[j−2]. By assumption, we have char(F ) 6= 2, so we have

x[y, [z, u]] = (1/2)([x, [y, [z, u]]] + x ∗ [y, [z, u]]).

So in order to show [x[y, [z, u]], v] ∈ A[j+1], it suffices to prove [x ∗ [y, [z, u]], v] ∈ A[j+1]. The idea of
the proof is to show that [x ∗ [y, [z, u]], v] is sort of skew symmetric. More precisely, we shall prove
that, if one of x, y, z, u, v lies in A[j−2] then

[x ∗ [y, [z, u]], v] ≡ [x ∗ [z, [u, y]], v] ≡ [x ∗ [u, [y, z]], v] mod A[j+1].

Since A is an assosymmetric algebra, by identity (4.1), we have

(x, y, [z, u]) = (x, [z, u], y) = ([z, u], x, y) = 0 = (xy)[z, u] − x(y[z, u]) = (x[z, u])y − x([z, u]y),

and thus

x ∗ [y, [z, u]] + y ∗ [x, [z, u]]

=x(y[z, u] − [z, u]y) + (y[z, u] − [z, u]y)x+ y(x[z, u] − [z, u]x) + (x[z, u] − [z, u]x)y

=(xy)[z, u] − x([z, u]y) + y([z, u]x) − [z, u](yx)
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+ (yx)[z, u] − y([z, u]x) + x([z, u]y) − [z, u](xy)

=(xy + yx)[z, u] − [z, u](xy + yx)

=[x ∗ y, [z, u]].

Now we assume that one of x, y, z, u, v lies in A[j−2]. Since [A[i],A[t]] ⊆ A[i+t], by induction
hypothesis, we obtain that [[x ∗ y, [z, u]], v] lies in A[j+1], and thus we deduce

(4.10) [x ∗ [y, [z, u]], v] ≡ −[y ∗ [x, [z, u]], v] mod A[j+1].

Similarly, we have

[x ∗ [y, [z, u]], v] + [v ∗ [y, [z, u]], x]

=(x[y, [z, u]] + [y, [z, u]]x)v − v(x[y, [z, u]] + [y, [z, u]]x)

+ (v[y, [z, u]] + [y, [z, u]]v)x − x(v[y, [z, u]] + [y, [z, u]]v)

=x([y, [z, u]]v) + [y, [z, u]](xv) − (vx)[y, [z, u]] − v([y, [z, u]]x)

+ v([y, [z, u]]x) + [y, [z, u]](vx) − (xv)[y, [z, u]] − x([y, [z, u]]v)

=[y, [z, u]](x ∗ v)− (x ∗ v)[y, [z, u]]

=− [x ∗ v, [y, [z, u]]].

Again, since one of x, y, z, u, v lies in A[j−2], by induction hypothesis, we easily obtain that [x ∗
v, [y, [z, u]]] lies in A[j+1], and thus we deduce

(4.11) [x ∗ [y, [z, u]], v] ≡ −[v ∗ [y, [z, u]], x] mod A[j+1].

On the other hand, by the Jacobi identity and by identity (4.10), we have

[x ∗ [y, [z, u]], v] = −[x ∗ [z, [u, y]], v] − [x ∗ [u, [y, z]], v]

≡ [z ∗ [x, [u, y]], v] + [u ∗ [x, [y, z]], v] mod A[j+1];

Interchanging x and y in the above equation, we obtain

[y ∗ [x, [z, u]], v] ≡ [z ∗ [y, [u, x]], v] + [u ∗ [y, [x, z]], v] mod A[j+1].

So by the above two Equations and by the Jacobi identity, we deduce

2[x ∗ [y, [z, u]], v]

≡[x ∗ [y, [z, u]], v] − [y ∗ [x, [z, u]], v]

≡[z ∗ [x, [u, y]], v] + [u ∗ [x, [y, z]], v] − [z ∗ [y, [u, x]], v] − [u ∗ [y, [x, z]], v]

≡[z ∗ [u, [x, y]], v] − [u ∗ [z, [x, y]], v]

≡2[z ∗ [u, [x, y]], v] mod A[j+1].

