NON-SELF SIMILAR BLOWUP SOLUTIONS TO THE HIGHER
DIMENSIONAL YANG MILLS HEAT FLOWS

A. Bensouilah®-®) | G. K. Duong®»*) and T. E. Ghoul™

() NYUAD Research Institute, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
(2 School of Mathematics and Data Science, Emirates Aviation University, PO Box 53044, Dubai, UAE
®)International Center for Research and Postgraduate Training, and
Institute of Mathematics, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
™) Institute of Applied Mathematics, University of Economics Ho Chi Minh City, Vietnam.

ABSTRACT. In this paper, we consider the Yang-Mills heat flow on R? x SO(d) with d > 11. Under
a certain symmetry preserved by the flow, the Yang-Mills equation can be reduced to the following
nonlinear equation:

Oru = 0%u + L0 0~ 3(d — 2)u® — (d— 2)r*u®, and (r,t) € Ry x Ry
'

We are interested in describing the singularity formation of this parabolic equation. More precisely,
we aim to construct non self-similar blowup solutions in higher dimensions d > 11, and prove that
the asymptotic of the solution is of the form

1 T
u(r,t) ~ WQ (/\g(lf)) ,ast— T,

where Q is the steady state corresponding to the boundary conditions Q(0) = —1, Q’(0) = 0 and
the blowup speed A, verifies

Ae(t) = (Cluo) + 0rsr(1)) (T — )= ast — T, L€ N°, a> 1.

In particular, the case £ = 1 corresponds to the stable type II blowup regime, whereas for the cases
£ > 2 corresponds to a finite co-dimensional stable regime.

Our approach here is not based on energy estimates but on a careful construction of time
dependent eigenvectors and eigenvalues combined with maximum principle and semigroup pointwise
estimates.

1. Introduction

Recently, geometric heat flows received a lot of attention from both the mathematics and physics
communities. Among these geometric flows, the Yang-Mills heat flow is of a great interest. Let
us give a brief survey of the physics behind it (more details can be found in [21] and [18]). The
Yang-Mills theory is in some sense a non-commutative version of Maxwell’s electromagnetism where
in the latter, the gauge group is the abelian group U(1). In order to describe the weak nuclear
force, governing the nuclear decay of some particles, Yang and Mills proposed to substitute for the
Maxwell’s gauge group U (1) the non-abelian gauge group SU(2). Let us describe the mathematical
setting of the theory. Consider a Riemannian manifold M of dimension d, with a structure group
G (i.e., a semi-simple Lie group) and denote by 7 the canonical projection. Let G be the Lie
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algebra of G and E a principal fibre bundle over M. Let D4 be a covariant derivative from F
to Ad(E) @ T*M. On each coordinate chart U,, D4 can be represented by the G-valued 1-form
of k + A, where r is some fixed reference connection (e.g. usual exterior derivative), and A(,) a
G-valued 1-form

d
Ay = Ag pdat.
pn=1

Since the transition functions are smooth, we can set A(,) = A. Physically, the vector A represents
the electromagnetic potential.

Let the curvature F4 be the tensor D4D 4. By using a local chart U,, one can represent F'4 by
the G-valued 2-form

Fy= Z Fydat A dx”,
LoV
where
Fu,=0,A,—-0,A,+ A, A)].

The second rank covariant tensor F),, is the well-known electromagnetic tensor. The Yang-Mills
connections are defined as the critical points of Yang-Mills functional F4 given by

Fa ::/ |FA|2dvolM.
M

The Euler Lagrange equations corresponding to these critical points are
d
> DF,, =0Yu=1,...4d,
v=1
where D, = 9, + [A,,].
The Yang-Mills heat flow is defined as the gradient flow associated to the above problem where

A is the Yang-Mills connection. By using a local chart, the time-dependent connection locally
satisfies

{ OiAu(z,t) + 0V Fy(x,t) + [AY, Fy ) (x,t) =0, t >0, (1.1)
Au(x,0) = A, o(x). ’
Note that equation (1.1) is invariant under the following scaling
Ax(z,t) = M (A\z, A*), for A > 0. (1.2)

However, the Yang-Mills functional is invariant under scaling symmetry for d = 4, this is why
we refer to this dimension as the energy critical one. For d > 5, we say that the equation is su-
percritical. Results on the long time existence and uniqueness were obtained in [28] for d = 2, 3,
[24, 31] for d = 4 for weak solutions (see also [29] and [30] for the existence of smooth solutions). In
particular, in the case d = 4, the authors in [30] conjectured finite time singularities do not occur
on a compact manifold which recently confirmed by [33]. For the energy supercritical problem, i.e.
d > 5, there is few results on the global existence and this due to the the gauge invariance of the
Yang-Mills heat flow.

Let us restrict ourselves to a special case where M = R? and E = R? ® SO(d) is the trivial
bundle. In this case, the Yang-Mills connection A,(n € {1,..,d}) is globally given by its SO(d)-
valued coefficient functions A,(p = 1,...,d). In particular, the Lie algebra SO(d) is simply the
space of skew-symmetric d X d matrices endowed with the commutator bracket. Let us denote the
coefficient functions by A, = A} and make (as in [14]) the following SO(d)-equivariant ansatz

Aff(:n,t) = u(|x|,t)afjj(x), where Uf;j(x) = 5Lmj - 5ixi,i,j e{1,...d}.
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We emphasize here that the covariant derivative of o is zero, so that the ansatz amounts to consider
the problem in the Lorentz gauge. By following these settings (see [21]), it reduces to

d+1
Opu = O%u + %&«u —3(d — 2)u® — (d — 2)r*u?, and (r,t) € Ry x R, (1.3)

The solution to this equation is invariant under the scaling

up (3, 1) = %u <\% i) (1.4)

for A > 0. Let us remark that (1.3) is locally well posed in some weighted L> spaces as
2
LT« (Ry) = {f measurable on R such that [[(1+7%)f(r)| e ®, ) < +00,a > 3} ,

by following a fixed point argument and an extension to a R%2-problem. Consequently, with an
arbitrary initial data in L{S,a, the corresponding solution is either global or develops singularity
in finite time T, in the sense that
lim sup lu(, B)llLgs o (ry) = o0
In this paper, we are interested in the blowup phenomenon and a variety of papers were devoted
to the study of singularity formation. First, in [18], the author constructed self-similar blowup
solutions with 5 < d < 9. Besides that, the authors in [35] also gave explicit examples (so-called

Weinkove solutions)
1 r
wnlnt) = W ().

1
Cay(d)r? + ag(d)’

Here ai(d) = VQ‘f/_;,ag(d) = 5 (6d—16 — (d+2)v2d —4). Recently, the authors in [13] have

constructed non trivial solutions in the range 5 < d < 9 which approach uy, in L>(R*) and these
solutions corresponding to similar blowup setting. The stability of Weinkove solutions was also
proved by [13] and [22]. For higher dimension d > 10, the authors in [6] excluded the existence of
self similar blowup solutions and then non selfsimilar solutions are expected.

with

W(r) =

We have been successful in constructing non-self similar blowup solutions (so-called Type II
blowup solutions). Our results are stated in the following.

Theorem 1.1 (Existence of stable blowup solution). Let d > 11 be an integer. Then, there exist
initial data ug € C§°(Ry,R) such that the corresponding solution to (1.3) blows up in finite time
T (ug). Moreover, the following decomposition holds true

_ 1 r
u(r,t) = A (t)Q( O

where Q 1is the ground state of (1.3) satisfying Q(0) = —1 and Q'(0) = 0; and the error u(r,t)
satisfies

) +a(r,t),t €[0,7), (1.5)

Al )z @y = 0 ast — T, (1.6)
and the blowup speed \(t) exactly behaves as follows
2
At) = Cuo)(1 + o(1))(T —t)=. (1.7)

ast — T and « defined in (2.27). In particular, the constructed blowup behavior is stable.

By a suitable expansion the construction technique in Theorem 1.1, we can construct unstable
blowup solutions with different blowup speeds. More precisely, the result reads.
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Theorem 1.2 (Existence of unstable blowup solutions). Let us consider integer numbers £ > 2
and d > 11. Then, there exist initial data upy € C3°(R4,R) such that the corresponding solution
ug to (1.3) blows up in finite time T (ug ). Moreover, the following decomposition holds true

r
ue(r,t) = 2,1 (6)Q +ag(r,t), (1.8)
‘ A(?)
where @Q is the ground state satisfying Q(0) = —1 and Q'(0) = 0; and the error uy(r,t) satisfies
Ae@)aC, )l peomry — 0 as int — T, (1.9)

and the blowup speed \¢(t) exactly behaves as follows
Ae(t) = Clug)(1 + o)) (T — t)= ast— T. (1.10)

Remark 1.3 (Related blowup results for PDE’s problem). Note that the Yang-Mills heat flow
(1.3) has a lot of similarities with the harmonic map heat flow (under corotational symmetry):

d+1 sin(2u)
_ a2
Ou = OZu + T(‘?Tu —(d-1) 57

and (r,t) € Ry x Ry, (1.11)

The harmonic map heat flow forms also singularity in finite time, and the self-similar nature of the
singularity appears only when 3 < d < 6, and for d > 7 self-similar blowup solutions don’t exist [6].
For 3 < d < 6, the existence of the self-similar solutions is known [17] and the stability has been
proved only in the case d = 3 as in [1]. When d = 7 the blowup is not self-similar and the speed
A has a log correction [19], it turns out that the non-self-similar regime is stable when d = 7. If
d > 8, in [20] the authors proved similar results. The results in [20], also in [4], have been proved
with a different method. In [20], the result is based on an energy based method, whereas in [4]
is based on the maximum principle which does not allow to abtain the stability. In the present
paper, we present a new method that has been introduced previously in [7, 10] but combined with
ideas from [4]. We also mention that the author in [36] has obtained the same results for (1.3) in
comparising with our paper, by following a robust map based on energy estimates as in [20] which
one of co-author is also a co-author this new paper. Even though our paper presents the same
results and appears later for four months (noted on Arziv), our one is more orginality that we have
built up a new technique to adapt to more general models that we will explain those novelties in
the remark below.

Remark 1.4 (Novelty of the paper). We point out that the approach pursued here is more intuitive
than the one in [20] for the heat flow map as it is based on a spectral approach rather than an energy
method. Note that here, the selection by the flow of the blow up speed is linked to the eigenvalue
A¢ of the time dependent linearized operator .4, after perturbing initially @ in the direction of the
eigenvectors ¢y. Such an idea was not clear in [20]. The length of the paper is due to the heavy and
technical construction of the eigenvectors and eigenvalues of .%,. In comparison with [20], the use
of maximum principle reduce considerably the difficulty of the control of the infinite dimensional
part e_. We believe that this method can be adapted to a large class of parabolic problems.

Remark 1.5 (Structure of the paper). To be more convenient for the readers, we aim to give
the structure of the paper here: We introduce and explain the importance of the different set of
variables: self-similar and blowup variables in the second section. In the third and fourth sections
we explain the strategy of the proof, and the time dependent spectral analysis strategy. The fifth
section aims to provide a proof of the main theorem without technical details where we show
that the infinite dimensional problem can be reduced to a finite dimensional one. In other words,
we show that the solution can be split into two parts a finite dimensional part and an infinite
dimensional one. In the sixth section we study the dynamic of the finite dimensional part under
the assumption that the infinite dimensional part of the solution is decaying in a suitable weighted
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L? norm. The seventh section shows that the assumption made in the section 6 on the infinite
dimensional part holds after assuming an L* bound. In the 8th section we prove this L bound
assumed in the previous section by using maximum principle and pointwise estimates which is
based on the semigroup associating to the linearised operator. The 9th section is devoted to prove
the existence of the ground state @) which solves an non-autonomous second order ODE. To do
S0, we prove the existence of an heteroclinic trajectory by finding an appropriate trapping set. In
the 10th section we sketch the proof of the existence of the unstable blowup solutions and the last
section is devoted to the diagonalisation of the time dependent linearised operator .%.

2. Mathematical setting

Let u be a solution to the following equation on [0,7") for some 7" > 0

d+1
Opu = O%u + %&«u —3(d — 2)u® — (d — 2)r*u?, and (r,t) € Ry x R, (2.1)
Let A be an unknown blow-up speed satisfying A(t) — 0 as t — T" and write
1
U(t7 T) = mv(é) S) (22)
where the blow-up variables s and £ are such that
ds 1, _ 1
a N VN
Simple computation yields
9 d+1 1 Ag 9 9 3
Osv = OFv + T@gv + §TA§U —3(d —2)v* — (d —2)&v°. (2.3)

We anticipate that % — 0 as s — o0, since the blow-up mechanism is non-self similar, thus, v is
expected to converge to the ground state @), which is a solution to

d+1
Q"(§) TQ& —3(d-2)Q* — (d-2)6’°Q° =0 (2.4)
with the boundary conditions Q(0) = —1 and Q’(0) =0
In order to establish the convergence of v to the stationary solution (), we linearize around the
latter and study the operator

1)
He + 571\5, (2.5)
where
Af =2+ ‘fafa (2.6)
and
He = 0¢ + =0 = 3(d = 2)(2Q(§) + £°Q°())- (2.7)

More precisely, we would like to determine the eigenvectors and eigenvalues of the linearized oper-
ator which depend on time. To do so, one has to switch to the so-called self-similar variables, i.e.,
we write the solution u as

r

u(r,t):Tltw< T_t,7'>, = —log(T — 1), (2.8)

One then finds that w satisfies

d+1 1
Byw = 02w + Zayw — Ay = 3(d = 2w — (d - 2)Pu’. (2.9)
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Now, introduce a function b of time such that

A
b= —. 2.10
T 1 (2.10)
If the blow-up is self-similar, b would be a (non-zero) constant. In our case, the blow-up is foreseen
to be non-self-similar and b has then to tend to zero as ¢t — 7.

Stepping on the fact that our problem is invariant under time translation, we allow the blow-up
time to vary. That is, we replace T'—t by some function p and we prove that it behaves like T'—t for
t — T. Hence we relax b = % instead of % The parameter b is measuring the non-self similarity

of the solution.

- Notation: Based on the above, we write

u(r,t) = Iugt)w(y,v'), y= ;(t) and % = u:(lt) (2.11)
The function w now satisfies
Orw = ﬁzw + d;_layw — B(T)Ayw — 3(d — 2)w? — (d — 2)y*w?, (2.12)
where 1
B(r) = T3’ (2.13)
and
Ayf =yo,f +2f. (2.14)
Note that in the self-similar scale u, one needs to linearise around @), instead of @), where
Qv (y) = b(lT)Q (%) : (2.15)
In addition, w is global but blows up in infinite time. Indeed, introduce the error
(y, ) = w(y, 7) — Qu(r)(y)- (2.16)
By a simple calculations, it leads to
Ore = L) + B(e) + ®(y), (2.17)
where
L =0, + dzlay — B(T)Ay —3(d —2) (2Q + Q7 ly|?) (2.18)
and
B(e) = —3(d—2)(1+ |ylQ)e* — (d - 2)|y[*c’, (2.19)
and

o(,7) = %Abe(T) {Z((:)) - 2,3(7‘)} . (2.20)

From the expression of the operator H¢, we have the relation

_ % (He — bBAe) v(€, 7). (2.21)

gbw(ya T)

From Lemma 9.1, we infer that
3(d—2
3(d—2) [2Qu(y) + 2@} - 22

5 as b — 0 with y # 0.
Yy
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We next introduce the limit operator

d+1 d—2
28—+ Ty, g, 22 (2.22)
Yy Yy
1
and we set 2 = L
d+1,. 1 3(d-2)
Lo =02+ —=9,— A, + . 2.23
Yy + y Y 2 Y + y2 ( )
2
Let p = y?*1e A2 Then a simple computation yields
1d 3(d - 2)
LBo=="—(pd) + —"p—2B¢. 2.24

In the present paper, we use weighted Sobolev spaces LZ 5 and H; 5 where the weight pg is defined
by

V]

dt

28) 2 (g ¥

Pﬁ(y) = 24'8;0H_2 yd'He (28)% (2.25)
7

N

We also denote p1 = p.
2
The space L% 5 is equipped with the norm

191 @0y = [ £ @ao)d,
B R+
and Hj, (R*) has the norm
2 2 2
Hf||H;B(R+) = ||f||LgB(R+) + HanyLgB(Rﬂ-
We also define some special constants in our paper and we assume the dimension d > 11. Let
1
= §(d —Vd?—12d + 24), (2.26)

a = v-—2 (2.27)

and

A; 5 = ; . ;
" =5 iy

with ¢; ; and C; defined as follows

Gj = ‘ 7 (2.28)

= - (2.29)

() = (B (2 ) (2] it (2) o

We also use the notation
(y) = V1+ |y~

where
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3. Strategy of the proof

We aim to summarize in this paragraph our strategy for the proof of our results. As mentioned
above, our goal is to prove that v — @) as s — oo which is equivalent to the control

leC, Tl e < 1Qb(rllze =071 (7) as 7 — o, (3.1)

where @) defined as in (2.15), b determined as in (2.10), and w = Qp+¢ with w defined in (2.8). Our
problem mainly focuses on the perturbative problem (2.17). In addition, the perturbative spectral
properties of the linear operator %}, is studied in Proposition 4.2 which allows us to expand the
error € along its eigenmodes ¢;p 5,7 € {0,1,...,¢}. More precisely, we arrive at the following
decomposition

-1
¢€,b7’, T
o(7) = D i(T)iatr)500) + 2e(r) | =5 = Gop | + e (), (32
j=1

where ¢/ defined in (2.28), e_ is the orthogonal part of € to ¢;; 3 for all i < £ i.e.
(e-, ¢i,b,6>Lgﬁ =0,¥j=0,...,0 (3.3)

Note that the decomposition in (3.3) is crucial to our approach, as first introduced in [9] (see also
[7]). On the one hand, this decomposition provides a good approximation to our solution, including
the main perturbative term i.e.

Gep(r),B(r

e(7) ) Po,b(r),8(7)

which offers a better approximation compared to the profile when the solution is far from the
singular domain. On the other hand, it plays an important role in driving the law of the blowup
speed, b(7). In order to ensure the decomposition (3.2) be unique, we couple the problem (2.17)
with

€0

o0 ¢e,¢,ﬁ||£§6 (e, ¢£,b,B>LgB = —|/¢0,6,8 \Z;?ﬁ (e, ¢O,b,,B>L,2,Bi-6-5€ = —cy,0€0, (3.4)

and the following compatibility condition (for only the case ¢ = 1)
2 a
go(1) = —EmobE (7). (3.5)

Finally, the main issue is to control (g,b, 3) by a suitable asymptotic behaviors. Specifically, we
employ the concept of shrinking set, V;[A,n, 7] as defined in Definition 5.1 to handle the problem.
It’s worth noting that the set bears resemblance to recent studies on Type I blowup constructions,
such as those found in [3], [25], [27], [11], [16], [15], [12]. More precisely, we control €;,j = 0, .., ¢,
£_, the blowup speed b, the parameter 3(-). Due to the nonlinearity y?c® in equation (2.17), we
need to control ||e_]| 13 to derive a priori estimates on €; and e_. Besides that, it is not enough

to imply (3.1) from €; and e_, since the eigenmodes ¢;; 3,7 € N are not bounded as y — +o0.
To address this challenge, we also regulate the outer part . introduce in (5.9). Furthermore, we
propose a simpler way for constructing Type II blowup solutions for parabolic problems, as an
alternative to a direct brute force energy method.

