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Abstract

In this paper, we study some classes of sweeping processes with velocity constraints in the
moving set. In addition to the solution existence and the solution uniqueness for the case
of a moving convex constraint set, some results on the solution existence and the solution
multiplicity where the constraint set is a finite union of disjoint convex sets are also obtained.
Our main tool is a theorem on the solution sensitivity of parametric variational inequalities.
Beside the traditional requirement that the constraint set moves continuously in the Hausdorff
distance sense, we intensively use a new assumption on the local Lipschitz-likeness of the
constraint set-valued mapping. The obtained results are compared with the existing ones and
analyzed by several examples.
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1 Introduction

The notion of a sweeping process originates from the pioneering work of Jean-Jacques Moreau in
the 1970s for the modeling of quasi-static evolution of elastoplastic systems in unilateral mechanics.
He has written more than 25 papers devoted to the treatment of theoretical and numerical aspects
of the sweeping process and its applications in unilateral mechanics [40–45]. Let H be a real Hilbert
space and C : [0, T ] ⇒ H, t 7→ C(t) ⊂ H, be a set-valued mapping. Moreau’s sweeping processes
consist in finding a trajectory t ∈ [0, T ] 7→ u(t) ∈ C(t) satisfying the following generalized Cauchy
problem:

(SWP)

{
u̇(t) ∈ −NC(t)(u(t)) a.e. t ∈ [0, T ]

u(0) = u0 ∈ C(0),

where NC(t)(u(t)) denotes the normal cone (in the sense of convex analysis) associated to the
moving nonempty convex and closed set C(t) at the point u(t). Translating the above inclusion to
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a mechanical language, we have the following interpretation in the case of quasi-static evolution
systems (by neglecting any inertial effects):

- If the position u(t) at the time t of a material point lies in the interior of the moving set
C(t), then the particle remains at rest, since the normal cone is reduced to the singleton {0}
in this case.

- If the material point is in contact with the boundary at a certain time t, then it is pushed
in a normal inward direction by the boundary to stay inside the moving set and satisfies
the viability constraint u(t) ∈ C(t). This mechanical visualization leads Moreau to call this
problem the sweeping process: the particle is swept by the moving set.

Several extensions of Moreau’s sweeping process in diverse ways have been studied in the
literature (see, e.g., [1, 31, 32, 34, 37, 56] and references therein). Recently, Krejčí, Monteiro, and
Recupero [30] have obtained existence and uniqueness results for explicit and implicit nonconvex
sweeping processes. The motion of the constraint set is separated into translation part and shape-
change part. Rewriting the problems in terms of Kurzweil integral, the authors investigated the
case where no compactification or other kinds of regularization are required.

Studied firstly by Siddiqi and Manchanda [52] and Bounkhel [12] in some simple forms, sweeping
processes with velocity constraint in moving sets encompass a class of evolution variational inequali-
ties, which have numerous applications in mechanics and physics (see [5, p. 8] and [23, Section 6.4]).
Adopting a more general setting than the ones in [12, 52], Adly, Haddad and Thibault [5, The-
orem 5.1] obtained a result on the solution existence of sweeping processes in separable Hilbert
spaces with velocity in a moving bounded convex set. Afterwards, Adly and Le [6, Theorem 1]
proved that a similar result can be established for the case where the moving set is unbounded
and convex. In addition, by constructing an example (see [6, Example 1]), the authors showed
that the sweeping process in question may not have solutions if one of the assumptions of the ex-
istence theorem is violated. Vilches and Nguyen [57, Section 5] have improved the result of [6] by
weakening the continuity condition of the moving constraint set. The solution existence in [57] has
been obtained by applying an existence result on evolution inclusions governed by time-dependent
maximal monotone operators with a full domain.

The interested reader is referred to [6, pp. 840–842] for an application of the solution existence
results to nonregular electrical circuits.

Adly and Haddad [3] have proved the equivalence between sweeping processes with velocity
constraints and quasistatic evolution variational inequalities. In fact, convex implicit sweeping
processes can be seen as the dual of a quasi-static evolution variational inequality involving posi-
tively homogeneous convex functionals. The result in [3] was extended by Migórski, Sofonea and
Zend in [36] to nonlinear implicit sweeping processes by using a discrete approximation and a
fixed-point argument for history-dependent operators. Focusing on the case of convex constraint
sets (the convex case), Jourani and Vilches [27] have established the existence and uniqueness of
the solution to the sweeping process in a very general framework by equivalently transforming
the problem in question to an ordinary differential equation on a Hilbert space. The obtained
results have been applied to quasistatic evolution variational inequalities and nonsmooth electrical
circuits [27, Sections 7 and 8]. Among other things, the authors have shown [27, p. 5169] that
one solution existence result in [12] can be proved by noting that the velocity vector at each time
instance is uniquely defined as the projection of the origin of the Hilbert space on the moving con-
straint set. As a consequence, the corresponding results on the solution existence and uniqueness
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in [52], which are applicable to the case of moving convex constraint sets, also can be derived in
this way.

Recently, Adly and Haddad [4] have obtained existence and uniqueness results for sweeping
processes with velocity constraints in the convex case where the constraint set depends on both
time and state.

Let A0, A1 : H → H be bounded symmetric linear operators and f : [0, T ] → H be a continuous
mapping. Recall that a linear operator A : H → H is said to be symmetric if ⟨Ax, y⟩ = ⟨x,Ay⟩ for
all x, y ∈ H. Following [5, 6], we consider the sweeping process{

A1u̇(t) +A0u(t)− f(t) ∈ −NP
C(t)(u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0,
(P)

where NP
C(t)(u̇(t)) is the proximal normal cone (see, e.g., [13, p. 21] and Section 2 below) to C(t) at

u̇(t). An absolutely continuous function u : [0, T ] → H is said to be a solution of (P) if it satisfies
the differential inclusion and the initial value condition in the formulation of the problem. Note
that if u : [0, T ] → H is an absolutely continuous function, then u is Fréchet differentiable almost
everywhere on [0, T ] with respect to the Lebesgue measure of the segment (see Subsection 2.1
below). Since every Lipschitz function u : [0, T ] → H is absolutely continuous, it is desirable to
have sufficient conditions for (P) to have a Lipschitz solution.

For concrete examples of sweeping processes with velocity in a moving set we refer to [5,
Examples 1 and 2] and [6, Example 1].

The solution existence theorem in [5, Theorem 5.1] for (P) was obtained under the following
assumptions:

(a) C(t) is closed convex bounded for every t ∈ [0, T ];
(b) A1 is positive semidefinite, i.e., ⟨A1x, x⟩ ≥ 0 for all x ∈ H.

For the sweeping process (P), the authors of [6] showed that the next two assumptions guarantee
the solution existence:

(ã) C(t) is closed convex for every t ∈ [0, T ];
(b̃) A1 is positive semidefinite and there exist positive constants α, β such that

⟨A1x, x⟩ ≥ α∥x∥2 − β for all x ∈ C(0).

It is worth to emphasize that the settings and results of [5, 6, 27,57] require the separability of
the Hilbert space H.

As far as we know, nonconvex sweeping processes with velocity constraints have only been
addressed by Bounkhel [12], who assumed that A0 ≡ 0 (identically null), A1 = Id is the identity
operator, and the sets C(t) are uniformly prox-regular and contained in a convex compact set for
all t ∈ [0, T ].

Our aim is to study the sweeping process (P) where C(t) is not necessarily convex for every
t ∈ [0, T ]. Firstly, by using a result of Yen [59] on the solution sensitivity of parametric variational
inequalities, we investigate (P) in the case where the set-valued mapping t 7→ C(t), t ∈ [0, T ],
has nonempty closed convex values and is locally Lipschitz-like. Thanks to this approach, the
vital requirements of the separability of H and of the linearity of the operator A1 in most of the
preceding works can be omitted. Note also that a locally Lipschitz-like set-valued mapping with
nonempty closed convex values can be not continuous in the Hausdorff distance sense. Secondly,
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we obtain several solution existence results for the case where C(t) is a finite union of disjoint
convex sets.

Assuming that the operator A0 in (P) is coercive and the constraint sets are convex, the authors
in [5] have given a condition for the solution uniqueness. Herein, we will prove that (P) can have
at most one solution if the operator A1 is coercive. However, the coerciveness of both A0 and A1

does not imply the solution uniqueness of (P) even in the case of a fixed nonconvex constraint set,
which is compact, uniformly prox-regular, and connected (see Remark 5.4 below). We think that
the solution uniqueness of (P) deserves further investigations. Besides, due to the wide range of
applications of (P), other properties of the solutions of that problem are also of great interest.

The present paper is organized as follows. Section 2 gives some preliminaries that we will use
in the rest of the paper. Sweeping processes with convex constraint sets are discussed in Section 3.
Three theorems on the solution existence of (P) in the nonconvex case are given in Section 4.
Several illustrative examples are presented in Section 5. Among other things, Section 6 establishes
some significant generalizations of two theorems from Section 3. These generalizations are mainly
due to one of the two anonymous referees, who has solved two questions raised in the submitted
version of our paper. We formulate, in Section 7, five open questions related to the results in the
previous sections. Concluding remarks are given in Section 8. For the convenience of the reader, an
appendix providing detailed proofs of the equivalences of three norms in the space W 1,∞((0, T ),H)

is included.

2 Preliminaries

By N we denote the set of positive integers. The notation [a, b] (resp., (a, b)) stands for a closed
interval (resp., an open interval) in the real line R. Throughout this paper, let H be a real Hilbert
space equipped with the norm ∥ · ∥ and the scalar product ⟨·, ·⟩. The open ball (resp., closed ball)
in H with center x and radius r is denoted by BH(x, r) (resp., B̄H(x, r)). If the space is itself
clear by the context, we will omit the subscripts in these notations. The closure, the interior, the
boundary, and the convex hull of a set Ω ⊂ H are denoted respectively by cl(Ω), int(Ω), ∂Ω, and
co(Ω). The distance from x to Ω is d(x,Ω) := inf

y∈Ω
∥x− y∥. The projection of a point x ∈ H on Ω

is defined by projΩ(x) =
{
y ∈ Ω | d(x,Ω) = ∥x− y∥

}
. The Hausdorff distance between nonempty

subsets Ω1, Ω2 of H is given by dH(Ω1,Ω2) = max

{
sup
x∈Ω1

d(x,Ω2), sup
y∈Ω2

d(y,Ω1)

}
. The Banach

space of continuous functions from [a, b] to H is denoted by C0([a, b],H) and its norm of uniform
convergence is given by ∥x∥C0 = max

t∈[a,b]
∥x(t)∥.

2.1 Notations Related to (P)

Definition 2.1. A function x : [a, b] → H is said to be absolutely continuous on [a, b] if, for any

ε > 0, there is δ > 0 such that
ℓ∑

k=1

∥x(bk)− x(ak)∥ < ε for every finite system of pairwise disjoint

subintervals (ak, bk) ⊂ [a, b], k = 1, . . . , ℓ, with the total length
ℓ∑

k=1

(bk − ak) less than δ.

