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ON THE IDEALS OF ULTRAGRAPH LEAVITT PATH

ALGEBRAS

T. T. H. Duyen1, D. Gonçalves2 and T.G. Nam3

Abstract. In this article, we provide an explicit description of a set of gener-

ators for any ideal of an ultragraph Leavitt path algebra. We provide several

additional consequences of this description, including information about gen-

erating sets for graded ideals, the graded uniqueness and Cuntz-Krieger the-

orems, the semiprimeness, and the semiprimitivity of ultragraph Leavitt path

algebras, a complete characterization of the prime and primitive ideals of an

ultragraph Leavitt path algebra. We also show that every primitive ideal of

an ultragraph Leavitt path algebra is exactly the annihilator of a Chen simple

module. Consequently, we prove Exel’s Effros-Hahn conjecture on primitive

ideals in the ultragraph Leavitt path algebra setting (a conclusion that is also

new in the context of Leavitt path algebras of graphs).
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simple modules, Steinberg algebras, Effros-Hahn conjecture.

1. Introduction

The study of algebras associated with combinatorial objects is a thriving topic

in classical ring theory. One of the key goals of the subject is to establish re-

lationships between combinatorial properties of the initial object and algebraic

properties of the associated algebra. Another important direction is the study of

the connections with other branches of mathematics, as C*-algebras and symbolic

dynamics. Among interesting examples of algebras associated with combinatorial

objects we mention, for example, the following ones: graph C∗-algebras, Leavitt

path algebras, higher rank graph algebras, Kumjian-Pask algebras, and ultra-

graph C∗-algebras (we refer the reader to [1] and [3] for a more comprehensive

list).

There is no doubt that, among the non-analytical algebras mentioned above,

the Leavitt path algebra associated with a graph figures as the most studied one.
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For these algebras their structure, and connections with C*-algebra theory and

symbolic dynamics, have been (and still is) studied in detail.

Ultragraphs and ultragraph C*-algebras were defined by Mark Tomforde in

[40] as a unifying approach to C*-algebras associated with infinite matrices (also

known as Exel-Laca algebras) and graph C∗-algebras. They have proved to be

a key ingredient in the study of Morita equivalence of Exel-Laca and graph C∗-

algebras [27]. Recently, Castro, Gonçalves, Royer, Tasca, Wyk, among others,

have established nice connections between ultragraph C∗-algebras and the sym-

bolic dynamics of shift spaces over infinite alphabets (see [12], [19], [22] and [39]).

The Leavitt path algebra associated with an ultragraph was defined by Iman-

far, Pourabbas, and Larki in [25]. In [21], a slightly different definition appeared,

and in [13] de Castro, Gonçalves and van Wyk showed that the resulting alge-

bras are isomorphic. As in the C*-algebraic setting, the ultragraph Leavitt path

algebras unify the study of Leavitt path algebras associated with graphs and the

algebras associated with infinite matrices. Further to being a convenient way to

express both types of algebras mentioned, it was shown in [25] that ultragraph

Leavitt path algebras provide examples of algebras that can not be realized as

the Leavitt path algebra of a graph; that is, the class of ultragraph Leavitt path

algebras is strictly larger than the class of Leavitt path algebras of graphs. In

fact, we will build on the work on [25] and provide a large class of ultragraph

algebras that can not be seen as the Leavitt path algebra of a graph.

Since ultragraph Leavitt path algebras form a strictly larger class than Leavitt

path algebras of graphs, their study encompasses an extra layer of complexity.

Nevertheless, recently several results regarding whether the C∗-algebraic theory

of ultragraphs has analogues in the algebraic setting, and whether results about

Leavitt path algebras of graphs can be generalized to ultragraph Leavitt path

algebras, have been obtained. We mention the following. Gonçalves and Royer

[23] extended Chen’s construction of irreducible representations of graph Leavitt

path algebras to ultragraph Leavitt path algebras (see [10]); Gonçalves and Royer

[21] realized ultragraph Leavitt path algebras as partial skew group rings. Using

this realization they characterized Artinian ultragraph Leavitt path algebras and

gave simplicity criteria for these algebras; and de Castro, Gonçalves and van Wyk

[13] realized ultragraph Leavitt path algebras as Steinberg algebras, and applied

this result to obtain generalized uniqueness theorems for ultragraph Leavitt path

algebras. Nam and the third author [30] characterized purely infinite simple

ultragraph Leavitt path algebras, and established the Trichotomy Principle for

graded simple ultragraph Leavitt path algebras.

The current article is a continuation of this direction. Our goal is to describe

many of the ideal related properties of ultragraph Leavitt path algebras. For

example, given the important role of prime and primitive ideals in the theory

on non-commutative rings we describe when an ultragraph Leavitt path algebra

is prime, or primitive, in terms of combinatorial properties of the underlying
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ultragraph. We also study prime and primitive ideals of ultragraph Leavitt path

algebras in detail. As mentioned in [8], in general, it is very difficult to find all

irreducible representations of a ring but often just knowing the annihilators of

the simple modules will allow one to prove non-trivial facts about a ring. We,

therefore, extend the theory of Chen simple modules to ultragraph Leavitt path

algebras and use it to prove the Exel’s Effros-Hahn conjecture for ultragraph

Leavitt path algebras. In particular, we should mention that our result regarding

the Exel’s Effros-Hahn conjecture is also new in the context of Leavitt path

algebras of graphs.

Many of the results of our paper rely on an explicit description of a set of

generators for any ideal of an ultragraph Leavitt path algebra. This is done

for Leavitt path algebras of graphs in [4, Theorem 2.1] by Abrams, Bell, Colar,

and Rangaswamy. The result in [4, Theorem 2.1] is the motivational starting

point for our work, and to extend this result to ultragraph Leavitt path algebras

is the first goal of our paper. Our proof is based on the one of [4, Theorem

2.1], however, we should mention that, although ultragraphs benefit from the

same kind of intuition available for graphs, very often the techniques involved

in generalizing results know for graphs require non-trivial ideas to be developed.

Also, sometimes the graph intuition may be misleading and a detailed approach

is necessary to deal with ultragraphs. The reader should keep these points in

mind throughout the paper.

The article is organized as follows. In Section 2, for the reader’s convenience,

we provide subsequently necessary notions and facts on ultragraphs and ultra-

graph Leavitt path algebras. We also prove one of our main theorems, that is,

we provide an explicit description of a set of generators for any ideal of an ul-

tragraph Leavitt path algebra (Theorem 2.4), as well as an explicit description

of a set of generators for any graded ideal of an ultragraph Leavitt path algebra

(Theorem 2.5). Moreover, in Proposition 2.7 we describe a class of ultragraph

Leavitt path algebras that are not isomorphic to the Leavitt path algebra of any

graph and we show that ultragraph Leavitt path algebras are always semiprime

(Theorem 2.11) and always have null Jacobson radical (Theorem 2.12). In Sec-

tion 3, we describe for which ultragraphs the associated Leavitt algebra is prime

(Theorem 3.2), we characterize the prime ideals of an ultragraph Leavitt path

algebra (Theorem 3.7), show that every prime ideal of an ultragraph Leavitt path

algebra is graded if, and only if, the ultragraph satisfies Condition (K) (Corol-

lary 3.8), and provide a method of constructing non-graded prime ideals of an

ultragraph Leavitt path algebra (Corollary 3.9).

We study primitive ideals of ultragraph Leavitt path algebras in Section 4. In

particular, we characterize primitive ultragraph Leavitt path algebras LK(G) in

terms of the combinatorics of the ultragraph G in Theorem 4.1, and we describe

the primitive ideals of an ultragraph Leavitt path algebra in Theorem 4.3. We

dedicate Section 5 to the study of Chen simple modules. In the main result
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of this section (Theorem 5.4), we show that for every primitive ideal P of an

ultragraph Leavitt path algebra, there exists a Chen simple module S such that

the annihilator of S is P . Finally, in Section 6, using groupoid theory, we prove the

Exel’s Effros-Hahn conjecture for ultragraph Leavitt path algebras (Theorem 6.7).

2. Generating sets for ideals in ultragraph Leavitt path algebras

The main goal of this section is to provide an explicit description of a set of

generators for any ideal of an ultragraph Leavitt path algebra (Theorem 2.4). We

provide several additional consequences of this description, including information

about generating sets for graded ideals (Theorem 2.5), the graded uniqueness and

Cuntz-Krieger theorems (Theorems 2.9 and 2.10), the semiprimeness (Theorem

2.11) and the semiprimitivity (Theorem 2.12) of ultragraph Leavitt path algebras.

2.1. Generating sets for ideals. We begin this subsection by recalling some

notions regarding ultragraph theory, as introduced by Tomforde in [40] and [41].

An ultragraph G = (G0,G1, r, s) consists of a countable set of vertices G0, a

countable set of edges G1, and functions s : G1 −→ G0 and r : G1 −→ P(G0)\{∅},
where P(G0) denotes the set of all subsets of G0.

A vertex v ∈ G0 is called a sink if s−1(v) = ∅ and v is called an infinite

emitter if |s−1(v)| = ∞. Denote the set of sinks in an ultragraph by G0
s. A

singular vertex is a vertex that is either a sink or an infinite emitter. The set of

all singular vertices is denoted by Sing(G). A vertex v ∈ G0 is called a regular

vertex if 0 < |s−1(v)| < ∞.

For an ultragraph G = (G0,G1, r, s) we let G0 denote the smallest subset of

P(G0) that contains {v} for all v ∈ G0, contains r(e) for all e ∈ G1, and is closed

under relative complements, finite unions and finite intersections. Elements of G0

are called generalized vertices.

A finite path in an ultragraph G is either an element of G0, or a sequence

α1α2 · · ·αn of edges with s(αi+1) ∈ r(αi) for all 1 ≤ i ≤ n− 1. We say that the

path α has length |α| := n, consider the elements of G0 to be paths of length 0, and

denote by G∗ the set of all finite paths in G. The maps r and s extend naturally

to G∗. Note that when A ∈ G0 we define s(A) = r(A) = A. An infinite path in G

is a sequence e1e2 · · · en · · · of edges in G such that s(ei+1) ∈ r(ei) for all i ≥ 1.

We denote by G∞ the set of all infinite paths in G. For p = e1e2 · · · en · · · ∈ G∞,

we define s(p) := s(e1) and p0 := {v ∈ G0 | v = s(ei) for some i}.

If G is an ultragraph, then a closed path in G is a path α = α1α2 · · ·α|α| ∈ G∗

with |α| ≥ 1 and s(α) ∈ r(α). We also say that the closed path α is based

at v = s(α). A cycle (based at v) is a closed path (based at v) such that

s(αi) 6= s(αj) for every 1 ≤ i 6= j ≤ |α|.

An exit for a cycle α is one of the following:

(1) an edge e ∈ G1 such that there exists an i for which s(e) ∈ r(αi) but

e 6= αi+1.
4



(2) a sink w such that w ∈ r(αi) for some i.

Definition 2.1 ([25, Definition 2.1]). Let G be an ultragraph and K a field.

The Leavitt path algebra LK(G) of G, with coefficients in K, is the K-algebra

generated by the set {se, s
∗
e | e ∈ G1} ∪

{

p
A
| A ∈ G0

}

, satisfying the following

relations, for all A,B ∈ G0 and e, f ∈ G1:

(1) p
∅
= 0, p

A
p
B
= p

A∩B
and p

A∪B
= p

A
+ p

B
− p

A∩B
;

(2) ps(e)se = se = sepr(e) and pr(e)s
∗
e = s∗e = s∗eps(e);

(3) s∗esf = δe,fpr(e);

(4) pv =
∑

s(e)=v ses
∗
e for any regular vertex v;

where pv denotes p
{v}

and δ is the Kronecker delta.

It is worth mentioning the following note.

Remark 2.2. There have been different definitions of Leavitt path algebras of ul-

tragraphs, and the difference of these definitions lies in how the set of generalized

vertices are defined. Given an ultragraph G, let B denote the smallest subset of

P(G0) that contains {v} for all v ∈ G0, contains r(e) for all e ∈ G1, and is closed

under finite unions and finite intersections. We denote by LK(Gr) the Leavitt

path algebra associated with G by allowing A,B ∈ B in item (1) of Definition

2.1, that means, LK(Gr) is the algebra as defined in [40, Theorem 2.11] and [21,

Definition 2.3]. However, in [13, Proposition 5.2] the authors showed that LK(Gr)

and LK(G) are isomorphic to each other.

We usually denote sA := p
A
for A ∈ G0 and sα := se1 · · · sen for α = e1 · · · en ∈

G∗. It is easy to see that the mappings given by p
A

7−→ p
A

for A ∈ G0, and

se 7−→ s∗e, s
∗
e 7−→ se for e ∈ G1, produce an involution on the algebra LK(G),

and for any path α = α1 · · ·αn there exists s∗α := s∗en · · · s
∗
e1 . Also, LK(G) has

the following universal property : if A is a K-algebra generated by a family of

elements {bA, ce, c
∗
e | A ∈ G0, e ∈ G1} satisfying the relations analogous to (1) -

(4) in Definition 2.1, then there always exists a K-algebra homomorphism ϕ :

LK(G) −→ A given by ϕ(pA) = bA, ϕ(se) = ce and ϕ(s∗e) = c∗e. Furthermore, we

recall a few other useful properties as follows.

Lemma 2.3. If G is an ultragraph and K is a field, then the Leavitt path algebra

LK(G) has the following properties:

(1) ([25, Theorem 2.10]) All elements of the set {pA, se, s
∗
e | A ∈ G0 \ {∅}, e ∈

G1} are nonzero.

(2) ([25, Theorem 2.9]) LK(G) is of the form

SpanK{sαpA
s∗β | α, β ∈ G∗, A ∈ G0 and r(α) ∩A ∩ r(β) 6= ∅}.

Furthermore, LK(G) is a Z-graded K-algebra by the grading

LK(G)n = SpanK{sαpA
s∗β | α, β ∈ G∗, A ∈ G0 and |α| − |β| = n} (n ∈ Z).

In light of Lemma 2.3, an element x ∈ LK(G)n is called a homogeneous element

of degree n.
5



In [4, Theorem 2.1] Abrams, Bell, Colar and Rangaswamy provided an explicit

description of a set of generators for any ideal of the Leavitt path algebra of an

arbitrary graph. The following theorem is the main result of this section, which

extends Abrams, Bell, Colar, and Rangaswamy’s theorem to ultragraph Leavitt

path algebras.

Theorem 2.4. Let K be a field, G an ultragraph and I an ideal of LK(G). Then

there exists a generating set for I consisting of elements of I of the form

(pA +
m
∑

i=2

kis
ri
c )(pA −

∑

e∈S

ses
∗
e),

where A ∈ G0, k2, . . . , km ∈ K, r1, . . . , rm are positive integers, S is a finite subset

of G1 consisting of edges with the same source vertex v ∈ A, and, whenever ki 6= 0

for some 2 ≤ i ≤ m, c is the unique cycle based at v such that A ⊆ r(c).

Proof. Let I be an ideal of LK(G) and let J be the ideal of LK(G) generated

by all the elements of I which have the form described in the statement of the

theorem. We need to show that I = J . We note that I ∩ {pA | A ∈ G0} ∈ J (by

choosing ki = 0 for 2 ≤ i ≤ m, and S = ∅).

We first claim that any element of I of the form

(k1sa1pA1 + · · · + kmsampAm)(pA −
∑

e∈S

ses
∗
e) (1)

is in J , where Ai, . . . , Am, A ∈ G0, k1, . . . , km ∈ K, ai’s are paths in G∗, and S is

a finite subset of G1 consisting of edges with the same source vertex v ∈ A.