Additionally, we also point out main ideas of the proofs of Theorems 1.1 and 1.2.

- For ¢ = 1. This case involves Theorem 1.1. It is sufficient to control (e, b, 8)(7) € Vi[A,n,7](T), for
all 7 > 79 for some 7y a sufficient large value. The maim idea is to construct a suitable initial choice
(e,b,8)(10) (see more in subsection 5.2), then we reply in a priori estimates provided in Lemmas
6.1, 7.1, 7.2 and 7.3 to improve the bounds in the V;[A,n,7]. Thus, by continuity of the solution in
time, we easily conclude that the maximum time trapped in the shrinking set is +00. Finally, using
the renormalisation in time given in (5.50), we conclude the proof of Theorem 1.1. We also mention
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some interesting points in our proof. First, the control of e_ which we sufficiently do on the interval
[0,6=7(7)]. On the one hand, on [0,b7] we use the maximum principle, initialled in [4], to control
it in avoiding a heavy control from energy method. On the other hand, on [b%,b_ﬁ] which is far
the origin enough. Then, the result follows pointwise estimates based on the Poisson semigroup,
see more in section C. Second, the control of the outer part €., follows pointwise estimates based
on the semigroup Kg(7, 7).

- For ¢ > 2. This case is related to Theorem 1.2. Similar to the first one. We control the solution
to be trapped in the shrinking set Vy[A,n,7](T) by a priori estimates. However, this case includes
unstable modes that ¢; for all j € {0, ...,£}. Thus, we reduce our problem to a finite dimensional
one which is solvent by a classical topological argument.

4. Spectral analysis

The aim of this section is to study the linear operator .i”bﬂ . In order to do so, we begin with the

limit operator .Z)Bo

Proposition 4.1 (Diagonalisation of .22, [23], [4], [9]). Let d > 11, 8 € (3.2) and L8 defined
as in (2.22). Then, Z8 admits a unique Friedrichs extension, still denoted by 8 with domain
D(.,%oﬁo) C Hgﬂ and HZB C D(DS,”O%), is self-adjoint with compact resolvent. Moreover, the following
hold:

(1) Spectrum property: .,?o% consists of countable many eigenvalues. More precisely, the eigenva-
lues and eigenfunctions are given by

Moo =28 (% - 1> i €N, (4.1)

_ d_ 2 ¢ Lo
Givos(y) = N (\/ﬁy) T <ﬁ12/> = i (28 1y
=0

{ a0y (1 + O(y2)) asy — 0,

4.2
ai,i(2B8)'y* 7 (14 O(y™2)) asy — +oo, 42

where LEV) (2) denotes the generalized Laguerre polynomial, N; is a normalization constant

and v, o, a; j are defined in (2.26), (2.27) and (2.28), respectively.
(ii) Spectral gap estimate: for all u € H;ﬁ satisfying <¢i”6’oo’u>Lf2’B =0,Vi € {1,...,0}, then

<$fou, U>L/2)ﬂ < /\€+1,oo,ﬁ HUH%%B :

As has been noted above, ZZ is formally the limit (b — 0) of £, defined in (2.18), and a priori
it is a good approximation of the latter for large values of 7. However, such an approximation is
good only for y large enough since ¢; o, is singular when y approaches 0. Hence, to understand
well the operator %, around zero (i.e., y small), one has to use the blow-up variables (¢, s) and our
operator then reads

#y= ¢ (He—bBAG). (4.3)

The strategy is is to construct the eigenvalues and eigenvectors of %, in two different regions,
namely, for y > yo (outer region) using the self-similar scale and and for £ < & (inner region)
using the variable €. Once such a construction is achieved, we glue at yo and in a C'-manner the
obtained eigenvalues and eigenvectors. The result is summarized in the following proposition.
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Proposition 4.2 (Diagonalisation of .%,). Letd > 11,b > 0,5 € (%, %) , £ € N* and %, be defined
as in (2.18). Then, 4 admits a unique Friedrichs extension, still denoted by £, with domain
D(%,) C H;E and H;B C D(%), is self-adjoint with compact resolvent. Moreover, for all ¢ € N*

there exists b*(¢) < 1 such that for all b € (0,b*) and j < ¥, the following hold:

(I) Spectrum: the eigenvalues and eigenfunctions are given by

Mgy = 208 (% - z) + Aigp, Vi € N, (4.4)
Bissly) — X}MQWu®%Wn<j>+@@m (45)
j=0 b

where

16,36

|H;B <O72, pp defined in (2.25).

In particular, we have

—
—~
e
(=]
~—

|/~\i,6,b‘ S bl—é and ’8},5\1'”371,’ S b_%7 and ‘aﬁj\i,ﬁ,b’ S
(II) Difference estimate:
164,86 = dipoollpry S B'7E, (4.7)

where ¢; b~ defined as in (4.2)
(III) Pointwise estimate: for k € {0,1} we have

Ohousatn)] s L (15)
VIS oy
242
O* b8y s ‘ < T 4.9
and
05 i5.0)]| + O5600G350(0)| + 0503 150(0)] S Ll (4.10)
y Pi.B,b\Y y VO D5, 6,6\ Y yOBPLBMY) | I (\/B+y)7+k' .
W ectral gap estimate: assume that u € satisfies
(iv) Spectral gap h Hj (RY) satisfi
(u, ¢i,67b>L%ﬁ =0,Vi € {0, 1, ...,f},
then, there exists c(¢) > 0 such that
(B, u) iz, < = e +e(0) Jull (4.11)

Proof. The spectral analysis is quite the same as in [8] and [9]. We kindly refer the reader to check
the details. In addition, we also give the matching ODE approach and the pointwise estimates in
Section 10. O

5. Proof in the stable case without technical details

In this section, we aim to give the proof of Theorem 1.1 without technical details.
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5.1. Shrinking set

We define below the shrinking set that controls the asymptotic behavior of (e, b, §) leading to
the global existence of the solution, and deriving Theorem 1.1. Let b and 3 be positive functions
satisfying the hypothesises in Proposition 4.2, then we decompose ¢ as in (3.2) by taking ¢ = 1

e(r) = ei(7) (gb;”f - ¢0,b,ﬂ> +e_(1)=¢ep(r) +e_(7). (5.1)

Definition 5.1 (Shrinking set). Let A,7n,7 and 7y be positive constants. For each 7 > 75 we
introduce Vi[A,n,n](T) as the set of all triple time-dependent functions (g, b, 3) on [y, 7] such that
(6,b,8)(7) € L®(Ry) x R? for all 7/ € [rp, 7] and the following estimates are satisfied:

(1) The dominating mode ¢ satisfies

2 a
ei1(r) = —amobi (1),V7 € [10,7], (5.2)
and functions b and S satisfy
1 2 T
5 < b(1) exp <<a - 1) </ 26(7)dT + 7'0>> < 2,V71 € [1, 7], (5.3)
70
and )
6) - 3| < AT() 7 € 7 (5.4
where my is given by (6.15), and I(7) is defined by
I(r) = e(=2)". (5.5)
(7ii) The part e_ of € defined as in (5.1) satisfies
Ha_(.,T)HLgm : < A%2 (1), V7 € [0, 7], (5.6)
and
‘ yvﬁ*("f) < A2 (1), V7 € [0, 7). (5.7)
W Mzeop-1(r)
(tv) The part e, satisfy
lylee(., )l < A*ETOD(7) V7 € [0, 7], (5.8)
where
i 1. -
ce(37) = (1= xo2087(r))ely 7). amd supp(ec) < {11 = 5077} (5.9
and o defined by
X0 € C, xo(z) = 1,Vz € [0,1], and xo(x) =0,Vx > 2. (5.10)

Consequently, once (e, b, 3) belongs to Vi[A,n, 7], one can easily deduce the following pointwise
estimates.

Lemma 5.2 (Pointwise estimates). Forall A> 1 and0 <17 < n < 1, then there exists T (A, 7,1) >
1 such that for all 79 > 1 the following holds: Assume (,b,8)(1) € V1[A,n,7|(T) for all T € [19, 7]
with T > 1y arbitrarily given, then we have

IH_%(T) <b(r) < ]1—%(7),VT € [10,7]. (5.11)

Accordingly (5.1), €4 and e_ satisfy the following pointwise estimates

Ch2 B
le(y, 7)| < Ty {v* +b'(r)(y)*} ,Vy > 0,7 € [0, 7], (5.12)
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and .
le—(y,7)] < C’A4b%+ﬁ(7)%,vly > 0,7 € [10, 7] (5.13)
Y
Proof. The results immediately follow from the bounds given in Definition 5.1 of the shrinking set
Vi[A, n, 7j)(7). O

5.2. Preparing initial data

In this part, we aim to construct a suitable falimy of initial data (e, b, 8)(7p) such that the solution
to the problem (2.17-3.4-3.5) globally exists and satisfies

(€,b,8) € Vi[A, 0, 7)(7), V7 > 70.

Let us define By = B(r0) = 3, by = b(r) = I% (1) where I(7) introduced as in (5.5), § < 1
satisfying 0 < 7 < n < § < 1. In addition, we recall x( defined as in (5.10) and we introduce then

() = o () (1 =0 () ) (ot ) {10+ 00222 — [1 )] |

(5.14)

where the corrections ¢ () and (7) are uniquely determined such that (3.4-3.5) are satisfied at
T = 79. More precisely, via a direct computation, they satisfy

[B(70)| + |¥r0) | S ¥(r0).

Thus, our initial data is of the form

(,6,8)(10) = (¢(70), bo, Bo)- (5.15)
In addition, the initial data for problem (2.12) will be of the form
w(y,70) = Qu(ry)(y) + £(70)- (5.16)

In the sequel, we prove by using modulation that we can propagate (3.4) and (3.5).

Lemma 5.3 (Modulation technique). There exists do < 1 such that for all 6 < o there exists
Ag > 1 such that for all A > Ag there exists n2(A, d) such that for all n < ny there exists 12(A, 0,m)
such that for all 1 < 7o there exists To(A, 0,m,7) > 1 such that the following property holds: Assume
that initial datum is of the form in (5.14), then there exists ;. > 1o and smooth functions (b, 3) €
(C 70, 78] . RHNC ((70, 755,), R?)) such that the solution w (corresponding to initial data in (5.16))
to equation (2.12), locally exists on [1o,7;;.] and uniquely admits the following decomposition

'U)(T) = Qb(‘r) + 5(7_)7 (517)
where (e,b, B) satisfying (2.17-3.4-3.5) and Qy(r) defined as in (2.15). In addition, it holds that

(e,b,8) € Vi[A,n,0|(T), for all T € [10,7};.]. In particular, the existence of (€, b, B) can be propagated
to the interval [1o, 7.+ &| for some & small thank to the bounds in V;.

Proof. Let us consider initial data w(7p) defined as in (5.16). Thanks to the local well-posedness in
L§% e, > 2 of the problem (1.3), there exists ¥ > 7o such that the solution w to equation (2.12)
uniquely exists on [y, 7]. We mention that the existence of modulations b and  and decomposition
(5.17) is a direct consequence of the implicit function theorem. Let us introduce the following maps

Fi(1,0,8) = (w(r) — Qs H¢1,b,,8HZ§ﬁ c1,001,6,8 + ‘|¢O,b,ﬁ”;§¢0,b,ﬂ>L%ﬁ7
By(r,6,8) = (w(r) = @ rpp)12, + 2mollérss %gﬁb%(ﬂ
Since e(79) = ¥(79) defined as in (5.14), it immediately follows
F(70,bo, Bo) = (F1, F2)(70, bo, Bo) = 0.

(5.18)
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Now we admit the following expansion (the proof will be given below)

) a_q qul,boﬁo”%%ﬂ ”gboﬁoyﬂonzgﬁ
Det(J) (70, bo, fo) = molléreo.pllzz b5 e1(ro) 15, s (519)
0

+ oy,
which implies
Det(J) (70, bo, Bo) # 0,

provided that by small enough i.e. 79 > 71(d). Finally, we apply the implicit function theorem
to conclude the unique existence of the functions (b, ) € C([r0, 71], R?) N C*((70, 71], R?) for some
71 > 79 such that

F(r,b(r), (1)) = 0,V7 € [10,71].

Now, we define 7}, = min(7y, 7) and we define (1) = w(7) — Qy(r), T € [70, T1]. Thus, (¢, b, B) reads
(2.17-3.4-3.5) for all 7 € [ro, 7]

Besides that, from definition (5.14) and the continuity of the solution, there exists A2(d) such
that for all A > Ay there exists 72(A, d) such that for all n < 19 there exists 72(A, d,n) such that
for all 7 < 7o there exists m(A,d,7,7) > 1 such that for all 79 > 7 and 7. > 79 such that
(e,b,8) € VilA,n,n|(7),VT € (70,7}.]. To finish the proof we now complete the proof of (5.19)
provided that § < do,m < 12(9),7 < 772(0,m) and 79 > m2(d,n, 7).

Let us recall Jacobian matrix J defined by

OF  OF
J(1,b,8) = (86;92 gg) (1,0, B).

ab op
We now explicitly write the partial derivatives:

0Fy

_ [ 1 2 2
= = / 2—bAbe <‘|¢1,b75|’L%ﬂ 001,68 + |08/, ¢0,b,ﬁ> ppdy (5.20)

+ / (w(T) = Qu)0s (Ilél,b,ﬁllL;i CooP1b,5 + H¢o,b,ﬁ\|;§¢o,b,ﬁ> pady,

and
dry _9 2
98 (191,68 ’Lgﬂ)cz,o (w — Qv)1p5ppdy + H¢1,b,ﬁHL%B cro [ (w—Q)9p¢16,50dy
+ H¢1,b,ﬁ||2§ﬁ 1,0 /(w — Qu)1,6,803ppdy + 36(”¢0,b,5\|£§ﬁ) /(w — Qv)Po.b,808dY (5.21)

+ H‘b(),b,ﬁuzgﬁ /(w — Qu)03b0,p,3ppdYy + H¢0,b,ﬁ\|zgﬁ /(w — Qb)d0,303ppdY,

and
OF: 1 2 a
T = [ @reanady+ [@r) - Qu)ohdrsamady+ Zmadtlornsliy bE (522)
ob 2b a b
+ mollgnpsllzy b,
and
oy

2 «@
ri /(w(T) — Qp)0301,p,8ppdy + /(w(T) — Q) 91,6,808ppdy + am[)aﬁHgﬁLbﬁH%%B b2. (5.23)
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We now claim the following (which will be proved later)

8;;1@0,6(70),5(70)) = meb2 ' +o(b2 ), (5.24)
oF a

a5 (00(0),B(0) = —Fea(m) — [1psl P Ndopsll 2 +0b%) . (5:25)
O (s blr). Bm)) = ol sl b+ o637, (5.26)
b B) = g l10al% o1+ olb). 65.27)

Indeed, using estimates ((5.24)-(5.27)) with (b(70), B(70)) = (bo, Bo), we derive
2 —2
H¢1760750 HL%ﬂo quO,boﬂo HLIZJﬁO
40

Det(J) (70, bo, Bo) = mOHle,boﬁoH%%ﬁ b2 ley (7o) +o(b*71).
0

Thus, we get
Det(J)(70,b(70), 8(70)) # 0,

provided that by is small enough. Finally, we apply the implicit function theorem to get existence of
(b, B) € C([r0, 1], R))NC*((79, 71], R?) for some 71 > 79 and € = w—Qy, satisfying the decomposition
(7.6) and the compatibility (3.5) for 7 € [r9, 71]. In addition to that, since e = w — Q}, € evidently
solves (2.17)

Let us now give the details of the computation.

- For (5.24):
we have

1 _ — & o
/%Abe <||¢1,b76||L§ﬁ c1,001,,8 + ||¢o,b,6Hp,32¢o,bﬁ) ppdy = mob2 " + o(bz"1).

Next, we estimate
_jﬂ (2/¢e,b,ﬁ5'b¢e,b,ﬁ/)5dy> :

bab”ﬁbl,b,ﬂ”zgﬁ =0 2). (5.28)

Since we choose an initial data () = 1(7p) defined as in (5.14) and satisfying w(79) — Qp, = €(10),
we obtain that

-2 _
3bH¢1,b,BHLgB =

From (6.25), we get

4
()] = (o) — Qo] < o2 EELD,

Hence, from (6.25), we infer that

’/(w - Qb)ab¢£,b,,8,05dy’ =o(b27h).

It follows that,

/(w(m) —Qb)0 (”qbl’bw@”Z,%Qﬁclyoqjl,b,ﬁ) pady = o(b1~5).

Similarly,

/(w(m) — Qp) <H¢O,b,ﬁ”£§5 ¢o,b,g) pady = o(b'"5).
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Finally, by adding all integrals in (5.20), (5.24) follows.
- For (5.25): from (5.21), we will establish the following estimates

d
—9 (5_7"‘1) d+2 _9 1—¢€
_ N 2
36\\051,@6“% [ 5 25 1,6, !Lgﬂ +0(b " 2), (5.29)
d
2 (5_7+1)_d+2 _9 1—¢€
0 lunslF, = [ 7 - 2wl + O R (530

We remark that these estimates are similar, so we only give the proof of (5.29). Indeed, we write

aﬁumﬁllzgﬁ = —H¢1,b,ﬁ\|2§6 <2 / $1,6,808%1,6,8P5dy + / ¢1,b,6¢1,b,ﬁaﬂﬂﬁdy> :

From the construction of ¢, g in Proposition 4.2, we have

Osbrop = ;cl,mxﬁ)?—m (€) + Dpdups

-1
1 . = . = e
= B¢1,b,ﬁ + Y E(B)djns + Prpp, with 1912z = Ch' 2. (5.31)
§=0
Then,
OO 1 2 1-£
2¢1,6,80801p,8pdy = 2 BHqﬁLb,ﬁHpﬁ +0(b72) ). (5.32)
0
For the second integral, we use the identity
d+2 y?
Ippp = WPB CRCE (5.33)

to derive

< d+2 ) > Y’
01 p,30808dy = — 7l d1pslle — | 108016875 Pady.
0 28 s Jo 2

Besides that, by Proposition 4.2 we have
19166 = dr008llz, < Cb' 3,

which yields

(%) y2 [e%s} y2 1«
/ P1b,601,0,6 5 Py = / P1,00,601,00,6 5 PBAY + O(b™2). (5.34)
0 0

In addition, we use ¢¢ 0 5 as in (4.2) to get

2

5 PLec,s {%1(25).@2_7 + al,o(%)e_ly_”}

(8
2

= T - (G - DEa
1

1 1 /d
= Equ,oo,,B - @a2,1¢1,oo,ﬁ ~3 <2 -7+ 1) ?1,00,8

1 2 (d 1/d
= oot (5(5742) -5 (5-01) s
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Then

o y2 2 d 1 d 2 1—€
. ¢1,oo,,8¢1,oo,65:05dy = E 9 v+2) - B 9 v+1 ||¢1,OO,B||L%B + O(b 2)

. 2 d 1 d 2 1—£
= <5 <2 -+ 2> 3 (2 -7t 1>> H‘bl,b,ﬁHL%ﬁ +O(b2). (5.35)
This concludes the proof of (5.29).