It is a well-known fact (see [21, Corollary 13 of Chapter 3, Theorem 2 on p. 107, and Section 6
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of Chapter VII] or [10, Corollary 5.12 and Theorem 5.21]) that any absolutely continuous function
u : [0, T ] → H is Fréchet differentiable almost everywhere on [0, T ] with respect to the Lebesgue
measure of the segment.

Definition 2.2. (See, e.g., [13, p. 21]) The proximal normal cone NP
Ω (x) to Ω ⊂ H at x ∈ Ω is

defined by setting

NP
Ω (x) = {ξ ∈ H | ∃α > 0 such that x ∈ projΩ(x + αξ)} .

Remark 2.3. (See, e.g., [18, Proposition 1.3]) Let x ∈ Ω ⊂ H and ξ ∈ NP
Ω (x) \ {0}. If α is a

positive number such that x ∈ projΩ(x + αξ), then x ∈ projΩ(x + tξ) for every t ∈ (0, α).

Remark 2.4. (See, e.g., [18, Proposition 1.5]) Proximal normal cone is a local structure. Namely,
for any x ∈ Ω ⊂ H and ρ > 0, the proximal normal cone to Ω ⊂ H at x coincides with the proximal
normal cone to Ω ∩ B̄(x, ρ) at x, i.e.,

NP
Ω (x) = NP

Ω∩B̄(x,ρ)(x). (2.1)

Definition 2.5. For some r ∈ (0,+∞], a nonempty closed set Ω ⊂ H is called r-prox-regular (or
uniformly prox-regular with radius r) if for all x ∈ Ω, for all t ∈ (0, r) and for all ξ ∈ NP

Ω (x) such
that ∥ξ∥ = 1, one has x ∈ projΩ(x + tξ).

It is a simple matter to verify that every nonempty closed convex set is uniformly prox-regular
with radius r = +∞. According to [19, Proposition 7], if a nonempty closed set Ω is uniformly prox-
regular, then NP

Ω (x) = NCl
Ω (x) with NCl

Ω (x) being the Clarke normal cone to Ω at x. In particular,
if Ω is a nonempty closed convex set, then NP

Ω (x) coincides with the normal cone NΩ(x) to Ω at
x in the sense of convex analysis, i.e., NP

Ω (x) = NΩ(x) := {x∗ ∈ H | ⟨x∗, y − x⟩ ≤ 0 for all y ∈ Ω}.
It is worth noting that the r-prox-regularity of Ω is equivalent to the hypomonotonicity of the

truncated proximal normal cone, i.e., for all x1, x2 ∈ Ω and for all ξi ∈ NP
Ω (xi) ∩ B̄, i = 1, 2, we

have
⟨ξ2 − ξ1, x2 − x1⟩ ≥ −1

r
∥x2 − x1∥2,

where B̄ denotes the closed unit ball in H.
Let us also mention that if Ω is r-prox-regular, then the projection operator projΩ is well-

defined (single-valued) and locally Lipschitz continuous on the r-open enlargement Ur(Ω) := {x ∈
H : d(x,Ω) < r} of Ω.

The interested reader is referred to [7,14,19] for other properties, as well as various character-
izations, of uniformly prox-regular sets.

Example 2.6. Let H = R2, the set Ω =
{
x = (x1, x2) ∈ R2 | x2 ≤ x2

1

}
is unbounded, closed,

nonconvex, and
1

2
-prox-regular. To prove the r-prox-regularity of Ω with r =

1

2
, observe by the

closedness of Ω that the projection of any u ∈ R2 \ Ω on Ω exists and belongs to the boundary
∂Ω. Let us set f(x) = ∥u− x∥2 and g(x) = −x2

1 + x2, and consider the following two-dimensional
constrained optimization problem

min{f(x) | g(x) ≤ 0}. (2.2)

Since ∇g(x) = (−2x1, 1) is nonzero for every x ∈ R2, there is some v ∈ R2 such that ⟨∇g(x), v⟩ < 0.
Applying the Lagrange multiplier rule (see [47, Theorem 1, p. 260] and [17]) to (2.2), one can prove

5



that the problem has a unique solution xu for each u ∈ R2 \Ω, i.e., projΩ(u) = {xu}. Moreover, a
careful analysis of the necessary optimality conditions given by the Lagrange multiplier rule shows
that, for each x̄ ∈ ∂Ω \ {(0, 0)}, the equality x̄ = projΩ(ū) holds for ū ∈ R \ Ω if and only if

ū = x̄+ t∇g(x̄) with t ∈ (0,
1

2
). Therefore, we have NP

Ω (x̄) = R+∇g(x̄) for every x̄ ∈ ∂Ω \ {(0, 0)}.
For x̄ ∈ (0, 0), the equality x̄ = projΩ(ū) holds for ū ∈ R \Ω if and only if ū = x̄+ t∇g(x̄) = (0, t)

with t ∈ (0,+∞). Hence, NP
Ω ((0, 0)) = {0} × R+. To find a modulus r > 0 for the uniform

prox-regularity of Ω, we can argue as follows. Fix a point x̄ ∈ ∂Ω \ {(0, 0)} and let ū = x̄+ τ∇g(x̄)

for some τ ∈ (0,
1

2
). Since

ū− x̄ = τ∥∇g(x̄)∥ ∇g(x̄)

∥∇g(x̄)∥ = τ
√

4x̄2
1 + 1

∇g(x̄)

∥∇g(x̄)∥ ,

for ξ :=
∇g(x̄)

∥∇g(x̄)∥ one has x̄ ∈ projΩ(x̄ + tξ) if and only if t := τ
√

4x̄2
1 + 1 belongs to the interval

(0,
1

2

√
4x̄2

1 + 1). Clearly, the infimum of
1

2

√
4x̄2

1 + 1 over the set x̄1 ∈ R \ {0} is
1

2
. In addition, at

x̄ ∈ (0, 0), one has x̄ = projΩ(x̄ + t(0, 1)) for all t ∈ (0,+∞). So, in agreement with Definition 2.5,

we can conclude that r :=
1

2
is the best radius or modulus for the uniform prox-regularity of Ω.

−2 −1 1 2

1

2

3

Figure 1: Illustration of Example 2.6

From the result established in Example 2.6 we get the following useful examples of uniformly
prox-regular sets in spaces of higher dimensions.

Example 2.7. The set
{
x = (x1, x2, . . . , xn) ∈ Rn | x2 ≤ x2

1

}
, where n ≥ 3, is unbounded, closed,

nonconvex, and
1

2
-prox-regular.

Example 2.8. The set
{
x = (x1, x2, x3, . . . ) ∈ ℓ2 | x2 ≤ x2

1

}
is unbounded, closed, nonconvex, and

1

2
-prox-regular.

Remark 2.9. Let I be a finite index set. The union Ω of disjoint nonempty closed convex subsets
Ωi ⊂ H, i ∈ I, is nonconvex if I has more than one element. If all the numbers αij := inf{∥x− y∥ |
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x ∈ Ωi, y ∈ Ωj}, with i, j ∈ I and i ̸= j, are positive, then Ω is uniformly prox-regular. More

precisely, Ω is r-prox-regular, where r > 0 is any number satisfying the condition r ≤ 1

2
αij for all

i, j ∈ I with i ̸= j. In addition, Ω is not uniformly prox-regular if αij = 0 for a pair (i, j) ∈ I × I

with i ̸= j. These assertions can be easily proved by using Definition 2.5 and the fact that the
proximal normal cone coincides with the normal cone in the sense of convex analysis if the set
under consideration is convex.

Remark 2.10. Closed and convex sets constitute an important class of sets in convex analysis and
optimization. To go beyond convexity, the class of uniform prox-regular sets was introduced and
shares with convex sets many nice properties (we refer to [7] for more details). The prox-regularity
is known in the literature under different names (positively reached sets, weakly convex sets or
proximally smooth sets). It plays an important role in the context of Moreau’s sweeping processes.
In fact, L. Thibault in [54] extended known Moreau’s existence and uniqueness results for (SWP)
to prox-regular sets (see also Edmond and Thibault [24]). The perturbed version of the dynamical
system (SWP) with prox-regular sets C(t) has been recently used by Maury and Venel [35] and
Maury and Faure [33] for the modeling of crowd motion and the evacuation of individuals in case
of an emergency situation (in both discrete and continuous dynamics).

2.2 The Bochner Integration

We now recall the definition of Bochner integral.

Definition 2.11. (See [21, pp. 44–45]) Let (Ω,Σ, µ) be a finite measurable space and X be a
Banach space. A µ-measurable function f : Ω → X is called Bochner integrable if there exists a
sequence of simple functions {fk} such that

lim
k→∞

∫
Ω

∥fk(ω)− f(ω)∥Xdµ = 0.

In this case,
∫
E

f(ω)dµ is defined for each E ∈ Σ by
∫
E

f(ω)dµ = lim
k→∞

∫
E

fk(ω)dµ, where∫
E

fk(ω)dµ is defined in an obvious way.

As noted in [21, p. 45], the limit in Definition 2.11 exists and is independent of the defining
sequence {fk}.

According to [21, Theorem 2, p. 45], a µ-measurable function f : Ω → X is Bochner integrable

if and only if
∫
Ω

∥f(ω)∥Xdµ < ∞. If 1 ≤ p < ∞, the Bochner space Lp(Ω, X) consists of all

µ-measurable functions f : Ω → X satisfying

∥f∥p =

(∫
Ω

∥f(ω)∥pXdµ

)1/p

< ∞

(see, e.g., [21, pp. 49–50]). For more details on Bochner integration, we refer to [61, p. 132], [21,
Chapter II], and [15, p. 116].

Some useful facts on Bochner integration of absolutely continuous functions will be given in
Section 3 (see Remark 3.9).
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2.3 The Space W 1,∞((0, T ),H)

Following Cazenave and Haraux [16, Definition 1.4.33], by W 1,∞((0, T ),H) we denote the space
of (equivalent classes of) functions f ∈ L∞((0, T ),H) that f ′ ∈ L∞((0, T ),H), in the sense of
D′((0, T ),H). For f ∈ W 1,∞((0, T ),H), we set ∥f∥W 1,∞ = ∥f∥L∞ + ∥f ′∥L∞ . It is well known
(see [16, Proposition 1.4.34]) that

(
W 1,∞((0, T ),H), ∥.∥W 1,∞

)
is a Banach space. The just men-

tioned norm is equivalent to the norm ∥f∥ = ∥f(0)∥+ ess sup
t∈(0,T )

∥ḟ(t)∥, which in turn is equivalent

to following one:
∥f∥M = ∥f(0)∥+ ess sup

t∈(0,T )

(
e−Mt∥ḟ(t)∥

)
(2.3)

with M being a positive constant. Detailed proofs of these useful facts can be found in Appendix
of this paper.