Towards a contradiction, suppose not. That is, assume that there is an element

of I, of the above form, that is not in J . Among such elements, consider all

x := (

m
∑

i=1

kisaipAi
)(pA −

∑

e∈S

ses
∗
e)

for which m is minimal and, among all such x with minimal m, select one for

which (|a1|, . . . , |am|) is smallest in the lexicographic order of (Z+)m (we keep

calling this element x). Multiplying by k−1
1 if necessary, we may assume that

x = (sa1pA1 +
m
∑

i=2

kisaipAi
)(pA −

∑

e∈S

ses
∗
e).

Since pA(pA −
∑

e∈S ses
∗
e) = pA −

∑

e∈S ses
∗
e, we have that

x = (sa1pA1∩A +

m
∑

i=2

kisaipAi∩A)(pA −
∑

e∈S

ses
∗
e).

Sincem is minimal, we must have that the saipAi∩A’s are all nonzero and pairwise

distinct. We analyze the various possible cases for x, and show that in each case

we are led to a contradiction.
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Case 1: |ai| ≥ 1 for all 1 ≤ i ≤ m. Let B := {f ∈ G1 | s∗fai 6= 0 for some 1 ≤

i ≤ m}. Then,

s∗fx = (s∗fsa1pA1∩A +

m
∑

i=2

kis
∗
fsaipAi∩A)(pA −

∑

e∈S

ses
∗
e) ∈ I,

for all f ∈ B. Notice that s∗fx ∈ I and is in the form 1. Moreover, either s∗fx

has fewer terms than does x, or s∗fx has the same number of terms as does x, in

which case (|f∗a1|, . . . , |f
∗am|) is smaller than (|a1|, . . . , |am|). By the minimality

of x, we obtain that s∗fx ∈ J for all f ∈ B. Hence, sfs
∗
fx ∈ J for all f ∈ B, which

yields that x =

m
∑

f∈B

sfs
∗
fx ∈ J , a contradiction.

Case 2: |ai| = 0 for some 1 ≤ i ≤ m. By the minimality assumed on

(|a1|, . . . , |am|), this gives |a1| = |a2| = · · · = |at| = 0, where 1 ≤ t ≤ m.

Without loss of generality, we may assume that

x = (pA1 +

t
∑

i=2

kipAi
+

m
∑

j=t+1

kjsajpAj
)(pA −

∑

e∈S

ses
∗
e)

where Ai’s are pairwise distinct non-empty subsets of A, |aj | ≥ 1 and Aj ⊆ r(aj)

for all t+ 1 ≤ j ≤ m.

Consider the case when t ≥ 2. If t = 2, then we note that

pA1 + k2pA2 = pA1\A2
+ (1 + k2)pA1∩A2 + k2pA2\A1

.

By induction on t, we have that

pA1 +

t
∑

i=2

kipAi
=

l
∑

i=1

k′ipBi
,

where k′i ∈ K, l ∈ N, and Bi’s are non-empty elements in G0 with Bi ∩ Bj = ∅

for all 1 ≤ i 6= j ≤ l. Then,

x = (

l
∑

i=1

k′ipBi
+

m
∑

j=t+1

kjsajpAj
)(pA −

∑

e∈S

ses
∗
e).

For each 1 ≤ i ≤ l, we have that

pBi
x = (k′ipBi

+

m
∑

j=t+1

kjpBi
sajpAj

)(pA −
∑

e∈S

ses
∗
e) ∈ I

and, for each vertex s(ak), t + 1 ≤ k ≤ m, such that s(ak) /∈
⋃l

i=1 Bi, we have

that

ps(ak)x = (

m
∑

j=t+1

kjps(ak)sajpAj
)(pA −

∑

e∈S

ses
∗
e) ∈ I

Notice that both pBi
x and ps(ak)x have fewer terms than does x, and so we

obtain that both belong to J . Let F = {s(ak) | t + 1 ≤ k ≤ m and s(ak) /∈
7



⋃l
i=1Bi}. Then, x =

(

l
∑

i=1

pBi
x+

∑

v∈F

pvx

)

∈ J , a contradiction, and hence we

must have t = 1.

Proceeding, we consider the case when m = 1. We note that x = pA1(pA −
∑

e∈S

ses
∗
e), where s(e) = v for each e ∈ S. If v /∈ A1, then x = pA1 ∈ I and so

x ∈ J, a contradiction. If v ∈ A1, then x = pA1 −
∑

e∈S

ses
∗
e ∈ J , a contradiction.

Therefore, we must have m ≥ 2, which is the case we consider next.

Assume that m ≥ 2. Then,

x = (pA1 +

m
∑

i=2

kisaipAi
)(pA −

∑

e∈S

ses
∗
e),

where Ai’s are pairwise distinct non-empty subsets of A, |ai| ≥ 1 and Ai ⊆ r(ai)

for all 2 ≤ i ≤ m. So,

ps(a2)x = (ps(a2)pA1 +

m
∑

i=2

kips(a2)saipAi
)(pA −

∑

e∈S

ses
∗
e) ∈ I.

If s(a2) 6= s(ai), for some 3 ≤ i ≤ m, or s(a2) /∈ A1, then ps(a2)x ∈ J , since

ps(a2)x has fewer terms than does x. This implies that

x− ps(a2)x =

(

pA1\{s(a2)} +
m
∑

i=3

ki(sai − ps(a2)sai)pAi

)

(pA −
∑

e∈S

ses
∗
e) ∈ J,

since x−ps(a2)x has fewer terms than does x, and so x = x−ps(a2)x+ps(a2)x ∈ J ,

a contradiction. Hence, we must have s(ai) = s(a2) ∈ A1 for all 2 ≤ i ≤ m. Let

w := s(a2). Then,

pwx = (pw +

m
∑

i=2

kisaipAi
)(pA −

∑

e∈S

ses
∗
e) ∈ I.

If pwx ∈ J , then x− pwx = pA1\{w}(pA −
∑

e∈S ses
∗
e) ∈ J , and so x = x− pwx+

pwx ∈ J , a contradiction, showing that pwx /∈ J.

Consider the case when v 6= w. Then, since pw(pA −
∑

e∈S ses
∗
e) = pw =

(pA −
∑

e∈S ses
∗
e)pw, we have that

pwxpw = (pw +

m
∑

i=2

kisaipAi
pw)(pA −

∑

e∈S

ses
∗
e) ∈ I.

If w /∈ Ai for some 2 ≤ i ≤ m, then we have that pwxpw ∈ J (since pwxpw has

fewer terms than does x) and

pwx− pwxpw = (

m
∑

i=2

kisaipAi\{w})(pA −
∑

e∈S

ses
∗
e) ∈ J

8



(since it has fewer terms than does x), and so pwx ∈ J , a contradiction. This

shows that w ∈ Ai for all 2 ≤ i ≤ m. Furthermore, if pwxpw ∈ J then, by the

equality above, we obtain that pwx ∈ J , since pwx = (pwx − pwxpw) + pwxpw.

This is a contradiction, and hence we conclude that

pwxpw = pw +

m
∑

i=2

kisaipw ∈ I \ J.

There are now three subcases to consider; we obtain a contradiction in each.

Firstly, suppose that there are no cycles based at w. Then, pwxpw = pw ∈ J ,

a contradiction.

Secondly, suppose that there is an unique cycle c based at w. For each 2 ≤ i ≤

m, we conclude that ai = cri for some positive integer ri, and so

pwxpw = (pw +

m
∑

i=2

ki(sc)
ri)(pw + 0)

has the indicated form of the generators of J . This implies that pwxpw ∈ J , a

contradiction.

Thirdly, suppose that there are at least two distinct cycles based at w, say c

and d, and we have s∗csd = 0 = s∗dsc. Then for some positive integer n, where

|cn| > |ai| for all 2 ≤ i ≤ m, we get

(snc )
∗(pwxpw)s

n
c = pr(c) +

m
∑

i=2

ki(s
n
c )

∗sais
n
c ∈ I.

If (snc )
∗ais

n
c 6= 0, then (snc )

∗ai 6= 0 and, as |cn| > |ai|, we obtain that cn = aibi for

some path bi ∈ G∗. Whence, since (snc )
∗ai 6= 0, we obtain that ai = cni for some

positive integer ni < n. Since s∗dsc = 0, for every i one gets s∗d(s
n
c )

∗sais
n
c sd = 0,

and so

pr(d) = s∗dpr(c)sd = s∗d(s
n
c )

∗(pwxpw)s
n
c sd ∈ I.

Since I ∩ {pA | A ∈ G0} ⊆ J , we have pr(d) ∈ J , and so pw = pwpr(d) ∈ J and

pwxpw = pw(pwxpw) ∈ J , a contradiction.

In any of the three cases, we arrive at a contradiction, and so we must have

v = w, which is the case that we deal with next.

We proceed similarly to what we did above for w. Notice that

pvx = (pv +

m
∑

i=2

kisaipAi
)(pA −

∑

e∈S

ses
∗
e) ∈ I \ J.

Since pv(pA−
∑

e∈S ses
∗
e) = (pA−

∑

e∈S ses
∗
e)pv = pv−

∑

e∈S ses
∗
e, we obtain that

pvxpv = (pv +

m
∑

i=2

kisaipAi
pv)(pA −

∑

e∈S

ses
∗
e) ∈ I.

9



If v /∈ Ai for some 2 ≤ i ≤ m, then pvxpv ∈ J (since pvxpv has fewer terms than

does x), and so

pvx− pvxpv = (

m
∑

i=2

kisaipAi\{v})(pA −
∑

e∈S

ses
∗
e) ∈ J,

and hence pvx ∈ J , a contradiction. This implies that v ∈ Ai for all 2 ≤ i ≤ m,

and

pvxpv = (pv +

m
∑

i=2

kisai)(pv −
∑

e∈S

ses
∗
e) ∈ I \ J.

There are three subcases to consider; we obtain a contradiction in each.

Firstly, suppose that there are no cycles based at v. Then, pvxpv = (pv +

0)(pv −
∑

e∈S ses
∗
e) ∈ J , a contradiction.

Secondly, suppose that there is an unique cycle c based at w. For each 2 ≤ i ≤

m, we conclude that ai = cri for some positive integer ri, and so

pvxpv = (pv +

m
∑

i=2

ki(sc)
ri)(pv −

∑

e∈S

ses
∗
e)

has the indicated form for the generators of J . This implies that pvxpv ∈ J , a

contradiction.

Thirdly, suppose that there are at least two distinct cycles based at v. Let

F := {f ∈ G1 | s∗fsai 6= 0 for some 2 ≤ i ≤ m}. Assume that F ∩ S 6= ∅. Let

f ∈ F ∩ S. We have sfs
∗
f (pv −

∑

e∈S ses
∗
e) = 0, and

sfs
∗
fpvxpv = (sfs

∗
f+

m
∑

i=2

kisfs
∗
fsai)(pv−

∑

e∈S

ses
∗
e) = (

m
∑

i=2

kisfs
∗
fsai)(pv−

∑

e∈S

ses
∗
e).

Notice that sfs
∗
fsai is either 0 or sai , and so the displayed expression for sfs

∗
fpvxpv

has the correct form. Hence, sfs
∗
fpvxpv ∈ J by the minimality of m. Then,

pvxpv − sfs
∗
fpvxpv = (pv +

∑

{ai|s∗fai=0}

kisai)(pv −
∑

e∈S

ses
∗
e)

is also of the correct form, and the left-hand factor has fewer than m nonzero

terms, so pvxpv − sfs
∗
fpvxpv ∈ J by the minimality of m. This implies that

pvxpv = (pvxpv − sfs
∗
fpvxpv) + sfs

∗
fpvxpv ∈ J , a contradiction.

Thus we must have F ∩ S = ∅. We then have s∗esa2 = 0 for all e ∈ S. Let c

be a cycle in G based at v having the same initial edge as does a2 (such a cycle

exists because ai, i = 2, . . . m, must be a closed path, otherwise pvsaipv = 0). We

get that s∗esc = 0 for all e ∈ S, and (pv −
∑

e∈S ses
∗
e)sc = sc.

By the hypothesis of this subcase, there exists a cycle d based at v such that

s∗dsc = 0 = s∗csd. Then, for some positive integer n, with |cn| > |ai| for all

2 ≤ i ≤ m, we obtain that

(snc )
∗(pvxpv)s

n
c = pr(c) +

m
∑

i=2

ki(s
n
c )

∗sais
n
c ∈ I.

10



If (snc )
∗ais

n
c 6= 0, then (snc )

∗ai 6= 0, and as |cn| > |ai|, c
n = aibi for some path

bi ∈ G∗. Whence, ai = cmi for some positive integer mi < n. Since s∗dsc = 0, for

every i one gets s∗d(s
n
c )

∗sais
n
c sd = 0, and so

pr(d) = s∗dpr(c)sd = s∗d(s
n
c )

∗(pwxpw)s
n
c sd ∈ I.

Since I ∩ {pA | A ∈ G0} ⊆ J , we have that pr(d) ∈ J , and so pv = pvpr(d) ∈ J and

pvxpv = pv(pvxpv) ∈ J , the final contradiction required to show the claim.

Now we prove that any arbitrary element of I is in J . Again, aiming at a

contradiction, suppose that I \ J 6= ∅ and let

x = (

m
∑

i=1

kisaipAi
s∗bi)(pA −

∑

e∈S

ses
∗
e) ∈ I \ J,

where ki ∈ K, ai, bi ∈ G∗, A1, . . . , Am, A ∈ G0, S is a finite subset of G1 consisting

of edges with the same source vertex v ∈ A, and m is minimal. As before, we

may choose k1 = 1. Among all such x, select one for which (|b1|, |b2|, . . . , |bm|) is

smallest in the lexicographic order of (Z+)m.

We note that pA(pA −
∑

e∈S ses
∗
e) = pA −

∑

e∈S ses
∗
e, and so

x = (
m
∑

i=1

kisaipAi
s∗bipA)(pA −

∑

e∈S

ses
∗
e).

Then, by the minimality of m, we have that s(bi) ∈ A if |bi| > 0, and s(bi)∩A 6= ∅

if |bi| = 0 (in fact, we may assume, without loss of generality, that s(bi) ⊆ A if

|bi| = 0).

Suppose that |bi| > 0 for some 1 ≤ i ≤ m, and write bi = eib
′
i for some ei ∈ G1

and b′i ∈ G∗. If ei ∈ S, then

s∗bi(pA −
∑

e∈S

ses
∗
e) = s∗b′i

s∗ei(pA −
∑

e∈S

ses
∗
e) = s∗b′i

s∗ei − s∗b′i
s∗ei = 0.

So, we may assume that if |bi| > 0 in the indicated expression for x, then ei /∈ S.

Now, assume that |bi| > 0 for all 1 ≤ i ≤ m. As above, write bi = eib
′
i.

Note that, for any edge f ∈ s−1(v) \ S, we have that (pA −
∑

e∈S ses
∗
e)sf = sf .

Therefore, for any f ∈ s−1(A) \ S, we have that

xsf = (

m
∑

i=1

kisaipAi
s∗bi)(pA −

∑

e∈S

ses
∗
e)sf = (

m
∑

i=1

kisaipAi
s∗bi)sf =

=
∑

{i|ei=f}

kisaipAi
s∗b′i

∈ I.

If the number of monomial terms in xsf is less than m, then xsf ∈ J . If

the number of monomial terms in xsf is m then, since (|b′1|, |b
′
2|, . . . , |b

′
n|) <

(|b1|, |b2|, . . . , |bn|), the minimal condition implies that xsf ∈ J . In particular, for
11



each ei which appears as the initial edge of some bi in the expression for x, we

have that xseis
∗
ei ∈ J . But this in turn yields

x =
∑

{distinct ej |1≤j≤m}

xsejs
∗
ej ∈ J,

a contradiction.