Next, we will prove the following

00 1 .
/'¢%w%m@wmw=|wmmﬁz+owlﬂ. (5.36)
0 4 Pp

Indeed, using the orthogonality between ¢g ;5 and ¢1 3 we get

0 = 86/¢0,b,,8¢1,b,6ﬂ6dy = /3ﬁ¢o,b,ﬂ¢1,b,ﬁpﬁdy+/¢0,b,53ﬂ¢1,b,ﬂpﬁdy
+ / $0,b,3%1,6,303P3dY

- / P0.6,80301.0,8P5Y + / 0.5,601,6,608P5dy + O(b'~2).

From (5.33), we obtain

2
/ $0,6,59501,6,80pdy = / %¢O,b,ﬁ¢1,b,ﬂpﬂdy +0(b'"2). (5.37)
In addition to that, we have the following identity
2 d
Y . i 5—7+1
2 (Z)O)OOnB - 46 ¢170075 + ,8 (b0,00,fJ’? (538)

and (5.36) follows.
- For (5.26): from (5.22), we have

AQ a_
/bb(lsl,b,ﬁpﬁdy = o(b27"), (5.39)
from (4.5) and the orthogonality between ¢¢ g and ¢1 5 3. Moreover, (6.25) ensures that

/(w — Qb)0rp8p3 = 0(b2 1),
and (5.28) implies
2 (o] (o]
Em0||¢1,b,6||igﬁ b> =o(b="1).

Finally, we get

oF: a_ a_
87;(7075(70)75(70)) = m0H¢1,b,BH%gﬁb§ Liom2h, (5.40)

which concludes (5.26).

- For (5.27) we use

o (1+y
wir) - Qi < cbs LY
and
1 = : = _e
Opdrng = Forost Crps, with |8l < C' ™3,
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Using
1

w(ro) = Qp = e(r0) = Y £(T0)$jp,8 + - (70),

J=0

we infer

/ (w(r0) — Q)Isbrpsoady = co(m0) | en sl + 0(b5).

It follows that

/(w(To) — Qu)1,p,303ppdy = d2+62 /(w(To) — Qp)1,p,508dY — ;/(w(m) — Qv)1.6,5Y>pady.

Since £; = O(b2 (1)), \5,|le) < Cb2t, we get for the first integral is

/ (w(r0) — Qo)b1a5pady = e1(70) b1, 512 (5.41)

For the second integral, we use the expansion of w(7m) — @y to obtain

2 2 2
[wr) = @oasspaty = co(m) [ dunsoras’spady+ei(m) [ 8 pady+00%). (.42

In addition, we have that

) y2 0 y2 1_e
/ ¢1,b,ﬁ¢1,b,ﬁ?pﬁdy = / ?1,00,801,00,8 Epgdy +0(b' " 2)
0 0

and

00 2
y _ (2(d_ _1lfd_ 2 1-5
/0 ?1,00,8P1,00,8 5 psdy = <5 <2 v+ 2> 3 (2 ¥+ 1>> HQSLb’BHL%B +0O(b2).

Hence
2 d d ¢
/(w(T()) - Qb)¢1,b,6%ﬂﬁdy = <Z <2 -7+ 2) — ; (2 -7+ 1>) H@bl,bﬂH%%g + O(blfi). (5.43)

It remains to estimate the last term in %, namely, %m085]\¢1,b75\\%%5 b2 . Indeed, we have

Dllornsllz =2 / Ip1,6,5016,8P5 + / 61.0,508P5-

Arguing as above, we get

1 d+2 2 (d 1/d _e
aﬁ”¢1,b,ﬁ"%%ﬁ = (2,3 + 25 (ﬂ (2 -7+ 2) "3 (2 -7+ 1))) H(bl,bNBHZﬁ +0(b'2)
(5.44)

Putting the different contributions of % together, we arrive at

dF»

1 2 o
B —BHﬁf)Lb,ﬁHLgBel +o(b2).

as claimed.
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5.3. The proof of Theorem 1.1

In this part, we focus on the proof of Theorem 1.1 which immediately the following result:

Proposition 5.4. There exist A,n, T such that we can find 6 > n,7 and 10(A,n,7,0) small enough
such that with initial data €(19) defined as in (5.14) and (b, B)(m9) = ( (1=2)m 1) the solution
(e,b,8) exists for all T > 1y and satisfies
(&,b, 8)(7) € Vi[A, n,7]}(7), VT = 7o.
Proof. Let us define 7* by
7" = sup{7 > 79 such that (e,b, 5)(7) € Vi[4,n,7](7),VT € [10, 71|} (5.45)

By contradiction we suppose that 7 < +o00. Lemmas 7. 1 7.2 and 7.3, the bounds in Vi [A,n, 7](7%)
involving (e[| 2 ' & and e, are improved by a factor 5. In addition to that the improvement for
8

b and 8 comes from Lemma 6.1. Indeed, we have
T* A
B~ Bm)l S4 [ 8’ < (), (5.46)
70

provided that 79 is large enough. For the bound on b(7), we introduce

W(r) = b(r) exp ((Z - 1) (/ 28(+)dr’ + To)> and U(r) = 1, (5.47)

and from (6.3), we get

*

W) -1 [ e ar < g, (5.49

T0

provided that 7y large enough. Thus, the bound of b in the shrinking set is improved by the factor
3. Besides that, by continuity of the solution, there exists ¥ > 0 small such that (e,b,)(1) €
Vi[A,n,7](7),V7T € [7*, 7" + v] which contradicts to 7*’s definition. O

Now, we aim to give a proof of Theorem 1.1: Let us consider suitable constants such that
Proposition 5.4 holds that (e,b, 8) € V[A,n,7](r) for all 7 > 7. Next, we derive the laws of b and
0 as follows:

(i): The law of b(7): Let us introduce

U(r) = b(r) exp <<2 - 1) [/0 28(r') + TOD,T € [r0, +00), with ¥(rp) = 1.

From Lemma 6.1, we have
W' (7)] S [9(7) " (7), V7 > 70,
since (g,b, 8) € V1[A, n,7](7) for all 7 > 79, we get
|T(7)| < C, and b (1) < I'(1) where I(7) defined in (5.5),

which yields
()= V() +/ Q)d¢ — / Q)d{ =Yoo + O(I"(T)) as T — +00,

with U = U(19) + fTC;O U'(¢)d¢ =1+ fTO U'(¢)d¢. Thus, we get

b(r) = Uy exp <<1 _ i) ( / 28(C)d¢ + TO>> (140 (") as 7 — +oo. (5.49)
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(ii) Renormalized flow (1) and derivation the law of u(t) defined in (2.11): Using Lemma 6.1
again, we have
18'(7)| S b¥(7),
then we deduce

B(7) = B(70) + /Oo B (r"dr' — /OO B(r)dr" = Boo + /OO B () dr' = Bso + OI"(1)), as T — 400,
with . .
fu=g+ | B

We introduce the renormalized time 7 by

T =28(7)T, (5.50)

which is an invertible function of 7. Indeed,
T = (2Bs) 'F(1 4+ O(I"(7))), as 7 — +oo. (5.51)

We shall remark that we will make an abuse of notation u(7) = u(7) = p(t). The relation

du _ dudr

dr  dr d7’
implies, from the fact that u, = —28u and (5.50)

Z—/; =—u(7)[1+0{I"(7))] as T — +o0.

Thus, we get i
u()=eT(1+0(I"(7))), as T — +o0.
In addition, we derive from (2.11) that
dr  drdr .
P 7(t) (%

which implies
7F(t) = —In(2B (T — t))(1 + O((T — t)7)), as t — T,
for some T'=T(19) > 0. From (5.51), we have
7(t) = (2Bo0) 1) (L + IT(7(1))) = —(2B00) 1 IN(2B00(T — 1)) (1 + O((T — t)7)), as t — T.
Substituting p(t)’s formula, we get
pu(t) = p(7(t)) = 2Bo0(T — t) (L+ O((T — 1)7)) ast — T.
Recall that i
/ 2B()dr' = 2B0r(1+ O(r~1)) as © — +oo,

70

from which we deduce, with the use of (5.49), that

b(t) = Waoexp <<1 - z> (/ 28(C)d¢ + 70)> (14 0(I) (+(1)))

— W (28)a (T — )t (1 +O(In(T — t)rl)) ast — T.
Introducing A(t) = w(t)b(t) which satisfies
A(t) = C(up)(T — t)%(l +O(In(T —t)| ")) ast — T. (5.52)

Finally, the conclusion of the Theorem 1.1 immediately follows (2.11), (2.16), the fact (¢,b,3) €
Vi[A,n,7](T) for all 7 > 19, and (5.52). O
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6. Finite dimensional system
In this part, we study the dynamics of finite modes ¢;(7) and the modulation parameters b and

8.

Lemma 6.1. Consider A > 1,n7 > 0,77 > 0, there exists To(A,n,7) such that for all 7o > 7o, the
following holds: Assume that (¢,b,8)(1) € Vi[A,n,7](7),VT € [10,71], for some 7 > 19, then, we
have

(1) The dominating mode €1 satisfies

drer— 28(%—1)

e1 =0 (b3 18] + %] +11)

(6.1)
0-e1— |28(5) |er+mo (B —28)b2 =0 (b%+4n(7)[|ﬁ'\ + %+ 1]) ,
for all T € [1,71].
(ii7) For the b and B, we obtain
|8'(r)| < C AV (7), (6.2)
and
b (T) 2 1
) 2/ (1 - a)’ < CAb™(1), (6.3)

for all T € (19, 71).

Proof. Let us consider (e,b,5)(r) € Vi[A,n,n]|(T), V7|10, 1] and e(7) decomposed as in (5.1), and
we also recall that

- . —2 )
€ = ||¢]7b75”[%5 <5a¢],bﬁ>L%B' (6.4)
Then, we obtain from (3.4) that
ei(r) = colléenslis (e o1z,
5"k e (6.5)
e1(r) = *H@bo,bﬁ |L}€ﬁ <5a¢0,b,B>L%B~

By taking 7-derivative of the second equation of the above system, we get

—0re1 = Or||dopp

-9 —2 -2
’L?»g (e, ¢O,b,,8>L,%ﬁ + H¢D,b,ﬁ”L%ﬁ (Ore, ¢0,b,,8>Lgﬁ + H¢0,b,6||szﬂ (e, 87¢0,b,,8>L%B

_ Orp
+ lonnali?, (2722 (6:6)
rB P8 /12
where pg defined as in (2.25). A direct computation gives
L 1 2 [, ®0b,80r 000,80y + [, D0b,600,60ppdy
aTH‘ﬁO,bﬂ”L%ﬁ = an ¢2 pgdy = - ) D)
Ry 705,58 (fR+ ¢0,b,ﬁpﬁdy)

b/
_ —4 v /
= ||¢0,b,ﬂ||L§ﬁ (2  (005,5:b06P0p,8) 2 + 28 (P06, 0506013

d+2 2
+ 4 <¢07b,5, P03 ( - y>> ,
% 2)/5
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and
/

b
(., 0rd0p )z, = J{&00Popp iz + B'(e Opdops)rz, -

b
d-p d+2 ¢’
<€, ®0,b,8 '8> ey <6, $0,b,8 <2f3’ - y2>> .
Pg L3, L3,

We plug these equalities into (6.6) to derive

—~0re1 = dossl 13 (0r: bons)uz, + Ko, (6.7)

where
/

_ b
Ky = _H¢O,b,6”L§B<€7¢O,b,B>L§5 {2b<¢0,b,57b8b¢0,b,5>L§B+2ﬁ/<¢0,b,5785¢0,b,5>L%6 (6.8)

_l’_

d+2 4 (Y

/ syt J 2 v

B <¢0,b,57¢0,b,5 < 53 5 )>L2 + ||¢O,b,BHL%B { A <Eabab¢0,b,B>Ll%ﬂ
o

d+2 2
+ ﬁ/<57 aﬂ¢0,bﬂ>L§B + B, <€, ¢0,b,ﬁ (25 — y2)> ]
L/’ﬁ

Similarly, we derive from the first one in (6.31) that

cro0re1 = [[é1,,6 !Zi (Ore, 010,8) 13, + K,

where
/

_ b
Ki = —ll¢ippll (e, 15,812 {2<¢1,b,,3,bab¢1,b,ﬁ>m + 26 (16,8, Ppb1p,5) 2. (6.9)
P B b B B

d+2 2
g <¢1,b,5, 16,8 (2 - y2)> + |lp1,p,8
B L2,

/ / d+2 y2
-+ /6 <57 8ﬁ¢1,b,ﬁ>L%B + B <€, ¢1,b,5 <2/B _ ? ,
)

_l’_

b/
-2
Lz, { 3 (€ 0010612

We have the following system

cro0-e1(r) = ldpplis (0-,d1p8) 2 + K1,
o o (6.10)
—0re1(r) = ltopsliz; (0 Popplrz, + Ko
Since ¢ solves (2.17), we obtain
(Ore, dopp)rz, = (Zoes bopprz +(Ble) boppirz + (P dopp)rz
which implies
co-er = |lorpslls {<e%€,¢1,b,ﬁ>m +(B(e), p1p8) 12 + (P, d15,8) 12 }+K1
o8 o ° L (6.11)

—0re1 = |¢op,s Egg {(-%E,cbo,b,ﬁhgﬁ +(B(e), dopprz, + (‘R%,b,,@hgﬁ} + Ko

We only estimate all terms of the first equation in (6.11), the rest is left to the reader.
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- For (ZLe, ¢j,b76>Lgﬂ: Using the fact that %, is self-adjoint and the special decomposition (7.6),

we have

_ — 2 1
(Goes drnplrz, = (& Ltrnpliz, = Moslernsliz (6.12)

)

where
)\17575 =20 (% — 1) + 5\1,1,,5, with ‘5\175,5‘ S b3,
- For (B(e), ¢j,b,ﬁ>Lf,B: We recall B(e) (2.19) in the below
B(e) = =3(d — 2)(1 + [y[*Qp)e® — (d — 2)[y|?>.

From (5.1) we have

2
}B(d —-2)(1+ y2Q5)62‘ < 5% (¢1,b,3 — ¢o,b,/3) +e2,

C1,0
3
+le_)?].

Since (g,b,8)(7) € Vi[A,n,7](T), for all T € |79, 71] which ensures the pointwise estimates given in
Proposition (4.2) to deduce that

(o)1),

Lemma 5.2 yields

)

P1,6,8

— P08

)

[(d—2)yl**| < o? <|€e|3

Sl + [ [ 492 1e-F] losnsl ooy
4 an <y>2€+2
le_(y,7)| < CA>"(7)~ " —,Vy € RY, (6.13)
which yields
/R [52, + 2 |€—\3] i8] pady < b2 (7).
+

Hence, we get
(B(e), drpp)r3, S b2 (7). (6.14)

- For (®(.,7), ¢1,b,6>Lgﬁ: Following ®’s definition in (2.20), we have

our=[19-] () (45 -] e wnc-

Accordingly to ¢gp g’s formula in Proposition 4.2, and the construction of Ty in Lemma 10.1, we
write ® as follows

b o -
o= [b - 2/3} mob2 ¢opp + P, (6.15)
for some mg # 0, and
= b’r o _£
6123, 5 |77 2805

This immediately implies

mob? 53 —26] lonaaly, +0 (% —2863+75) it j=0

(., 7), D4, = “ S
(@(7):0508) 1, O(‘%_Qg‘[ﬁ“—E) it j=1
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- For K: Let us consider § < min (3,1 — §) with € defined as in Proposition (4.2) and § > 1 >

7. From K/’s definition given in (6.9), we will prove the following bounds:

(D168, 010803 S 0, (6.17)
< v6-(7)
(&, b0prpp)rz S U | leal+ ||y T4yt || Hlle-llzz, |- (6.18)
(0,671
1
(b10,6:05108) 12, = BWLWH%};B +0(), (6.19)

d+2 o _ [d+2 2 /d 1/d 9
(asons (557 -5)),, = [ 50+ w5 (a0 ooty

rp
+ o), (6.20)
and with the equality (7.6)
1 51 2 v E_
_la _a 21
(€, 05010,8) 12, 5o 2, 4B\¢1,b,ﬁ|ng6+O(‘y 15y Loo) (6.21)
(9 75*(37-)
+ofb €e|+‘y = e, ) ). (6.22)
[0,6—7)

and
[ (530 -+ + 5

? 1ab75 “on 9 -
28 2) /1 - O<b5 <|51\+H3ﬂ€ =

PB 1+y

and

d+2 2
£, $0.p,3 etz _v 751||¢01>/3HL2 +0(b27).
"y 25 2 Lgﬂ

+ For (6.17): As we assumed 6 < %, then, for all y > b°, we have
Y

== — +00, as b — 0.
: Vb
Hence, we have
1 1 1
2j— _ Vb2~
c%jz;clﬂ-(\/l}) T (e)| = bz;) 15(27 — V) (V)T (¢ bz;

1

2] 2= 9~
> Vb 97772 Ing|, as € — 400,
7=0

N

and (10.6) ensures that
ED¢T3(€) = (2] —)T3(€) + 06772 In¢), as € — +oo.
Then
b0y > iy (VB ITHE) £ S0VET ¥ 2 g, as € - +oo,

Jj=0

d 1
5—7+1)>+@}

o ||e_u%)) ,
[0,677]

(6.23)

(6.24)
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which implies, from (4.5) and the above inequalities, that
606956, (y)| S bl‘”y‘ny’ Vy > b and j < 1.

Hence, we derive on the one hand

- ¢j,b,,8bab¢i,b,ﬁpﬁdy‘ < CV,Vi,j < 1.
Y=

On the other hand, we apply the pointwise estimates given in Proposition 4.2 that yields

— _28y? _ _
¢j,b,,3b8b¢i,b,ﬂp,8dy‘ S / yd+1 276 1 dy SJ / yd+1 2’Ydy S b5(d+2 2'}’).
y<bs y<bd y<bd

Combining (6.26) and (6.27), we obtain

‘<¢j,b,67 bOhbinp)rz, | SBUTE DI S0 <1,

thus, (6.17) follows.
+ For (6.18): Using (7.6), we estimate as follows

1
(e, bDhd108)] S Dl ‘<¢j,b,57bab¢1,b,B>L§B + ‘(E—, bOyd1) 13,
7=0

Using (6.28), we get

Z’gﬂ‘ bjv.5,b0p01) 12,

=0

Next, we estimate the projection on dy¢1 of e_. Indeed, we split the integral:

(e~(7),b0bb155)13,

T /b le— (7)] [bbb1.0.5] psy.