2.4 Parametric Variational Inequalities

Let (M,dM ) and (Λ, dΛ) be two metric spaces. Let F : H × M → H be a vector-valued
function, and K : Λ ⇒ H be a set-valued map with nonempty closed convex values. For each pair
of parameters (µ, λ) ∈ M × Λ, we consider the problem of finding a vector x ∈ K(λ) such that

⟨F (x, µ), y − x⟩ ≥ 0 ∀y ∈ K(λ), (2.4)

which is a parametric variational inequality with a perturbed constraint set. We note that (2.4)
can be rewritten as

0 ∈ F (x, µ) +NK(λ)(x).

The pseudo-Lipschitz property of set-valued mappings introduced by Aubin [9, p. 98] is a crucial
concept in set-valued and variational analysis. This property is also known under other names:
the Aubin continuity property [22], the sub-Lipschitzian property [49], and the Lipschitz-like prop-
erty [38]. Complete characterizations of the property can be found in [38,39,49,50] and the refer-
ences therein. For the study of the Aubin property to the solution map of a composite parametric
variational systems using the coderivative approach and its applications in nonsmooth mechanics
and nonregular electrical circuits, we refer to [2, 8].

Definition 2.12. (See [38, Definition 1.40] and [39, Definition 3.1]) K is said to be Lipschitz-like
around (λ̃, x̃), where x̃ ∈ K(λ̃), if there exist a neighborhood V of λ̃, a neighborhood W of x̃ and
a constant κ > 0 such that

K(λ) ∩W ⊂ K(λ′) + κdΛ(λ, λ
′)B̄(0, 1), ∀λ, λ′ ∈ V.

Remark 2.13. If there exist a neighborhood V of λ̃ and a constant κ > 0 such that

K(λ) ⊂ K(λ′) + κdΛ(λ, λ
′)B̄(0, 1), ∀λ, λ′ ∈ V, (2.5)

then one says that K is locally Lipschitz around λ̃. If the inclusion in (2.5) holds for some κ > 0

and for all λ, λ′ ∈ Λ, then K is said to be a Lipschitz set-valued mapping. It is well known that
if K is locally Lipschitz around λ̃, then K is Lipschitz-like around (λ̃, x̃) for every x̃ ∈ K(λ̃). In
particular, a Lipschitz set-valued mapping is Lipschitz-like around every point of its graph.
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Consider the parametric variational inequality (2.4). Let x̄ be a solution to it at given param-
eters (µ̄, λ̄) ∈ M × Λ. We make two assumptions on the behavior of the function F (x, µ) around
the point (x̄, µ̄). Namely, we assume that there exist a closed convex neighborhood X of x̄, a
neighborhood U of µ̄, and two positive constants α, l such that

∥F (x′, µ′)− F (x, µ)∥ ≤ l(∥x′ − x∥+ dM (µ′, µ)), ∀µ, µ′ ∈ U, x, x′ ∈ X, (2.6)

and
⟨F (x′, µ)− F (x, µ), x′ − x⟩ ≥ α∥x′ − x∥2, ∀µ ∈ U, x, x′ ∈ X. (2.7)

The following result was originally stated in [59] in finite dimensional spaces. However, it is
still valid for a general Hilbert space H and two metric spaces (M,dM ) and (Λ, dΛ) of perturbation
parameters (see [59, Remark 2.3] for more details).

Theorem 2.14. ( [59, Theorem 2.1]) Assume that x̄ is a solution to (2.4) with respect to the given
parameters (µ̄, λ̄) ∈ M × Λ, conditions (2.6) and (2.7) hold, and the set-valued map K : Λ ⇒ H
has nonempty closed convex values and is Lipschitz-like around (λ̄, x̄). Then, there exist positive
constants κū and κλ̄, and neighborhoods Ũ of µ̄ and Ṽ of λ̄ such that

(i) For every (µ, λ) ∈ Ũ × Ṽ , there exists a unique solution to (2.4) in X, denoted by x(µ, λ);

(ii) For all (µ′, λ′), (µ, λ) ∈ Ũ × Ṽ , one has

∥x(µ′, λ′)− x(µ, λ)∥ ≤ κµ̄dM (µ′, µ) + κλ̄dΛ(λ
′, λ)1/2. (2.8)

3 The Case of Convex Constraint Sets

For studying the problem (P), the next two assumptions were used in [5, 6].

Assumption (H1). The constraint sets C(t), t ∈ [0, T ], are nonempty, closed, and convex.

Assumption (H2). The set-valued mapping C is continuous in the Hausdorff distance sense, i.e.,
there exists a continuous function g : [0, T ] → R such that

dH(C(s), C(t)) ≤ |g(s)− g(t)| for all s, t ∈ [0, T ]. (3.1)

The results of Adly, Haddad, and Thibault [5] also require the following assumption.

Assumption (H3a). The constraint set C(0) is bounded.

Later, to deal with possibly unbounded constraint sets, Adly and Le [6], have used the next
semicoercivity assumption.

Assumption (H3b). For the bounded symmetric linear operator A1 : H → H, there exist positive
constants c1, c2 such that

⟨A1x, x⟩ ≥ c1∥x∥2 − c2, ∀x ∈ C(0). (3.2)

Remark 3.1. If (H3a) is satisfied, then there exist c1 > 0 and c2 > 0 such that (3.2) is fulfilled,
i.e., (H3b) is also satisfied. Indeed, if C(0) is bounded, then we can find ρ > 0 such that C(0) ⊂
ρB̄(0, 1). Since A1 is bounded, we have |⟨A1x, x⟩| ≤ ∥A1∥∥x∥2. Hence, the inequality ⟨A1x, x⟩ ≥
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−∥A1∥ρ2 holds for any x ∈ H. If A1 = 0, then by choosing c1 =
1

2
and c2 = ρ2 we get (3.2). If

A1 ̸= 0, then we choose c1 = ∥A1∥ and c2 = 2∥A1∥ρ2. For any x ∈ C(0), we have

c1∥x∥2 − c2 ≤ ∥A1∥(∥x∥2 − ρ2)− ∥A1∥ρ2 ≤ −∥A1∥ρ2 ≤ ⟨A1x, x⟩,

which justifies (3.2).

Remark 3.2. If (H2) and (H3b) are satisfied, then exist positive constants ĉ1, ĉ2 such that
⟨A1x, x⟩ ≥ ĉ1∥x∥2 − ĉ2 for all t ∈ [0, T ] and x ∈ C(t). We omit the detailed proof, whose main
idea is to construct a barrier γ > 0 and the positive constants ĉ1, ĉ2 such that for every y ∈ C(t),
t ∈ [0, T ], one can deduce the desired estimate ⟨A1y, y⟩ ≥ ĉ1∥y∥2 − ĉ2 from (3.2) if ∥y∥ > γ. If
∥y∥ ≤ γ, then the estimate is valid thanks to the suitable choice of ĉ1 and ĉ2.

Remark 3.3. It can be shown that if the assumptions (H1) and (H2) are satisfied then the
recession cone [48, pp. 61–63] of C(t), which is denoted by 0+C(t), is invariant with respect to t,
i.e., 0+C(t) = 0+C(0) for every t ∈ [0, T ]. Indeed, if C(0) is bounded, then the assumption (H2)
implies that C(t) is bounded for every t ∈ [0, T ]. It follows that 0+C(t) = 0+C(0) = {0} for
every t ∈ [0, T ]. If C(0) is unbounded, then C(t) is also unbounded for all t ∈ [0, T ]. Fix any
t ∈ [0, T ], let x ∈ C(t) and d ∈ 0+C(t)\{0} be chosen arbitrarily. Then, x + λd ∈ C(t) for all
λ ≥ 0. Let {λk}∞k=0 be an increasing sequence of positive real numbers satisfying lim

k→∞
λk = ∞.

For each k ≥ 0, by (H2) we have x + λkd ∈ C(0) + |g(t) − g(0)|B̄. So, there exist yk ∈ C(0) and
vk ∈ |g(t)− g(0)|B̄ such that x+ λkd = yk + vk. Since {vk} is bounded, d ̸= 0, and lim

k→∞
λk = ∞,

there exists an integer k̄ such that yk ̸= y0 for all k ≥ k̄. Then, by the boundedness of {vk} we
have

lim
k→∞

yk − y0
∥yk − y0∥

= lim
k→∞

v0 − vk + (λk − λ0)d

∥v0 − vk + (λk − λ0)d∥
=

d

∥d∥ .

Since C(0) is nonempty, closed, and convex, applying [25, Lemma 2.10] (the proof of that lemma
works not only for closed convex sets in Rn, but also for closed convex sets in any normed space),

one obtains
d

∥d∥ ∈ 0+C(0), which implies that d ∈ 0+C(0). Hence, 0+C(t) ⊂ 0+C(0) for all

t ∈ [0, T ]. Arguing similarly, we can show that 0+C(0) ⊂ 0+C(t) for all t ∈ [0, T ]. We have thus
obtained the desired result.

The solution existence and solution uniqueness results of [5] for sweeping processes with velocity
constraints of the form (P) can be stated as follows.

Theorem 3.4. (The moving constraint set is bounded and continuous in the Hausdorff distance
sense; see [5, Theorems 5.1 and 5.2]) Suppose that H is separable and A0, A1 are bounded positive
semidefinite linear operators. If the assumptions (H1), (H2), (H3a) are satisfied, then (P) has
at least one Lipschitz solution. If A0 is coercive, i.e., there exists a constant α0 > 0 such that
⟨A0x, x⟩ ≥ α0∥x∥2 for all x ∈ H, and (H1) is satisfied, then (P) has at most one solution.

The above results of Adly, Haddad, and Thibault have been extended by Adly and Le [6] to
the case of possibly unbounded closed convex sets C(t), t ∈ [0, T ]. In fact, there is no statement
on solution uniqueness of (P) in [6] in the unbounded and semicoercive case. However, it is not
difficult to see that the proof of Theorem 5.2 in [5] is also valid for the case of unbounded closed
convex constraint sets.
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Theorem 3.5. (The moving constraint set is continuous in the Hausdorff distance sense; cf. [6,
Theorem 1]) Suppose that H is separable and A0, A1 are positive semidefinite. If the assump-
tions (H1), (H2), (H3b) are satisfied, then (P) has at least one Lipschitz solution. If A0 is coercive
and (H1) is satisfied, then (P) has at most one solution.