On the other hand, suppose that |bi| = 0 for some 1 ≤ i ≤ m. Without loss

of generality, assume that |b1| = · · · = |bu| = 0 for some 1 ≤ u ≤ m and that

|bi| > 0 for some m ≥ i ≥ u+ 1 (notice that we have already dealt with the case

in which |bi| = 0 for all i in the first part of this proof). Then,

x = (

u
∑

i=1

kisaipAi
+

m
∑

j=u+1

kjsajpAj
s∗bj )(pA −

∑

e∈S

ses
∗
e).

Let T := {f ∈ G1 | s∗bisf 6= 0 for some u + 1 ≤ i ≤ m}, that means, T is the

set of edges which appear as the initial edge of some path bi, u + 1 ≤ i ≤ n. As

indicated above, by minimality we may assume that T ∩ S = ∅. Again using

minimality, an argument analogous to one used previously yields that xsf ∈ J

for all f ∈ T , and so
∑

f∈T

xsfs
∗
f ∈ J.

Write bi = eib
′
i for each u+1 ≤ i ≤ m. Then, for f ∈ T , we have that s∗bjsfs

∗
f = 0,

unless ei = f in which case s∗bjsfs
∗
f = s∗bj . This yields that s

∗
bj
(pA−

∑

f∈T sfs
∗
f ) =

s∗bj − s∗bj = 0 for all u+ 1 ≤ i ≤ m, and so

x−
∑

f∈T

xsfs
∗
f = (

u
∑

i=1

kisaipAi
)(pA −

∑

g∈S∪T

sgs
∗
g) ∈ I.

Let U = {s(e) : e ∈ S∪T}. Since U is finite, enumerate it, say U = {u1, . . . uk}.

For all u ∈ U , let Xu = {e ∈ S ∪T : s(e) = u}. Then, for each u ∈ {u1, . . . uk−1},

we have that

(x−
∑

f∈T

xsfs
∗
f )pu = (

u
∑

i=1

kisaipAi
)(pu −

∑

g∈Xu

sgs
∗
g) ∈ I,

and, by the claim proved in the first part of this proof, we have that (x −
∑

f∈T xsfs
∗
f )pu ∈ J . Analogously, we obtain that

(x−
∑

f∈T

xsfs
∗
f )pA\{u1,...,uk−1} = (

u
∑

i=1

kisaipAi
)(pA\{u1,...,uk−1} −

∑

g∈Xuk

sgs
∗
g) ∈ I,

and, again by the claim proved in the first part of this proof, we have that

(x−
∑

f∈T xsfs
∗
f )pA\{u1,...,uk−1} ∈ J . We conclude that

x−
∑

f∈T

xsfs
∗
f = (x−

∑

f∈T

xsfs
∗
f )pA\{u1,...,uk−1} +

∑

u∈{u1,...,uk−1}

(x−
∑

f∈T

xsfs
∗
f )pu ∈ J,

12



which gives x ∈ J , a contradiction, thus finishing the proof. �

2.2. Applications. The structure of graded ideals of ultragraph Leavitt path

algebras was described in [25, Theorem 3.4]. We may invoke Theorem 2.4 to

obtain information about generating sets for graded ideals of ultragraph Leavitt

path algebras. In particular, Theorem 2.4 allows us to provide a more direct

proof of the key piece of [25, Theorem 3.4]. Before doing so, we need to recall

some useful notions (see, e.g. [41, Definition 3.1] and [25, Definition 2.2]).

Let G be an ultragraph. A subset H ⊆ G0 is called hereditary if the following

conditions are satisfied:

(1) if e is an edge with {s(e)} ∈ H, then r(e) ∈ H;

(2) A ∪B ∈ H for all A,B ∈ H;

(3) A ∈ H, B ∈ G0 and B ⊆ A, imply that B ∈ H.

A subset H ⊆ G0 is called saturated if for any v ∈ G0 with 0 < |s−1(v)| < ∞, we

have that
{

r(e) | e ∈ G1 and s(e) = v
}

⊆ H implies {v} ∈ H.

For a saturated hereditary subset H of G0, we define the breaking vertices of

H to be the set

BH := {v ∈ G0 | |s−1(v)| = ∞ and 0 < |s−1(v) ∩ {e | r(e) /∈ H}| < ∞},

and for any v ∈ BH we let

pHv := pv −
∑

e∈s−1(v), r(e)/∈H

ses
∗
e.

An admissible pair of G is a pair (H, S) consisting of a saturated hereditary

subset H of G0 and a subset S ⊆ BH.

Let K be a field and I be an ideal of LK(G). We let HI := {A ∈ G0 | pA ∈ I},

which is a saturated hereditary subset of G0, and we let SI := {v ∈ BHI
| pHI

v ∈

I}.

Theorem 2.5. Let K be a field, G an ultragraph, and I an ideal of LK(G). Then,

the following are equivalent:

(1) I is a graded ideal;

(2) I is generated by elements of the form pA −
∑

e∈S

ses
∗
e, where A ∈ G0 and S

is a finite subset of G1 consisting of edges with the same source vertex v ∈ A;

(3) I is generated by the subset

{pA | A ∈ HI} ∪ {pHI
v | v ∈ SI}.

Proof. (1)=⇒(2). By Theorem 2.4, I is generated as an ideal by elements in I of

the form

x = (pA −
m
∑

i=2

kis
ri
c )(pA −

∑

e∈S

ses
∗
e) = (pA −

∑

e∈S

ses
∗
e)−

m
∑

i=2

kis
ri
c (pA −

∑

e∈S

ses
∗
e),

13



where A ∈ G0, k2, . . . , km ∈ K, r1, . . . , rm are positive integers, S is a finite subset

of G1 consisting of edges with the same source vertex v ∈ A, and, whenever ki 6= 0

for some 2 ≤ i ≤ m, c is the unique cycle based at v such that A ⊆ r(c). Since I is

graded, each of the graded components of x is in I. Since deg(pA−
∑

e∈S ses
∗
e) = 0,

we have that the degree 0 component of x is pA−
∑

e∈S ses
∗
e, while the degree |c|ri

component of x for ri ≥ 1 is kis
ri
c (pA −

∑

e∈S ses
∗
e). This shows that x belongs

to the ideal generated by elements in I of the form pA −
∑

e∈S ses
∗
e, as desired.

(2)=⇒(3). Consider a generator y = pA−
∑

e∈S ses
∗
e ∈ I, where A ∈ G0 and S

is a finite subset of G1 consisting of edges with the same source vertex v ∈ A.

If S = ∅, then y = pA ∈ I, and so A ∈ HI .

Let J be the ideal of LK(G) generated by {pA | A ∈ HI}. Assume that y is

not in J . We show next that, in this case, v is a breaking vertex for HI .

Notice that,

pA\{v} = pA\{v}(pA −
∑

e∈S

ses
∗
e) = pA\{v}y ∈ I,

which shows that A \ {v} ∈ HI , and hence pA\{v} ∈ J . Furthermore, we note

that A /∈ HI , since otherwise pA ∈ J , and so y = pA(pA −
∑

e∈S ses
∗
e) ∈ J , which

contradicts our hypothesis.

From the above we obtain that {v} /∈ HI , since otherwise, if {v} ∈ HI , then

pv ∈ I and hence pA = pv + pA\{v} ∈ I, that is, A ∈ HI , a contradiction.

Let S′ = {e ∈ S | r(e) ∈ HI}. Notice that, for any e such that r(e) ∈ HI , we

have that se = sepr(e) ∈ J , and so ses
∗
e ∈ J . Hence, if S′ = S then

∑

e∈S ses
∗
e ∈ J

and pA = y +
∑

e∈S ses
∗
e ∈ I, and so A ∈ HI , a contradiction. So, S′ ( S.

Moreover, if there exists an edge f ∈ G1 with s(f) = v and r(f) /∈ HI , then f

must belong to S, because otherwise

z := (pA − sfs
∗
f )(pA −

∑

e∈S

ses
∗
e) = pA −

∑

e∈S

ses
∗
e − sfs

∗
f ∈ I,

which shows that sfs
∗
f = y − z ∈ I. Then, pr(f) = s∗f (sfs

∗
f)sf ∈ I, and so r(f) ∈

HI , a contradiction. Thus, we obtain that 0 < |s−1(v) ∩ {e | r(e) /∈ HI}| < ∞.

Suppose that s−1(v) is finite. Let y′ = y+
∑

e∈S′ ses
∗
e = pA−

∑

e∈S:r(e)/∈HI
ses

∗
e.

Then y′ /∈ J , since otherwise y = y′ −
∑

e∈S′ ses
∗
e belongs to J . Then,

y′ = pA\{v} + pv −
∑

e∈S:r(e)/∈HI

ses
∗
e = pA\{v} +

∑

e∈s−1(v), r(e)∈HI

ses
∗
e ∈ J,

a contradiction. We conclude that v is an infinite emitter and hence it is a

breaking vertex for HI , as desired.

Finally, notice that we can write

y = pA\{v} + pHI
v −

∑

e∈s−1(v), r(e)∈HI

ses
∗
e,

and, since both pA\{v} and
∑

e∈s−1(v), r(e)∈HI
ses

∗
e belong to J , (3) is proved.
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(3)=⇒(1). This is straightforward since any ideal generated by homogeneous

elements is graded. �

Consequently, we have the following.

Corollary 2.6. Let G be an ultragraph and K a field. Then, the following state-

ments are true:

(1) I2 = I for all graded ideal I of LK(G);

(2) For every nonzero graded ideal I of LK(G), there exists a vertex v ∈ G0

such that pv ∈ I;

(3) If every cycle in G has an exit, then for every nonzero ideal I of LK(G),

there exists a vertex v ∈ G0 such that pv ∈ I.

Proof. Let I be a graded ideal of LK(G). By Theorem 2.5, I is generated by

the subset {pA | A ∈ H} ∪ {pv −
∑

e∈s−1(v), r(e)/∈H ses
∗
e | v ∈ BH}, where H :=

{A ∈ G0 | pA ∈ I}. Then, (1) follows from the fact that both pA and pv −
∑

e∈s−1(v), r(e)/∈H ses
∗
e are idempotent in LK(G).

If I is a nonzero graded ideal of LK(G), then I contains either pA for some

A ∈ G0 \ {∅}, or x := pv −
∑

e∈s−1(v), r(e)/∈H ses
∗
e for some v ∈ BH. In the first

case, we have pv = pvpA ∈ I for all v ∈ A, and we are done. In the latter case,

since v is an infinite emitter, there exists an edge f ∈ s−1(v) such that r(f) ∈ H.

Then,

s∗fxsf = s∗fpvsf −
∑

e∈s−1(v), r(e)/∈H

s∗fses
∗
esf = pr(f) ∈ I.

So, pw ∈ I for all w ∈ r(f), showing (2). We prove (3) below.

Assume that every cycle in G has an exit and I is a nonzero ideal of LK(G).

By Theorem 2.6, I contains a nonzero element of the form

x := (pA +
∑

kis
ri
c )(pA −

∑

e∈S

ses
∗
e),

where A ∈ G0, k2, . . . , km ∈ K, r1, . . . , rm are positive integers, S is a finite subset

of G1 consisting of edges with the same source vertex v ∈ A, and, whenever ki 6= 0

for some 2 ≤ i ≤ m, c is the unique cycle based at v such that A ⊆ r(c). Consider

the following two cases:

Case 1: {v}  A. We then have that A \ {v} ∈ G0 \ {∅} and

pA\{v} = pA\{v}(pA +
∑

kis
ri
c )(pA −

∑

e∈S

ses
∗
e) = pA\{v}x ∈ I.

So, pw = pwpA\{v} ∈ I for all w ∈ A \ {v}, as desired.

Case 2: {v} = A. If v is a regular vertex, then we have that

x = (pv −
∑

kis
ri
c )(pv −

∑

e∈S

ses
∗
e) = (pv −

∑

kis
ri
c )(

∑

e∈s−1(v)\S

ses
∗
e) 6= 0.

So, s−1(v)\S 6= ∅ and hence there exists an edge f ∈ s−1(v)\S. If v is an infinite

emitter, then it is obvious that there exists an edge f ∈ s−1(v) \S. Therefore, in
15



any case, there exists an edge f ∈ s−1(v) \ S. Then,

s∗fxsf = s∗f (pv +
∑

kis
ri
c )(pv −

∑

e∈S

ses
∗
e)sf = s∗f (pv +

∑

kis
ri
c )sf

= pr(f) +
∑

kis
∗
fs

ri
c sf ∈ I.

Write c = e1 · · · en. If f 6= e1, then we have s∗fs
ri
c sf = 0, and so pr(f) ∈ I. Hence

pu = pur(f) ∈ I for all u ∈ r(f), as desired.

Consider the case when f = e1. We then have that

s∗fxsf = pr(e1) +
∑

kis
ri
g ∈ I,

where g = g1g2 · · · gn with g1 = e2, g2 = e3, . . . , gn−1 = en, gn = e1. Let y :=

pr(e1) +
∑

kis
ri
g ∈ I. By our hypothesis, g has an exit, that is, there is either

an edge e ∈ G1 such that there exists an 1 ≤ i ≤ n for which s(e) ∈ r(gi) but

e 6= gi+1, or a sink w such that w ∈ r(gi) for some 1 ≤ i ≤ n.

In the first case, for h := g1 · · · gie, we have that

s∗hysh = s∗hpr(e1)sh = pr(h) ∈ I.

So, pw = pwpr(e1) ∈ I for all w ∈ r(h), as desired. In the second case, for

h := g1 · · · giw, we have that s∗hysh = pw ∈ I, as desired.

In any case, we obtain that pv ∈ I for some v ∈ G0, thus the proof is finished.

�

Before we proceed, we provide below a class of ultragraph Leavitt path algebras

that can not be realized as the Leavitt path algebra of a graph.

Proposition 2.7. Let G be an ultragraph such that LK(G) is unital and such that

there is an infinite number of hereditary saturated subsets in G0. Then, LK(G) is

not isomorphic to any graph Leavitt path algebra.

Proof. Suppose that LK(G) is isomorphic to LK(E), where E is a graph. Since

LK(G) is unital, LK(E) must also be unital, and hence the graph E has finitely

many vertices. Therefore, by [25, Theorem3.4], LK(E) has only a finite number

of graded ideals. On the other hand, again by [25, Theorem3.4], LK(G) has an

infinite number of graded ideals, a contradiction. �

Remark 2.8. The example given in [25, Example 5.11] of an ultragraph Leavitt

path algebra that can not be realized as a Leavitt path algebra of a graph was over

the base field Z2. Our result above shows that this conclusion is true regardless

of the base field (and of course allows the construction of many other examples).

The graded-uniqueness theorem of ultragraph Leavitt path algebras was es-

tablished in [25, Theorem 2.14] and [13, Theorem 5.4] in terms of two different

approaches. We may recover this theorem using Corollary 2.6.
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Theorem 2.9 (cf. [25, Theorem 2.14] and [13, Theorem 5.4]). Let G be an

ultragraph, K a field, A a Z-graded K-algebra and ϕ : LK(G) → A a Z-graded
homomorphism. Then, ϕ is injective if and only if ϕ(pv) 6= 0 for all v ∈ G0.

Proof. (=⇒) Assume that ϕ is injective. By Lemma 2.3 (1), we have pv 6= 0 for

all v ∈ G0, and so ϕ(pv) 6= 0 for all v ∈ G0.

(⇐=) Assume that ϕ(pv) 6= 0 for all v ∈ G0, and ker(ϕ) 6= {0}. Since ϕ is

a Z-graded homomorphism, we have that ker(ϕ) is a Z-graded ideal of LK(G).

By Corollary 2.6 (2), ker(ϕ) contains an element pv, for some v ∈ G0. This

implies that ϕ(pv) = 0, a contradiction. Thus, ker(ϕ) = {0} and ϕ is injective,

as desired. �

The Cuntz-Krieger uniqueness theorem of ultragraph Leavitt path algebras

was established in [25, Theorem 2.17]. We may recover this theorem using The-

orem 2.4.