=17

For the integral on [0, %], we estimate as follows

(6.25)

(6.26)

(6.27)

(6.28)

o b1
< /O \5—(7')|\babﬁﬁl,b,ﬁfpﬁdy‘i‘/ba le— ()| |bOy16,5| ppdy

S 9
’ b0 < |ype=ter) RIS
e (1)bdd1b,8ppdy| < |1y 1 y
0 (V) L20[0,b—7] JO
< ‘yfy?f—(‘az) pod+2-27) < ‘ 76—('747) B
W Nzepp-n W) Moo
On the interval [b°,b~7], we estimate
b7 b=7 4
_e || e=( 1+y(1+y?)|Iny]
e ()b dul < =5 ‘ ve=(7) / ( yitle
/1;5 ( ) b¢1,b,[3,0,8 Yl = Yy 1+ y4 Loo0.6-1] » yQ,\H_Q

< pl=5 y"/g—('aT) {/1 yd—27—1dy+/+oo (1+y4)(1+y )
- L+ y? [ Loy Lo 1 Y2+

< B ve-(7) ‘

- L+ y* || poopop-1)

"

2
Titdy
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For the interval b=, +00), we use Cauchy-Schwarz inequality and (6.25) to arrive at

e * 2 : 1-¢ b
[ et waonnsos| S -, ([ Pobonastos)” <0 8le- g, S 816l
b= B b7 PB PB
which concludes (6.18) by adding all related terms.
+ For estimates (6.19) and (6.20): Indeed, from (5.31), we immediately deduce (6.19). In addition

to that, by combining (5.34) and (5.35) one gets (6.20).
+ For (6.22): According to (7.6), we decompose ¢ as follows

(e,08b168)12. = 81(7)<W—¢o,b,ﬁaaﬁ¢1,b,ﬁ> +(e—(7), Odb1b8) 12 -
PB C1.0 Liﬁ PB

)

Similarly to (6.18), one can deduce that

78—('77-)
14y

0

e,

(e-(y.7), 050106012 S

[0,6—7]

In addition to that, we derive from (5.32)

¢1,b, 1 _€
<C 2 0go10p) = —ldrpslis +O0 ),
1,0 L%ﬁ C1,0 8

)

and from (5.36), we have

_ 1 2 1-£
(o0, OP108)13, = 75l P1esliz +O0BT2).

Finally, we use the above facts to get (6.22).
+ For (6.23): We firstly write as follows

d+2 y2>> <¢1,b,5 <d+2 y2>>
, _— = =e(1) ( —*= — , —_— = =
<6 P10, ( % 2))1 1(7) g foemdbs | 5 L

]
d 2
+ <5(y, 7), ?1,6,8 (2—;2 B l/2> >L2

rp

d+2 2
<5—(y77)7¢1,b,6 (2; — y2 )>
12,

On one hand, we have

1-1
o 5*(3 7_)
5 Z’Eﬂ‘i‘b ‘y’yl—f—ym +||€—HL%[3
j=1 [0,6—1)
For the rest, we obtain
DL, <d+2 y2>> 1 d+2 ) 1 < y2>
—= = Qob s P1ps | o — = — {1y, — — (D168, P18~

y2
+ <¢0,b,57 ¢1,b,52>
LQ

e]
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Using (5.34), (5.35),(5.36) and (5.37), we have that
2

1 e
<¢0,b,ﬂv¢1,b,6y > = —lrpsl?, +0(0'"2)
2 L2, 48 L3s
and
2
y 2 d 1 d 2 1—€
= =(=1=- 2 —=|(=— 1 b

P8
which implies (6.23).
- For (6.24): The proof is similar to (6.23) which also follows from (5.34), (5.35),(5.36) and (5.37).
Now, combining (6.17) to (6.24), we derive

~ el b 5 e_(7)
K = - Ol |- 1)0b v _
= 2o (|5 )w (i R ey,
[0,671]
voolev (ll+ iR e
1+ - Pg
[0,6— 1]
In a convenient way, we denote
b/ 5 57(‘ 'T)
L = —|+1)b T _
(5] 0)e (e || e,
[0,6—™1]
v s eal+ =) e
T4+y4 || Ps
[0,6—1]
Then, we have
% B'eq
K =— + O(L). (6.29)
c1,083
- Applying K;’s process to K, we get
2 -2/
Ko:_H(ﬁl,bﬂH 0,65l 58—1+O(L). (6.30)

43 1,0

Now, we are ready to start to the proof of the Lemma.

- Proof for (i): We use system (6.11) combined with all of the previous estimates to derive
drer = 28(%-1) —%51+O(L)+O(‘%_25‘b%+6>7 o
e = 20%e—mo [§ 2308 +0) + O (|5 - 29077). |

In particular, since (g,b, 8)(7) € V[A,n,n](7),YT € [10, 71|, the pointwise estimates in Lemma 5.2,
imply (6.1).

- Proof for (ii): The results immediately follows item (i). O

7. Control of the infinite dimensional part

In this part, we aim to give a priori estimates involving £_ and &,
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7.1. Energy estimate

In below, we will prove a priori estimates on ”5—”/2)5'

Lemma 7.1 (A L%—priori estimates on €_). For all A > 1,n, and 7 satisfying 1 < n < 7, there
exists T3(A,n,7) and T such that for all 7o > 14 and the solution (¢,b,8)(7) € V1[A,n,7](7*),VT €
[10,7*] and

le-(Pllzz, < CAb> (1), V7 € [10,77]. (7.1)

Proof. The result is mainly based on the spectral gap property. First, we claim that (7.1) follows
from

1d 9 o 9

S (= - < CApT3, .

Sl 12— (5 -2) eIz < cap (7.2
Indeed, let us assume (7.2) holds, we infer that

C% (=)= (n))13;) < A8 3 H9,vr € [y, 7).

From the fact (e,b, 8)(7) € Vi[A,n,7](7), for all T € [19, 7*], we can apply Lemma 5.2 to deduce

||57H%g < 62(2g)(TTO)Hs(7‘0)||%%—|—CA62(23)7/ 62(2*%)7'5%%77(7/)(”/

70

IN

C Ap>+2n (1),V7 € [0, 7"].

Then, (7.1) follows. Now, it remains to give the proof of (7.2). Indeed, we multiply equation (2.17)
by e_ and integrate

1d 9 p d+2 y?
= e 12, = (Bee_ e e (2 Y . 7.3
sl = ety + 8 (oo (G -5 )) (7.3
7s
Next, we will prove that for all 7 € [rg, 7*]
« .
(Oreeiy < (5 —2) le=liZy, + 0@ N(), (7.4)
d+2 y?
g <s, e <+ - y>> < e, (7.5)
28 2 )/,
Ps
Let us start with (7.4). Indeed, from (2.17), and the decomposition
Qbé -1
b
e=¢e (Cmﬁ - ¢0,b,ﬂ) +) eibipp e i=er e, (7.6)
’ ]:1

€_ solves
Ore_ =L(e-) + Bley +e_) + @ — Oreq + Loyt
Taking L,2) 5 scalar product to the both sides of the above equation, we deduce
(Oree—)ps = (Loe— e )ps + (Ble+ +e-),6-)ps + (P = Oreq,6-) g,
since <.,%5+,5_>L% =0.
+ Estimate to (Ze_,e_) 2 Using the orthogonality
<¢j,b,675*(7)>L%B = Oa fOI‘j =0 and .7 = 1>
the spectral gap in Proposition 4.2 ensures

2
<,,%5_,8_>Lgﬁ < >\2,b,ﬁH5—||LgB-
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In addition, we have

Aoy s = % — 24 00" %),

which yields

o
2

+ Estimate for (® — 0-¢4, £_>L3B: Recall that

(Ghe-e)ig, < (G = €+ D) le-liFg + Ov™.

e(r) = ei(7) <¢C11b0ﬁ - ¢0,b,ﬁ) +e (1) =¢e4+e_.

We decompose
(& — Oreq,e_) = (P,e_) — (Oreq,e-). (7.7)
For (®,e_) 13, We use (6.15) and by Cauchy-Schwarz inequality to deduce that

@)z | =|(@em)z,

For the second term, we have

b/
Orel = 6/1 |:¢1’b’6 — ¢O,b,ﬁ} +&; [bbabqu,b,g + 5,65¢j7b”3}

S 1®llzg, le-llzg, < CAPHTHI7E <p2%0%(7), vr € [r0, 7],

C1,0
v ’
b0y 1 b8 + B'0sd1p, v
+ b g PTLLE —bOyop.8 + B'0sdops | | -
6170 b
Note that
<5—7¢j,b,6>Lgﬁ =0,forj=0and j =1, (7.8)

combining this with (6.2), (6.3), the necessary bounds in V;[4,n,7](7), and Cauchy-Schwarz in-
equality, we infer

< petan (7_)

[CEEnr

Finally, we give the following estimate

< bo‘+3"(7),VT € [10,7"].

‘<(I) — 87-€+, €7>L;2)B
- For (B (¢) 7€_>L/21g with € = 4 + e_. We explicitly write B(e) in (2.19) as follows
B(e) = =3(n —2)(1 + [y’ Qo) (e} + 2e 16 +&2) — (d = 2)|y[* (e} +3eTe_ + 3462 +£2).
From ~’s definition, we observe that once d > 11, one has

v < 3.7 < 4.
In addition, from the fact that (e,b,8)(7) € V1[4, n,7](7),VT € [10,7*] and (6.13), we have

ea(y)] < IO bEy2 ) _ A (y)*
+WI= y"/ y'Y - y'Y

; and le_(y)|

which yields

‘(B(e), £ )pe | < CHOT

rp

Thus, we finish the proof of (7.4). In particular, using (6.2) and (6.13), we get

d+2 2
B< ( ;5 —yz>> < b, Y7 € [, 77, (7.9)
Lgﬁ
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which implies (7.5). Finally, by combining (7.4) and (7.5) we deduce (7.2) and then the proof of
the Lemma follows. O

7.2. L*® bounds

In order to handle the nonlinear term in the L?]—energy estimate, we used the control of a weighted
L*>-norm of e_. The rest of the section is devoted to it. In the next step, we aim to give a priori
estimates to the infinite part, e_. More precisely, we have the following proposition:

Lemma 7.2 (Control of the infinite dimensional part). Then, there exists Ay > 1 such that for
A > A3z, < 1, there exists ny(A, ) < 1 such that for all n < ny, there exists 14(A,n) <K n such
that for all n < ny, there exists T4(A,n,n) > 1, such that for all o > 75, the following holds: assume
that initial data is defined as in (5.14) and the solution (g,b,8)(1) € Vi[A,n,n|(T), VT € [10,77],
for some " > 19 then we have the following

<

3 —
—I%+’7(7),VT € [10, 1] (7.10)
Lefobi(r)] 2

Hé;g(.,ﬂ

Proof. The proof relies on the maximum principal for the control near the origin i.e. {0, bg], and
pointwise estimates on [b%, b*ﬁ} .
a) Let us consider y € [0, bﬂ. We apply Proposition 11.1 to obtain

le(y, 7)| < b Y (r)H ( g(ﬂ) < Cbg+i57)<y>4, for ally € [O,bﬂ .

In addition, €4 can be estimated by

P1b,
)] < (][ 252 — g5 (r.)
On the one hand, we use the pointwise estimates given in Proposition 4.2
P15 11 9 Y - - Cb' 3 (7)(y)?
E — Popp| < a(\/g) T % + ‘Qsl,b,ﬁ‘ + ’¢0,b75‘ < T
On the other hand, from the compatibility
2 a
61(7’) = —am0b2 (T),
we deduce that )
Cbz+3 (1) (y)*
|€+(y77—)| S y—,y
Thus, we obtain
y’y a4 A3 Q+ﬁ
sup I le_(y,7)] < CAb2"4(T) < 7()2 (1), (7.12)
yeopd () Y

provided that A > Ay4.
b) Let us consider the control on [bg, b_ﬁ(T):|. On this domain, we are far the origin so we can

not use the spectrum properties of .Z.,. The idea is inspired from [4]. We are going to use pointwise
estimates based on the semi-group. As for g = %, %+ has explicit structure. We introduce the
basis of L

¢O,c>o = ¢07OO,% and ¢1,oo = ¢l,oo,%7
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and for all j > 2 we renormalize as in [4, Lemma 3.4] that

d_ 2
biely) = Niy 7L (ﬂ) ,

where L7 denoted by the generalized Laguerre polynomial, and the renormalisation constant N;
ensures that [|¢;cl[r2 =1 and

b n(®) ajy 7 (1+o0(1)) as y—0
oo(y) = ‘
he Biy* V(1 +0(1)) as y— +oo,
with a; and §; satisfies
LW - ]7% .
aj ~j4 and B, = 47].!&8] — +00.

The pointwise estimates given in Proposition 4.2 ensures that ¢;; g is very close to ¢ g on
this interval by the following

b3 (1) (y)*

- Yy > b1, < 1. (7.13)

|05.6(r),8(4) = Bjo0s(¥)] S
In addition, the condition

‘B(T) - ;‘ < AI'(ry),

defined in the Shrinking set Vi[A,n,7](7) shows that ¢; « g is close to ¢j,oo,% = ¢} 00 since for all j
L (y)*
i0e) = 6504 0)|  J67) -~ 5 0 (7.14)
2 2 1 2 2
e —ehr| S ’5(7) - ’ e, (7.15)
21 4
since for all ¢, it holds [e® — 1| < Cae®, we have
[E1(m)] S 03 (7), (7.16)

where é; = ||¢j,m\|222<5, ¢j,oo>Lg is the projection of € on the basis {¢; ~,j > 0}. Hence, we use the
P

semi-group pointwise estimates and we decompose € on the basis ¢; o

e te (7.17)
Thus, we will prove that
yr A3 o
| Sup ‘<y>4€_(y, T)| < ZbQM(T)' (7.18)
ve b (7),6-7(n)]
Since ¢ satisfies (2.17), £_ solves
. 1
02 = Lt 4 B k) + (500 Ay (e, (7.19)

where %, was defined in (2.22) by taking 8 = % and B is defined by
. 1
B = —3(d—2)|2Qy+1y°Q} + yQ} (B4 +E)+ B(éy +£.) (7.20)

+ O(7)+ L8 (8,) - 0.4y,
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with B and ® defined in (2.19) and (2.20), respectively. By using Duhamel’s formula, we get
T / - 1
E_(1) = T )10 (1) + / (77 Lo [B(é+ +Eé)+ <2 - B(H)) Ayé] (7dr'.  (7.21)
70

In addition, we denote f_ as the part of f which is orthogonal to ¢~ and ¢1 . Then

1
f Z f ¢joo L2¢joo
7=0

In particular, if the series
oo

> A, Bj.00) 12Pj,00

j=0
is convergent and well defined, then we can define f_ pointwisely as

[e.9]

F-(y) =D (f:8j00) 12800

Jj=2

Since e_ is orthogonal to ¢g o and ¢1 o, we can write

S (e(T_TO)E"O(f—:,(Tg)Di (7.22)
T (71— %o (D / 4 }_ / A / ’
+ (e (B(r') dr'+ 5 — B Ae_(7)) dr.
T0 - 70 -
We remark that (7.18) immediately follows from
v A3 o
o ‘<y>4(6(”°’f°°é-<m>) (v.7) < T, (7.23)
ye[p () p=i(n)] 1V -
yry T T—1')% > A3 e ]
L [ [p])_ar] < g, o
[ (r)p-a()] 1Y I

A3 o
< 1—b5+’7(7). (7.25)

e ) e

ye [b4(7),b 7
To prove estimates ((7.23) -(7.25)), we need to consider different cases as

- The first case, we consider 7 — 79 < lnA

- The second case, we consider 7 — 19 > %. In addition, the second will be divided again

T—

by two sub-cases that Lioe ¢ (1n(5-1) < b~"(7) and Lioe 7 (1n(5-1) > b~(7) and in these
sub-cases also includes some smaller case that there are some large constant Ly, Ky, R appear which
are fixed at the end of the proof. Let us go to the details of the proof.

First case 7 — 1y < %

- Proof of (7.23) : Note that Ky > 1 will be fixed at the end of the proof. Now, we deduce
from (5.14) in accordance with the decomposition (7.17), we arrive at

[€-(10)y7| < CAbZ () {y)*, (7.26)
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where b(79) = I(19) defined in (5.5). Since (y)* is increasing, then, we apply Lemma C.1 and we

obtain

. . _ alr=70) N
e (r)(y,m)| <y T M e ()W)
W2

00 NA 4w, — 2L 5y
alr—0) ) e T dy
2 b2+77(7'0)y K Y (y’)2
I @) e 2 dy

< CAe3TTRI ()b 3 ()3 (mo)y 7 ().

IN

CAe

Using (5.11), we get

e2TTpE ()2 7(7) < Ce2(T Welt= (G0 () )
< Cememme - (1=3)((F47) 1 )m=(§+7)(1+5)7)
< Ce—cmm(§+(2-1)(5+ 7)(1+15)) (7=70)
< CeemmAFEDEMODTG  for some e(n) > 0,

which yields

<

y’Y T—70)Loo 2 A 21q
L m)n)| < A,

provided that Ky > Ky, A > Ay4. Finally, we conclude (7.23).

-Proof of (7.24): for 7 € [r9, 7], we apply Lemma C.1 to get

a(rfr/)

<Cy e {M(]l(o,bfs(r’)]é) + M(ﬂyzbé(w)é)} .

oL ]

To evaluate M (1 s (T/)}B)(T,), we apply the result in Lemma A.1 to obtain

M(1jg4sB() < C[b%(T')M(ﬂ(o,bé(T')}yﬂ)+Agb%M(T')M(ﬂ(o,bé(T')}y_W_Q)

(7.27)

(7.28)

(7.29)

(7.30)

+ A8b2(%+ﬁ) (T/)M(]I(O,b‘s(T’)]y_Q’y) + Al2b3(%+ﬁ) (T/)M(]l[07b5(7/)]y_37+2) .