The separability of H and the continuity in the Hausdorff distance sense of the set-valued
mapping C are vital assumptions in Theorems 3.4 and 3.5, which were proved by Moreau’s time
discretization techniques and the catching-up algorithm. Besides, as it has been noted in Re-
mark 3.3, if (H1) and (H2) are satisfied then the recession cone 0+C(t) of C(t) is invariant with
respect to t. By using the concept of parametric variational inequality and Theorem 2.1 from [59],
which have been recalled in Section 2, we now establish a new result on the solution existence
and solution uniqueness of (P). Here, H can be a non-separable Hilbert space, the constraint set
C(t) can be unbounded, and the recession cone of C(t) can vary when t changes in [0, T ] and the
operator A1 is allowed to be nonlinear. More precisely, let us consider the following more general
problem: {

A1(u̇(t))− f(t) ∈ −NC(t)(u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0,
(P̃)

where A1 : H → H is an operator (possibly nonlinear) satisfying the following strong monotonicity
and Lipschitz continuity assumptions

Assumption (H3c). There exist positive constants α1 > 0, k1 > 0 such that

⟨A1(x
′)−A1(x), x

′ − x⟩ ≥ α1∥x′ − x∥2, (3.3)

∥A1(x
′)−A1(x)∥ ≤ k1∥x′ − x∥, ∀x′, x ∈ H. (3.4)

Applied to the set-valued mapping C : [0, T ] ⇒ H in the formulations of (P) and (P̃) around a
point (t̄, x̄) in the graph of C, the notion of Lipschitz-like set-valued map recalled in Definition 2.12
means that the set C(t)∩W is close to C(t′) with t, t′ from a neighborhood V of t̄ and W being a
neighborhood of x̄. This is a natural requirement, because the velocity sets C(t), t ∈ [0, T ], must
have some continuity property.

Remark 3.6. Until now, the crucial assumption on sweeping process with velocity constraint of
the form (P) is the continuity of the set-valued mapping C : [0, T ] ⇒ H, which has been formulated
as (H2). The typical situation is that C(t) is the solution set of an inequality and equality system
depending on the parameter t ∈ [0, T ], say,

C(t) = {x ∈ H | gi(x, t) ≤ 0, i = 1, . . . ,m, hj(x, t) = 0, j = 1, . . . , s} ,

where gi : H × R → R and hj : H × R → R are certain (smooth or nonsmooth) continuous
functions such that gi(., t), i = 1, . . . ,m, are convex and hj(., t) = 0, j = 1, . . . , s, are affine for
each t ∈ [0, T ]. As far as we know, there are no criteria to verify whether (H2) is satisfied, or
not. Meanwhile, there are effective criteria for checking Lipschitz-like property of the set-valued
mapping C : [0, T ] ⇒ H around every point in its graph. Such criteria can be found, e.g., in
book of Aubin and Frankowska [11, Theorem 3.4.3], the book of Mordukhovich [38], the book of
Rockafellar and Wets [50, Theorem 9.40], the papers by Dien and Yen [20], Yen [58,60].

Theorem 3.7. (The moving constraint set is locally Lipschitz-like) Let H be a Hilbert space,
A1 : H → H satisfying the assumptions (3.3)–(3.4), and f : [0, T ] → H a continuous mapping.
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Assume that C : [0, T ] ⇒ H is a set-valued mapping with nonempty closed convex values, which
is Lipschitz-like around every point in its graph. Then (P̃) has a unique solution u, which is a
Lipschitz function. Moreover, the unique solution is a continuously differentiable function (provided
that one identifies u̇(0) with the right derivative of u at 0 and u̇(T ) with the left derivative of u at
T ).

Proof. Let us set M = H, Λ = [0, T ], F (x, µ) = A1(x) + µ for (x, µ) ∈ H × M , K(λ) = C(λ)

for λ ∈ Λ. Using (3.3)–(3.4) and choosing X = H, U = M , and l = max{k1, 1}, we see that
the conditions (2.6) and (2.7) are satisfied. For each pair (µ, λ) ∈ M × Λ, by the well-known
solution existence theorem for strongly monotone variational inequality (see, e.g., Theorem 4.1
in [26], which has the origin in [28, Theorem 2.1, p. 24]) we know that (2.4) has a unique solution.
The latter is denoted by x(µ, λ). For every λ ∈ Λ, we define a vector µ(λ) = −f(λ). Fix a value
λ̄ = t̄ ∈ [0, T ] and let µ̄ = µ(λ̄) = −f(t̄), x̄ = x(µ̄, λ̄). Since the set-valued mapping K(·) = C(·) is
Lipschitz-like around (λ̄, x̄), Theorem 2.14 asserts that there exist positive constants κū and κλ̄, and
neighborhoods Ũ of µ̄ and Ṽ of λ̄ such that the inequality (2.8) holds for all (µ′, λ′), (µ, λ) ∈ Ũ× Ṽ .
As Ũ is a neighborhood of µ̄ = µ(λ̄) = −f(t̄), µ(λ) = −f(λ), and f(·) is continuous at t̄, we can
find a neighborhood V0 of t̄ in [0, T ] such that V0 ⊂ Ṽ and µ(λ) ∈ Ũ for all λ = t with t ∈ V0.
Then, by (2.8) one has

∥x(µ(t), t)− x(µ(t̄), t̄)∥ ≤ κµ̄∥µ(t)− µ(t̄)∥+ κλ̄|t− t̄|1/2

= κµ̄∥f(t)− f(t̄)∥+ κλ̄|t− t̄|1/2

for every t ∈ V0. It follows that lim
t→t̄

∥x(µ(t), t) − x(µ(t̄), t̄)∥ = 0. Therefore, the formula z(t) =

x(µ(t), t) defines a continuous function z : [0, T ] → H.
Summing up all the above, we can assert that, for every t ∈ [0, T ], the variational inequality (2.4)

with the chosen function F , the set-valued mapping K, where (µ, λ) := (−f(t), t), has the unique
solution z(t), and the function z(·) is continuous on [0, T ]. In particular, for every t ∈ [0, T ], one
has

⟨A1(z(t))− f(t), y − z(t)⟩ ≥ 0 ∀y ∈ C(t).

Or equivalently,
A1(z(t))− f(t) ∈ −NC(t)(z(t)). (3.5)

Conversely, since the inclusion A1(z)− f(t) ∈ −NC(t)(z) is equivalent to the condition

⟨A1(z)− f(t), y − z⟩ ≥ 0 ∀y ∈ C(t),

one has A1(u̇(t)) − f(t) ∈ −NC(t)(u̇(t)) if and only if u̇(t) = z(t). Since z(·) is continuous on

[0, T ], the norm ∥z(t)∥ is bounded for every t ∈ [0, T ]. So, the Lebesgue integral
∫ T

0

∥z(τ)∥dτ
exists. By [21, Theorem 2, p. 45], z is Bochner integrable over the interval [0, T ] with respect to
the Lebesgue measure. Setting

u(t) = u0 +

∫ t

0

z(τ)dτ (∀t ∈ [0, T ]), (3.6)

we have u̇(t) = z(t) for all t ∈ [0, T ]. Indeed, applying Theorem 9, p. 49, from [21] and the
arguments in its proof (recalling that the Lebesgue integral of a continuous real-valued func-
tion coincides with the Riemann integral [29, Theorem 1, p. 368]), for all t ∈ (0, T ), the limit
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lim
h→0

[
1

h

∫ t+h

t

z(τ)dτ

]
exists and it is equal to z(t). So, from the relation lim

h→0

u(t+ h)− u(t)

h
=

lim
h→0

[
1

h

∫ t+h

t

z(τ)dτ

]
it follows that, for all t ∈ (0, T ), the derivative u̇(t) exists and one has

u̇(t) = z(t). Moreover, for any t, s ∈ [0, T ] with s ≤ t,

∥u(t)− u(s)∥ =

∥∥∥∥∫ t

0

z(τ)dτ −
∫ s

0

z(τ)dτ

∥∥∥∥ ≤
∫ t

s

∥z(τ)∥dτ
≤ max{∥z(τ)∥ | τ ∈ [0, T ]}(t− s).

Thus, this function u is Lipschitz continuous with the rank L = max
τ∈[0,T ]

∥z(τ)∥. The fulfillment

of (3.5) for all t ∈ [0, T ] and the equality u(0) = u0 assure that u is a Lipschitz solution of (P̃). It
remains to prove that u(·) is the unique solution of (P̃). Arguing by contradiction, suppose that (P̃)
has another solution v(·) for which there is t̄ ∈ [0, T ] such that v(t̄) ̸= u(t̄). Set w(t) = v(t)− u(t)

for all t ∈ [0, T ]. Clearly, w is absolutely continuous on [0, T ] and w(0) = 0. Since v̇(t) = z(t) for
almost every t ∈ [0, T ], we have ẇ(t) = v̇(t) − u̇(t) = 0 for almost every t ∈ [0, T ]. As w(t̄) ̸= 0,
there exists x∗ ∈ H such that ⟨x∗, w(t̄)⟩ > 0. Consider the function φ(t) := ⟨x∗, w(t)⟩. Note that φ
is absolutely continuous on [0, T ], φ(0) = 0, and φ̇(t) = ⟨x∗, ẇ(t)⟩ = 0 for almost every t ∈ [0, T ].

Applying [29, Theorem 6, p. 40] for the scalar function φ, one has φ(t) = φ(0)+

∫ t

0

φ̇(τ)dτ = 0 for

each t ∈ [0, T ]. In particular, φ(t̄) = 0. Hence, one gets ⟨x∗, w(t̄)⟩ = 0, which is a contradiction. We
have thus established the solution uniqueness of (P̃). So, formula (3.6) defines the unique solution
of (P̃), which is a Lipschitz function on [0, T ]. Moreover, the unique solution is a continuously
differentiable function. The proof is thereby completed.

When the operator A1 : H → H is assumed to be linear we have the following direct consequence
from Theorem 3.7.

Corollary 3.8. (The moving constraint set is locally Lipschitz-like) Let H be a Hilbert space,
A0 = 0, A1 : H → H a symmetric coercive bounded linear operator, and f : [0, T ] → H a continuous
mapping. Assume that C : [0, T ] ⇒ H is a set-valued mapping with nonempty closed convex values,
which is Lipschitz-like around every point in its graph. Then (P) has a unique solution u, which
is a Lipschitz function. Moreover, the unique solution is a continuously differentiable function.

Remark 3.9. By the arguments in the final part of the above proof, we obtain the following useful
facts on the Bochner integration:

(a) If z : [0, T ] → X, where X is a Banach space, is a continuous function, then the formula

u(t) = u0 +

∫ t

0

z(τ)dτ defines a continuously differentiable function u : [0, T ] → X and we

have u̇(t) = z(t) for all t ∈ [0, T ].

(b) Let u, v : [0, T ] → X, where X is a reflexive Banach space, be absolutely continuous functions.
If u(0) = v(0) and u̇(t) = v̇(t) for a.e. t ∈ [0, T ], then u(t) = v(t) for all t ∈ [0, T ].

(c) (See the proof of Theorem 2 on p. 107 in [21]) Let u : [0, T ] → X, where X is a reflexive
Banach space, be an absolutely continuous function. Then,

u(t) = u0 +

∫ t

0

u̇(τ)dτ (∀t ∈ [0, T ]).
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(d) If z : [0, T ] → X, where X is a Banach space, is a Bochner integrable function with respect to

the Lebesgue measure, then the formula u(t) = u0+

∫ t

0

z(τ)dτ defines a function u : [0, T ] →
X, which is Fréchet differentiable a.e. on [0, T ] and we have u̇(t) = z(t) for a.e. t ∈ [0, T ].