Theorem 2.10 (cf. [25, Theorem 2.17]). Let G be an ultragraph in which every

cycle in G has an exit, K a field, A a K-algebra, and ϕ : LK(G) → A a K-algebra

homomorphism. Then, ϕ is injective if and only if ϕ(pv) 6= 0 for all v ∈ G0.

Proof. (=⇒) Assume that ϕ is injective. By Lemma 2.3 (1), we have pv 6= 0 for

all v ∈ G0, and so ϕ(pv) 6= 0 for all v ∈ G0.

(⇐=) Assume that ϕ(pv) 6= 0 for all v ∈ G0, and that ker(ϕ) 6= 0. By

Corollary 2.6 (3), ker(ϕ) contains an element pv, for some v ∈ G0. This implies

that ϕ(pv) = 0, a contradiction. Thus, ker(ϕ) = {0} and ϕ is injective, as

desired. �

Recall that a ring R is said to be semiprime if, for every ideal I of R, I2 = 0

implies I = 0. In [20, Corollary 3.3], as an application of the reduction theorem,

Royer and the second author showed that ultragraph Leavitt path algebras are

semiprime. Next, we recover this result using Theorem 2.5.

Theorem 2.11 (cf. [20, Corollary 3.3]). Let G be an ultragraph and K a field.

Then the ultragraph Leavitt path algebra LK(G) is semiprime.

Proof. By Lemma 2.3, LK(G) is Z-graded. Then, by [31, Proposition II.1.4 (1)],

it suffices to check that the only graded ideal I of LK(G) for which I2 = 0 is I = 0.

By Theorem 2.5 (2), any graded ideal of LK(G) is generated by idempotents, and

so the result follows immediately (see also Corollary 2.6). �

We now establish the semiprimitivity result.

Theorem 2.12. Let K be a field and G an ultragraph. Then the ultragraph Leavitt

path algebra LK(G) is semiprimitive, i.e, J(LK(G)) = 0.

Proof. It is well-known (see, e.g., [30, Lemma 2.5]) that LK(G) is an algebra with

local units (specifically, the set of local units of LK(G) is given by {pA | A ∈

G0}). Then, by [2, Lemma 6.2], J(LK(G)) is a graded ideal of LK(G). But, by
17



Theorem 2.5 (2), J(LK(G)) is generated by idempotents. Since the Jacobson

radical of any ring contains no nonzero idempotents, we conclude J(LK(G)) = 0,

thus finishing the proof. �

3. Prime ideals of ultragraph Leavitt path algebras

The main aim of this section is to give a complete characterization of the prime

ideals of an ultragraph Leavitt path algebra (Theorem 3.7). Consequently, we

provide a method of constructing non-graded prime ideals of ultragraph Leavitt

path algebras (Corollary 3.9).

We start extending the definition of a downward direct graph to ultragraphs.

Definition 3.1. For any ultragraph G and vertices v,w ∈ G0, we write v ≥ w if

there exists a path p ∈ G∗ such that s(p) = v and w ∈ r(p). An ultragraph G is

called downward directed if, for any two v,w ∈ G0 there exists a vertex u ∈ G0

such that v ≥ u and w ≥ u.

In [5, Theorem 2.4], Abrams, Bell, and Rangaswamy give a criterion for the

Leavitt path algebras of an arbitrary graph to be prime. We extend this result

to ultragraph Leavitt path algebras below.

Theorem 3.2. Let K be an ultragraph and K a field. Then, LK(G) is a prime

ring if and only if G is downward directed.

Proof. (=⇒) Assume that LK(G) is a prime ring. Let v,w ∈ G0. Since the

ideals LK(G)pvLK(G) and LK(G)pwLK(G) are nonzero, LK(G)pvLK(G)pwLK(G)

is nonzero, and so pvLK(G)pw is nonzero. This implies that pvsαpAs
∗
βpw 6= 0, for

some A ∈ G0 and α, β ∈ G∗ with r(α) ∩ A ∩ r(β) 6= ∅. Consider the following

cases:

Case 1: |α| ≥ 1 and |β| ≥ 1. We then have that s(α) = v and s(β) = w, and

so v ≥ u and w ≥ u for all u ∈ r(α) ∩A ∩ r(β), as desired.

Case 2: |α| = 0 and |β| ≥ 1. We then have that s(β) = w, sα = pB for some

B ∈ G0, and v ∈ B ∩A ∩ r(β), and hence w ≥ v, as desired.

Case 3: |α| ≥ 1 and |β| = 0. We then have that s(α) = v, sβ = pC for some

C ∈ G0, and w ∈ r(α) ∩A ∩C, and hence v ≥ w, as desired.

In any of the above cases, we obtain that v ≥ u and w ≥ u for some u ∈ G0.

Thus, G is downward directed.

(⇐=) Assume that G is downward directed. By Lemma 2.3, LK(G) is a Z-
graded K-algebra. Then, by [31, Proposition II.1.4], to establish the primeness

of LK(G), we only need to show that IJ 6= 0 for any pair I, J of nonzero graded

ideals of LK(G). So, let I and J be nonzero graded ideals of LK(G). By Corollary

2.6 (2), there exist two vertices v,w ∈ G0 such that pv ∈ I and pw ∈ J . By

downward directedness there exists a vertex u ∈ G0 such that v ≥ u and w ≥ u,

that is, there exists two paths α, β ∈ G∗ such that s(α) = v, s(β) = w and

u ∈ r(α) ∩ r(β). This implies that pu = pus
∗
αpvsα ∈ I and pu = pus

∗
βpvsβ ∈ J ,

and so 0 6= pu = pupu ∈ IJ , as desired. �
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Next, we present a series of lemmas, which will lead to the characterization of

the prime ideals in ultragraph Leavitt path algebras.

Lemma 3.3. Let K be a field, G an ultragraph and I a nonzero ideal of LK(G)

which does not contain pv for all v ∈ G0. Then, I is a non-graded ideal generated

by elements of the form x = pv +
∑n

i=1 kis
ri
c , where c is a unique cycle without

exits based at v, and ki ∈ K with at least one ki 6= 0.

Proof. Since I is a nonzero ideal which does not contain pv for all v ∈ G0, we

obtain, by Corollary 2.6 (2), that I is a non-graded ideal. By Theorem 2.4, I is

generated as an ideal by elements in I of the form

x = (pA −
n
∑

i=1

kis
ri
c )(pA −

∑

e∈S

ses
∗
e) 6= 0,

where A ∈ G0, k1, . . . , kn ∈ K, r1, . . . , rn are positive integers, S is a finite subset

of G1 consisting of edges with the same source vertex v ∈ A, and, whenever ki 6= 0

for some 1 ≤ i ≤ n, c is the unique cycle based at v such that A ⊆ r(c).

Let x be a generating element of I as above. If v is a sink, then x = pv ∈ I,

a contradiction. So v is not a sink. Suppose that s−1(v) \ S = ∅. If A = {v},

then x = 0, a contradiction. If A 6= {v}, then there exists w ∈ A \ {v} and so

pw = pwx ∈ I, a contradiction. Hence, we must have s−1(v) \ S 6= ∅, that is,

there exists an edge f ∈ s−1(v) \ S.

If f is not the initial edge of c, then s∗fsc = 0 and

pr(f) = s∗f (pA −
n
∑

i=1

kis
ri
c )(pA −

∑

e∈S

ses
∗
e)sf = s∗fxsf ∈ I,

so pv ∈ I for all v ∈ r(f), a contradiction. Therefore, f must be the initial edge

of c, say c = fg. Then,

y := s∗fxsf = s∗f (pA −
n
∑

i=1

kis
ri
c )(pA −

∑

e∈S

ses
∗
e)sf = pr(f) +

n
∑

i=1

kis
ri
h ∈ I,

where h is the cycle gf . If c has an exit, then h also has an exit. Write h =

h1 · · · hm. So, there is either an edge e ∈ G1 such that there exists an 1 ≤ i ≤ m

for which s(e) ∈ r(hi) but e 6= hi+1, or a sink w such that w ∈ r(hi) for some

1 ≤ i ≤ m. In the first case, for t := h1 · · · hie, we have that s∗t yst = s∗tpr(f)st =

pr(t) ∈ I, so pu ∈ I for all u ∈ r(h), a contradiction. In the second case, for

t := h1 · · · hiw, we have that s∗t yst = pw ∈ I, a contradiction again.

Thus, c has no exits, and so we obtain that r(c) = {v} = A and |s−1(v)| = 1.

This implies that S is the empty set (since x 6= 0). Therefore, the generators of

I are of the form x = pv +
∑n

i=1 kis
ri
c , where c is a unique cycle without exits

based at v and ki ∈ K with at least one ki 6= 0, thus the proof is finished. �
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The proofs of the next three lemmas are straightforward adaptations of the

proofs of their corresponding graph versions given in [33, Lemma 3.5]. We include

it here for completeness.

Lemma 3.4 (cf. [33, Lemma 3.5]). Let K be a field, G a downward directed

ultragraph, and I a nonzero ideal of LK(G) which does not contain pv for all

v ∈ G0. Then, there is a unique cycle c without exits in G, and I is a non-graded

principal ideal generated by p(sc), where p(x) is a polynomial in K[x].

Proof. By Lemma 3.3, I is a non-graded ideal generated by elements of the form

pw +
∑n

i=1 kis
ri
g , where g is a unique cycle without exits based at w and ki ∈ K

with at least one ki 6= 0. Since G is downward directed, g is the only cycle

without exits in G, except possibly a permutation of its vertices. This implies

that if there is a cycle c without exits based at a vertex v in G, then the cycle g

based at w is the same as the cycle c based at v, obtained possibly by a rotation

of the vertices on c. We note that if α is the part of c from v to w and β is

the part of c from w to v, then s∗β(pw +
∑n

i=1 kis
ri
g )sβ = pv +

∑n
i=1 kis

ri
c and

s∗α(pv +
∑n

i=1 kis
ri
c )sα = pw +

∑n
i=1 kis

ri
g . This implies that we may select a

generating set for I consisting of elements of the form pv +
∑n

i=1 kis
ri
c , with the

fixed cycle c based at v, and where ki 6= 0 for at least one i. Let f(sc) :=

pv +
∑n

i=1 kis
ri
c , where f(x) = x0 +

∑n
i=1 kix

ri ∈ K[x] and we use the convention

that s0c = pv. Let p(x) be a polynomial with the smallest positive degree in K[x]

such that p(sc) ∈ I. Then, by the division algorithm in K[x], every generator

f(sc) of I is a multiple of p(sc), and so I is the principal ideal generated by p(sc),

and the proof is finished. �

Recall the notion of an admissible pair (H, S) of G (see Section 2.2). We denote

the ideal of LK(G) generated by the set {pA | A ∈ H} ∪ {pHv | v ∈ S} by I(H,S).

Lemma 3.5 (cf. [33, Lemma 3.6]). Let K be a field, G an ultragraph, and I an

ideal of LK(G). Then, the graded ideal I(HI ,SI) ⊆ I contains every other graded

ideal of LK(G) inside I.

Proof. Let P be a graded ideal of LK(G) contained in I. By Theorem 2.5 (3)

(see, also [25, Theorem 3.4]), P = I(HP ,SP ). We claim that P ⊆ I(HI ,SI). It is

obvious that HP ⊆ HI . If HP = ∅, then P = 0 ⊆ HI . Consider the case when

HP 6= ∅. We need to show that pHP
v ∈ I(HI ,SI) for all v ∈ SP . Let v ∈ SP and let

e1, . . . , en be the edges having s(ei) = v and r(ei) /∈ HP .

Suppose that v is a breaking vertex for HI . By re-indexing, we may assume

that for some m ≤ n, r(ei) /∈ HI for all 1 ≤ i ≤ m, and that r(ej) ∈ HI

for all m + 1 ≤ j ≤ n. Since sej ∈ I(HI ,SI) for all m + 1 ≤ j ≤ n, we have

pHP
v = pHI

v −
∑n

j=m+1 sejs
∗
ej ∈ I(HI ,SI), as desired.

Suppose that v is not a breaking vertex for HI . Then, since v is a breaking

vertex for HP , r(s
−1(v)) ⊆ HI , and so sei = seipr(ei) ∈ I(HI ,SI) for all 1 ≤ i ≤ n.

This implies that
∑n

i=1 seis
∗
ei ∈ I(HI ,SI) ⊆ I. Since pv −

∑n
i=1 seis

∗
ei ∈ I, we must
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have pv ∈ I, that is, v ∈ HI . Then, clearly we have that pHP
v ∈ I(HI ,SI), what

shows the claim and finishes the proof. �

Lemma 3.6 (cf. [33, Lemma 3.8]). Let K be a field, G an ultragraph, and I a

prime ideal of LK(G). Then, I(HI ,SI) is a prime ideal of LK(G).

Proof. Since LK(G) is Z-graded, by [31, Proposition II.1.4], I(HI ,SI) is a prime

ideal if, and only if, I(HI ,SI) is a graded prime ideal.

Let A = I(H1,S1) and B = I(H2,S2) be graded ideals of LK(G) with AB ⊆

I(HI ,SI). Since I is prime, one of them, say A, is contained in I. By Lemma 3.5,

A ⊆ I(HI ,SI), and so I(HI ,SI) is graded prime, and the proof is finished. �

To establish the description of prime ideals, we need first to recall the notion of

the quotient ultragraph of an ultragraph, which was introduced in [29] and [25].

Let G = (G0,G1, rG , sG) be an ultragraph and (H, S) an admissible pair in G. For

each A ∈ G0, we let A := A∪{w′ | w ∈ A∩ (BH \S)}, where w′ is another copy of

w. Define an ultragraph G = (G
0
,G

1
, r, s), where G

0
= G0 ∪ {w′ | w ∈ BH \ S},

G
1
= G1, r(e) = rG(e) and

s(e) =

{

sG(e)
′ if sG(e) ∈ BH \ S and rG(e) ∈ H,

sG(e) otherwise

for all e ∈ G
1
. We denote by G

0
the smallest subset of P(G

0
) that contains {v} for

all v ∈ G
0
, contains r(e) for all e ∈ G

1
, and is closed under relative complements,

finite unions and finite intersections. We note that A = A for all A ∈ H, and

so H is a saturated hereditary subset of G
0
and the set of breaking vertices of

H in G is S. Moreover, by [25, Lemma 3.3], LK(G) is isomorphic to LK(G) as

Z-graded K-algebras.

By [25, Lemma 2.3] we have an equivalent relation ∼ on G
0
defined by A ∼ B

if and only if A ∩ V = B ∩ V for some V ∈ H, and the operations

[A] ∩ [B] := [A ∩B], [A] ∪ [B] := [A ∪B] and [A] \ [B] := [A \B]

are well-defined on the equivalence classes {[A] | A ∈ G
0
}. We usually denote [v]

instead of [{v}] for all v ∈ G
0
, and the set

⋃

A∈HA is denoted by
⋃

H.

The quotient ultragraph of G by (H, S) is the quadruple

G/(H, S) = (Φ(G0),Φ(G1), r, s),

where

Φ(G0) := {[v] | v ∈ G0 \
⋃

H} ∪ {[w′] | w ∈ BH \ S},

Φ(G1) := {e ∈ G1 | rG(e) /∈ H},

and s : Φ(G1) −→ Φ(G0) and r : Φ(G1) −→ {[A] | A ∈ G
0
} are the maps defined

respectively by s(e) = [sG(e)] and r(e) = [rG(e)] for all e ∈ Φ(G1).