For the first term on the right hand side of the above inequality, we rewrite from (C.3)

_@hH?
pfz‘ﬂ[07b5(7’)}|(y/)1+w€ i dy

(y/)2 )

ML poryy ") = P o wE
ve fI(y) tweT TaTdy

since Ljgps(;+y is non increasing, then, we apply the result in Lemma C.1 to get

b (") 14w —M / S(1\\2+w
O gl ey @)

MLgpeyy ") <

w2 )2
Besides that, once y > 1, it follows that

Y
/ (y/)1+w —Mdy > C
0

which yields

y _a? N\ ()Pt
</0 (y/)l+we 1 dy’) 5 y2+w )

fy 1+we Tdy/ foy(y/)1+w€—Tdy/
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Otherwise, once y < 1, we have

(['w ')_1 <(/ y(y'>1+Wdy')_1 <

~ 9
yrte
Then, we derive

bé i . 7¢
M(Lpsryy ") < fo( )\1[065 ) e i dy

< (bé(T/))2+w<y>2+w
j‘y 1+we %dy/ ~ y2+w .
Similarly, we have
L (bé(T/))w<y>2+w 3 (I(S(T/))w+2—'y<y>2+w
M(:H'[O,b‘s(”r’)}y 7 2) S y2+w , and M(:ﬂ'(O,b‘s(T’)]y 2’7) 5 y2+w
and

B (bé(T/))w+4—2'y<y>2+w
MLy 72 <

y2+w
Combining all the related terms with the condition that y € [b%( ) b*ﬁ] we deduce

‘e(T_T/)‘%" []l((),bfs(f’)]B] (')

S

w2
y 762(7' T)b6(w+4 Q'y)( )<y> +—; y—fye2(7 T)b5(w+4 2y)— %(w—&—Z)( )
yeors
o b))

o |3l ) (=5 ()| (7.31)

In addition, by the same argument used in (7.28) and (7.29) and that fact that 7 — 79 < ln?, we
have

/ [ e (i) a g AR
T0

Finally, we conclude

Yy
sup

) ‘<y>24+2/ e ‘:ﬂ'(o,bé(T’)]B(T,)
ye[bd (1) b-7(r)] ™

provided that Ko > K4, A > As, and 79 > 75(A, Ko, d,1,7)

dr’

3
< £b3 (),
16

It remains to evaluate M(]lyst(T/)E(T’)). Using Lemma A.1 with £ =1, we get

M(LyspenB(r)) < b2 HNNL (]lyzbé(w)<y>4y_”) + b=y <1y>bé( ¥y

. 12 —7>
+ OE M (Lo ()77 -

First, we observe that the function ﬂyzbé(r')<y>4 is non decreasing, we apply Lemma C.1 and we
have

o0 7(1/)2 /
B f <y/>4(y)/1+we I dy
M (]lyzba(ff)<y>4y 7) S

~ foo(y/)lﬂue*#dy/
Yy

From a standard result on I'" function, we have

[y e

S )
[y e
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which implies
M <]lyzb6(7')<y>2“2y‘7> < (y)* .
Similarly, from Lemma A.1 and the fact y < b="(7), we write
M (L@ oy ™) S 0)*° S0 (7)),
M (Lo @)y ™7) S () 1 S 67102 () ),
Thus, we derive for all y € [b7(7), b (1)

‘6(7_7/)"%" {]lyst(T/)E} (")

(7.32)

3a

< oy (y)P ez () [b%+4n(7') + b= ()= 2H6) () 4 72" =207 (1) p I AH12) (T)] )

which implies

2 T , “
Y / T M (L s (ry B() )’ (7.33)

70

~

(
< behi(r) / 2Ty~ 7(r) [b%+4’7(7') + 50 (7)) () 4 bSTa_Z‘H(T’)b_ﬁ(‘lHQ)(T)] dr'.
7o
From the assumption 7 — 19 < % with Ky large enough, A > Ay and a > § > n > 7, and
70 > 14(A, Ko, d,m,1), we proceed similarly as in (7.28) and (7.29) and we obtain
/ e%(T—T’)b—%—ﬁ(T) [b%+4n(7_/) +ba+5(1—'y)(7_/)b—ﬁ(2€+6)(7_) _|_b%—?&w(T/)b—ﬁ(4€+l2)(7_):| dr < =
70

Finally, we get

(y)*

and (7.24) immediately follows.
- The proof of (7.25): We first recall the following identity

y’y i T—1' > A3 ]
/ ! )“%OM(]lyZba(T/)B(T’))dT’ < E1)2“7(7'),
70

E++e_=e=¢E64+€_,
then, we get
E_(T") = e (7)) +e_(7") + €L(7).
Since (g,b, 8)(1) € Vi[A,n,7](11),YT € [70,71], the pointwise estimates given in Lemma (5.2) and
also (7.16) hold, so we get a rough estimate for all 7/ € [y, 7], 7 < 7

[

1 o
<2 — ﬁ(r’)) é_(T)| < CA%2 (7)1 (7y) o (7.34)
Now, we apply Lemma C.2 and we obtain
6
(7= 0 ((; - ﬁ(r')) e (#))‘ < CAGbg(TI)In(TO)%,VT/ € [r0,7),

which yields

/ o= ((; - 5(#)) é_(T')> ar’

Using Lemma 5.2 and a similar estimate as in (7.28), we derive

6 n M TN
< CA°T (1) " bz (7")dr'.

70

6 7 3 B
Aﬁﬂ(m)@ / b2 (r)dr'| < ‘fﬁb‘éwf),

Yy 0
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provided that Ko > K4, A > A4, 170 > 14(Ko, A,n,7) and 7 — 19 < %. Finally, (7.25) follows.
The second case ™ — 19 > %
As we mentioned, this case will be divided into two sub-cases
L5 (n(E1) < poi(r) and —e = (-1(F 1) 5 (7,
LO - LO
where Lg is large enough.
The first subcase LLOeT;TO (1=n(Z=1) < pii(r)
From (5.11) and LLDeT;TU (1=n(3-1)) < b=(7), we get
1—-n(l—=))+2InL
e m=n(=2)) °_ (7.35)
1 (n—277(1+r0)> (1-2)
which yields
- 2 7
A 27 (2 1) (1+5) +2In Lg
B2 < o (7.36)

Ko ~ _1—( —zn(1+10))(7—1)

for Ly large enough. According to (7.36), we see that this the present sub-case can be handled

similarly as the fist one, since 7 is not too far from 7.
- The proof of (7.23): From (7.27), we have

- 4 a a = a
=0 ooz (70 (y, )‘ < CAb§+n(T)<3y/i |:€§(T—To)b—i_n(,ro)bg"rn(»ro)} _

The same process used for (7.28) yields

S(r=m0)p5+n —2—i() <« p—c(MT0 X (T=70) _(« 2 a i
ez b2 ()b 27 (1) < e e , with X <2+<a 1 < +77>(1+10) .

From (7.36), we can prove that there exists ¢(n) > 0 such that

—e(m)mo X (T=T0) s (e (2 )\ (o, - A
e~ , with X <2+<a 1)(2+n)(1+10)>

—c(n)T0+X <2’”0(1)(1+ 1) +21n L0>
<1,

(=211 1)) (%)

provided that 7 < 74(n, Lo) and this gives (7.23).
- The proof of (7.24): we use (7.31) and (7.32) to get
AN T !

ot | B 2s)] (e

< Cb%-i—ﬁ(T) {/ [e%(T_T,)bé(w+4_27)_g(w+2)(T’)b_%_ﬁ(T)} dr'

0

< e

N /T 6%(7——7’)1)_%_77(7_) [b%+477(7_/) + bOH‘é(l—“/) (T/)b—ﬁ(2+6)(7_) + b%—26'y(7/)b—f](16) (7_)} dT/} )
)
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From (7.28) and (7.36), we have

/T [62(7 T)bé(w+4 27)— (w+2)(7/)b7%7ﬁ(7_)] dTI
0

@

+ / ’ e2 (T30 (1) [b%+4ﬂ(7') + 5 (7)) (1) 4+ b5 207 (/)= 106) (1) | a7
70
< C,

provided that n4(n, 9, Lo), A > Ay and 19 > 174(A, 0,7, Lo). Then, we infer

tn<
L [ et )] (e

which implies (7.24).
- Proof of (7.25): it is similar to the that of (7.24) in the first case.

A3 S+ij Ul —1]
< TﬁbZ (1),Vy € [b (1),b (7')],

The second sub-case LiOeT O (1-n(5-1)) > b7'(T)

We introduce R large, to be fixed later, and we decompose
[0(7),677(7)] = [b"(7), R U [R,67(7)] .

Recall that for each f € Lg(]RJF), for each v > 0, there exists Y (v) > 0 satisfying Y (v) — 400 as
v — 400 and such that Vy € [Y ~1(v), Y (v)]

[e.e]

ev > f(y Z e V([ djo0) L2Bj00 (y) POINtWisely . (7.37)
7=0

Following the above remarks, the expression (7.21) and the fact that £_ is orthogonal to ¢g

and ¢ o0 we are led to
Eyr) = () + / (% (B(r))) ar' + / (B - 5(7’)} Aé- (#)) K

70

T

= e8I (e (), bj00) 3 100(V)
+ /TT_ ie < (1 ) ¢JOO> %¢j700(y)dT/+/7.TL (e(T*T’).ZOO(B(T/)))_dT/

+ /TOT Jie <<B - B(r’)] Aé_(r')> dr’, ¢j’oo>Lg B;00 ()"
! / Lo < % } e~ (7’)) dr’ (7.38)

on [Y~Y(7),Y ()] (Y(7) = +00 as 7 — +0o0). Let us consider y € [b"(7), R]. We consider the
initial data (7p) defined in (5.14), we have

’<é*(ya7-0)>¢j,oo>[% < Cb%+5vvj > 2.
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Note that § > n > 7 and we are in the case 7 — 19 > %, we have the estimate

Z e(%_j)(r—m) <é_ (7-0)7 ¢j,oo>Lg¢j,oo(y)

< ocz)3+ﬁ<7><yy§ S5SNI () () (1 4 )26,

Similarly to the technique given in (7.28), we have
(5 D=5 (715 (1) < Ce §=0)(r=70) o (2 1) (§+7) (1+7) (r—70)
S Ol with (7)) S 7,5 > 2,

which yields to

=2

o - 4 > . 3\ L—jte(@) A3 . <>4

s+ (9 2 p20-1) (75 ) A+ Y

< ChEL > iR (AKO) < St (7.39)
7j=2

provided that K() > K4, A > A4(R, Ko), and 77 < 774(R, Ko,A,’I], 77, Lo)

Next, observe that 7 — (7 — Lg) = Lo < % if A > A4(Lp), so we go back to the first case.
Indeed, we argue similarly as in (7.31) and (7.33) to get

4 T
@ / 6%(T_T/)b%+4n(7'/)d7'
Y7 T—Lo

/ T (B (1 )dr!
T—Lo

4
Cb%+3n(7)@,
y“/

IN

provided that sy > s4(n, Lg). This yields

/T ' (el (B)()) ar’

_LU

4
< o3
y’Y

For the integral fTTO_LO Z;"’:Q e(5-3) (=" <B(7"), ¢j’°°>L2 ®j.00(y)dr’, we deduce from Lemma A.1
that ’
(B(), 61000 13| S B3T(7).

Then, for all y € [b"(7), R], we have

TS =) oy . /
ZBQ <B<T)7¢j,oo>Lg¢j,oo dr

0 j=2
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We repeat the techniques given in (7.28) and (7.29) to obtain
b= ()3 TTRE() S b (r)el 3T
< =gt with (i) <.

It follows that for all j > 2, we have

T_LO « -~ [e] - ! «
/ b2 (r)el 2 DT () dr < exp ([1 — j + ()] (L)), and 1 — j + ¢(7) < 0.

0
By taking Lo > R, we get

D
=2 70

o)

< SR Y exp (11— + e()] (Lo)) S
j=2

provided that Lo > Rand 19 > 14(A, Lo, R, ,1,7). Then

T—Lo > A 5+ : 1
/ Ze(i—ﬂ)“ v <B( D, ¢goo> , Pioc(y)dr’ SCbﬁn(T)szi’ye b+, E].
TO =2 P
Recall that
‘5(7) - ;’ < CAI'(7),

so by repeating the above arguments to handle the remaining terms in (7.38), the following result

holds
T—Lg ° o . , 1
[ e (15 - a0 e ) i ¢j,oo>L2 Bre0u)dr’

Jj=2

< Cb%”f(f)@.

T 1
4 —BT']AéT') dr’
([2 )| Ae-()) "
We conclude that
Ty 1 Aoy
[ e |5 - 500)| Ayea ) 0| < FHE W e BLRL (o)
0

- For the case y € [R,b~"(7)]. First, we observe that once y < b~"(7) < 4 1 =t (-n(Z-1))
then, there exists 7 € [r9, 7—1] such that y € [ ez (1= ’7(7_1)), Lie (1= 7’(% ))} Sincey > R
we have 7 — 7 > C(R) — 400 as R — +o0. Now, write the integral equation at the initial data 7

o T "o - 1
é_(r) =T Fee_(7) + / elT T ) [B(T’) + (2 -~ ﬁ(#)) Ayé_] (r)dr'. (7.41)
Note that for all 7 > 2, we have

(-5 @joo) 12 = (4, Djoo) 12 + (€= Bjioo)-

Using the fact that 5+ is orthogonal to ¢; 3, estimate (4.7), ¢} g’s definition given in Proposition
4.1 and ¢j o0 = @ , we derive that

]OO

< Cb2t(7),V) > 2.

<5+a¢j 00>L2
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Moreover, using the definition of pg given in (2.25) and p = p1, we apply Cauchy Schwarz inequality
2
and estimate (7.1) to derive

’<5—7¢j,00>L§

/ 5_¢j,oopdy‘30/ le—|\/PBldjeol
R R,

2 «
Clle—|I.2 / (67,00 Z=dy < CH3 .
7V IRy 2]

P4
—_dy
NG

IN

Hence, we have

(6_(7), dyo0) 3| < CHEPI(R).

Now, we use formula (7.37) to get

e (7)) = DI

(T)bjc0) 12| 185,00 (y)]

A

Z4J He(5—0)(r— Tb2+’7( ) |®j.00(Y)]

7=2
< )y i Z!ﬁgle“] b ()b (7)Y,

Using (5.11), we have for all j > 2

G-I E () < G- D(F )1 )= (5+9) (1)
e b2""(T)b (1) < e e .
In addition, since 7} < n, and (1 %) < 0, it follows the following

(-3 )r- o0 (o)
< (=9GN (+ L) -G 1+ 2)]
- (1 2)(1+{6) [GE—7)+ 27 —ir
< (1-2) (o) B g,
and
(33— (1-2) () -+ 3]
= {1—j+g)<i—1>§+g<z—1><1+1ﬁo>](f—f)
< {1j+n<21>}(77),
and |6;] < C42. Hence, we obtain
);T—T)fwé_(f)(y,ﬂ] < Ab3+ﬁ(7)i£ﬁ (e (imm(5- 1)))2“ Y
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when Lg is large and A > Ay.

From the restriction ﬁe%(l_"(%_ln <y < b7(7), it follows

F(l-n(1-2%))+2mnL

1—(77—217(14—1%))(1—%)

T <

)

which yields

27 (2 -1) (1+ 5 +2In Lo

B - . (7.42)
1= (n=20(1+ %)) (% -1)
Hence, it turns out that the second case is obtained by replacing 7y by 7
T / ) A3 [e% =
[ T [B(ém +5/3,—)} (Fdr'| < TGb2 Wy, (7.43)
! (r—7")~& 1 / A AP A3 247 2042, —
e Lo 3 —B(7") | Ayép—(T)dr"| < 1—6()2 () {(y)“ "y~ 7. (7.44)
At final, by adding all the terms, we get
A3 o <y>2£+2 _
e, (1) < b3+ € [R,b7(1)],
which concludes the third case. O

The final step is to focus on the a priori estimates on the exterior part €.. More precisely, we
have the following Lemma

Lemma 7.3 (A priori estimates on the exterior part). Let us consider € to satisfy equation (2.17)
with initial data given in (5.16), and (1) € V[A,n,n|(1) for all 7 € [10,71], for some 11 > Tp.
Then, we have the following estimate
At . .
llylee(, 7|z < b2 +07D(r).

Proof. To get the conclusion of the Lemma, we consider the natural (d + 2)-dimensional extension
as follows

5ext(z77-) = E(yaT)a |Z| =Y and z € Rd+2a (745)
and we introduce

cuntee1) = 2] (1= 30 (3170 ) ) 207,

where xo was defined in (5.10) and ~ defined was in (B). Note that u’s extension defined in (7.45) is
C?(R%*2), thanks to the parabolic regularity of the semi-group e!Ba+2 and so is eq4¢ and we derive
from (2.17) that €., satisfies

67-56mt = Agemt - B(T)y - Veezt — 26(7_)56116
— 3(d—2) [2Qu(I2]) + |21PQ5 (|12])] et + Bleeat, |2]) + ®(|2], 7),

where A, is similarly defined as in (2.14), B and ® were defined in (2.19) and (2.20), respectively.
Now, we introduce

8 -
Eeate(2,T) = |2| (1 — X5) €ext, and x5(z,7) = X0 (3]2!b"(7')> , (7.46)
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where xo was defined in (5.10) and we have the following facts
supp(1l — x5) C {z € R" such that |z| > 2()_’7(7)} , (7.47)

and €epte = Eeqt for all [z] > %b*ﬁ(T). We here mention that the conclusion of the Lemma
immediately follows from

A4
leeat,e (- )HLOO[b (1), 400) = 7b2+(7 4)77( ), V7 € [70, T1].

By using e¢s¢’s equation above, we that €.t . exactly solves

87—56171&,@ = gﬁ(gext,e) + C(Eewt) +N(5ea¢t>7 (748)
where L3 is defined by
Lg=A—-p(1)z-V —p(r)Id (7.49)
and the terms C(ecr¢) and N (eqqt) are respectively defined by
Clecat) = —2div(eeatV(|2[(1 = x7))) — 3(d — 2) [2Qu(I2]) + |2[PQF(I2])] £cate

+ €eat [0-(1 = xi)|2] + A([2](1 = x5)) + B(7)z - V(1 = xz)lz]] ,
and
N(eext) = |2|(1 — Xii) (B(geat) + @(+,7)) -
- The semi-group of Lg: Let us define Kg(7/,7), 7 > 7/ > 79; the semi-group associated to Lz with

Ksa(r, T/)f = Ka(T, T/,z,z/)f(z’)dz/

RdA+2

and the Kernel (7,7, 2, 2)

((r,7) (}ﬂ—zdnﬁﬁj’

K (Ta T,a 2, Z/) - exp = — —
’ L rar) T\ AR CETE
((r, 7y =e" S5 5(%)#, >

In particular, when 8 =
since

= 2, our situation is the same as the operator considered in [26, Lemma A.1]

/
T—T

((r,7) =€ =", and / C(FdF=1—e T,

Since our operator has the same structure as the one in [26, Lemma A.1l], we can apply the
arguments there to get

s (', ) (@)l < ¢ ™)@l oo < =7
¢(r,7)

q/fT, (7, 7)d7

since (5.4) holds for all 7 € [1p, 71]. By Duhamel’s formula, we now write equation (7.48) as follows

(7.50)

€
lellLe < C

T
1Ks(r, 7")div(p)|| L < C Nt (7.51)

cente () = K (r ™ )eomte (7 / K5(7,7) [C(ent) + N (eeat)] (7)dF. (7.52)

We now aim to estimate the terms involving N (e..+(7)) and C(gezt)-
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- For NV, since (7.4 ) holds, we only consider |z| > %b‘ﬁ(r) that will be divided into two small
cases |z| € [2b77(7),b7(7)] and |z| > b~7(r). Since e(7) € Vi[A,n,7)(7), VT € [0, T1], we get the
following

lelecm (e, < AWFalyt < CABEHO D), Wz € | 2,077

and
Izleeat(z, 7| < A2 FO(r), V2| > b77(7)
which yields
IV (ceat) [0 < CA*3H10(7), V7 € [0, 1],
provided that 7 < 7j5(«), 70 > 75(A, 7). Using (7.50), we deduce
1Ko (r AN (D))o < CA%™ T H3HO0(F).
- For C(eeqt): From (7.51), we have

T—T7

IKa(r, P)div(eea V(1= @)Dl e S O N VI =)l () 1
< oL b3 OI(F).

Similarly, we have

T—T

1KCa(7, 7)[3(d — 2)(2Qb + |212QF)eeat,e] ()| oo < CAZe™ T b2 TO(7),
Besides that, we derive from (7.46) that
lecat (7)0-(1 = x7) |2 | e < CHA*ITO=H() < C A% +O-D(7),
Hence, we get
1KC5(7, 7)eeat(F)Or (1 — xi) 2| oo < CABe™ T b3 HO-Vi(), (7.53)

By the same technique, we can establish the following

[e3

s (r, Fecat(F) [A(21 (1 = x3)) + B(r)z - V(1 = xg)|l] | o < CAP™ T bEFO—D(7).

Taking L*-estimate on both sides of (7.52), we get

leeste() e < T ||cent,e(T)|| oo + C A3 / 671’3*(”4)’7(%)[

T/

T—T
< e 4

(i + CABTHOIN) (V=7 4 (r = 7).

We now apply the technique used in [26, Proposition 4.5]. Our the choice of the initial data in
(5.14) allows us to improve the bound on e¢yt e by

At o s
lecct.e(rllze < 5037071, ¥r € [ro, 7],

provided that A > A5 and 7 < 7j5(A) and 79 > 75(A, 7). Finally, the conclusion of the lemma
follows. B
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8. The existence of unstable blowup solutions

In this Section, we aim to give a sketch of the proof to the existence of unstable blowup solutions
to equation (1.3) with blowup speeds

M(t) = Clug)(T — )% ast — T

The general strategy of the proof is the same as in the stable setting, except to some technical
modifications. For that reason, we only give main changes which lead to the unstable existence.
Let us consider the similarity variable (2.11) with u(7) =T —t and 7 = — In(T —t) then w satisfies
(2.12) with g = % We linearize around Qy(,y given in (2.15) by € = w — Qy(;) and it holds that
¢ satisfies (2.17). Note that all terms in the equation remain the same with § = % In particular,
the spectral analysis of %, is valid without the appearance of 3. Now, we consider the composition
(7.6) with £ > 2.