To prove (c), it suffices to put v(t) = u0 +

∫ t

0

u̇(τ)dτ for t ∈ [0, T ], and apply the assertion (b).

The fact that the function u̇(·) is Bochner integrable on [0, T ] is shown with detailed explanations
in the proof of [21, Theorem 2, p. 107]. The assertion (d) follows from [21, Theorem 9, p. 49] which

asserts that, under the assumptions made, lim
h→0

[
1

h

∫ t+h

t

z(τ)dτ

]
= z(t).

For any Hilbert space H of dimension greater or equal 2, there exist set-valued mappings
C : R ⇒ H with nonempty closed convex values, Lipschitz-like around every point in their graphs,
which are not continuous in the Hausdorff distance sense on any interval [a, b] ⊂ R, where a < b.
The forthcoming example justifies our observation.

Example 3.10. Let H = R2, Λ = R, and

K(λ) =
{
x = (x1, x2) ∈ R2 | x2 = λx1

}
(∀λ ∈ R).

For any λ̄ ∈ Λ and x̄ = (x̄1, x̄2) ∈ K(λ̄), K is Lipschitz-like around (λ̄, x̄). This assertion can
be verified by using a formula for computing the limiting normal cone, the notion of coderivative,
and the Mordukhovich criterion (see, e.g., [38, Theorems 1.17 and Theorem 4.10]) as follows.
(The related notations and definitions can be easily found in [38].) First, note that the graph
of the set-valued mapping K : R ⇒ R2 coincides with the solution set of an equation given by
a continuously differentiable function, namely gphK =

{
z = (λ, x1, x2) ∈ R3 | f(z) = 0

}
, where

f(z) := x2 − λx1 for all z = (λ, x1, x2) ∈ R3. For z̄ := (λ̄, x̄1, x̄2), since ∇f(z̄) = (−x̄1,−λ̄, 1), the
derivative ∇f(z̄) : R3 → R is surjective. Therefore, applying Theorems 1.17 from [38] to f , z̄, and
Θ := {0} ⊂ R, we have

N(z̄; gphK) = N(z̄; f−1(Θ)) = ∇f(z̄)∗(N(f(z̄); Θ)).

As N(f(z̄); Θ) = N(0;Θ) = R, we get

N(z̄; gphK) =
{
(−µx̄1,−µλ̄, µ) | µ ∈ R

}
.

Next, by the definition of mixed coderivative, which coincides with the normal coderivative because
all the spaces in question are finite-dimensional, we have

D∗
MK(z̄)(0) = D∗

NK(z̄)(0)

= {ξ ∈ R | (ξ, 0) ∈ N(z̄; gphK)}
=
{
ξ ∈ R | ∃µ ∈ R s.t. − µx̄1 = ξ, −µλ̄ = 0, µ = 0

}
= {0}.

Finally, it remains to apply the equivalence (a) ⇔ (c) in [38, Theorem 4.10] to conclude that K is
Lipschitz-like around (λ̄, x̄).

It is well known that any Hilbert space H of dimension greater or equal 2 admits the repre-
sentation H = H0 ⊕H1, where H0 and H1 are orthogonal subspaces, and dim(H0) = 2. Fixing a
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coordinate system in H0, we can identify H0 with R2. Define a set-valued mapping C : R ⇒ H
by setting C(t) = K(t) ⊕ H1 for all t ∈ R. Then, from the above analysis it follows that C has
nonempty closed convex values, and C is Lipschitz-like around every point in its graphs. For any
interval [a, b] ⊂ R, where a < b, C is not continuous in the Hausdorff distance sense on [a, b].
Indeed, one has 0+C(t) = C(t) for every t ∈ [a, b] and C(t) ̸= C(t′) for any t, t′ ∈ [a, b] with t′ ̸= t.
Hence the condition 0+C(t) = 0+C(a) for every t ∈ [a, b], which is necessary for the continuity of
C in the Hausdorff distance sense on [a, b], is violated (see Remark 3.3).

Remark 3.11. Example 3.10 shows that the Lipschitz-like property is easily verifiable by using
the Mordukhovich criterion, which fully characterizes the Lipschitz-like property of set-valued
mappings with closed graphs. One can also use the Robinson regularity condition for an inequality
and equality system described by smooth functions or its extensions which work for generalized
inequality systems given by nonsmooth functions (see, e.g., the papers [20,58,60]).

The next example is designed to show how Theorem 3.7 and Corollary 3.8 can be used for
solving concrete problems.

Example 3.12. Consider the sweeping process (P) with H = R2, T = 1, A0 =

(
0 0

0 0

)
, A1 =(

1 0

0 1

)
, f(t) =

(
1 +

√
t

t
√
t

)
, and u0 =

(
0

0

)
. Let C(t) = K(t) with K being the set-valued mapping

defined in Example 3.10. For each t ∈ [0, 1], since C(t) is the straight line tx1 − x2 = 0, one

has NP
C(t)(u̇(t)) = R

(
t

−1

)
. Then, (P) is equivalent to the following initial value problem for an

ordinary differential equation: {
u̇(t) = PC(t)(f(t)),

u(0) = (0, 0).
(3.7)

As shown in Example 3.10, C is Lipschitz-like around every point in its graph. So, all the as-
sumptions of Corollary 3.8 are satisfied and, by that theorem, problem (3.7) has a unique solution
u(·) : [0, 1] → R2, which is a continuously differentiable function. To find an explicit formula
for u(t), we observe from the proof of Theorem 3.7 that u̇(t) = z(t) for all t ∈ [0, 1], where

z(t) =

(
z1(t)

z2(t)

)
is the unique solution of the parametric variational inequality

⟨A1z(t)− f(t), y − z(t)⟩ ≥ 0 ∀y ∈ C(t).

The latter is equivalent to z(t) + NC(t)(z(t)) ∋ f(t). This means z(t) = PC(t)(f(t)). A simple
computation gives

z(t) =

1 +
√
t− t2

1 + t2

t
√
t+

t

1 + t2

 =


√
t+

1

1 + t2

t
√
t+

t

1 + t2


for all t ∈ [0, 1]. Using Remark 3.9(c), we have u(t) = u0+

∫ t

0

z(τ)dτ for each t ∈ [0, 1]. Therefore,

u(t) =

 2

3
t
√
t+ arctan t

2

5
t2
√
t+

1

2
ln(1 + t2)

 (t ∈ [0, 1]),
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a continuously differentiable function on [0, 1], is the unique solution of (3.7).

The solution uniqueness result established in Theorem 3.7 is new, because the operator A0 = 0

is positive semidefinite, but not coercive and the operator A1 is allowed to be nonlinear. Thus, in
some sense, our result complements those given in Theorem 3.4 and 3.5. A natural question arises:
Whether the coerciveness of A1 also guarantees the solution uniqueness of (P) in the case where
A0 ̸= 0? The following theorem, whose proof is based on some ideas of [5], solves this question in
the affirmative.

Theorem 3.13. If C(t) is nonempty and convex for every t ∈ [0, T ], A1 is coercive, and A0 is
positive semidefinite, then (P) can have at most one solution.

Proof. Suppose that u(·) and v(·) are two solutions of (P), where C(t) is nonempty and convex
for every t ∈ [0, T ], A1 is coercive, and A0 is positive semidefinite. Then u, v : [0, T ] → H are
absolutely continuous functions, u(0) = v(0) = u0,

⟨A1u̇(t) +A0u(t)− f(t), u̇(t)− z⟩ ≤ 0 ∀z ∈ C(t) (3.8)

and
⟨A1v̇(t) +A0v(t)− f(t), v̇(t)− z⟩ ≤ 0 ∀z ∈ C(t) (3.9)

for a.e. t ∈ [0, T ]. Since u̇(t) and v̇(t) belong to C(t) for almost every t ∈ [0, T ], substituting
z = v̇(t) to the inequality in (3.8) and z = u̇(t) to the inequality in (3.9) yields

⟨A1u̇(t) +A0u(t)− f(t), u̇(t)− v̇(t)⟩ ≤ 0 and ⟨A1v̇(t) +A0v(t)− f(t), v̇(t)− u̇(t)⟩ ≤ 0

for almost every t ∈ [0, T ]. Adding the last inequalities gives

⟨A1(u̇(t)− v̇(t)) +A0(u(t)− v(t)), u̇(t)− v̇(t)⟩ ≤ 0 (3.10)

for almost every t ∈ [0, T ]. Since A1 is coercive, there exists α1 > 0 such that ⟨A1x, x⟩ ≥ α1∥x∥2
for all x ∈ H. Thus, (3.10) implies that

α1∥u̇(t)− v̇(t)∥2 + ⟨A0(u(t)− v(t)), u̇(t)− v̇(t)⟩ ≤ 0 a.e. t ∈ [0, T ]. (3.11)

Taking the Lebesgue integral of both sides of (3.11) and applying [51, Remarks 11.23(c)], we obtain∫ T

0

α1∥u̇(τ)− v̇(τ)∥2dτ +

∫ T

0

⟨A0(u(τ)− v(τ)), u̇(τ)− v̇(τ)⟩dτ ≤ 0. (3.12)

Since
d

dτ
⟨A0(u(τ) − v(τ)), u(τ) − v(τ)⟩ = 2⟨A0(u(τ) − v(τ)), u̇(τ) − v̇(τ)⟩ at every point τ where

both derivatives u̇(τ), v̇(τ) exist, using [29, Theorem 6, p. 340] and noting that u(0) = v(0), one
has

⟨A0(u(T )− v(T )), u(T )− v(T )⟩ = 2

∫ T

0

⟨A0(u(τ)− v(τ)), u̇(τ)− v̇(τ)⟩dτ.

Thus, (3.12) is equivalent to∫ T

0

α1∥u̇(τ)− v̇(τ)∥2dτ +
1

2
⟨A0(u(T )− v(T )), u(T )− v(T )⟩ ≤ 0.
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Since A0 is positive semidefinite, the latter implies∫ T

0

∥u̇(τ)− v̇(τ)∥2dτ ≤ 0. (3.13)

As
∫ T

0

∥u̇(τ)− v̇(τ)∥2dτ ≥ 0, by (3.13) we have
∫ T

0

∥u̇(τ)− v̇(τ)∥2dτ = 0. Hence, by [29, Corollary

of Theorem 5, pp. 299–300], u̇(t) = v̇(t) almost everywhere on [0, T ]. So, thanks to Remark 3.9(b),
we obtain u(t) = v(t) for all t ∈ [0, T ]. Thus, (P) can have at most one solution.