For any ultragraph G, and any vertex v ∈ G0, we defineM(v) = {w ∈ G0 | w ≥

v}. For any path α = α1α2 · · ·αn in G, the set {v ∈ G0 | v = s(αi) for some 1 ≤
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i ≤ n} is called the set of all vertices on α. Following [7], a cycle c in G is called

an exclusive cycle if it is disjoint with every other cycle; equivalently, no vertex

on c is the base of a different cycle other than the cyclic permutation of c.

We are now in a position to provide the main result of this section, which

extends Rangaswamy’s result [33, Theorem 3.13] to ultragraph Leavitt path al-

gebras.

Theorem 3.7. Let K be a field, G an ultragraph, and P an ideal of LK(G) with

H = {A ∈ G0 | pA ∈ P}. Then, P is a prime ideal of LK(G) if, and only if, P

satisfies one of the following conditions:

(i) P is generated by the set {pA | A ∈ H} ∪ {pHv | v ∈ BH} and G0 \
⋃

H is

downward directed;

(ii) P is generated by the set {pA | A ∈ H} ∪ {pHv | v ∈ BH \ {w}} for some

w ∈ BH and G0 \
⋃

H = M(w);

(iii) P is generated by the set {pA | A ∈ H} ∪ {pHv | v ∈ BH} ∪ {f(sc)}, where

c is an exclusive cycle in G based at a vertex v, G0 \
⋃

H = M(v), and

f(x) is an irreducible polynomial in K[x, x−1].

Proof. We let S := {w ∈ BH | pHv ∈ P}. Consider the following two cases:

Case 1: P is a graded ideal. Then, P = I(H,S) (by Theorem 2.5 (3) or [25,

Theorem 3.4 (2)]) and LK(G)/P ∼= LK(G/(H, S)) as Z-graded K-algebras (by

[25, Theorem 3.4 (1)]). Therefore, P is prime if and only if LK(G/(H, S)) is

a prime ring. By Theorem 3.2, this is equivalent to G/(H, S) be downward

directed. Now, for every w ∈ BH \ S, the corresponding vertex [w′] is a sink in

the ultragraph G/(H, S). Since G/(H, S) is downward directed, there is at most

one sink in G/(H, S), and so BH \S is either empty or a singleton {w}. Thus, P

is prime if and only if BH = S, in which case G0 \
⋃

H is downward directed, or

BH \ {w} = S, in which case Φ(G0) = {[v] | v ∈ G0 \
⋃

H}∪{[w′]} and [v] ≥ [w′]

for all [v] ∈ Φ(G0) (equivalently, v ≥ w for all v ∈ G0\
⋃

H). Thus, the primeness

of the graded ideal P is equivalent to either Condition (i) or Condition (ii).

Case 2: P is a non-graded ideal. Assume that P is prime. By Lemma 3.6,

I(H,S) is a graded prime ideal of LK(G) contained in P , and so, as showed in

Case 1, either:

(1) BH = S and G0 \
⋃

H is downward directed, or;

(2) BH \ {w} = S and v ≥ w for all v ∈ G0 \
⋃

H.

By [25, Theorem 3.4 (1)], LK(G)/I(H,S)
∼= LK(G/(H, S)) as Z-graded K-

algebras. Let ϕ : LK(G)/I(H,S) −→ LK(G/(H, S)) be an isomorphism of Z-graded
K-algebras and Q := ϕ(P/I(H,S)).

We note that, under condition (1), Φ(G0) = {[v] | v ∈ G0 \
⋃

H} and, under

condition (2), Φ(G0) = {[v] | v ∈ G0 \
⋃

H} ∪ {[w′]} and [v] ≥ [w′] for all

[v] ∈ Φ(G0), where p[w′] = ϕ(pHw + I(H,S)). Since w /∈ S, we have that pHw /∈ P ,

and so p[w′] /∈ Q. Thus, in either case, we always get that Q is a non-zero ideal

of LK(G/(H, S)), which does not contain p[v] for all [v] ∈ Φ(G0). Since G/(H, S)
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is downward directed, by Lemma 3.4, there is a unique cycle c without exits in

G/(H, S) such that Q is a non-graded principal ideal generated by p(sc), where

p(x) is a polynomial in K[x]. We claim that BH = S. Indeed, suppose that

BH \ {w} = S. Then, [v] ≥ [w′] for all [v] ∈ Φ(G0). Since c has no exits, [w′]

must lie on c and hence [w′] is not a sink in G/(H, S), a contradiction, showing the

claim. So, we have that P is generated by {pA | A ∈ H}∪{pHv | v ∈ BH}∪{f(sc)}.

Since Φ(G0) = {[v] | v ∈ G0\
⋃

H} is downward directed, and contains all vertices

which lie on c, we obtain that G0 \
⋃

H = M(v), where v is the base of the cycle

c. It is also clear that no vertex on c is the base of another distinct cycle in G.

We show that f(x) is irreducible. Since Q is a prime ideal of LK(G/(H, S)),

by [33, Lemma 3.10], p[v]Qp[v] is a nonzero prime ideal of p[v]LK(G/(H, S))p[v]
generated by p[v]f(sc)p[v] = f(sc). Since c is a cycle without exits in G/(H, S),

by Lemma 2.3 (2), we have that p[v]LK(G/(H, S))p[v] ∼= K[x, x−1] via the isomor-

phism λ defined by: p[v] 7−→ 1, sc 7−→ x and s∗c 7−→ x−1. We should mention that

the isomorphism λ maps f(sc) to f(x). Since f(x) generates the non-zero prime

ideal λ(p[v]Qp[v]) in K[x, x−1], f(x) is an irreducible polynomial in K[x, x−1], as

desired.

Conversely, assume that G contains a cycle c based at a vertex v such that no

vertex on c is the base of another distinct cycle in G, G0 \
⋃

H = M(v) and P

is generated by the set {pA | A ∈ H} ∪ {pHv | v ∈ BH} ∪ {f(sc)} for some irre-

ducible polynomial f(x) ∈ K[x, x−1]. We then have that the quotient ultragraph

G/(H, BH) is downward directed and contains the cycle c without exits. By [25,

Theorem 3.4 (1)], there exists a graded isomorphism ϕ : LK(G)/I(H,BH) −→

LK(G/(H, BH)). Let Q := ϕ(P/I(H,BH)). Since P is generated by the set

{pA | A ∈ H} ∪ {pHv | v ∈ BH} ∪ {f(sc)}, Q is generated by f(sc). Since

f(x) is irreducible in K[x, x−1], and p[v]LK(G/(H, BH))p[v] ∼= K[x, x−1] via the

isomorphism λ defined by: p[v] 7−→ 1, sc 7−→ x and s∗c 7−→ x−1, we obtain that

the ideal p[v]Qp[v], being generated by p[v]f(sc)p[v] = f(sc) = λ−1(f(x)), is a

maximal ideal of the K-algebra p[v]LK(G/(H, BH))p[v].

We claim that Q is a prime ideal of LK(G/(H, BH)). Indeed, let A and B be

ideals of LK(G/(H, BH)) such that AB ⊆ Q. We then have p[v]Ap[v]p[v]Bp[v] ⊆

p[v]Qp[v], and so one of them, say p[v]Ap[v] ⊆ p[v]Qp[v]. If A contains an element

p[w] for some vertex [w] in G/(H, BH), then there exists a path p in G/(H, BH)

such that s(p) = [w] and [v] ∈ r(p) (since w ≥ v), and so

p[v] = p[v]s
∗
pp[w]spp[v] ∈ A

and p[v]LK(G/(H, BH))p[v] ⊆ A. This implies that p[v]LK(G/(H, BH))p[v] ⊆

p[v]Ap[v] ⊆ p[v]Qp[v], a contradiction to the fact that p[v]Qp[v] is a proper ideal

of p[v]LK(G/(H, BH))p[v]. Hence, A does not contain p[w] for every vertex [w]

in G/(H, BH). By Lemma 3.5, the ideal A of LK(G/(H, BH)) is generated by

q(sc) for some polynomial q(x) ∈ K[x]. Since p[v]q(sc)p[v] = q(sc) ∈ p[v]Ap[v] ⊆
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p[v]Qp[v] ⊆ Q, we get that A ⊆ Q, and so Q is prime, showing the claim. This

implies that P is a prime ideal of LK(G).

Suppose P is a graded ideal. Then, by Lemma 3.5, P = I(H,BH), and so Q = 0.

On the other hand, p[v]Qp[v] is generated by p[v]f(sc)p[v] = f(sc) = λ−1(f(x)) 6=

0, and so Q 6= 0, a contradiction. This shows that P is a non-graded prime ideal

of LK(G), thus finishing the proof. �

In [25, Theorem 4.3] the authors showed that an ultragraph G satisfies Condi-

tion (K) if and only if every ideal of LK(G) is graded. As a corollary of Theo-

rem 3.7, we have the following.

Corollary 3.8. Let K be a field and G an ultragraph. Then G satisfies Condi-

tion (K) if, and only if, every prime ideal of LK(G) is graded.

Proof. (=⇒) It immediately follows from Theorem 3.7.

(⇐=) Assume that every prime ideal of LK(G) is graded and G does not satisfy

the Condition (K). Then, there exists a cycle c in G, based at a vertex v, such

that no vertex on c is the base of another distinct cycle in G. Let H = {A ∈ G0 |

w � v for all w ∈ A}. We note that H does not contain {u} for all vertex u on c.

We claim that H is a hereditary and saturated subset of G0. Indeed, let e be

an edge in G with {s(e)} ∈ H. If w ≥ v for some w ∈ r(e), then s(e) ≥ v, i.e.,

{s(e)} /∈ H, a contradiction, and so r(e) ∈ H. It is obvious that A∩B ∈ H for all

A,B ∈ H. Furthermore, it is also clear that if B ∈ G0 with B ⊆ A and A ∈ H,

then B ∈ H. These observations show that H is hereditary. Let w be a regular

vertex in G such that r(e) ∈ H for all e ∈ s−1(w). If {w} /∈ H, then w ≥ v, and

so there exists a path p = e1e2 · · · em in G such that w = s(p) and v ∈ r(p). This

implies that s(e2) ≥ v, and so r(e1) /∈ H. On the other hand, since e1 ∈ s−1(w),

we must have r(e1) ∈ H, a contradiction. Thus, H is a hereditary and saturated

subset of G0, and the claim is proved.

From the construction of H, we obtain that c is a cycle without exits and

based at [v] in the quotient ultragraph G/(H, BH). So, p[v]LK(G/(H, BH))p[v] ∼=
K[x, x−1] via the isomorphism defined by: p[v] 7−→ 1, sc 7−→ x and s∗c 7−→

x−1. Let f(x) be an irreducible polynomial in K[x, x−1]. By [25, Theorem

3.4 (1)], there exists a K-algebra graded isomorphism ϕ : LK(G)/I(H,BH) −→

LK(G/(H, BH)). Let P be an ideal of LK(G) such that I(H,BH) ⊆ P and the ideal

ϕ(P/I(H,BH)) of LK(G/(H, BH)) is generated by f(sc). Then, P is generated by

the set {pA | A ∈ H} ∪ {pHv | v ∈ BH} ∪ {f(sc)} and so, by Theorem 3.7, P

is a non-graded prime ideal, a contradiction. This implies that G satisfies the

Condition (K), and finishes the proof. �

For any ultragraph G, we denote by Ec(G) the set of all exclusive cycles in G.

For any commutative unit ring R, we denote by Spec(R) the prime spectrum

of R. Theorem 3.7 and Corollary 3.8 provide us with a method of constructing

non-graded prime ideals of ultragraph Leavitt path algebras.
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Corollary 3.9. Let K be a field and G an ultragraph. Then, the map P 7−→

(c, f(x)), as indicated in Theorem 3.7, defines a bijection between non-graded

prime ideals of LK(G) and the set Ec(G) × (Spec(K[x, x−1]) \ {0}), where cycles

obtained by permuting the vertices of a cycle are considered equal.

Proof. Let c ∈ Ec(G) with v = s(c). Let H = {A ∈ G0 | w � v for all w ∈ A}. As

was shown in the proof of Corollary 3.8, H is a hereditary and saturated subset

of G0. It is also obvious that G0 \
⋃

H = M(v). Therefore, for each irreducible

polynomial f(x) ∈ K[x, x−1], by Theorem 3.7 (iii), the ideal P , generated by

{pA | A ∈ H} ∪ {pHv | v ∈ BH} ∪ {f(sc)}, is a non-graded prime ideal of LK(G).

By Theorem 3.7, P is uniquely determined by the cycle c and the polynomial

f(x). From these observations and Theorem 3.7, we obtain the statement, thus

finishing the proof. �

In [21, Theorem 4.7] Royer and the second author characterized simplicity of

the Leavitt path algebra associated with an ultragraph via partial skew group

ring theory. We close this section with a simpler proof, that uses Theorem 3.7,

of the simplicity criteria given in [21, Theorem 4.7].

Corollary 3.10 (cf. [21, Theorem 4.7]). Let G an ultragraph and K a field.

Then, LK(G) is simple if, and only if, the following conditions hold:

(1) The only hereditary and saturated subsets of G0 are ∅ and G0;

(2) Every cycle in G has an exit.

Proof. Assume that LK(G) is simple. Then, LK(G) is a prime ring, and so G

is downward directed, by Theorem 3.2. Since the ideal generated by a non-

empty proper hereditary saturated subset is a nonzero proper ideal of LK(G),

the simplicity of LK(G) yields that the only hereditary and saturated subsets of

G0 are ∅ and G0. Suppose that there exists a cycle c without exits in G. Then,

since G is downward directed, by Theorem 3.7 (iii), there are infinitely many non-

graded prime ideals of LK(G) generated by f(sc), where f(x) is an irreducible

polynomial in K[x, x−1], a contradiction. Therefore, every cycle in G has an exit.

Conversely, assume that G satisfies the two conditions. Let I be an ideal

properly contained in LK(G). By condition (1), H = {A ∈ G0 | pA ∈ I} = ∅.
If I is nonzero then, by Lemma 3.3, I is generated by elements of the form

x = pv +
∑n

i=1 kis
ri
c , where c is a unique cycle without exit based at v, and

ki ∈ K with at least one ki 6= 0. But this contradicts the hypothesis that every

cycle in G has an exit. Thus, I = 0 and hence LK(G) is simple, as desired. �

4. Primitive ideals of ultragraph Leavitt path algebras

The main aims of this section are to provide a criterion for primitivity of

ultragraph Leavitt path algebras and to give a complete characterization of the

primitive ideals of an ultragraph Leavitt path algebra (Theorem 4.3).
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In [5], Abrams, Bell and Rangaswamy gave a criterion for the Leavitt path

algebra of an arbitrary graph to be primitive. In the following theorem, we

extend this result to ultragraph Leavitt path algebras (the proof we present is

based on the proof of [5, Theorem 3.5], with the necessary modifications).

Theorem 4.1. Let K be an ultragraph and K a field. Then LK(G) is primitive

if, and only if, the following conditions hold:

(1) G is downward directed;

(2) Every cycle in G has an exit.

Proof. (=⇒) Assume that LK(G) is primitive. Then, LK(G) is prime and so, by

Theorem 3.2, G is downward directed. If there is a cycle c, based at a vertex v in

G with no exits, then pvLK(G)pv ∼= K[x, x−1] (via the isomorphism defined by:

pv 7−→ 1, sc 7−→ x and s∗c 7−→ x−1) and so pvLK(G)pv is not primitive. On the

other hand, since a nonzero corner of a primitive ring must again be primitive,

pvLK(G)pv is primitive, a contradiction. Therefore, every cycle in G has an exit.