8.1. Shrinking set for ¢ > 2
In this part, we modify a little bit the set in Definition 5.1 to be compatible with the new setting

Definition 8.1 (Shrinking set). Let A,n,7 be positive constants satisfying A > 1 and 1 > n > 7,
we define Vy[A4,n,7](7) as the set of all (e,b) € L™ x R satisfying:

(i) The dominating mode €, and b satisfy

2 o @
eo+ —mob?| < Ab2 1, (8.1)

and .

5 SH (<2, (8.2)
where y

I(7) = (&), (8.3)
In addition the others modes €; € j € {1,...,£ — 1} satisfy

lej] < Ab27. (8.4)

(4i7) L%-decay: The part £_ satisfies the following:
le-CIllzz, < A3 (7).
(t7v) The remainders e_ given in (7.6), and e, satisfy
7
WP o061
lylee( e < A%EFO-CEE2DI(T),

where e, defined as in (5.9).

< A%p2t(7),

8.2. Preparing initial data

In this part, we aim to construct a class of initial data corresponding to the Shrinking set
Vi[A,n, 7). Let us consider A > 1, and 0 < 7 < n < 0 < 1, a,mp and ¢y defined as in (2.27),
(6.15) and (2.28), respectively.

8 Y
Y€, 10) = X (ylﬂ (To)> (1 - X <bg(T0)>> (8.5)

-1
o 2 o a ¢€,b 70),8(7
X Z Adij +n(7-0)¢j,b(ro),/3(ro) - amon (’7'0) |:1 + dﬁAb?+n(7—0)i| <(Cog)oﬁ(®) - ¢0,b(7’0)7,3(70))>

J=1
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In particular, the class of initial data implies the following result

Lemma 8.2 (Preparing the initial data). There exists Ag > 1, such that for all A > Ag, there
exist ng(A) > 0 such that for all § < g there exists ng(A,d) > 0 such that for all n < ng there exists
n6(A, d,n) such that for all 1 < 7 there exists 76(A,d,n,7) > 1 such that for all 79 > 76, there
exists Dy C [—2, 2]£ such that the following properties are valid

(1) the mapping
r:RY —» R
(dl,...,dgfl) — (¢17-~-7¢£)(7—0>7

is affine and one to one from Dy to V[A,n](10), where
VA, 7)(r) = —Ab%”’(r),Ab%“’(T)]e. (8.6)
In particular, we have the following property
T |yp, € OVa(m),

and deg(T' |5p,) # 0.
(1) for all (dy,...,dy) € Da, it follows that ¥e(19) € Vy[A, 7,7)|(10) with strictly improved bounds

as follows
2 a a
Ve(To) + —mob? (10)| < b2 (7o),
- (ro)llz < b27(m),
H Yt (-, 70) < b31(r)
<y>28+2 ’ Lo [O,bfg (70)] B ’

e T)llL= < 02+ (1),

and b(Tg)I[l(TO) S [%’ %]

Proof. The bounds in item (ii) immediately follow from the explicit form of ¥ (¢, 79) in (8.5). In
addition, the existence of D4 and mapping I' follows from the concentration of modes 1;,j €

{0,1,...,4} of (¢, 79) and the argument is quite the same as in [32, Proposition 4.5]. We kindly
refer the reader to check the details of this result. ]

8.3. Finite dimensional reduction

Since the shrinking set Vy[A,n,7](7) has special properties, the conclusion of Theorem 1.2 im-
mediately the following

(e,b)(1) € Vi[A,n,0)(T)VT € [19,4+00), for some 7y large enough.

In particular, we prove in this part that this control is reduced to a finite dimensional problem on
(5j)je{1,2,...,£}

Proposition 8.3 (Finite dimensional reduction). There exists A7 > 1, such that for all A > Az,
there exists 67(A) such that for all § < §7 there exists n7(A,d) such that for all n < n; there exists
N7(A,0,m) such that for all 7 < 77 there exists (A, d,m,m) such that for all 7o > 77, the following
property is valid: If (¢,b) is the solution to the coupled system (2.17-3.4) with initial data (8.5),
(e,0)(7) € Vi[A,n,5)(T) for all T € [r9,7*] for some 7" > 19 and (¢,b)(7*) € V;[A,n,7|(7*), then
we have the following:

(i) It holds that (1, ...,e) (%) € OV[A, n](7*) defined as in (8.6).
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(13) Transversality: There exists vg > 0 such that
(61, wv0) (7" 4 1) € OVIA (7" +v), Vv € (0,10)

which implies

(e,b) (" +v) ¢ VA, n,nl(7" +v),Vv € (0, ).

Proof. The proof mainly relies on the priori estimate which is the same as in Lemmas [6.1-7.3].

- Proof of item (i): Let us consider A > A7, § < §7(4), n < n7(A,0),7 < 77(A,0,m), To >
T7(A,6,n,7m) and (e,b)(7) € Vi[A,n,7](T)¥T € [19,7*] such that Lemmas 7.1, 7.2, and 7.3 remain
true (the technique of the proof is exactly the same and we kindly refer the reader to check the
details). So, it immediately follows that the bounds of e and & given in Definition 8.1 for V;[A, n, 7]

1

are always improved by 5-factor. In addition, we completely reproduce the argument of Lemma

6.1 to establish the following results: For all 7 € |19, 7*], we have

(1) = (5 =) 20| < CvE(r) o7 € o, ], (8.7
and
{ tei= (3 -0z =0 0), 5.5)
Oree — ($) e +mo (5 —1)b2 = O(b2 ")
and
l;((:)) - <1 - ?f)’ < CAb* (7). (8.9)

From (8.9), we derive that
3 3
1 < b(T)I[l(T) < §VT € [10,77],

provided that 79 > 77(A,n,7). Thus, we derive from the fact that (e,b)(7) € OVy[A,n,7](7*) the
following

(1,69, ....e0)(7%) € OV[A,n](r")

which concludes item (i).
- Proof of item (ii): it is sufficient to prove that there exists 1y small enough such that

e Either there exists j € {1,...,£ — 1}, such that
e (T + V)| > Ab> (1 +v), Vv € (0,10), (8.10)
e or the following holds
2 o o
eo(T* +v) + Zmob2z (11 +v)| > Ab2 (1 + 1), Vv € (0,1p), (8.11)
«
As we proved in item (i), one of the following two cases holds
e Case 1: There exists j € {1,...,£ — 1} such that
£j(T%) = 0 AbTT(77),
o Case 2:
2 [e3 [e3
go(11) + =mob2 (11) = 0pAb2 (1),
Q

where o; = 1. The goal is to prove that the first case implies (8.10) and the second one concludes
(8.11). Indeed, we have
+ Assume that case 1 occurs. Without loss of generality, we can assume o; = 1 and introduce

Bj(r) = ej(7) — Abz ().
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It is obvious that B(7*) = 0 and we also get from (8.7) and (8.9),

Bj(r) = (5-i)er)—4(5+n) ’;'((;?b%%*) +O(b3 ("))

— ApFHI() ((z N (1 - f’f)) +0 (b%+4n(r*)) >0,

provided that £ — j > 1 and n < n7(A4,n,7) and 7% > 179 > 77(A). Then, B;(7* +v) > 0 for all
v € (0,vy) for some 1y small enough. Thus, (8.10) follows.

+ If the case 2 occurs. We also assume o = 1 (the opposite sign is the same), we then define
2 a a
By(t) = eo(1) + =mqb= (1) — Ab2""(7),
Q@

and it holds that By(7*) = 0. and we derive from (8.8) and (8.9) that

ey = (Y g 2 e o (Y ) e & 4n
Bi(r) = (5 =) alr)+ =mog b5 (1) = A (5 +n) TH3T) + OBEH(r)

T {n (?f _ 1)] +OME () > 0,

since 7 (% —1) > 0 and 7" > 79 > 77(A,n,7). Thus, we conclude that By(7* + v) > 0 for all
v e (0,1p), and (8.11) follows. This concludes the proof of the Proposition. O

8.4. Topological argument

In this part, we aim to prove the existence of an initial datum (e, b)(79) that leads to the global
existence of (g,b)(7) € Vy[A,n,0](T), VT € [0, +00). The following is our result:

Proposition 8.4. There exist A,n,7 and 6 < 1 satisfying A > 1,1 > 6 > n>n > 0,7 and
T0(A,n,7,0) > 1 such that there exists d = (di,...,dy) € D4 defined in Lemma 8.2 such that with
initial data (¢, 19) defined as in (8.5), the solution (g,b) to the coupled problem (2.17-3.4), globally
exists and the following holds

(,0)(7) € VelA, n,1)(7),¥7T = 7o.

Proof. The proof follows from the topological argument which was used in [3] and [25]. Let us
assume A, 7,7 and ¢ are suitably chosen such that Lemma 8.2 and Proposition 8.3 hold true. We
now proceed to the proof by contradiction and we assume that for all d = (dy,...,dy) € Dy, there

exists 7(d) € [r9,+00) such that (e,0)(7(d)) ¢ Vi[A,n,7](7(d)). Then, we can define for each
d € D, the maximum time

7*(d) = sup {71 such that (¢,b)(r) € Vi[A,n,n|(T),VT € [10,71], } (8.12)

Now, let the mapping II be defined by
I:Dy, — 0[-1,1] (8.13)
d=(dy,...,dy) — TI(d), (8.14)

where
H(cf) = (Ab%Jr”(T*(CZ)))_l (51, ey €0+ 2m0b(5> (T*(CZ))

In particular, the following properties hold:

(i) I is continuous from D4 to &[—1,1]%. Indeed, since 7*(d)’s definition implies
(€,0)(r"(d)) € OVi[A, . 7)(T"(d)),

and item (7i) of Proposition 8.3 immediately yields the result.
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(ii) Deg(Il|yp,) # 0. The result follows from item (i) of Lemma 8.2.

Thus, such a mapping II can not exist, since it contradicts the index theory and the conclusion of
the Proposition follows. ]

9. Existence of ground state

We show in this part the asymptotic behavior of the ground state solution to (2.1). Let us
introduce () to be the function satisfying
d+1

Q" (&) + TQQ —3(d—2)Q* - (d—2)€%Q* =0, Q(0)=—1 and Q'(0) = 0. (9.1)

We have the following result:

Lemma 9.1. Let d > 10, then there exists a unique solution @ to equation (9.1) satisfying the
following:
(1) Asymptotic behavior of Q:

k
Q) = —14> ai®+0(5*?) as £ -0, (9.2)
i=1
1 _ 3y
QK = & + g€+ 0(E™) as € — +o0, (9.3)
and qo > 0.
(ii) In particular, when d = 10, the ground state is explicitly given by
1
Qo(§) = @11

(1ii) Asymptotic of AQ =2Q + & - 0¢Q :
~2 4 (328) € 4+ T, ale? + 0(€3?) as € 0,
apT+O0(E777Y) as € — +oo,

AQ(&) <0, and AQ = (9.4)

for some apg < 0.
We note that AQ’s asymptotic at infinity is stable under Of for all k € N, more precisely

OFAQ = OF (apE™) + O(E7797%) as € = +oo. (9.5)

Proof. - The proof of item (i): Following [18], we reformulate the ground state equation as an
autonomous ODE. Indeed, let

Z(¢) = —€°Q(8),

then
d—3Z,_(d—2)

3 &2
Again, apply the change of function

Z(&) = v(z) where = €,

Z// +

Z2(Z - 1)(Z -2) =0. (9.6)

to get

V" (x) + (d — 4V (z) — (d —2)v(v —1)(v — 2) = 0,7 € (—o0, +00). (9.7)
To prove global existence and asymptotic behavior of the solution, we employ the phase portrait
analysis that used in [4] for the ground-state of the heat flow maps. First observe that (9.7) has three
critical points v = 0,1,2. We choose v = 1 to start our analysis (for v = 0,2, the linear operator
will have complex or positive eigenvalues). According to our initial condition Q(0) = —1,Q’(0) = 0,
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@ locally exists which in turn implies v’s existence on (—oo, zg) for some z¢y < 0 and |zg| large
enough. In particular, we have the boundary condition at —oo

k
v(z) =¥ + Zcie%”” + O0(ePF+27) a5 1 — —o0.
=2

This allows us to consider v(x) as the flow starting at (0,0) and ending at (1,0). Following [2],

we linearize around 1, i.e.

e=v—1,

then e solves

"4 (d—4)é — (d - 2)e(e +1)(e — 1) = 0. 9.8)

The linearisation is given by

"+ (d—4) + (d—2)e = (d — 2)é3

We write the above equation in matrix form

(O-C5 ()

The eigenvalues are

A= \/ 42 —12d+ 24 — d + 4) (9.9)
No = ~(—Vd2—12d+24—d+4),

provided that

d?> —12d 424 > 0,

otherwise, the solution is spiral at +o00. We see that Aj 2(d) < 0 for all d > 10.

- Construction of no-escape region: Let us define

F(e,€) = (€, —(d—4)é + (d — 2)(e® — ¢)).

We introduce a trapping region

S={(e€) & —-e<e <2 —¢€),ec(~1,0)}.
The lower boundary curve ¢ = (3 — €). In the phase portrait space (¢,€'), we define the

normal vector v, which points inward S
Vin = (—(3¢2 = 1),1).
We easily check that
Fe,é) - vin = (€ —€)3(1 — €*) > 0,Ve € (—1,0).

The upper boundary curve ¢ = 2(¢3 — ¢). In the phase portrait space (¢, €'), we define the
normal vector v;, which points inward S

Vin = (2(3¢ — 1), —1).
Then,
F(e,é) - vin = (8 — €)(12¢* + d — 10) > 0,Ve € (—1,0) and m > 10.

The vector field F' points always inward on the whole boundary of S (excluding the sta-
tionary points (—1,0) and (0,0)). This implies that the integral curve of F' starting in S must
stay in S.
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- The boundary conditions trapped in S: Note that with initial data Q(0) = —1,Q’(0) = 0, @
locally exists, this leads that e exists locally, i.e., it exists on (—oo, ), for some zp near —oo. In
particular, we have Q € C°. Using Taylor expansion together with equation (9.1), we see that

Q(y) behaves as follows
3d—6\ o (1 21d° —74d+ 64
-1 1
e " (2d+6>E (4 (3d+ 4)(d + 4)

- Asymptotic of the trapped solution in S: Let us discuss the boundary condition at —oo: we
have

>§4+O(§6) as £ — 0.

3d—6 4, 121d>—T4d+64 4,
3d+6° 4 (Bdradra)
Using this asymptotic, the solution can’t end up at (—1,0). In addition, at (0,0), it gives the
following general asymptotic of e:

e(x) = hi M (1+0(e)) + h-e’*(1 4+ O(e ™)),

e(r) = —1+4¢e* — 4+ 0(e%), as x — —oo.

where
\/ 2-12d+24—d+4)and Ay = —(—Vd? —12d + 24 — d + 4).

Assuming that h+ = 0, we derive from the shrinking set S that
—e <€ < 2V
Then
h_(l + )\2) > 0 and h_(2 + /\2) <0

this contradicts the formula of ;.
SO7 h+ 7£ 0.
In addition to that, we require the same condition as h_

hi(14+X)>0and hy(2+ A1) <0
since
AM+1<0and A\ +2>0

we see that hy < 0 and we get the conclusion.
- The proof of item (ii): can be done in straightforward way, we omit the details.
- The proof of item (iii): We reformulate Q(&) b

(e(z) +1)

QE)=———&=¢" (9.10)
Computation yields
/
€0t = -7 20
Thus,
/
AQ =2Q +y0,Q = —e‘zgf) <0 Vze (—o00,00). (9.11)

Now, we aim to find the higher derivative of €, i.e., 9% for all k > 1. In fact, e satisfies the following
integral equation

oo
€(x) = hyeM® 4 h_eM® — ! / (eAl(I_z/) — e)‘Z(m_x')) g(e(z"))dz', (9.12)
Al — A2

where g(z) = (d — 2)23. This gives us
e(x) = hpeeM® +0 (e3>‘1$) ,
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as r — +oo. In particular, applying 6’; to the right hand side of equation (9.12) , we derive the
following

Oe(x) = OF (hpeM®) + O(eM17), as 2 — +oo. (9.13)
Let us remark that, it remains to prove (9.5). Indeed, we have the following
AQ = —€(x)e
OAQ = —€'(z)e ¥ 4 2¢ (@),
8§AQ = —"(x)e ™ 43 4 2" (x)e™ — 6 (x)e ™,
= (—€" + 5" —6€)e 12,
GSAQ = (*6(4) + 56" — 6€")e™>" — 4(—€" + 5" — 6€')e 7,

By induction, we can prove that

OWAQ = —TI¥_( (0 — 2 — j)Ope(x)e > M7 Wk > 1.
Using (9.13) and the fact that £ = e”, we get

AeQ(E) = a7+ 0777,

FAQ(E) = ao(M —2)E7 T+ 070,

RAQE) = ao(X* = 5A +6)¢772 +0(¢7).
In particular, we have the general case as follows: for all £ > 1

OFEAQ = aolliZj(M —2— )M > F oM7)
= ao(=7).(=y = (k= 1) F + O™ ™H),

where v = 2 — Aj,a0 = —Ahy. Thus, (9.5) directly follows. This finishes the proof of the
Lemma. O

10. Diagonalisation of %,

The goal of this section is to give a detailed proof of Proposition 4.2 which is the same as the
route map established in the Section 2 of [9].