4 The Case of Nonconvex Constraint Sets

The question of the solution existence of the velocity constraint sweeping process (P) beyond
the convexity assumption of the constraint set C(t) is an open question in the literature. Using
the results in Section 3, we will prove some facts about solution existence for sweeping processes
with nonconvex constraint sets. The obtained results differ from those of Bounkhel [12]. Note
that the union of convex sets are not convex in general. Let I = {1, . . . ,m} be a finite index set
with m ≥ 2. Let Ci : [0, T ] ⇒ H, i ∈ I, be set-valued mappings with nonempty closed convex
values such that, for any t ∈ [0, T ] and i, j ∈ I with i ̸= j, Ci(t) does not intersect Cj(t). Then,
the set C(t) :=

⋃
i∈I

Ci(t) is closed and nonconvex for every t ∈ [0, T ]. The uniform prox-regularity

of such kind of sets has been discussed in Remark 2.9. In this section, we will study (P) with
C : [0, T ] ⇒ H being the just defined set-valued mapping. To do so, for each i ∈ I, we consider
the problem {

A1u̇(t) +A0u(t)− f(t) ∈ −NCi(t)(u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0.
(PCi

)

The following theorems establish the solution existence for three classes of nonconvex sweeping
processes with velocity constraints. The key point here is that the problems in question admit
multiple solutions.

Theorem 4.1. (The moving constraint set is bounded and continuous in the Hausdorff distance
sense) Suppose H be separable and A0, A1 are positive semidefinite. If every set-valued mapping
Ci, i ∈ I, satisfies the assumptions (H1), (H2), and (H3a), then (P) has an uncountable number
of Lipschitz solutions, among them there are m solutions u(i), i ∈ I, with u̇(i)(t) ∈ Ci(t) for almost
every t ∈ [0, T ].

Proof. Let i ∈ I be chosen arbitrarily. Since Ci satisfies the conditions (H1), (H2), and (H3a),
under the assumptions made, (PCi

) has a Lipschitz solution u(i)(·) by Theorem 3.4. If u̇i(t) ∈ Ci(t),
then the condition Ci(t) ∩ Cj(t) = ∅ for j ∈ I \ {i} and the closedness of Cj(t), j ∈ I \ {i}, assure
that there is a number ρi(t) > 0 satisfying Cj(t) ∩ B̄

(
u̇(i)(t), ρi(t)

)
= ∅ for all j ∈ I \ {i}. So, one

gets
C(t) ∩ B̄

(
u̇(i)(t), ρi(t)

)
= Ci(t) ∩ B̄

(
u̇(i)(t), ρi(t)

)
.

Therefore, thanks to Remark 2.4 and the fact that the viability condition u̇(i)(t) ∈ Ci(t) holds for
almost every t ∈ [0, T ], we have

NP
C(t)(u̇

(i)(t)) = NP
C(t)∩B̄(u̇(i)(t),ρi(t))

(u̇(i)(t)) = NP
Ci(t)∩B̄(u̇(i)(t),ρi(t))

(u̇(i)(t))

= NP
Ci(t)

(u̇(i)(t))
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for almost every t ∈ [0, T ]. Since u(i)(·) is a Lipschitz continuous solution of (PCi
), this yields{

A1u̇
(i)(t) +A0u

(i)(t)− f(t) ∈ −NP
C(t)(u̇

(i)(t)) a.e. t ∈ [0, T ],

u(i)(0) = u0.

Hence, u(i)(·) is a Lipschitz continuous solution of (P).
Next, fix a pair (i, j) ∈ I × I with i ̸= j, and let u(i) be a Lipschitz solution of (PCi

), u(j)

be a Lipschitz solution of (PCj
). Then both functions u(i) and u(j) are Lipschitz solutions of (P).

These functions are distinct. Indeed, if u(i)(t) = u(j)(t) for all t ∈ [0, T ] then, since the inclusions
u̇(i)(t) ∈ Ci(t) and u̇(j)(t) ∈ Cj(t) hold for a.e. t ∈ [0, T ], we find t̄ ∈ (0, T ) such that the
derivatives u̇(i)(t̄) and u̇(j)(t̄) exist, u̇(i)(t̄) ∈ Ci(t̄) and u̇(j)(t̄) ∈ Cj(t̄). This is impossible because
u̇(i)(t̄) = u̇(j)(t̄) and Ci(t̄)∩Cj(t̄) = ∅. We have proved the existence of pairwise distinct Lipschitz
solutions u(1), . . . , u(m) of (P), for which one has u̇(i)(t) ∈ Ci(t) for every i ∈ I and for almost
every t ∈ [0, T ].

Let τ ∈ (0, T ) be arbitrarily chosen. By Theorem 3.4, the problem{
A1u̇(t) +A0u(t)− f(t) ∈ −NP

C1(t)
(u̇(t)) a.e. t ∈ [0, τ ],

u(0) = u0,
(4.1)

has a Lipschitz solution, which we denote by u1,τ (·). Similarly, the problem{
A1u̇(t) +A0u(t)− f(t) ∈ −NP

C2(t)
(u̇(t)) a.e. t ∈ [τ, T ],

u(τ) = u1,τ (τ),
(4.2)

has a Lipschitz solution, which is denoted by u2,τ (·). Setting

uτ (t) =

{
u1,τ (t) if t ∈ [0, τ ],

u2,τ (t) if t ∈ (τ, T ],

we see that uτ is Lipschitz continuous function satisfying uτ (0) = u0. As noted at the beginning of
this proof, if z ∈ C1(t) (resp., z ∈ C2(t)), then NP

C1(t)
(z) = NP

C(t)(z) (resp., NP
C2(t)

(z) = NP
C(t)(z)).

Therefore, from (4.1) and (4.2) it follows that A1u̇τ (t) + A0uτ (t) − f(t) ∈ −NP
C(t)(u̇τ (t)) for

almost every t ∈ [0, T ]. Hence, uτ is a Lipschitz solution of (P). Now, take any τ1, τ2 ∈ (0, T ) with
τ1 < τ2. Since uτ1(τ1) = uτ2(τ1), arguing similarly as in the above proof of the pairwise distinctness
of the solutions u(1), . . . , u(m) of (P), we can show that the restrictions of uτ1 and uτ2 on [τ1, τ2]

are two different functions. So, the family {uτ | τ ∈ (0, T )} consists of pairwise distinct Lipschitz
functions. Hence, by the uncountability of (0, T ) we can assert that (P) has an uncountable number
of Lipschitz continuous solutions.

Theorem 4.2. (The moving constraint set is continuous in the Hausdorff distance sense) Sup-
pose H is separable and A0, A1 are positive semidefinite. If every set-valued mapping Ci, i ∈ I,
satisfies the assumptions (H1), (H2), and (H3b), then (P) has an uncountable number of Lipschitz
solutions, among them there are m solutions u(i), i ∈ I, with u̇(i)(t) ∈ Ci(t) for almost every
t ∈ [0, T ].

Proof. Using the same arguments as the ones in the proof of Theorem 4.1 and applying Theorem 3.5
instead of Theorem 3.4, we then obtain the desired results.
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Theorem 4.3. (The moving constraint set is locally Lipschitz-like) Suppose that H is a Hilbert
space, A1 : H → H satisfies the assumptions (3.3)–(3.4), and f : [0, T ] → H is a continuous
mapping. Assume that, for i ∈ I, the set-valued mapping Ci has nonempty closed convex values
and is Lipschitz-like around every point in its graph. Then (P̃) has an uncountable number of
Lipschitz solutions, among them there are m continuously differentiable solutions u(i), i ∈ I, with
u̇(i)(t) ∈ Ci(t) for almost every t ∈ [0, T ].

Proof. It suffices to follow the proof scheme of Theorem 4.1 and use Theorem 3.7 instead of
Theorem 3.4.

Remark 4.4. If A1 : H → H is a symmetric coercive bounded linear operator, then the assertions
of Theorem 4.3 are valid.

5 Illustrative Examples

In general, problem (P) does not have a unique solution even in the case where C(t) is convex;
see [5, Example 1]. For the convex case, Adly, Haddad, and Thibault [5, Theorem 5.2] (see
Theorem 3.4 in Section 3) have proved that if A0 is coercive, then (P) can have at most one
solution. By constructing an example, we will show that this condition is not enough to obtain
the solution uniqueness in the case where C(t) is r-prox-regular and connected for each t ∈ [0, T ].
We now give an example with a moving constraint set which is compact, with smooth boundary,
connected, nonconvex, and uniformly prox-regular, where the problem has multiple solutions.

Example 5.1. Consider problem (P) with T = 1, H = R2, A0 = A1 =

(
1 0

0 1

)
, f(t) ≡ 0,

u0 = (0, 0), and
C(t) =

{
x = (x1, x2) ∈ R2 | (1 + t)2 ≤ x2

1 + x2
2 ≤ 9

}
.

Clearly, A0 and A1 are coercive, C(t) is an annulus, which is r-prox-regular with r = 1 and
connected for each t ∈ [0, T ]. As the condition (3.1) is fulfilled with g(t) := t and C(0) is bounded,
the assumptions (H2) and (H3a) are satisfied. Since C(t), t ∈ [0, T ], are nonempty and closed,
the assumption (H1) is partially satisfied. Nevertheless, here Theorem 3.4 cannot be applied,
because the set-valued mapping C has nonconvex values. So, the solution existence of (P) is under

question. Let u1(t) =

(
1

2
(1 + t)2 − 1

2
, 0

)
for t ∈ [0, T ]. We see that u̇1(t) = (1 + t, 0) ∈ C(t) and

NP
C(t)(u̇1(t)) = R− × {0} for t ∈ [0, T ]. Since

A1u̇1(t) +A0u(t)− f(t) =

(
1 + t

0

)
+

(1

2
(1 + t)2 − 1

2
0

)
∈ −NP

C(t)(u̇1(t))

for all t ∈ [0, T ] and u1(0) = (0, 0), u1 is a continuously differentiable solution of (P). Now, let

u2(t) =
1

2
√
2

(
(1 + t)2 − 1, (1 + t)2 − 1

)
(∀t ∈ [0, T ]).

We have u2(0) = (0, 0), u̇2(t) =
1√
2
(1 + t, 1 + t) ∈ C(t) and

NP
C(t)(u̇2(t)) = {(x1, x2) ∈ R2 | x1 = x2 ≤ 0}.
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Then,

A1u̇1(t) +A0u(t) + f(t) =


1√
2
(1 + t)

1√
2
(1 + t)

+


1

2
√
2
(1 + t)2 − 1

2
√
2

1

2
√
2
(1 + t)2 − 1

2
√
2


∈ −NP

C(t)(u̇2(t)).

Therefore, u2(·) is also a continuously differentiable solution of (P). So, (P) has multiple solutions.

�2 2

�2

2

u1(t)

N P
C(t)(u1(t)) u2(t)

N P
C(t)(u2(t))

Figure 2: Illustration of Example 5.1

The next two examples will shed light on the assertions about solution uniqueness in Theo-
rem 3.5 and Theorem 3.7. It turns out that the convexity assumption on the sets C(t), t ∈ [0, T ],
cannot be replaced by uniform prox-regularity and connectedness.