Assume that G satisfies the two conditions. Since G is downward directed, by

Theorem 3.2, LK(G) is prime. Using [5, Lemma 3.1], we may embed LK(G) as

an ideal in a prime K-algebra LK(G)1. Let v be an arbitrary vertex in G, and

let T (v) = {w ∈ G0 | v ≥ w}. Since G0 is countable, T (v) is at most countable,

and so we may label the elements of T (v) as {v1, v2, . . .}. We inductively define a

sequence α1, α2, . . . of paths in G and a sequence w1, w2, . . . of vertices in G such

that, for each i ∈ N,

(i) αj = αipj for some path pj with wi = s(pj) whenever i ≤ j, and

(ii) vi ≥ wi.

To do so, define α1 = v1 = w1. Now suppose α1, . . . , αn and w1, . . . , wn have

been defined with the indicated properties for some n ∈ N. Since G is downward

directed, there is a vertex wn+1 such that vn+1 ≥ wn+1 and wn ≥ wn+1. Let pn+1

be a path in G with wn = s(pn+1) and wn+1 ∈ r(pn+1), and define αn+1 = αnpn+1.

Then, αn+1 is clearly seen to have the desired properties. We should note that

sαi
pwi

s∗αi
sαj

pwj
s∗αj

= sαj
pwj

s∗αj
for all pair of positive integers i ≤ j. Moreover,

sαi
pwi

s∗αi
6= 0 for all i.

We claim that every nonzero ideal I of LK(G)1 contains some sαi
pwi

s∗αi
. Since

LK(G) is a nonzero ideal of the prime K-algebra LK(G)1, I ∩ LK(G) is also a

nonzero ideal of LK(G). Since every cycle in G has an exit, repeating the method

described in the proof of the direction (⇐=) of Theorem 2.10, I contains pw
for some w ∈ G0. Since G is downward directed, there exists u ∈ G0 such

that v ≥ u and w ≥ u. But v ≥ u yields that u = vn for some n ∈ N, and
so w ≥ vn. By the above construction, we have vn ≥ wn ∈ r(αn), and so

there is a path q in G for which w = s(q) and wn ∈ r(q). This implies that

pwn = pwnpr(q) = pwns
∗
ppwsp ∈ I, and so sαnpwns

∗
αn

∈ I and the claim is proved.

By [5, Proposition 3.4], LK(G)1 is primitive, and so LK(G) is primitive, by [5,

Lemma 3.1], thus finishing the proof. �
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In [33, Theorem 4.3] Rangaswamy characterized the primitive ideals of the

Leavitt path algebra of an arbitrary graph. In [29, Theorem 5.7] Larki described

primitive gauge invariant ideals of ultragraph C∗-algebras. In the remainder of

this section we extend Rangaswamy’s result to ultragraph Leavitt path algebras.

Before doing so, we recall useful notions of ultragraphs, introduced in [29, Defi-

nition 5.6]. Let H be a saturated hereditary subset of an ultragraph G0. We say

that a path α = α1 . . . αn lies in G \ H whenever rG(α) ∈ G0 \ H. We also say

that α has an exit in G \ H if either rG(αi) \ {sG(αi+1)} ∈ G0 \ H for some i, or

there exists an edge f such that rG(f) ∈ G0 \ H, sG(f) = sG(αi) and f 6= αi. We

have the following simple fact.

Lemma 4.2. Let G be an ultragraph and H a saturated hereditary subset of G0.

Then, every cycle in G/(H, BH) has an exit if, and only if, every cycle in G \ H

has an exit in G \ H.

Proof. (=⇒) Assume that every cycle in G/(H, BH) has an exit, and α = α1 . . . αn

is a cycle in G \ H. Then, rG(α) ∈ G0 \ H. Since H is hereditary, {sG(αi)} and

rG(αi) lie in G0 \H for all 1 ≤ i ≤ n, and so α1 . . . αn is a cycle in G/(H, BH). By

the hypothesis, it has an exit in G/(H, BH), that is, there exists 1 ≤ i ≤ n such

that r(αi) contains some sink [v] in G/(H, BH), or there exist 1 ≤ i ≤ n and an

edge f in G/(H, BH) with s(f) ∈ r(αi) but f 6= αi+1. In the first case, we have

that {w} /∈ H and w ∈ rG(αi) \ {sG(αi+1)}, and so rG(αi) \ {sG(αi+1)} ∈ G0 \ H

(sinceH is hereditary). In the second case, we have rG(f) ∈ G0\H, sG(f) = sG(αi)

and f 6= αi. Therefore, α has an exit in G/(H, BH).

(⇐=) Let α = α1 . . . αn be a cycle in G/(H, BH). Then, α is also a cycle in

G\H, and so α has an exit in G\H. This implies that α has an exit in G/(H, BH),

and the proof is finished. �

We are now in a position to provide the main result of this section.

Theorem 4.3. Let K be a field, G an ultragraph, and P an ideal of LK(G) with

H = {A ∈ G0 | pA ∈ P}. Then, P is a primitive ideal of LK(G) if, and only if,

P satisfies one of the following conditions:

(i) P is a non-graded prime ideal;

(ii) P is generated by the set {pA | A ∈ H} ∪ {pHv | v ∈ BH \ {w}} for some

w ∈ BH and G0 \
⋃

H = M(w);

(iii) P is generated by the set {pA | A ∈ H} ∪ {pHv | v ∈ BH}, G
0 \
⋃

H is

downward directed, and every cycle in G \ H has an exit in G \ H.

Proof. (=⇒) It immediately follows from Theorem 4.1, Lemma 4.2 and the cases

(i), (ii) of Theorem 3.7.

(⇐=) (i) Suppose P is a non-graded prime ideal. By Theorem 3.7 (iii), P is

generated by the set {pA | A ∈ H} ∪ {pHv | v ∈ BH} ∪ {f(sc)}, where c is a

cycle in G based at a vertex v such that no vertex on c is the base of another

distinct cycle in G, G0 \
⋃

H = M(v) and f(x) is an irreducible polynomial
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in K[x, x−1]. Then, the quotient ultragraph G/(H, BH) is downward directed

and contains the cycle c without exits. By [25, Theorem 3.4 (1)], there ex-

ists a K-algebra graded isomorphism ϕ : LK(G)/I(H,BH) −→ LK(G/(H, BH)).

Let Q := ϕ(P/I(H,BH)). Since P is generated by the set {pA | A ∈ H} ∪

{pHv | v ∈ BH} ∪ {f(sc)}, Q is generated by f(sc). Since f(x) is irreducible

in K[x, x−1], and p[v]LK(G/(H, BH))p[v] ∼= K[x, x−1] via the isomorphism λ de-

fined by: p[v] 7−→ 1, sc 7−→ x and s∗c 7−→ x−1, we obtain that the ideal p[v]Qp[v],

being generated by p[v]f(sc)p[v] = f(sc) = λ−1(f(x)), is a maximal ideal of

the K-algebra p[v]LK(G/(H, BH))p[v]. Now p[v]LK(G/(H, BH))p[v]/p[v]Qp[v] ∼=
(p[v] + Q)(LK(G/(H, BH))/Q)(p[v] + Q) ∼= (pv + P )(LK(G)/P )(pv + P ) under

the natural isomorphisms. Since p[v]LK(G/(H, BH))p[v]/p[v]Qp[v] is a field, (pv +

P )(LK(G)/P )(pv+P ) is also a field and, in particular, (pv+P )(LK(G)/P )(pv+P )

is a commutative primitive ring. It is well known (see [28, Theorem 1]) that a

not-necessarily unital ring R is primitive if, and only if, there is an idempotent

a ∈ R such that aRa is a primitive ring. These observations show that LK(G)/P

is a primitive ring, and so P is a primitive ideal.

(ii) Suppose P is generated by the set {pA | A ∈ H} ∪ {pHv | v ∈ BH \ {w}}

for some w ∈ BH and G0 \
⋃

H = M(w). Since G0 \
⋃

H = M(w), v ≥ w for all

v ∈ G0 \
⋃

H, and so in the ultragraph G/(H, BH \ {w}) we have that [v] ≥ [w′]

for all v ∈ G0 \
⋃

H and [w′] is a sink. This implies that G/(H, BH \ {w}) is

downward directed and every cycle in G/(H, BH \ {w}) has an exit (since every

vertex [v] on any cycle in the ultragraph G/(H, BH \ {w}) satisfies [v] ≥ [w′]).

By Theorem 4.1, we have that LK(G/(H, BH \ {w})) is a primitive ring. By

[25, Theorem 3.4 (1)], LK(G)/P ∼= LK(G/(H, BH \ {w})), and so LK(G)/P is a

primitive ring, that is, P is a primitive ideal of LK(G).

(iii) Suppose that P is generated by the set {pA | A ∈ H} ∪ {pHv | v ∈ BH},

G0 \
⋃

H is downward directed, and every cycle in G \H has an exit in G \H. By

[25, Theorem 3.4 (1)], we have that LK(G)/P ∼= LK(G/(H, BH)). Since G0 \
⋃

H

is downward directed, by the definition of the ultragraph G/(H, BH), G/(H, BH)

is downward directed. Since every cycle in G \ H has an exit in G \ H, and

by Lemma 4.2, every cycle in the ultragraph G/(H, BH) has an exit. Now, by

Theorem 4.1, LK(G/(H, BH)) is a primitive ring, and so P is a primitive ideal

of LK(G), and the proof is finished. �

5. Chen simple modules of ultragraph Leavitt path algebras

In [10], Chen constructed simple modules for the Leavitt path algebra LK(E)

of an arbitrary graph E, using sinks and the equivalence class of infinite paths

tail-equivalent to a fixed infinite path in E, and their twisted modules. Chen’s

construction was extended by Ara and Rangaswamy in [7], where the authors

introduced additive classes of non-isomorphic simple LK(E)-modules which were

associated respectively to both infinite emitters v and pairs (c, f) consisting of

exclusive cycles c together with irreducible polynomials f ∈ K[x, x−1] \ {1 −
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x}. They call all these simple modules Chen simple modules. Ánh and the

third author, in [6], gave another way to describe Chen simple modules and

compute their annihilators. Royer and the second author, in [23], extended Chen’s

construction of simple modules for graph Leavitt path algebras to ultragraph

Leavitt path algebras. The aim of this section is to extend Ara and Ragaswamy’s

construction of Chen simple modules for graph Leavitt path algebras to ulragraph

Leavitt path algebras and compute their annihilators (Theorem 5.4).

We begin this section by recalling useful notations of ultragraphs. Let G be an

arbitrary ultragraph. For v ∈ G0, we define

H(v) := {A ∈ G0 | w � v for all w ∈ A}.

For any infinite path p ∈ G∞, we define

M(p) = {v ∈ G0 | v ≥ w for some w ∈ p0}

and

H(p) = {A ∈ G0 | w � v for all w ∈ A and v ∈ p0}.

Similar to what was done in the proof of Corollary 3.8, for any vertex v which is

either a sink or an infinite emitter, and for any infinite path p, the sets H(v) and

H(p) are hereditary and saturated subsets of G0.

Let K be a field and G an ultragraph. Let v be a sink in G. In [23, Proposition

3.9] Royer and the second author defined the simple left LK(G)-module Nv to be

the K-vector space having

[v] := {p ∈ G∗ | |p| ≥ 1, v ∈ r(p)} ∪ {v}

as a basis and with the scalar multiplication satisfying the following: for all

A ∈ G0, e ∈ G1 and α ∈ [v],

pA · α =

{

α if s(α) ∈ A,

0 otherwise,
se · α =

{

eα if s(α) ∈ r(e),

0 otherwise

and

s∗e · α =















β if α = eβ for some β ∈ [v] with |β| ≥ 1,

v if α = e,

0 otherwise.

The following result extends [7, Lemma 3.1] to ultragraph Leavitt path algeras.

Lemma 5.1. Let K be a field, G an ultragraph and v a sink in G. Then, the

annihilator of the simple left LK(G)-module Nv is the ideal of LK(G) generated

by {pA | A ∈ H(v)} ∪ {p
H(v)
w | w ∈ BH(v)}.

Proof. We denote by J and I(H(v),BH(v)) the annihilator of Nv and the ideal of

LK(G) generated by {pA | A ∈ H(v)} ∪ {p
H(v)
w | w ∈ BH(v)}, respectively. We

first claim that I(H(v),BH(v)) ⊆ J . Indeed, if A ∈ H(v), then it is obvious that
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pA · α = 0 for all α ∈ [v]. If w ∈ BH(v) then, since w 6= v, we have that

p
H(v)
w ·v = (pw−

∑

e∈s−1(w), r(e)/∈H(v)

ses
∗
e) ·v = 0. Let α be a path of positive length

in G∗ such that v ∈ r(α). Let f be the initial edge of α, say α = fβ. Since

v ∈ r(α), u ≥ v for some u ∈ r(f), and so r(f) /∈ H(v). This implies that

pH(v)
w · α = (pw −

∑

e∈s−1(w), r(e)/∈H(v)

ses
∗
e) · fβ = (f − f)β = 0,

showing the claim. In order to show the reverse inclusion, we can consider

Nv as a simple left LK(G/(H(v), BH(v)))-module. By [25, Theorem 3.4 (1)],

LK(G)/I(H(v),BH(v))
∼= LK(G/(H, BH)). We next prove that Nv is a faithful left

LK(G/(H(v), BH(v)))-module. Indeed, we denote by J the annihilator of the

LK(G/(H(v), BH(v)))-module Nv. Since every vertex in G/(H(v), BH(v)) con-

nects to [v], we must have both p[w] /∈ J for all vertex [w] in G/(H(v), BH(v))

and every cycle in G/(H(v), BH(v)) has an exit. Then, by Corollary 2.6 (3), every

nonzero ideal of LK(G/(H(v), BH(v))) contains an element p[w] for some vertex

[w] in G/(H(v), BH(v)). Consequently, we obtain that J = 0, and the proof is

finished. �

Let G be an arbitrary ultragraph. For p := e1 · · · en · · · ∈ G∞ and n ≥ 1, we

define τ>n(p) = en+1en+2 · · · . Two infinite paths p, q are said to be tail-equivalent

(written p ∼ q) if there exist positive integers m,n such that τ>n(p) = τ>m(q).

Clearly∼ is an equivalence relation on G∞, and we let [p] denote the∼ equivalence

class of the infinite path p.

For p := e1 · · · en · · · ∈ G∞, in [23, Proposition 3.9] Royer and the second author

defined the simple left LK(G)-module V[p] to be the K-vector space having [p] as

a basis and with the scalar multiplication satisfying the following: for all A ∈ G0,

e ∈ G1 and α ∈ [p],

pA · α =

{

α if s(α) ∈ A,

0 otherwise,
se · α =

{

eα if s(α) ∈ r(e),

0 otherwise

and

s∗e · α =

{

τ>1(α) if α = eτ>1(α),

0 otherwise.

Now, motivated by Chen’s construction [10, Section 6] and Ara - Ragaswamy

[7, Section 3], we consider twisted modules of the module V[p]. Let c = e1e2 · · · en
be a cycle in G based at v. Then the path ccc · · · is an infinite path in G, which we

denote by c∞. For k ∈ K \ {0}, by the universal property of ultragraph Leavitt

path algebras and Theorem 2.9, there is an algebra automorphism σk : LK(G) −→

LK(G) such that σk(pA) = pA for all A ∈ G0, σk(se) = se and σk(s
∗
e) = s∗e for all

e ∈ G1 with e 6= e1, and σk(se1) = kse1 and σk(s
∗
e1) = k−1s∗e1 . Then we have the

simple left LK(G)-module V k
[c∞], which is the twisted module V σk

[c∞]. Denote by ∗
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the scalar multiplication in V k
[c∞], we have sc ∗ c

∞ = σk(sc)c
∞ = kscc

∞ = kc∞

and s∗c ∗ c
∞ = k−1c∞.

Let f(x) be an irreducible polynomial in K[x, x−1], and denote by F the field

K[x, x−1]/(f(x)). Since x is invertible in F , V x
[c∞] is a simple left LF (G)-module.