10.1. Interior problem

In the sequel, we construct eigenfunctions for .2}, in the region 0 < y < yo < 1. First, we
introduce

: Y
w(y,7) =v(&,7), with &= —=. 10.1
(4.7) = vl&.7) =2 (10.1)
The interior zone can be written in terms of the blow-up variable £ as
Yo
0<EL = .
<€£<& 7

Recall the definition of %,
1
Zywly) = 5 (He — 60A) v
where the Shrodinger type operator He defined by

=0 + 10— 3(d - 2) (2000 + £09)). (102)
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Lemma 10.1 (Generators of the Kernel of H). There exists a family {T;}i>0 with initial element
Ty = aglAgQ belonging to the kernel of He¢ and such that for all i € N
H (Tis1) =T, (10.3)
Moreover, T; admits the expansion

Sod ot &2+ O(£22042) g €N, as £ — 0,

Til) = Cig 2 (1 +0 (?—f)) , as & — 400, (10-4)

and the derivatives, up to order k = 3, are such that
OETY(§) = 0 (C¢ %) 40 (€772 ¥ Ing) , as € — +oo. (10.5)

Here v and C; were defined in (2.26), and (2.29), respectively.
Let

0 = AT, — (2i — )T,
then, for all k € {0,1,2}

90,6 =0 (5*7”1‘*’“*2 In g) as £ = +o0. (10.6)
Proof. A detailed proof is to be presented in Appendix D. O

The generators of the kernel of H¢ are at hand, we are in position to perform the construction
of the eigenvalues and the eigenfunctions in the interior zone. More precisely, our result reads

Proposition 10.2 (Inner eigenfunctions). Let £ € N,Z > 1, i € {0,...,4} and 8 € [i, %] Then,
there exists €o(8) > 0 small enough such that for all € € (0, €p) such that there exists y*(e) < 1 such

that for all 0 < yo < y* there exist b*(yp) and :\*(yo) such that for all 0 < b < b*(yp) and |:\| < A*
there exists ¢ ing € C™ ([0, y—ﬂ ,R) such that the following hold:

a .«
(H — bBA) ¢iint,p = 28D (5 —i+ A) Giint, B (10.7)
where ¢; it g has the following decomposition
Biint,3(€) = D iy BV TH(E) + A0 (cij(28 1 Tj10(€) + 8;(€)) +bRi(€),  (10.8)
=0 =0
where the correction R; and S; satisfy the following estimates
1551l 242 < Cyp, 1965 241 < €. 11058 2i+2-2 < Cyp, and 1085 x2i+2- < Cys,
0 0 0 0

[ Rillvve < ClE IR ya-se < C(O), 103 il 2-ve < CleD, and 9 Rill e < Cle).
0 0 0 0
Proof. Due to the lengthy proof, we aim to put the details in Appendix E. O

10.2. Exterior problem

In this part, we aim to construct the eigenfunctions of %, on [yg, +00), for some yg < 1. The
following is our result

Proposition 10.3 (Outer eigenfunctions). Let £ € N,/ > 1, ¢ € {0,...,4} and B € E, %] Then,
there exists y*(3) < 1 such that for all yo < y*, there exist b* (yo, 8) and 2* (yo, 8,b*) such that for
all b € (0,b%) and A € (=", \*), there exits a C™ [yo, +00) function ¢; pur,p satisfying

Liiouty = (28 (5 =) + 1) Guouts:
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and having the following decomposition
Diout,s = Pioo,8 + Mijg + Rin) + Rig,
where g?)z-ﬁ satisfies
(.Zfo - 24 (% - z)) gEi,ﬂ = Qi With ¢; 0 g defined as in (4.2),
and Ri,l and Rw fulfil the following estimates
HRmHX;O—d,zi—wz < C|N, ORi1 =0, ||85\Ri,1HX;O—d,2i—v+2 <C, ||53Ri,1HX;0—d,2i—w+2 <C,

and

|Riollpaar < CO2, (106 Risllyawr < COFTH 05 Risll g < OO, [0 Rinllawr < COF,

forad =2i+2—~ and X;j(;“/ is a Banach space generated by the norm

1l yaw = sup y~ {Zy |0, f (y } sup v — {Zy |02 f(y } (10.9)
o y€[l,+o00

Y€[yo,1] ,

Proof. See Appendix F. O

10.3. Matching asymptotic
This part is devoted to conclude the proof of the diagonalisation on .%.

Proof of Proposition J.2: Let i € {0,1,...,¢} where £ € N,{ > 2,3 € [}1, 4] yo < yi,b < b] such
that Propositions (10.2- 10.3) hold and ¢; ;n¢ and ¢; out,g are defined in there.

A) The proof of item (I): We define
b2 Giint, <%) if y € [0, 0],

¢z int,3 Yo .
¢z out ﬁ( (\)/E) d)ZvOUth (y) lf y G [y07 +OO)

Pibp(y) = (10.10)

The main goal is to prove that there exists yo € (0,1) small enough and b (yo) > 0 such that, for
all b € (0,b*), there exists a unique \;(b, 5) = X satisfying

Zisins = (28 (5 —1) + 1) dios (10.11)

and )\ satisfies (4.6).

Vb
regular second order differential equations, so ¢;; 3 € C°[0,4+00) if and only if

First, we observe that ¢; i3 € C™ ([0 yo]) and ¢ out,3 € C™®[yo, +00) and they solve the

(bi int,3 <y70>
y_1 Y _y TBMLE A Vb
b™ 2720 Qi int, <\/05> =b Ziqb‘ (0) Oy Piout,3(Yo), (10.12)
7,0ut,
this condition ensures ¢; g’s differential is continuous at yo. In particular, it is equivalent to
Yo
a§¢z int, ¢z out ﬁ(yO) sz int,3 y¢z out ,B(yO) 0. (1013)
xf Vb

Here we use the implicit function theorem by applying it to the function F' [yo](j\, b, B) defined by

F[yo](j\, b,,@) = bi%aﬁ(éi,int,ﬁ (\y/@g) ¢i,ext,ﬁ(y0) - ¢i,int,ﬁ (\y/06> ay¢i,out,ﬂ(y0)~
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We firstly prove the following expansions:

Flyo)(A\b,8) = MKoaio(3 =)y 1+ O0(yd) + O(A]))

+ 0(b'2), (10.14)
HFyol(N,0,8) = Oy > "™ 5) + O(IAIb 1y 21, (10.15)
A Fyl(Mb,B8) = (7 —7)Koaioyy T (L +O0®d) + O(|A))), (10.16)
and for p-derivative
(10.17)
X2a; 1 Ko(2+5 =y L+ O(lyol?) + O(A)) i i >1,
D5 F [y (A0, 8) = LO(b'5) (10.18)

“z2) if i=0.
Since the proof of asymptotic expansions (10.14—10.18) are technical and long, we complete them

when we finish the proof of Proposition 4.2. Assume that the asymptotic expansions hold for all

be (0,6"(v0)), yo <y, and 5 € [i, %] We mention that the expansions are uniform in 8, A and

B. So, the argument from the implicit function theorem yields that Vb € (0,b*(yo)) and 8 € [4, 4]
there exists a unique A\ = 5\(b, B) such that

In particular, (10.14) ensures that S\(b, B)=0 (bl_%> and expansions (10.15-10.18) imply

BOAD, B)| Sy 15 and |92 (b, B)| Sy 1

yielding (4.6). Next, we decompose ¢;p g as follows
i

b5 (y) = ;) ¢5(28) (VB2 T (\%) i), (10.19)

and we aim to prove

161y < Cb'3. (10.20)
In particular, we can specify it by

; 2j—
Y Y)Y e SRR
’ = 5J

~ b QZ)z int,8 \ /5 Z] 0Ci \/B T] Vb ify e [07 yOL
bipp(y) =
77 b~ 2¢'LGtﬁ i 2j*'Y .
W@ o) = Symoeis (V) T3 (%) if v € oo, +o0).

Now, we aim to prove that
956u5W)| < C (577 Lol + 37 ey 00 ) V7F, y€Rand k=01 (1021)

Since the proofs for £ = 0 and k = 1 are the same, we only give the proof of (10.21) for the case
k = 0 and we kindly refer the reader to check the details. Let us start the proof by considering two
cases, namely, y € [0,yo] and y € [yo, +00).

1. y € [0,yo]: write ngl p as

w35 () 5 ()] o (5)

According to Lemma 10.1, we have

| Tj1(€)| < CETTFHH2, Ve e RT,
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so that

’xbwz%% (%)‘ < CIR 2+,

Proposition 10.2 yields
A3 S, <y> R; <y>’ < Ob T ay e
J \/B \/B - y

The above three estimates allows us to infer that, for y € [0, yo]

|Gi(y)| < Cb' 33277,

. Y € [yo, +00]: write ¢;p, as follows

Bialy) = ZW@,@”@)—E% CoOMEACH
=0

§C"5\‘y2j+2_7, and b7

(z)i,ext (yO) \/8

= ien(y) — i:c. (VB)HT < Yy ) + % 1| bieat(y)
e Vb Gicat (40) ieat(¥)
=1 =II
Let ) A
Tj(&) = Ty(€) — Cj€¥ 77, (10.22)

and we decompose ¢; ¢zt g as follows

I = iearly) - zz:Cz’,j(\[b)Qj_mﬂ' (y)%_” N ZZ:

2 NG > ¢i (V)5 <y>

Vb

= — Z i (VD)YETT; (\%) + M¢i + Riy) + Rio
=0

Lemma 10.1 gives, for y > yo

.. Y _ .
iy ()| < oy

< Cy 772 In y]blfé.

From Proposition 10.3, we deduce that
Gily)| < Cy*mgy,
‘Ri,l(y)’ < C (y_& + Z/%_%LQ) AL,
‘Rw(y)’
for all y > yo. Since a > 1 — §, we obtain for all y > yo

C(yffyf2fa + y2i+27’y)boz7

IN

Do) — S e (VBT (ﬁg) < O In g5, (10.23)
=0

For the term II, we use the estimate obtained for I at y = yg to get

bi%ﬁbz’,mt (%

| = )—1 < C(yo)b*%.
= Giext(Y0) < Clwo)
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Putting together the estimates for I and II yields for all y > yq

Similarly for 8yc;~5¢,b, we establish

’631(2%,17(3!)’ < C(yo)y—’H—Qi—Hbl—%.

- Now, we have

J=0

i . y ~
610~ Sioely < | s (VB (L) =6+ Idiallny
Hy

Taking into account, (10.20), it is sufficient to establish

> (V)T (\%) — fioo|| < CBTE

As above, we have
l i'\/I;Qj_’yT'<y>—ioo :ZZ i.\/[;?j—vf.(y)'
jgoc’]( ) ’ \/l; ¢7 (y) j:()cgj( ) ! \/B

which yields, after splitting the integral in two regions {y < v/b} and {y > v/b} then using Lemma
10.1, to

S ey (VBP (%) < op-s,
Jj=0 1

p
- Now, we move to the proof of item (7i7) in Proposition 4.2. We distinguish two regions:

e y € [0,yp]: from definition (10.10), we have

in(y) = b2 Piint <55> - zi:c”' (VBT <\%>

j=0
+ A R [ci T <y> +5; <y>} +HIER, <y>
]z:% JEg+L NG J Vb NG
Since, for all £ € R
T C &
; <
701 < O
we have, by Lemma 10.1
¢ %
YT (y) < Cli+1)—Y)
]Z; T\Vb (i+1) +y)7

and

% ‘+1_% | i . <y>2i+2
R m( ) < C( H)i(ﬁﬂm'

=
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For S;, we have

1pie <y>2i+2
Azb J <\f> = hra

The above allows one to conclude that

, (y
Pin(y)| < 07(\/5+ e

e y € [yo, +00): from the definition of ¢, on this region and the fact that
o i int ()
Giext(Yo)
it is sufficient to estimate ¢; ;. Recall that
Bieat(y) = Gioo(y) + Aily) + Rin) + Riga.
The asymptotic behavior of <Z>l yields, for all y > yg

while for R;

>2i+2
,Vy € [Oa yO]

b~ < C(yO)a

- y*[Iny| _ (y) >+
¢i(y)| < C——— < C(yo :
)| <O < Qg
Moreover, we have the following facts: for all y > yq
_ _ <y>2i+2
R; < Clyo) AN ——F——,
)| < Col g
- (y) 22
RLQ Yy ‘ S C Yo ba7.
i) Wt o

Putting together the above estimates, one gets

21+2
(\@:) , VY € [yo,00).

A similar reasoning allows us to obtain the rest of the estimates, we omit the details.

- Proof of (10.14) :
First, we decompose ¢; jnt, 3 and @; out,3 by

0yip(y) < C

(N[

i
Piint, 3 <\y/05> = b2 4 bioop(W0) + A i iCin1(28)  lyg T £ A (X, 0,6, 8) ¢
i=0

28€¢”"m<\y%> = b7 Dyicos(y0) + XD €ijCina(26) T (= + 25 + 2)yp T
7=0

(SIS

+ Aia(A 0.t 8) b,
and
Giout,s (Y0) = Bioes(W0) + Moy + Bir(X, 5o, b, B),
Oyiout,p(U0) = Oydicos(yo) — AKoTyy '+ Bia(, yo, b, B).
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where
Ay = ZCi,j(Qﬁ)jb];%Ty () +/\2ch 26) J+1b7+1 % 11 (yo)
- b Vb
7=0 Jj=0
+ AN ptig <y° +0' 73R <y°>,
JZO T\Vb Vb
A = Y ey (28075307, <yb) +AZCH 2B 23 0T 4 (%)
=0
+ AY bt <yo> +b2 30, <y°> :
JZO i\ 5 3 Vb
and

Bi1 = Méois— Koyof&) + AR 1 + R; 2,
Bis = 5\331 ((Z)zﬁ - Koyo_&> + S\ay-éi,l + 3yRi,2,

and T and C; defined as in (10.22) and (2.29), respectively.
We aim to estimate A; and B; by using the results of Propositions 10.2 and 10.3.

e estimate on A;1: From Lemma 10.1, we use T}’s expansion at co, to obtain the following

T5(6)| < C&7 T2 Ing,

for all £ large enough, i.e £ > &y > 1. Applying the above for £, = \y}, we derive the following

= (Yo yo \ T
T = <C|== Inyg| + [Inbd|),Vj > 1,

and for j = 0, we have
—y—2
= (Yo Yo
— || <C|== .
" <¢B>‘ B <x/13>

Zc” —3HT, (3%) < Cyg " 2b|Inb.

For the second term of A; 1, the same process as above gives

ch “2Tj 1 <\y/%> < Cyy "%/ Inb).

This yields

We now estimate to Sj. Accordingly to Proposition 10.2, and the definition of X 22 , wWe
have
2j+2—
Yo 2 ( Yo
Si|=)|<C = ,
/ (\/B) ‘ - (\/B)
so that

i bjﬂ—zs.(%) < Oyt
]z:% J \/5 0
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The last term in Ajis to be estimated again via Proposition 10.2, where we have

_ry+6
Yo Yo .
RZ-< <O == , with e < 1.
\/13) B <\/13>
Hence
bR, <305>‘ < Oy b3,

Finally, we get
A1 =00y ) +0 ("7 '78)
For A;o: First, by Lemma 10.1 we get

96T (€0)| < 0& 0 mgo]. ¥ > 1,

and )
‘aéTo(fo)’ < Clg| o
Then
~ . p-i-i+igF — pi—3-Li¢ |—1+2i-3 —3-3|g, "9 1
> cigh 220 Ty(&) CY v | In&o| + Cb2 2|
j=0 j=1
Cyy "~ myolb| b + Cyy "4~ "05.

Next, we estimate the second term in A; o:

IA

IA

AY e300y 4 <\y/05) < CNys ™Y Inyolb3| nb.

j=0
Using Proposition 10.2 for S;
|8§S](€0)’ § C’£0|a—1 S C’€0|2j+1777

we obtain

A bﬂﬂlas-(yo) < C) Ay "
jZO e \ | Alyo

The last term in A; 9 is estimated similarly and we have
b3 e Ry(0)| < Cyg " 1b3 5,
Hence, the expansion of A; 5 is

Aia = O(Alye ™) + Oyy " Y| Inyo[b] Inb]).

For B;; Using Lemma F.1 we have

\(@ilw0) — Koyy )| < ClAlyg 2.
For the second and third term, we use Proposition 10.3

|Rix(y0)] < CAlyy

and . i
‘Ri,Q(UO)‘ < Cyp 7T

Then, B; 1 reads as follows

Bia(yo) = 0 (1Alyg 72) + O(APy; ) + Olag T2,
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e For B;9: a similar reasoning gives

Bia(yo) = 0 1Ny 7*") + O(Ay, ™) + Olyg 7).
Putting the above expansions together, we derive for F[yo](X, b)

Flyol(Ab,8) = (Oyisos(Wo) + XD cij(28)7 T Chua (=7 + 25 + 2)yp 7" + Ax(X, 10,0, 8))
j=0

X (¢Z,m,ﬁ(y0) +5\K0y07:y+B1(5‘7y07b76))

— (Bydio0,5(¥0) — MKy '~ + Ba(M, wo, b, B))

X (Bioo,s(y0) + XY i jCiua (2B Ty T2 4 Ay (X, 50, b, B))
=0

= Moaio(3 =)y (14 0(8) + O(AD)

+ 0 (yo‘%‘?bl*%) ) (yo‘”‘i—?’—aba) .

The proofs of (10.15) and (10.16) follow the same outline.

11. Maximum principal

The main goal in this section is to use Maximum principal to construct the sub solution and the
super solution to (2.17) on the interval [0, b%(’]’)} that leads to suitable estimates for ¢.

Proposition 11.1 (Sub and super solutions). Let us consider n,7 be positive constants such that
1>n>mn, A>1. We assume furthermore that € is the solution to (2.17) on [r9, 1] with initial
data given in (5.16) and the flow (b, 3)(1) € (C(0,m1])? satisfy (g,b,B8)(T) € V[A,n,7)(7) for all
T € [10,71]. Then, there exists H(&) satisfying

|H(&)| < C(n) |b(7) & + bi (1) for all € €R
= 1+¢ 1467 o
such that
le(y, )| < b () H ( l?j(r)> Wy € [0,b% (1)), (11.1)

where Qp defined as in (2.15). In other words, (11.2) remains true with T lager than T as long as
w exists and b satisfies the hypothesis of the Proposition.

Proof. First, we claim that the following

[w(y, 7) = Qury(y)| <71 (m)H ( fm) Wy € 10,b4 (7)) (11.2)

implies (11.1). We also mention that the proof is similar to the one in [5] where the authors

constructed sub-solution and super-solution to equation (2.12) on the small interval [0, b3 (7)]. Let
us consider the blowup variable (£, 7) and

—Lw Yy, :Lw T
BT ( b(r)’) TR
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Introducing v = w — Q(§) and v reads

d+1
b(1)0rv = agv + 2_8521 —3(d —2)(2Q + £2Q*)v + B(v) + 0(7)A¢Q + 0(7) Agv, (11.3)
where B defined as in (2.19) and 6(7) defined by

0(1) = B(7) (b/(T) - b(T)) ) (11.4)

We also introduce the operator P as follows
d+1 _
Pv) := 8521) + —gﬁgv —3(d - 2)(2Q + £ Q*)v + B(v) + 0(7)A¢Q + 0(7)Agv — b(7)d-v, (11.5)

In order to construct the sub-solution and the super-solution, we need to construct two functions
as follows: let @) be the ground state satisfying (9.1), @Q(0) = —1,Q'(0) = 0, and we introduce

Qale(5>,a>o,
g

Vo
exactly solves (9.1) thanks to the scaling (1.4). Next, define
Ho(§) = AeQo(8), (11.6)
satisfying
Hy + L H) - 3 - D20 + €Q2)H) =0, (11.7)
and let Hy(§) solve the following
d+1
Hy + THI —3(d - 2)(2Q, + €2Q2) H1 = T(€), (11.8)
where T'(§) = —A¢Q. In particular, H; is explicitly given by
= Hy d 11.
/ oo e (11.9)
where £ was defined in (D.3) Using (11.6) and (11.9), Hy and H; have the following asymptotics:
2
B -= as {0,
<Hb(§)—-{ 1ooE  as € oo, (11.10)
where ap < 0 and « =2 — v and
62
_ Irs  as &E—0,
Hy (€) { S8 a5 oo, (11.11)

Inspired by [5], we define
vH(&7) = 07 () H1(€) = M(n)bi (1) Ho (€) and v~ = 07 (1)Hi(€) + M (n)bi (1) Ho(€),  (11.12)

where

0T (1) =b(1) |B(2B — 1) — 4B2£ — bg(’i‘):| and 7 (1) =b(7) |26 - 1) — 4622 +

n

bS(T)} (11.13)

Note that Hy(§) = A¢Qs < 0 see more (9.4). In particular, our aim is to prove

wh(y,7) = Qo) (y) + b(lf)er ( by(r)> and w™ (y,7) = Qpr)(y) + b(lf)v_ ( by(T)>

are respectively the super-solution and the sub-solution to (2.12) which immediately implies (11.2).
Following [5], it is sufficient to check that

(i) P(wt) <0 (Pv~) > 0),Yr € [r0, 7] and € < bi—2(7).