Example 5.2. Let T , H, A0, A1, and f be as in the preceding example. Let

C(t) =
{
x = (x1, x2) ∈ R2 | (1 + t)2 ≤ x2

1 + x2
2

}
for all t ∈ [0, T ].

Then, C(t) is unbounded, r-prox-regular with r = 1 and connected for each t ∈ [0, T ]. The
assumptions (H2) and (H3b) are fulfilled. Since the assumption (H1) is just partially satisfied,

Theorem 3.5 cannot be used. Set u(t) = (
1

2
t2 + t)a for t ∈ [0, T ], where a is any point in ∂C(0).

By a direct verification, we can show that u is a continuously differentiable solution of (P). So,
(P) has multiple solutions.

Example 5.3. Let T , H, A1, f , and C(·) be the same as in Example 5.1. The fulfillment of (3.1)
with g(t) := t shows that C is a Lipschitz set-valued mapping. Hence, as noticed in Remark 2.13,
C is Lipschitz-like around every point in its graph. Choosing A0 = 0, we see that, except for the
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required convexity of each C(t), all other assumptions of Corollary 3.8 are satisfied. It is easy

to verify that the formula u(t) = (
1

2
t2 + t)a, where a ∈ R2 and ∥a∥ = 1, defines a continuously

differentiable solution of (P). So, (P) has multiple solutions.

Remark 5.4. In Examples 5.1 and 5.3, if the formula of C(t) is changed to

C(t) =
{
x = (x1, x2) ∈ R2 | 1 ≤ x2

1 + x2
2 ≤ 9

}
,

then one has a problem with a fixed constraint set. The formula u(t) = ta, where a ∈ R2 and
∥a∥ = 1, defines a continuously differentiable solution of the problem (P). So, (P) can have multiple
solutions even in the case of a fixed nonconvex constraint set, which is compact, uniformly prox-
regular, and connected. This observation is also valid for Example 5.2, if the constraint set is kept
fixed, i.e., one takes

C(t) =
{
x = (x1, x2) ∈ R2 | 1 ≤ x2

1 + x2
2

}
for all t ∈ [0, T ].

If a person uses a motorbike to go on a road starting from A on a time interval [0, T ] then,
roughly speaking, at every time instant he/she can choose one level of velocity from the set
{0, 1, 2, 3} of the motorcycle gear levels. Different choices of the velocity level u̇(t) for various
disjoint segments of [0, T ] generate different path length functions u(t). Here one has u(0) = 0.
The following example will put this very common daily nonconvex sweeping process with velocity
constraints in an abstract setting.

Example 5.5. Consider problem (P) with A1, A0, f , u0 being given arbitrarily, and C(t) =

{v1, . . . vm} for all t ∈ [0, T ], where m ≥ 2 and vi, i ∈ I := {1, . . . ,m}, are pairwise distinct points
in H. By Remark 2.9, we know that C is uniformly prox-regular. Let τ0 = 0 < τ1 < · · · < τk = T

be a partition of the interval [0, T ]. Let u̇(t) be a step function that takes just one value from

{v1, . . . vm} on each interval (τj , τj+1), j = 0, . . . , k−1. The formula u(t) = u0+

∫ t

0

u̇(s)ds gives a

Lipschitz function defined on [0, T ]. It is obvious that, for any z ∈ {v1, . . . vm} and t ∈ [0, T ], one
has NP

C(t)(z) = H. Hence, the two conditions in the formulation of (P) are satisfied. Thus, u(t) is
a solution of (P). We have shown that (P) has uncountable number of Lipschitz solutions.

The next example can serve as an illustration for Theorem 4.3.

Example 5.6. Consider problem (P) where H = R2, A0 = 0, A1 ∈ R2×2 is a symmetric positive
definite matrix, f : [0, T ] → R2 is a continuous function,

C1(t) =
{
x = (x1, x2) ∈ R2 | x2 ≥ e−x1+t

}
,

C2(t) =
{
(x1, x2) ∈ R2 | x2 ≤ 0

}
, and C(t) = C1(t)∪C2(t) for t ∈ [0, T ]. According to Remark 2.9,

C(t) is not uniformly prox-regular for any t ∈ [0, T ]. Meanwhile, each mapping Ci, i ∈ {1, 2},
is Lipschitz-like around every point in its graph. To verify this property for C1, one can apply a
suitable implicit function theorem for set-valued mappings (for instance, [49, Theorem 3.2] and [60,
Theorem 3.3]). Since all the assumptions of Theorem 4.3 are satisfied, we can assert that (P) has an
uncountable number of Lipschitz solutions, among them there are two continuously differentiable
solutions u(i), i ∈ {1, 2}, with u̇(i)(t) ∈ Ci(t) for almost every t ∈ [0, T ].
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To verify the local Lipschitz-likeness of an implicit set-valued mapping defined by a generalized
inequality system in infinite-dimensional Hilbert spaces or Banach spaces, one can use, e.g., some
results in [20,58].

Interestingly, Theorem 4.2 can be applied to the sweeping process considered in Example 5.6.

Example 5.7. Let H, A0, A1, f(·), and C1(·), C2(·), and C(·) be the same as in Example 5.6. To
show that every set-valued mapping Ci, i ∈ {1, 2}, satisfies the assumptions (H1), (H2), and (H3b),
it suffices to verify the continuity of C1 in the Hausdorff distance sense. To do so, take any
t, s ∈ [0, T ] with s < t. Then, one has C1(t) ⊂ C1(s). Given any y = (y1, y2) ∈ C1(s), we define
x = (x1, x2), where x1 = y1 + t− s and x2 = y2. Since

e−x1+t = e−(y1+t−s)+t = e−y1+s ≤ y2 = x2,

we get x ∈ C1(t). As ∥x− y∥ = t− s, it follows that dH(C1(s), C1(t)) ≤ |t− s| for all t, s ∈ [0, T ].
Therefore, by Theorem 4.2, (P) has an uncountable number of Lipschitz solutions, among them
there are 2 solutions u(i), i ∈ {1, 2}, with u̇(i)(t) ∈ Ci(t) for almost every t ∈ [0, T ]. Note that, to
apply Theorem 4.2 for this sweeping process, as A0 one can choose an arbitrary symmetric positive
semidefinite 2× 2 matrix (i.e., it is not necessary to put A0 = 0).

6 Generalizations of Theorems 3.7 and 3.13

Let H be a Hilbert space, A0 : H → H a symmetric positive semidefinite bounded linear oper-
ator, A1 : H → H a symmetric coercive bounded linear operator, and f : [0, T ] → H a continuous
mapping. Assume that C : [0, T ] ⇒ H is a set-valued mapping with nonempty closed convex val-
ues, which is Lipschitz-like around every point in its graph. Then, according to Theorem 3.13, the
sweeping process (P) can have at most one solution. If A0 = 0, by Corollary 3.8 we know that (P)
has a unique solution, which is a continuously differentiable function. The first open question is
about the case where A0 is a nonzero operator.

(Q1) In the case A0 ̸= 0, are the above assumptions sufficient for the solution existence of (P)?

If (Q1) can be solved in the affirmative, it is of interest to have an iteration scheme to find the
unique solution of (P). Based on Theorem 3.7, we can propose such a scheme. At the initial step
k = 0, one solves the problem (P̃) and denotes the unique solution by u(0). Clearly, u(0) is a rough
approximate solution of (P), because the operator A0 ̸= 0 had no role in creating the function. If
u is the exact solution of (P), which is to be found, and u(k) is an approximate solution of (P) at
a step k ∈ {0, 1, 2, . . . }, then

A1u̇(t) +A0u(t)− f(t) ≈ A1u̇(t) +A0u
(k)(t)− f(t) a.e. t ∈ [0, T ].

Hence, setting f̃k+1(t) = −A0u
(k)(t) + f(t) for all t ∈ [0, T ], we have

A1u̇(t) +A0u(t)− f(t) ≈ A1u̇(t)− f̃k(t) a.e. t ∈ [0, T ].

So, the approximate problem of (P) at step k + 1 is{
A1u̇(t)− f̃k+1(t) ∈ −NP

C(t)(u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0.
(P1,k+1)
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Since f̃k+1 : [0, T ] → H is a continuous function, problem (P1,k+1) is of the form (P̃). Therefore,
by Corollary 3.8, it has a unique solution, which is denoted by u(k+1). The just described iteration
scheme yields a sequence of continuously differentiable functions {u(k)}k∈N. The second open
question is as follows.

(Q2) Whether the sequence {u(k)}k∈N converges to a solution of (P)?

The above two questions were raised in our submitted paper. One of the two anonymous
referees has proposed a detailed affirmative answer for (Q1) which even works for the situation
where A1 needs not to be a linear operator. Moreover, as noted by the referee, this solution of
(Q1) also solves (Q2) in the affirmative. The results of the referee are given herein with some
slight modifications to make the presentation easy for reading.

Significant generalizations of Theorems 3.7 and 3.13 are given in the following theorem.

Theorem 6.1. Let H be a Hilbert space, A0 : H → H a bounded linear operator, A1 : H → H
a mapping satisfying the assumptions (3.3)–(3.4), and f : [0, T ] → H a continuous mapping.
Assume that C : [0, T ] ⇒ H is a set-valued mapping with nonempty closed convex values, which is
Lipschitz-like around every point in its graph. Then the sweeping process{

A1(u̇(t)) +A0u(t)− f(t) ∈ −NP
C(t)(u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0,
(P1)

has a unique solution u, which is continuously differentiable.

Proof. Let V be the set

V =
{
v ∈ W 1,∞((0, T ),H) | v(0) = u0, v̇(t) ∈ C(t) a.e. t ∈ [0, T ]

}
. (6.1)

For an arbitrary v ∈ V , we consider the following variational inequality

⟨A1(u̇(t)) +A0v(t)− f(t), u̇(t)− z⟩ ≤ 0 ∀z ∈ C(t), (6.2)

where t ∈ [0, T ] plays the role of a parameter. Since A0 and v are continuous, the arguments of
the proof of Theorem 3.7 show that the parametric variational inequality (6.2) admits a unique
solution u ∈ V and u is continuously differentiable. We thus can define the solution mapping
S : V → V , which maps a function v ∈ V to the unique solution of (6.2) corresponding to v. It
can easily be seen that the set V is convex and closed in W 1,∞((0, T ),H). Clearly, u is a solution
of (P1) if and only if it is a fixed point of S. In other words, the problem of solving (P1) reduces
to that of finding a fixed point of S. So, to prove the solution existence of (P1), it suffices to
prove that S has a fixed point in V . To this end, let us consider v1, v2 ∈ V and the corresponding
solutions ui = S(vi), i = 1, 2. By (6.2) we have

⟨A1(u̇1(t)) +A0v1(t)− f(t), u̇1(t)− u̇2(t)⟩ ≤ 0

and
⟨A1(u̇2(t)) +A0v2(t)− f(t), u̇2(t)− u̇1(t)⟩ ≤ 0

for every t ∈ [0, T ]. Adding the last inequalities yields

⟨A1(u̇1(t))−A1(u̇2(t)) +A0(v1(t)− v2(t)), u̇1(t)− u̇2(t)⟩ ≤ 0
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for every t ∈ [0, T ]. Therefore,

⟨A1(u̇1(t))−A1(u̇2(t)), u̇1(t)− u̇2(t)⟩ ≤ ⟨A0(v1(t)− v2(t)), u̇2(t)− u̇1(t)⟩ ∀t ∈ [0, T ].