We denote by V f
[c∞] the LK(G)-module obtained by restricting scalars from LF (G)

to LK(G). Repeating the same method described in the proof of [7, Lemma 3.1],

we obtain that V f
[c∞] is a simple left LK(G)-module.

Lemma 5.2. Let K be a field, G an ultragraph, c an exclusive cycle in G based at

a vertex v, and f(x) an irreducible polynomial in K[x, x−1]. Then the following

statements hold:

(1) V f
[c∞]

∼= V[c∞]

⊗

K[x,x−1]K[x, x−1]/(f(x)) as left LK(G)-modules;

(2) The annihilator of V f
[c∞] is the ideal of LK(G) generated by {pA | A ∈

H(v)} ∪ {p
H(v)
w | w ∈ BH(v)} ∪ {f(sc)}.

Proof. (1) Let J be the subalgebra of LK(G) generated by pv, sc and s∗c . By the

Z-grading on LK(G), J is isomorphic to the Jacobson algebra K〈x, y | yx = 1〉

via the map: pv 7−→ 1, se 7−→ x and s∗c 7−→ y. Consider V[c∞] as the left

J-module obtained by restricting scalars from LK(G) to J . By our hypothesis

of the cycle c, we have (pv − scs
∗
c)α = 0 for all α ∈ [c∞], and so pv − scs

∗
c

annihilates V[c∞]. This implies that V[c∞] is also a module over J/(pv − scs
∗
c).

We note that J/(pv − scs
∗
c) is isomorphic to the Laurent polynomial algebra

K[x, x−1] via the map: pv 7−→ 1, se 7−→ x and s∗c 7−→ x−1. Therefore, V[c∞] is

a module over K[x, x−1]. It is, now, straightforward to show that V f
[c∞] is iso-

morphic to V[c∞]

⊗

K[x,x−1]K[x, x−1]/(f(x)) as left LK(G)-modules via the map:
∑n

i=1 kiαi 7−→
∑n

i=1 ki ⊗ αi, where ki ∈ K[x, x−1]/(f(x)) and αi ∈ [c∞].

(2) Proceeding as in the proof of Lemma 5.1, we arrive at a simple left

LK(G/(H(v), BH(v)))-module, and G/(H(v), BH(v)) has a unique cycle without

exits, which is c. Furthermore, the annihilator J of the LK(G/(H(v), BH(v)))-

module V f
[c∞] does not contain p[w] for all vertex [w] in G/(H(v), BH(v)). Since J

is a primitive ideal of LK(G/(H(v), BH(v))), and by Theorem 4.3, there exists an

irreducible polynomial g in K[x, x−1] such that J is the ideal generated by g(sc).

On the other hand, we have

f(sc) ∗ c
∞ = σx(f(sc))c

∞ = f(σx(sc))c
∞ = f(x)c∞ = 0,

so f(sc) annihilates V
f
[c∞]. This shows that f(x) = g(x), thus finishing the proof.

�

Let K be a field, G an ultragraph and v an infinite emitter in G. Let Nv∞ be

the K-vertor space having

[v] := {p ∈ G∗ | |p| ≥ 1, v ∈ r(p)} ∪ {v}
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as a basis. We define, for each A ∈ G0 and each e ∈ G1, linear maps PA, Se and

S∗
e on Nv∞ as follows: for all α ∈ [v],

PA(α) =

{

α if s(α) ∈ A,

0 otherwise,
Se(α) =

{

eα if s(α) ∈ r(e),

0 otherwise

and

S∗
e (α) =















β if α = eβ for some β ∈ [v] with |β| ≥ 1,

v if α = e,

0 otherwise.

Then, similar to what was done in the proof of [23, Proposition 3.9], we may

show that the endomorphisms {PA, Se, S
∗
e | A ∈ G0, e ∈ G1} satisfy the relations

analogous to (1) - (4) in Definition 2.1, and so there always exists a K-algebra

homomorphism ϕ : LK(G) −→ EndK(Nv∞) given by ϕ(pA) = PA, ϕ(se) = Se

and ϕ(s∗e) = S∗
e . This implies that Nv∞ may be made a left LK(G)-module via

the homomorphism ϕ. We denote the scalar multiplication on Nv∞ by ·.

Lemma 5.3. Let K be a field, G an ultragraph and v an infinite emitter in G.

Then, the following statements hold:

(1) Nv∞ is a simple left LK(G)-module;

(2) If v ∈ BH(v), then the annihilator of Nv∞ is the ideal of LK(G) generated

by {pA | A ∈ H(v)} ∪ {p
H(v)
w | w ∈ BH(v) \ {v}};

(3) If r(s−1(v)) ⊆ H(v), then the annihilator of Nv∞ is the ideal of LK(G)

generated by {pA | A ∈ H(v)} ∪ {p
H(v)
w | w ∈ BH(v)}.

Proof. (1) It is completely similar to the proof of [23, Proposition 3.9]. We prove

(2) and (3) below.

Let J := AnnLK(G)(Nv∞). For A ∈ H(v), we have w � v for all w ∈ A, and so

pA ·α = 0 for all α ∈ [v]. This shows that pA ∈ J and {A ∈ G0 | pA ∈ J} = H(v).

Assume that v ∈ BH(v). Let w ∈ BH(v) with w 6= v. Clearly p
H(v)
w · α = 0 for

all path α ∈ [v] with w 6= s(α). If α is a path in [v] with s(α) = w and α = eβ,

where e ∈ G1, then

pH(v)
w · α = (pw −

∑

f∈s−1(w), r(f)/∈H(v)

sfs
∗
f ) · eβ = (e− e)β = 0.

This implies that p
H(v)
w ∈ J . On the other hand, we have

pH(v)
v · v = (pw −

∑

f∈s−1(w), r(f)/∈H(v)

sfs
∗
f ) · v = v · v − 0 = v 6= 0,

so I(H(v),BH(v))\{v}) ⊆ J . We claim that J is a graded ideal. Indeed, if J is not

graded, then, since {A ∈ G0 | pA ∈ J} = H(v) (and by Theorem 4.3 (1)), we

must have I(H(v),BH(v)) ⊆ J , and so p
H(v)
v ∈ J , a contradiction, proving the claim.

This shows that J = I(H(v),BH(v))\{v}), proving (2).
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Assume that r(s−1(v)) ⊆ H(v). Then, repeating the same method described

above, we have that I(H(v),BH(v)) ⊆ J . If J is not graded then, since {A ∈ G0 |

pA ∈ J} = H(v) (and by Theorem 4.3 (1)), there exist an exclusive cycle c in

G and an irreducible polynomial f(x) in K[x, x−1] such that J = I(H(v),BH(v)) +

(f(sc)) and G0\
⋃

H(v) = M(w), where w = s(c) and (f(sc)) is the ideal of LK(G)

generated by f(sc). By the definition of H(v)), we obtain that v ∈ c0 ⊆ M(v). In

particular, there exists an edge e ∈ G1 such that s(e) = v and r(e) ∩M(v) 6= ∅,
which contradicts our hypothesis that r(s−1(v)) ⊆ H(v), and so J is a graded

ideal. Now, using Lemma 3.5, we immediately obtain that J = I(H(v),BH(v)),

showing (3), and finishing the proof. �

Let G be an arbitrary ultragraph and K an arbitrary field. By a Chen simple

module we mean a simple left LK(G)-module of one of the following types:

(1) Nv, where v is a sink in G;

(2) Nv∞, where v is an infinite emitter in G such that v ∈ BH(v);

(3) Nv∞, where v is an infinite emitter in G such that r(s−1(v)) ⊆ H(v);

(4) V[p], where p is an infinite path in G;

(5) V f
[c∞], where c is an exclusive cycle in G and f(x) is an irreducible polynomial

in K[x, x−1] with f(x) 6= x− 1.

We are now in a position to provide the main result of this section, which

extends Ara and Rangaswamy’s result [7, Theorem 3.9] to ultragraph Leavitt

path algebras.

Theorem 5.4. Let K be a field, G an ultragraph and P a primitive ideal of

LK(G). Then there exists a Chen simple LK(G)-module S such that the annihi-

lator of S is P .

Proof. Let H = {A ∈ G0 | pA ∈ P}. By Theorem 4.3, P is exactly one of the

following:

(i) P is a non-graded prime ideal;

(ii) P is generated by the set {pA | A ∈ H} ∪ {pHv | v ∈ BH \ {w}} for some

w ∈ BH and G0 \
⋃

H = M(w);

(iii) P is generated by the set {pA | A ∈ H} ∪ {pHv | v ∈ BH}, G
0 \
⋃

H is

downward directed, and every cycle in G \ H has an exit in G \ H.

Assume that (i) holds. Then, by Corollary 3.9, P is generated by the set {pA |

A ∈ H(v)} ∪ {pHw | w ∈ BH(v)} ∪ {f(sc)}, where c is an exclusive cycle in G

based at a vertex v and f(x) is an irreducible polynomial in K[x, x−1]. Applying

Lemma 5.2 (2), we have that the annihilator of V f
[c∞] is exactly P .

Next, assume that (ii) holds. We claim that H = H(w). Since G0 \
⋃

H =

M(w), we immediately obtain that H ⊆ H(w). Let A ∈ G0 \ H, that is, pA /∈ P .

Equivalently, pA is a nonzero element in the quotient LK(G)/P . By [25, The-

orem 3.4 (1)], there exists a K-algebra graded isomorphism ϕ : LK(G)/P −→
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LK(G/(H, BH\{w})) such that ϕ(pA + P ) = p[A]. We then have p[A] 6= 0; equiv-

alently, [A] must contain some vertex in G/(H, BH\{w}). Since the vertex set of

G/(H, BH\{w}) is exactly the set {[v] | v ∈ G0 \
⋃

H} ∪ {[w′]}, either A = {w}

or A contains a vertex v ∈ G0 \
⋃

H = M(w). This implies that A /∈ H(w), and

so H(w) ⊆ H, proving the claim. Then, by Lemma 5.3 (2), P is equal to the

annihilator of the simple left LK(G)-module Nw∞.

Assume that (iii) holds. Then, G/(H, BH) is downward directed and every cycle

in G/(H, BH) has an exit. If G/(H, BH) has a sink [v], then since G/(H, BH) is

downward directed, [v] is a unique sink and G0\
⋃

H = M(v). Repeating the same

method described above, we obtain that H = H(v). There are then two cases:

either v is a sink in G, or v is an infinite emitter in G such that r(s−1(v)) ⊆ H(v).

By Lemmas 5.1 and 5.3 (3), the annihilator of Nv, respectively of Nv∞, is exacly

P .

Assume that G/(H, BH) does not have any sink. Since G0 \
⋃

H is countable,

we may label the elements of G0\
⋃

H as {v1, v2, . . .}. Repeating the same method

described in the proof of Theorem 4.1, there exist a sequence α1, α2, . . . of paths

in G/(H, BH) and a sequence [w1], [w2], . . . of vertices in G/(H, BH) such that,

for each i ∈ N,

(i) αj = αipj for some path pj with [wi] = s(pj) whenever i ≤ j,

(ii) |αi| ≥ i for all i, and

(iii) [vi] ≥ [wi] for all i.

Now, we may use the paths αi to construct an infinite path α such that each

vertex of G0 \
⋃

H connects to a vertex in α0. Since every cycle in G/(H, BH) has

an exit, α is not tail-equivalent to c∞ for all exclusive cycle c. Since G0 \
⋃

H =

M(α) = G0 \
⋃

H(α), repeating the same method described in the proof of (ii)

we obtain H = H(α). Now, similarly to what was done in the proof of Lemma

5.1, we obtain that the annihilator of the simple left LK(G)-module V[α] is exactly

I(H(α),BH(α)) = P , and the proof is finished. �

6. Exel’s Effros-Hahn conjecture for ultragraph Leavitt path

algebras

The aim of this section is to show that the Exel’s Effros-Hahn conjecture holds

for ultragraph Leavitt path algebras (Theorem 6.7).

6.1. Steinberg algebras and Exel’s Effros-Hahn conjecture. Steinberg al-

gebras were introduced in [37] in the context of discrete inverse semigroup algebras

and independently in [11] as a model for Leavitt path algebras.

A groupoid is a small category in which every morphism is invertible. It can

also be viewed as a generalization of a group that has a partial binary operation.

Let G be a groupoid. If x ∈ G, s(x) = x−1x is the source of x and r(x) = xx−1

is its range. The pair (x, y) is is composable if and only if r(y) = s(x). The set
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G(0) := s(G) = r(G) is called the unit space of G. Elements of G(0) are units in

the sense that xs(x) = x and r(x)x = x for all x ∈ G. For U, V ⊆ G, we define

UV = {αβ | α ∈ U, β ∈ V and r(β) = s(α)} and U−1 = {α−1 | α ∈ U}.

The isotropy group of a unit x ∈ G(0) is the group Gx = {g ∈ G | s(g) = r(g) = x}.

A topological groupoid is a groupoid endowed with a topology under which

the inverse map is continuous, and such that the composition is continuous with

respect to the relative topology on G(2) := {(β, γ) ∈ G2 | s(β) = r(γ)} inher-

ited from G2. An étale groupoid is a topological groupoid G, whose unit space

G(0) is locally compact Hausdorff, and such that the domain map s is a local

homeomorphism.

An open bisection of G is an open subset U ⊆ G such that s|U and r|U are

homeomorphisms onto an open subset of G(0). Similar to [32, Proposition 2.2.4]

we have that UV and U−1 are compact open bisections for all compact open

bisections U and V of an étale groupoid G. If in addition G is Hausdorff, then

U ∩ V is a compact open bisection (see [37, Proposition 3.7]). An étale groupoid

G is called ample if G has a base of compact open bisections for its topology.

Let G be an ample groupoid, and K a field with the discrete topology. We

denote by KG the set of all functions from G to K. Canonically, KG has the

structure of a K-vector space with operations defined pointwise.

Definition 6.1. Let G be an ample groupoid, and K any field. Let AK(G) be

the K-vector subspace of KG generated by the set

{1U | U is a compact open bisection of G},

where 1U : G −→ K denotes the characteristic function on U . The multiplication

of f, g ∈ AK(G) is given by the convolution

(f ∗ g)(γ) =
∑

γ=αβ

f(α)g(β)

for all γ ∈ G. The K-vector subspace AK(G), with convolution, is called the

Steinberg algebra of G over K.

By [37, Proposition 4.6], AK(G) equipped with convolution is a K-algebra. It

is useful to note that 1U ∗ 1V = 1UV for compact open bisections U and V . In

particular, 1U ∗ 1V = 1U∩V whenever U and V are compact open subsets of G(0)

(see [37, Proposition 4.5]).

Let K be a field, G a groupoid, and u ∈ G(0). Define Lu := s−1(u). The

isotropy group Gu acts on the right of Lu. Consider the K-vector space KLu

with basis Lu. The right action of Gu on Lu induces a free right KGu-module

structure on KLu (see [37, Proposition 7.7]). Moreover, by [37, Proposition 7.8],

KLu is a left AK(G)-module with the scalar multiplication defined by:

f · x =
∑

y∈Lu

f(yx−1)y
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for all f ∈ AK(G) and x ∈ Lu. It is useful to note (see [37, Proposition 7.8]) that

1U · x =

{

yx if there is a y ∈ U such that s(y) = r(x),

0 otherwise.

For a leftKGu-module V , we define the corresponding induced left AK(G)-module

to be

Indu(V ) = KLu ⊗KGu V.

In [37, Proposition 7.19] Steinberg obtained the following interesting results.

Theorem 6.2 ([37, Proposition 7.19]). Let K be a field, G an ample groupoid,

u ∈ G(0), and V a simple left KGu-module. Then Indu(V ) is a simple left AK(G)-

module. Moreover, if V and W are non-isomorphic simple left KGu-modules, then

Indu(V ) ≇ Indu(W ).