Since char(F ) 6= 2, we obtain

(4.12) [x ∗ [y, [z, u]], v] ≡ [z ∗ [u, [x, y]], v] mod A[j+1].

Therefore, in the vector space A/A[j+1], we have

(4.13) [x ∗ [y, [z, u]], v]
(4.10)
≡ −[y ∗ [x, [z, u]], v]

(4.11)
≡ [v ∗ [x, [z, u]], y]

(4.10)
≡ −[x ∗ [v, [z, u]], y],
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(4.14) [x ∗ [y, [z, u]], v]
(4.12)
≡ [z ∗ [u, [x, y]], v]

(4.11)
≡ −[v ∗ [u, [x, y]], z]

(4.12)
≡ [x ∗ [y, [v, u]], z],

and thus

(4.15) [x ∗ [y, [z, u]], v] = −[x ∗ [y, [u, z]], v]
(4.14)
≡ [x ∗ [y, [v, z]], u] ≡ −[x ∗ [y, [z, v]], u].

Therefore, we deduce

[x ∗ [y, [z, u]], v]
(4.13)
≡ −[x ∗ [v, [z, u]], y]

(4.15)
≡ [x ∗ [v, [z, y]], u]

(4.13)
≡ −[x ∗ [u, [z, y]], v] ≡ [x ∗ [u, [y, z]], v] mod A[j+1].

It follows that

[x ∗ [y, [z, u]], v] ≡ [x ∗ [u, [y, z]], v] ≡ [x ∗ [z, [u, y]], v] mod A[j+1].

Finally, since A is Lie-admissible, we obtain

3[x ∗ [y, [z, u]], v] ≡ [x ∗ [y, [z, u]], v] + [x ∗ [u, [y, z]], v] + [x ∗ [z, [u, y]], v] ≡ 0 mod A[j+1].

Since char(F ) 6= 3, we have [x ∗ [y, [z, u]], v] ∈ A[j+1]. The proof is completed. �

We conclude the article with the main result of this subsection, which generalizes the corresponding
property of associative algebras.

Theorem 4.7. Let A be an assosymmetric algebra. Then we have Id(A[i])Id(A[j]) ⊆ Id(A[i+j−1]) if i
or j is odd.

Proof. If i = 1 or j = 1, then clearly we have Id(A[i])Id(A[j]) ⊆ Id(A[i+j−1]). Now we assume i ≥ 2
and j ≥ 2. Then by Lemma 4.2(ii) and by identity (4.1), we have

Id(A[i])Id(A[j]) = (A[i] +AA[i])(A[j] +A[j]A)

⊆ A[i]A[j] +A(A[i]A[j]) + (A[i]A[j])A +A(A[i]A[j])A.

So it suffices to show A[i]A[j] ⊆ Id(A[i+j−1]) if one of i and j is odd. Since

A[i]A[j] ⊆ [A[i],A[j]] +A[j]A[i] ⊆ A[i+j] +A[j]A[i],

we may assume that j is odd and thus we may assume j ≥ 3 and i ≥ 2. For all x ∈ A, y ∈ A[i−1] and
z ∈ A[j], by identity (4.1) and by Lemma 4.6, we have

[x, y]z = (xy)z − (yx)z = x(yz)− y(xz) = x(yz)− x(zy) + x(zy)− y(xz)

= x(yz)− x(zy) + (xz)y − y(xz) = x[y, z] + [xz, y]

∈ AA[i+j−1] + [Id(A[j]),A[i−1]] ⊆ Id(A[i+j−1]).

The proof is completed. �

We also note that if i and j are even then Id(A[i])Id(A[j]) " Id(A[i+j−1]) in general for associative
algebras [6]. Since associative algebras are assosymmetric algebras, we know that if i and j are even
then Id(A[i])Id(A[j]) " Id(A[i+j−1]) in general for assosymmetirc algebras.
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