So, by (3.3) we have

α1∥u̇1(t)− u̇2(t)∥2 ≤ ⟨A1(u̇1(t))−A1(u̇2(t)), u̇1(t)− u̇2(t)⟩
≤ ⟨A0(v1(t)− v2(t)), u̇2(t)− u̇1(t)⟩
≤ ∥A0∥∥v1(t)− v2(t)∥∥u̇1(t)− u̇2(t)∥

for every t ∈ [0, T ]. It follows that

∥u̇1(t)− u̇2(t)∥ ≤ M∥v1(t)− v2(t)∥ ≤ M

∫ t

0

∥v̇1(s)− v̇2(s)∥ds ∀t ∈ [0, T ], (6.3)

where M :=
∥A0∥
α1

. Let us introduce in the space W 1,∞((0, T ),H) an equivalent norm ∥f∥M by

the formula (2.3) (see Subsection 2.3). Since v1(0)− v2(0) = 0, by virtue of (6.3) we have

e−Mt∥u̇1(t)− u̇2(t)∥ ≤ Me−Mt

∫ t

0

eMs
[
e−Ms∥v̇1(s)− v̇2(s)∥

]
ds

≤ Me−Mt∥v1 − v2∥M
∫ t

0

eMsds = (1− e−Mt)∥v1 − v2∥M

for all t ∈ (0, T ). Hence, recalling that u1(0) = u2(0) = u0, we get

∥u1 − u2∥M ≤ (1− e−MT )∥v1 − v2∥M .

This means that the mapping S is a contraction on V with respect to the norm ∥ · ∥M . By the
Banach fixed point theorem (see, e.g., [29, Theorem 1, p. 66]), there is a unique u ∈ V such that

⟨A1u̇(t) +A0u(t)− f(t), u̇(t)− z⟩ ≤ 0 ∀z ∈ C(t)

for almost every t ∈ [0, T ]. So u is the unique solution of (P1) and u is continuously differentiable
by Theorem 3.7.

The next theorem gives a comprehensive solution of the question (Q2).

Theorem 6.2. Suppose that the assumptions of Theorem 6.1 are satisfied. Then, if u(0) is the
unique solution of the problem (P̃) and, for every k ∈ N, u(k+1) denotes the unique solution of the
(k + 1)−th approximate problem{

A1u̇(t) +A0u
(k)(t)− f(t) ∈ −NP

C(t)(u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0.
(6.4)

of (P1), then the iteration sequence {u(k)}k∈N converges in W 1,∞((0, T ),H) to the unique solution
of (P1).

Proof. Define the closed convex set V by (6.1) and let the mapping S : V → V be defined as
in the proof of Theorem 6.1. Then, in the distance induced by the equivalent norm (2.3) with

M :=
∥A0∥
α1

of W 1,∞((0, T ),H), S : V → V is a contraction. Clearly, u(0) ∈ V . Moreover, by (6.4)

we can infer that u(k+1) = S(uk). Hence, the desired conclusion follows from the convergence of
the iterative sequence usually associated with the proof of the Banach fixed point theorem (see,
e.g., [29, p. 67]).
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7 Open Questions

Several open questions related to the results given in Sections 3–6 will be formulated in this
section.

7.1 A Regularization Method

It is appealing to study the problem (P̃) in the setting of Corollary 3.8 with A1 being only a
symmetric positive semidefinite bounded linear operator. Let us denote the problem by (P0) and
its solution set by S0.

(Q3) Can we obtain a solution existence result for the problem (P0)?

If S0 ̸= ∅, then it would be reasonable to try to get a solution by the Tikhonov regularization
method, which has been successfully applied for monotone variational inequalities (see, e.g., [53,
Theorem 2.3]). For each ε > 0, the operator A1 + εId, where Id denotes the identity function, is
coercive. Therefore, by Theorem 3.7, the regularized problem{

(A1 + εId)u̇(t)− f(t) ∈ −NP
C(t)(u̇(t)) a.e. t ∈ [0, T ],

u(0) = u0,

of (P0) has a unique solution, which is denoted by uε. The following questions deserve further
considerations:

(Q4) If S0 ̸= ∅, then the solution uε of the regularized problem converges in C0([0, T ],H) to a
solution of the original problem as ε → 0+?

(Q5) If S0 ̸= ∅, then the limit of uε as ε → 0+, if exists, is a solution of (P0) whose derivative has
the smallest L2([0, T ],H) norm?

Another regularization method has been proposed by Moreau when he introduced the sweeping
process [41]. The idea is that one can regularize the normal cone NΩ(·) in term of the gradient of the
square distance function ∇d2(·,Ω). This method has been generalized and applied to nonconvex
sweeping processes (see [46, 55] and references therein). It is natural to adopt this method to
sweeping processes with velocity constraints. More precisely, we consider the following regularized
problem of (P):{

A1u̇λ(t) +A0uλ(t)− f(t) = − 1

2λ
∇d2(u̇λ(t), C(t)) a.e. t ∈ [0, T ],

uλ(0) = u0.
(RP )

The next question arises:

(Q6) Whether the differential equation (RP ) has a solution and there exists a sequence of solutions
(depending on the parameter λ) of (RP ) which converges to a solution of (P) as λ → +∞?

7.2 Problems Having a Fixed Connected Uniformly Prox-Regular Con-
straint Set

Several examples of sweeping processes with uniformly prox-regular constraint sets have been
given in Section 5. In Example 5.5, despite of the fact that the constraint set is fixed and finite, (P)
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has multiple solutions for any choice of A1, A0, and f . In addition, from Remark 5.4 where the
constraint set of the problem under consideration is fixed and both operators A0, A1 are coercive,
we see that the solution uniqueness cannot be guaranteed. Thus, the following question seems to
be interesting.

(Q7) Under which conditions, can we obtain the solution existence and uniqueness for (P) when
the constraint set is fixed, uniformly prox-regular, and connected?

8 Conclusions

We have established the solution existence for some classes of sweeping processes in Hilbert
spaces with velocity constraints where the constraint sets can be either convex or nonconvex. For
the convex case, a new result on the solution uniqueness has been obtained. For the nonconvex
case, we have proved that there are many classes of problems having an uncountable number of
solutions.

Using a theorem on the solution sensitivity of parametric variational inequalities, we have
proposed a new approach to the solution existence and solution uniqueness of sweeping processes
with velocity constraints. Among other things, being locally Lipschitz-like, the constraint set
mapping needs not to be continuous in the Hausdorff distance sense. An example has been given
to show the advantage of the new results. Other illustrative examples, where the focus was made
on uniform prox-regularity of the constraint sets, have been presented.

Five open problems deserving further investigations have been formulated.

Appendix: Equivalent Norms

Claim 1: In the space W 1,∞((0, T ),H), the norm ∥f∥W 1,∞ = ∥f∥L∞ + ∥f ′∥L∞ is equivalent
to the following one: ∥f∥ = ∥f(0)∥+ ess sup

t∈(0,T )

∥ḟ(t)∥.

Proof. Noting that W 1,∞((0, T ),H) ⊂ W 1,1((0, T ),H), one has f is an absolutely continuous
function, which means

f(t) = f(0) +

∫ t

0

ḟ(s)ds, ∀t ∈ [0, T ].

From the proof of [16, Corollary 1.4.31] we can deduce that ḟ(t) = f ′(t) almost everywhere on
(0, T ). Then,

∥f∥W 1,∞ = ∥f∥L∞ + ∥f ′∥L∞ = ∥f∥L∞ + ∥ḟ∥L∞

= ess sup
t∈(0,T )

∥f(t)∥+ ∥ḟ∥L∞

= sup
t∈(0,T )

∥f(t)∥+ ∥ḟ∥L∞ (∥f(·)∥ is continuous on (0, T ))

≥ ∥f(0)∥+ ess sup
t∈(0,T )

∥ḟ(t)∥. (A.1)

We also have

∥f∥W 1,∞ = ∥f∥L∞ + ∥f ′∥L∞ = ∥f∥L∞ + ∥ḟ∥L∞
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= ess sup
t∈(0,T )

∥f(0) +
∫ t

0

ḟ(s)ds∥+ ∥ḟ∥L∞

≤ ∥f(0)∥+ ess sup
t∈(0,T )

∥
∫ t

0

ḟ(s)ds∥+ ∥ḟ∥L∞

≤ ∥f(0)∥+
∫ T

0

∥ḟ(s)∥ds+ ∥ḟ∥L∞ (using Holder’s inequality)

≤ ∥f(0)∥+ 2 ess sup
t∈(0,T )

∥ḟ(t)∥

≤ 2(∥f(0)∥+ ess sup
t∈(0,T )

∥ḟ(t)∥). (A.2)

From (A.1) and (A.2), we obtain the desired result. □

Claim 2: If M be a positive number, then the norm ∥ · ∥W 1,∞ on the space W 1,∞((0, T ),H) is
equivalent to the norm ∥ · ∥M defined by

∥f∥M = ∥f(0)∥+ ess sup
t∈(0,T )

(
e−Mt∥ḟ(t)∥

)
, ∀f ∈ W 1,∞((0, T ),H).

Proof. As we have mentioned in the previous proof, ḟ = f ′ almost everywhere on (0, T ).
From (A.1) it follows that

∥f∥W 1,∞ ≥ ∥f(0)∥+ ess sup
t∈(0,T )

∥ḟ(t)∥

≥ ∥f(0)∥+ ess sup
t∈(0,T )

(e−Mt∥ḟ(t)∥) (since e−Mt ≤ e0 = 1, for all t ∈ [0, T ]).
(A.3)

By (A.2), we get
∥f∥W 1,∞ ≤ 2(∥f(0)∥+ ess sup

t∈(0,T )

∥ḟ(t)∥)

= 2

[
∥f(0)∥+ ess sup

t∈(0,T )

(
eMte−Mt∥ḟ(t)∥

)]

≤ 2

[
∥f(0)∥+ ess sup

t∈(0,T )

(
eMT e−Mt∥ḟ(t)∥

)]

= 2

[
∥f(0)∥+ eMT ess sup

t∈(0,T )

(
e−Mt∥ḟ(t)∥

)]

≤ 2eMT

[
∥f(0)∥+ ess sup

t∈(0,T )

(
e−Mt∥ḟ(t)∥

)]
.

(A.4)

Combining (A.3) and (A.4) yields the equivalence of the two norms under consideration. □
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