The original Effros-Hahn conjecture [17, 18] suggested that every primitive

ideal of a crossed product of an amenable locally compact group with a commu-

tative C∗-algebra should be induced from a primitive ideal of an isotropy group.

The result was proved by Sauvageot [35] for discrete groups and a more general

result than the original conjecture was proved by Gootman and Rosenberg in [24].

Crossed products of the above form are special cases of groupoid C∗-algebras and

analogues of the Effros-Hahn conjecture in the groupoid setting were achieved by

Renault [34] and Ionescu-Williams [26]. R. Exel conjectured at the PARS meet-

ing in Gramado, 2014 that an analogue of the Effros-Hahn conjecture should hold

for Steinberg algebras.

Conjecture 6.3 (Exel’s Effros-Hahn conjecture). Let K be a field, G an ample

groupoid and I a primitive ideal of LK(G). Then I = AnnAK(G)(Indu(M)) for

some u ∈ G(0) and simple left KGu-module M .

We should mention results relating to this conjecture. In [15], motivated by

Dokuchaev and Exel’s result [16], Demeneghi showed that every ideal of the

Steinberg algebra of an ample groupoid is an intersection of kernels of induced

representations from isotropy subgroups. In [38] Steinberg proved that every

primitive ideal of the Steinberg algebra over a commutative unital ring is the

kernel of an induced representation from an isotropy group. Consequently, he

obtained Exel’s Effros-Hahn conjecture in two cases: namely, if the base ring

is Artinian and all isotropy groups are finite; or if the base ring is the field of

complex numbers and the isotropy groups are all locally finite abelian or finite.

6.2. The groupoid associated to an ultragraph. In [13], a groupoid is asso-

ciated with an arbitrary ultragraph in a manner that the corresponding Steinberg

algebra is isomorphic to the Leavitt path algebra associated with the ultragraph.

In this level of generality, as far as the author’s knowledge goes, the use of la-

belled spaces and the associated concepts are unavoidable. To fully recall these

concepts here would be a lengthy endeavor, which would repeat known results.
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We, therefore, try to keep the preliminaries to a minimum and refer the reader

to Section 3.1 of [13] for the detailed explanation.

A labelled graph consists of a graph E together with a surjective labelling map

L : E1 → A, where A is a fixed non-empty set, called an alphabet, and whose

elements are called letters. A∗ stands for the set of all finite words over A,

together with the empty word ω, and A∞ is the set of all infinite words over

A. The labelling map L extends in the obvious way to L : En → A∗ and

L : E∞ → A∞. Ln = L(En) is the set of labelled paths α of length |α| = n, and

L∞ = L(E∞) is the set of infinite labelled paths. We consider ω as a labelled path

with |ω| = 0, and set L≥1 = ∪n≥1L
n, L∗ = {ω} ∪ L≥1, and L≤∞ = L∗ ∪ L∞.

Next, we recall the labelled space associated with an ultragraph.

Definition 6.4. Fix an ultragraph G = (G0,G1, r, s). Let EG = (E0
G , E

1
G , r

′, s′),

where E0
G = G0, E1

G = {(e, w) : e ∈ G1, w ∈ r(e)} and define r′(e, w) = w and

s′(e, w) = s(e). Set A := G1, B := G0, and define LG : E1
G → A by LG(e, w) = e.

Then, (EG ,LG ,B) is the normal labelled space associated with G.

There is an inverse semigroup associated to the labelled space (EG ,LG ,B)

above, whose semilattice of idempotents is

E(S) = {(α,A, α) | α ∈ L∗ and A ∈ Bα} ∪ {0},

where, for α ∈ L∗,

Bα = B ∩ P (r(α)) = {A ∈ B | A ⊆ r(α)}.

The unit space of the groupoid associated with the ulgragraph G is the set

of all tight filters in E(S), which we denote by T. In [13], elements of T are

described in terms of labelled paths and the associated filters. To obtain this

correspondence, first it is observed that for each infinite path in G there is only

one filter in E(S) associated with it, and for each finite path α, there is a filter

in E(S) associated to each filter ξ on Bα ([13, Remark 3.5]). Then, the following

description of T is proved.

Proposition 6.5 ([13, Proposition 3.6]). For each infinite path α on G, there is

a unique element ξ ∈ T, whose associated word is α. If ξα is a filter of finite

type, then ξα ∈ T if and only if one of the following holds:

(i) There exists v ∈ G0
s such that ξ|α| =↑Bα {v}, where ↑Bα {v} = {A ∈ Bα |

v ∈ A}.

(ii) For all A ∈ ξ|α|, |ε(A)| = ∞.

(iii) For all A ∈ ξ|α|, |A ∩G0
s| = ∞.

Using the above, we have that the elements of T can be described in two ways:

• if ξ ∈ T is of infinite type, then it is completely described by the infinite

path associated to it;
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• if ξ ∈ T is of finite type, then it is described by a pair (α,F), where α is

the labelled path associated to ξ and F is a filter in Bα satisfying one of

the three conditions of Proposition 6.5.

The groupoid associated with an ultragraph is a Deaconu-Renault groupoid.

To define it, first we recall the definition of the shift map on T.

For each n ∈ N, we let T(n) = {ξα ∈ T | |α| ≥ n}. The shift map σ : T(1) → T

is defined as follows.

(1) If the associated path of ξ is an infinite path α1α2α3 . . ., then σ(ξ) is the

filter associated to the path α2α3 . . . as in Proposition 6.5.

(2) If the associated path of ξ is a finite path α1α2 . . . αn with n ≥ 2, then

σ(ξ) is the filter associated to the pair (α2 . . . αn, ξn).

(3) If the associated path of ξ is an edge e ∈ G1, then σ(ξ) is the filter

associated to the pair (ω, ↑B ξ1), recalling that ω is the empty word.

Finally, the groupoid associated with G is given by

Γ(T, σ) = {(ξ,m−n, η) ∈ T×Z×T | m,n,∈ N, ξ ∈ T(n), η ∈ T(m), σn(ξ) = σm(η)},

with product and inverse given by

• (ξ, k, η)(ζ, l, ρ) = (ξ, k + l, ρ) for (ξ, k, η), (ζ, l, ρ) ∈ Γ(T, σ) such that

η = ζ, and

• (ξ, k, η)−1 = (η,−k, ξ) for (ξ, k, η) ∈ Γ(T, σ),

respectively.

To specify a basis for Γ(T, σ), we first recall a basis for the topology on T. For

each e ∈ E(S), define

Ve = {ξ ∈ T | e ∈ ξ},

and for {e1, . . . , en} a finite (possibly empty) set in E(S), define

Ve:e1,...,en = Ve ∩ V c
e1 ∩ · · · ∩ V c

en = {ξ ∈ T | e ∈ ξ, e1 /∈ ξ, . . . , en /∈ ξ}.

Let E(S)+ =
⋃∞

n=1E(S)n, where E(S)n is the Cartesian product of n copies of

E(S). For each n ∈ N and e = (e, e1, . . . , en) ∈ E(S)+, define Ve = Ve:e1,...,en .

Then, the family {Ve}e∈E(S)+ is a basis for the topology on T.

Now, a basis for the topology on Γ(T, σ) is given by the family of sets of the

form

V(U, V,m, n) = {(ξ,m− n, η) ∈ Γ(T, σ) | (ξ, η) ∈ U × V, σm(ξ) = σn(η)},

where m,n ∈ N, U is an open subset of T(m) and V is an open subset of T(n).

Another basis for the topology on Γ(T, σ) is given by the sets of the form

Z(e,e1,...,ek) = {(ξ,m− n, η) ∈ Γ(T, σ) | η ∈ V(e,e1,...,ek), σ
m(ξ) = σn(η)},

see [9, Section 4].

Given an ultragraph G, it is proved in [13] that the Steinberg algebra associated

with Γ(T, σ) is isomorphic to LK(G). In fact, following the isomorphism described

in [13, Theorem 5.5], we obtain that there is an isomorphism

ϕG : LK(G) → AK(Γ(T, σ))
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such that ϕG(pA) = 1Z(ω,A,ω)
for all A ∈ G0, ϕG(se) = 1Z(e,r(e),ω)

and ϕG(s
∗
e) =

1Z(ω,r(e),e)
, for all e ∈ G1.

Next, we prove that ultragraphs behave like graphs in terms of the isotropy

groups of the associated groupoids. We have the following result, which general-

izes [36, Proposition 6] to ultragraphs.

Proposition 6.6. Let G be an ultragraph, Γ(T, σ) the associated groupoid, and

ξ ∈ T. Then, the isotropy group Γ(T, σ)ξ is trivial, unless ξ is a filter of infinite

type associated with ξ = ργγ · · · , where ρ is a finite path of length greater than

zero and γ is a closed path, in which case Γ(T, σ)ξ ∼= Z.

Proof. By [14, Proposition 6.10], a tight filter ξα ∈ T has non-trivial isotropy if,

and only if, there exists ρ and γ, labelled paths of length greater than zero, such

that α = ργγ · · · . Let ξα ∈ T be such that α = ργγ · · · . Then, Γ(T, σ)ξα =

{(ξα,m, ξα) | m ∈ Z}, since if m,n ≥ 0 then α = ργnγγ · · · = ργmγγ · · · shows

that (ξα,m− n, ξα) ∈ Γ(T, σ)ξα , thus finishing the proof. �

Let K be a field, G an ultragraph and p an infinite path in G. We then have

L(ξp,0,ξp) := s−1
Γ(T,σ)((ξ

p, 0, ξp)) = {(ξq, k, ξp) | q ∈ [p], k ∈ Z}.

Consider the K-vector space KL(ξp,0,ξp) with basis L(ξp,0,ξp). Then KL(ξp,0,ξp) is

a left AK(Γ(T, σ))-module with the multiplication satisfying the following:

1Z(ω,A,ω)
· (ξq, k, ξp) =

{

(ξq, k, ξp) if s(q) ∈ A,

0 otherwise

1Z(e,r(e),ω)
· (ξq, k, ξp) =

{

(ξeq, k + 1, ξp) if s(q) ∈ r(e),

0 otherwise

1Z(ω,r(e),e)
· (ξq, k, ξp) =

{

(ξτ>1(q), k − 1, ξp) if q = eτ>1(q),

0 otherwise

for all A ∈ G0, e ∈ G1 and (ξq, k, ξp) ∈ L(ξp,0,ξp). By Theorem 6.2, Ind(ξp,0,ξp)(M) =

KL(ξp,0,ξp) ⊗KΓ(T,σ)(ξp,0,ξp) M is a simple left AK(G)-module for all simple left

KΓ(T, σ)(ξp,0,ξp)-module M .

Assume that p is not tail-equivalent to c∞ for all closed path c in G. We

have that the isotropy group Γ(T, σ)(ξp,0,ξp) is trivial by Proposition 6.6, so

KΓ(T, σ)(ξp,0,ξp) ∼= K and K is a simple KΓ(T, σ)(ξp,0,ξp)-module. We then

have that

Ind(ξp,0,ξp)(K) = KL(ξp,0,ξp) ⊗KΓ(T,σ)(ξp,0,ξp) K = KL(ξp,0,ξp) ⊗K K ∼= KL(ξp,0,ξp)

as AK(Γ(T, σ))-modules. By this, and the above isomorphism ϕG , Ind(ξp,0,ξp)(K)

may be viewed as a simple left LK(G)-module. It is clear that

Ind(ξp,0,ξp)(K) ∼= V[p]
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as left LK(G)-modules.

Assume that p is tail-equivalent to c∞ for some closed path c in G. By Propo-

sition 6.6, we have that the isotropy group Γ(T, σ)(ξp,0,ξp) = {(ξp,m, ξp) | m ∈

Z} ∼= Z via the map: (ξp,m, ξp) 7−→ m, and so KΓ(T, σ)(ξp,0,ξp) ∼= K[x, x−1] via

the map: (ξp, 1, ξp) 7−→ x and (ξp,−1, ξp) 7−→ x−1. We note that every simple

K[x, x−1]-module is of the form K[x, x−1]/(f(x)), where (f(x)) is the ideal of

K[x, x−1] generated by an irreducible polynomial f(x).

Let f(x) be an irreducible polynomial in K[x, x−1]. Then,

Ind(ξp,0,ξp)(K[x, x−1]/(f(x))) = KL(ξp,0,ξp) ⊗K[x,x−1] K[x, x−1]/(f(x))

is a simple left AK(Γ(T, σ))-module (see Theorem 6.2). By this note and the

above isomorphism ϕG , Ind(ξp,0,ξp)(K[x, x−1]/(f(x))) may be viewed as a simple

left LK(G)-module. If c is an exclusive cycle then, by Lemma 5.2 (1), we have

that

Ind(ξp,0,ξp)(K[x, x−1]/(f(x))) ∼= V f
[p]

as left LK(G)-modules.

Let v be either a sink or an infinite emitter in G, and ξv := ↑B {v}. Then,

L(ξv,0,ξv) := s−1
Γ(T,σ)((ξ

v, 0, ξv)) = {(↑Bα {v}, |α|, ξv) | α ∈ G∗, v ∈ r(α), |α| ≥ 1}.

Consider the K-vector space KL(ξv,0,ξv) with basis L(ξv,0,ξv). Then, KL(ξv,0,ξv)

is a left AK(Γ(T, σ))-module with the multiplication satisfying the following:

1Z(ω,A,ω)
· (↑Bα {v}, |α|, ξv) =

{

(↑Bα {v}, |α|, ξv) if s(α) ∈ A,

0 otherwise

1Z(e,r(e),ω)
· (↑Bα {v}, |α|, ξv) =

{

(↑Beα {v}, |α| + 1, ξv) if s(q) ∈ r(e),

0 otherwise

1Z(ω,r(e),e)
· (↑Bα {v}, |α|, ξv) =















(↑Bβ
{v}, |α| − 1, ξv) if |α| ≥ 2 and α = eβ,

(ξv, 0, ξv) if α = e,

0 otherwise

for all A ∈ G0, e ∈ G1 and (↑Bα {v}, |α|, ξv) ∈ L(ξv,0,ξv). By Theorem 6.2,

Ind(ξv,0,ξv)(M) = KL(ξv,0,ξv)⊗KΓ(T,σ)(ξv,0,ξv)
M is a simple left AK(G)-module for

all simple left KΓ(T, σ)(ξv ,0,ξv)-module M . On the other hand, we have that the

isotropy group Γ(T, σ)(ξv ,0,ξv) is trivial by Proposition 6.6, so KΓ(T, σ)(ξv ,0,ξv) ∼=
K and K is a simple KΓ(T, σ)(ξv ,0,ξv)-module. We then have that

Ind(ξv,0,ξv)(K) = KL(ξv,0,ξv) ⊗KΓ(T,σ)(ξv,0,ξv)
K = KL(ξv,0,ξv) ⊗K K ∼= KL(ξv,0,ξv)
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as AK(Γ(T, σ))-modules. By this, and the above isomorphism ϕG , Ind(ξp,0,ξp)(K)

may be viewed as a simple left LK(G)-module. We also have that

Ind(ξv,0,ξv)(K) ∼=

{

Nv if v is a sink,

Nv∞ if v is an infinite emitter

as left LK(G)-modules.

From these observations and Theorems 5.4 and 4.3, we immediately obtain the

following result.

Theorem 6.7. Let K be a field and G an ultragraph. Then, every Chen simple

LK(G)-module may be induced from a simple module over the group K-algebra of

some isotropy group of the groupoid Γ(T, σ). Consequently, Exel’s Effros-Hahn

conjecture holds for ultragraph Leavitt path algebras.
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[12] G. G. de Castro, D. Gonçalves and D.W. van Wyk, Topological full groups of ultragraph

groupoids as an isomorphism invariant, Munster J. Math. 14(1), (2021), 165-189.
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