BLOWUP SOLUTIONS FOR YANG MILLS HEAT FLOW 61

N U S _ 1+
(1) Initial estimate: 57 ¥ < b(To)’TO> < w(y,m0) — Qpry)(§) < 5}V ( b(ro)’TO) WVy <
b1 (o).
We remark that the proof of the estimates on v~ are quite the same as for v™. Thus, we only

handle the latter.
- Proof of (i): plugging v into (11.5), we get

Pt) = 07 (7)02H, — Mbi(r)0Hy + 0™ (7) <T85H1> — M=(7)

— 3(d-2) [20+£Q) (" () H ~ Mbi (1) Ho(©)) +0(r)AQ + B(w)
+60(r) 0% AeHy — M3 AeHo| — b(r) [0:6% (1) Hy — MO;b () Ho ()|

= —3(d-2) [2Q + £Q% - (2Q, + £7Q2)] (67 (r)H1(€) — MV (7)Hy (€))
+ BT+ [0—07] AQ +0() [emfﬂl - MﬁAgHO] — b(r) [a,eﬂql — Mo biH)

NS
Q.
e
[a—

0 Hy

where the simplification comes from the facts that Hp and H; solve (11.7) and (11.8), respectively.

Since £ < b%_%(T) with n < 1 and b(7) — 0, the range of £ will be large, and we should divide it
into two cases £ = O(1) and £ > 1.

+ For the case £ > 1, we derive on the one hand, from the definitions of §, 7 in (11.4) (11.13),
and (6.3), that

() — 07 (1) = b'TE + O(b! ).
Thus we derive from (9.4) that
[0(7) — 07 AeQ = aobug(ﬂéﬂ +O(ETbI ) 4 O(b1+g§7%2)7
where ag < 0. On the other hand, by a similar argument, we have
—b(r) [8T6+H1 . M@Tb%Ho] ~0 <bl+%§_‘*> ,
o(r) [9+H1 . MbgHo} =0 (bl%gﬂ) as £ — .
Thus, we conclude the following inequality
P(z") < =3(d - 2) [2Q + €2Q* — (2Q, + £2Q3)] v* + B(v*),

provided that b, 7 small enough.
Next, note that & < bg_%(T) implies the following

b(7)€2| < b2 (7).
Hence, by using v™*’s definition in (11.12), along with (11.10) and (11.11), we obtain

v (6, 7) = —Mago®bi& ™ + OB 772 + O(b*PE), as € — +oo.
In addition, recall that

20 +EQHO ~ —g @ ol
200(€)+ €GO ~ —g+ @I o),

as & = +o0o. Then, fixing o less that 1, we derive

2Q() + £2Q%(€) — [2Q5(6) + £2Q3(©)] = @ (1 — 0772 €372 4 o(62+2),
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Thus,
3(d - 2) [2Q + Q% — (2Qn + Q)] vT = meb (NEIT? + o(€7?), as € — +oc. (11.14)
where mg = 3(d — 2)g3(1 — 07 2)Mago™ < 0. Next, we study B(v") defined by
Bot) = —3(d—2)(1+ Q)W) — (d— 2w
= <m1bg + me%) ETT2 L o(673772) as € — +oo,
where
my = —3(d — 2)goM?a20®* and m; = —(d — 2)M3ajo>*.

Finally, we derive
P(vT) <0,
provided that £ > 1, b <b; < 1 and n < 1.
+ For £ = O(1), i.e., £ € [0, K] for some K > 0 large enough: thanks to the smallness of b, the
dominating term in v* is —Mb3 (7)Hy(¢) > 0. Besides that, we have

1 o A QO’
9o (200 +€Q2) = ~ A0 ~ 07N Q, = -7 (14 £20,(6)).
Note that the construction of Q (see more in (9.10)) ensures £2Q,(¢) > —1 and we derive

0y (2Q0 +£°Q2) > 0,
from which we infer the existence of ms(o, K) > 0 such that
2Q + £2Q? — (2Q, + £2Q%) > m3 with o < 1.
Since [0, K] is compact, we get

vt =01 Hy(€) — MbiHy > my(o, K)b7 with my > 0.

Thus, we get
—3(d — 2) [2Q + £2Q* — (2Qq + €2Q%)] vt < —3(d — 2)mgmybi.

This concludes P(z1) < 0 for the case £ = O(1).
- Proof of (ii): Notice that for M (n) large enough and o small, we have

UJr Yy
WM
b(7o) ’

and from £(79)’s definition in (5.16), we see that it vanishes when y < b(7y) and it is sufficient to

check it for y € [bg(m), bi (19)] giving
Y
b(70)
Thus, using (11.10) and (11.11), we can find a ¢p such that

— +00

On the other hand, ¢’s formula and the fact that y < b7 () imply

®e,b(70),8(70

) Po,b(r0),B(r0) | S b (7).

€0
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This yields

A. Details on pointwise estimates

In the sequel, we give details to some pointwise estimates used in our paper.

Lemma A.l. Let us consider B defined as in (7.20), (e,b, 8)(1) € VA, n,7](7), for all T € [10,T*]
for some T > 19, and 6 > n > 7. Then, there exists T9(A,d,n,7) > 1, such that for all 79 > 19, the
following holds

. Cb:  CARBEYI(r) AT (r)  cA%EH)(r)
‘ﬂye(o’b‘s]B(y’T)‘ < Y + Y2 + y27 + Y312 ’

b5 AN (\20+2 opatd(1—) () 40+8 Cb?’—o‘—?yé 60+14
W™ )™ Cb2 T y)
Y7 Y7 Y7
Proof. Let us consider ¢ > n > 7. First, since (g,b, 8)(7) € Vy[A, n,7](7) and by applying Lemma
6.1 we have

LB )| < 7 € [0, 7).

18'(1)] £ Ab*(7) and

v 20
——928(1=) | < Av(r).
Write
55 = I0ioo sl 23, {6 Bjoms) iz, (A1)

We observe that even though ¢, g is not orthogonal to ¢y g,k # j, we have

< / |65.6,8Pk,00,8] PBY + / |67.6,60k,00,8] 3y S V-
y<bd y>bs
Thus, we use pointwise estimates in Lemma 5.2 to obtain

[€65(T) < CABEHTVj < £, &50= —=+OBFH™), and 50 = —2,+ O3 ™). (A2)
£,0

(@50, Oho0,6) 12,

In particular, repeating the technique in Lemma 6.1 we get

Orse = 28(5 —1)pe+O(b2H),
Oréso = 285250+ | — 28] mob¥ + O(bE ).

- The first case: y € (0,b°(7)]. From (7.20), we have

B(ép+ + 5@—))
Iy . . . . . .
< ‘3(d -2) (2Qb +y°Qp + y2> (p.+ + 6/3,>‘ +B(Es+ +Ep)| + | @+ LLEp+ — Orép |-
From Q’s asymptotic given in Lemma 9.1 and (2.15), we get

Sy 2

1
'2Qb +y°Qp+ —

Yy
Besides that, since £  +é3 - = € = €4 +¢_, and the pointwise estimates in Lemma 5.2, we obtain

ég 4 +é5-|<C (1441)%“7(7)1/_7 + b%?ﬁ_”) :
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Thus, the following is valid
‘3(d —2) <2Qb +9y°Q5 + ;) (é1 + éﬁ,)‘ <C <A4b%+ﬁy’2’7 + b%(T)y*V) :
Similarly, we have
[B(ég,s +25.-)| < C (|e + y?el’) < C (ABo2Ty =20 4 A12pRotany2=7)
For the last term, we immediately deduce from (A.2) and (A.3) that
@+ 20854 — 0,254 | < COy.
By adding all related terms, we conclude the estimate on Ilye(o,bg}é.

- The second case: y € [b6 (T) + 00). Regarding (6.15), we can improve it as follows
4 a ~
¢ = |:b - 26:| m0b2 ¢0,oo,,3 + (I)(y77—)a

where
[B(y,7)| < CBEHIy ()42, vy = 10(7).
In addition to that, we have

0
A « AN 4 o _
G S ) L P e
=0
¢ (6
0r8s = 30 (% =) o bims| S VI,
=0

Finally, we conclude

C Ab%“" 20+2
"P + ZLLép — 6’75&,+’ < (WT)@ :
Y
Next, we study the estimate involving Q. Using (9.3) and the facts that y > %, < 1, we get
Y
=—=>1,
TV

then, it follows

where

Q)| < COP P < b3 < V() y 2.

Hence, we have

1
‘2@b<y> FPQR) + | < OV

which implies

1 . R a _
\(mb(y) PR + y) (s + eﬁ,_>\ < CbEH ()22,
Similarly, since

1+ 52Qu(y)| < Cb2 (1)y*™7 < OV, Yy > b°(7),
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we deduce

B+l 5 0 (

byt (y) At ABpacti ()l ) b%‘*y6<y>ee+6 A12b37°‘+3ﬁ<y>6£+6
o y> >+y P y>

< ba+6<y>2ﬁ+8y—27+b37a<y>6€+14y—3'y‘

In particular, once y > b(7'), it follows y% < b7, By adding the related bounds, we conclude the

estimate on lyzbfsB . This achieves the proof of the Lemma. O]

B. Detail on spectral analysis computation of £

In this part, we aim to give a complete computation to formulate constant in Proposition 4.1.
Let us consider the following quadratic equation

v —dy+3(d—2) =0. (B.1)
The equation has two distinct solutions

m o= 3(d—Vd®=12d + 24),
o = $(d+Vd>—12d + 24).

We remark that T% does not belong to H ;, but T%l does. In addition, we also define

1 1
’Y:’lei(d_ d? —12d + 24), andfy:fm:i(d_i_ d2 — 12d + 24).

From ~’s formula above, we can get the first eigenfunction and eigenvalue as follows

$0,8,00(1) = 7% and Ao 5,00 = 23 <;(’y _ 2)> — 28 (g) .

Following [9] (also [8], and [7]), we search the eigenfunctions and eigenvalues in the following forms

=D

$ipoo(r) = aij(28)r77, and a;; =1, and A g0 = 28 (% — z) Vi > 0. (B.2)
j=0

Plugging the form (B.2) into the following relation
« .
LB bi oo =28 (5 - Z) ®i,8,00 (B.3)

we get

Llbipoo = D aij2BY AT+ Tai;(28) (=26 — B(2] —7))r¥

j=0 j=0
a  N\o il
= 28(5 —i) D @i (28Yr¥ 7, (B.4)
§=0
where A; = (25 —v)(2j—v—-1)+(d+1)(2j —7)+3(d—2). Fix0<j <i—1.
+ For j = i: We choose a;; = 1, then, we get
. « .
(—28 - B2i—) =28 (5 i),

then, (B.4) is satisfied.
+ For all j <i—1: (B.4) yields

aij+1(28)7 T Aj 1 + aij(28) (=28 — B(2j — 7)) = 28 (g - 2) a; ;(26)7,
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which yields
ai 114501 = (J —i)as . (B.5)

By a simple recurrence, we obtain

aij = () (= gyt k=gt
Thus
(1) i

In particular, in (B.4), the order 7~7~2 remains. However, its coefficient is equal to 0, since vy solves
(B.1). Finally, (B.3) is completely satisfied by the choice of a; ; above. Next, we aim to decompose
a; j as follows: First, we deduce from (B.1) that

2k —v)2k —v—=1)+ (d+1)(2k —v) + 3(d — 2)
d
= 2k.2k + 2kd — 4ky = 2k(2k + d — 2v) = 4k (2—7+k>,

Then, a; ; is decomposed as

Qi = ( ) }c:j+14k < v+ /€> = ( - ) - 42_31_*7(22[ ’Y)' = Ci,jCj
"\2

(i — j)! 2 (i —j)! 3G =);
here ¢ = CUTHME=) L H d
where ¢y = =gt Cj = gty an
J

() = ) (o) (e i )

C. Poisson kernel for Laguerre expansions

In this part, we aim to provide some pointwise estimates involving semi-group ™%~ with %
defined as in (2.22). Recall that for f € L'(R,,2¥e~*dx), we have the following presentation

o o0 y2 1.2 22
[elrmEe | fly,7) = 2ty TS ) /0 Py <4, 4,e—<f—m>) [f(2)a)a e Tz (C.1)

where P is defined by

2 2 2,2, ¢ 2,21
o (P20 () T (2t
C 4’ 47 ]_—T C 1_T s
y? 22— v (2 22 1
_ W () (283
1—7r “\1-7
)

_ 4 e—lzr(%wj (e
V(L= r)(ya)¢ “\ei=n) )"

and I is the function of imaginary argument corresponding to

1

S Gy e
Ic(2) = T+ I /0 cosh (z cos ) sin“* (0)d#, (C.2)

provided that Re(¢ + 3) > 0, the reader can check the formula at page 79, formula (2) in [34]. We
have the following result
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Lemma C.1 (Maximal estimate, [4]). Let us consider f € Lf, with p = PL defined in (2.25), then,

‘e“’m)‘f“f(y)‘ < Oy ez M f](y), Yy > 0,7 > 7, (C.3)

where a and v were defined in (2.27) and (2.26), respectively, and M f is given by

/ / N\ 14w 7# /

yeL N 14w _wh? /
fz(y) e i dy

here the supremum is taken over all sub-intervals T containing y. In particular, if | f(y)y?| is a non
decreasing function, then the supremum in (C.4) is attained by T = [y, +0o0). Otherwise, if | f(y)y”|
is a non increasing, then the supremum is attained by Z = [0, y].

Proof. The proof is quite the same as for Lemma V1.2 in [4]. O

Next, we will estimate the growth of the action e("=7)%> to A:

Lemma C.2. Let us consider [ € L% and Af € L% where A was defined in (2.14). Assume further
more that

<y>2£+2 .
lfly)| < B o for some B € R, (C.5)
Then, it holds that for T > 7/
6(7’77-’)5?00 (Af)‘ S eT—T’B<y>2€+3y*’y' (CG)

Proof. Recall from (2.14) that Af = y0, f + 2f and apply (C.1) in deriving

’ a ’ o y2 [132 z2
[l | Af(y) = 29y TeE ) / F (4, 4’7”) (20 f +2f) 217~ T da,
0
where r = e~ (""7) and ¢ = 5. First, Lemma C.1 results in

a ’ o0 2 x2 z2 o /
2418 [T p (T flaet e | S B

0

Then, it is sufficient to prove that
- y? 2
Hw)] 5 By where I = / PC <4’ 4’T> (20, f(2)) 2T H7e™ T da.
0

Using the integration by parts provided that the functions go to 0 at 400 and 0, we get

o0 y2 .’L'2 22
I = —/ f(x)0y (Pg (, ,1") mw+2+76_4> dx
o 474
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We now explicitly compute

2 .2 ¢ o (2 2?
az(PC(y7m7T)> - az( ¢ 1 e 17T(4+4
474 V(1= 7) (yz)¢

from equality (3) at page 79 in [34]

1 1 1 1 1
r2yxr _, rzyxr r2yxr rzyx r2yxr
2(1—r) ¢ (2(1 - r)> e <2(1 —7')) HETR <2(1 —7")) ’
we infer

(5 pr)) = (WC g fcr)(yac)fﬂ(yf“f)) ‘ (2&%%))

£ () (e
+ c e CIC
z/re (1 =) (yz) 2(1=7)
4¢ -1 (§+§ riyz I réya:
€ +1
2T (1 = 1) (yz)S 2(1—1)"° 2(1—-r)
Besides, we have
2 2
) € cmeR)) 0 ()
r ¢ o ¢
V(L =r)(yx)¢ V(L= r)(yz)e
_ T X 4% 6—1; (%4‘%)

At final, we arrive to

y? 2? rooa? 4¢ 11T(%+%) r%y:v
x@x PC Z,z,r = —1_ ? z e IC 201 —
P2 (L - ) () (1=7)

4¢ 3 - iT(ﬁJrﬁ) 3
+ rzyx e 1 4 P IC+1 T X
v
4

V(=) (ga)s 20 =)

.
7”.73‘2 y2 £U2 TnyQ 112

- "™ p (L T p o).

21— 1) 4(4’4’T)+8(1—r) “1( ’4’T)
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Plugging into I’s formula, we get

:1 x
2

= PC (%’T’r) ry? 2
= __TY vy r w3y, — o
/0 21=r) 81— p <47 1 ﬂ“) fl@)a e wde  (C7)

[e%s} y2 $2 22
- (w+2+ ’y)/ f(x)P; <4, 4,7“) 2T e T d.
0

It also follows from Lemma C.1 that

[e%¢} y2 .Z’2 22
/ f(x)Pe <, ,7‘> e T dy <
. 474

and from (C.5), we have

_w)? 0/, IN2042(, N\ 14w _wH? /

SN @) e dy L, W) ) e dy
M(f)(y) = Sup L _(y/)2 SB £ 00 _(yl>2 (CS)

vel [y e T dy! S ) e T dy
S Bly)*. (C.9)
Now, it remains to prove the following:
B

L(y)| < (y)**3, (C.10)

1—

<

where

oo | P v L 2 2 2

¢ ( 4074 ) r x a2
Il(y) _—/ - Y T)PC—H <i vy 77“> f(ﬂf)fﬂr?ﬂﬂe Tdz
0 _

2(1—r) 8(1

We recall formulae (2) at page 77 and formula (2) at page 203 in [34] regarding the function I, of
imaginary argument

ezt <Ip(2) <C2¢  ifz€0,1],

cz 36t < ‘Ig(z) - \/% <Crie* ifze [1,+00), (C.11)
In particular, (C.11) implies
y? 22
C ety < e (Y. 2pr) < CHelyn) (C12)
where
ey 2(1-7)
(1—r)Slem 1= if v € [O, G }
He(y,a,r) = v (C.13)

e T—r if z € [%,jtoo)
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Using (C.5), we estimate

‘Il(yaTvT,)’
0 | p (¥ 22 r) 2 2 .2
VY ¢\ 41> rY TR 2042 &2
< B o P J T 1 + w3+ d
= Bl e sy e () | e

20-r) | p (ﬁ z? r) 2 2 2
vy |[TC\a 1 ry Yooz 2+2Y w34y, — L

P, 2T 1 w3y = (g
* A T=r) 811 “1<4’4”>( e e d

+ For the integral on [O, 20_”], we use the first asymptotic in (C.13) to obtain

20 | p. (¥ 22
vy |1 (4 I 77,) ry? y? 22
_ P = (1 2€+2> w3+~ ¢
0 2(1— 1) By \ o)L ) e adr
- 2 _r <ﬁ+ﬁ) 2
< C(1—r)¢2 ! (1 + i Y )> e T\ Y/ —l—w%”)xw*?’e*%daz.
0 - T

On the one hand, once r € (0, %), it immediately follows that

2(17:” 2 __r (ﬁ+ﬁ) 22
(1- r)_C_Q/ v (1 + ki > N § $2€+2)l‘w+36_7d$
0 (1—7)
2(1-r)
Vry ,ﬁ,i o0 922
< C (14 2?2 fBe™ T 200 dr < C (14 2229 FBe~"Tdx < C,
0 0

where C' is independent of 7. On the other hand, once r > i and by a change of variable z = T

we obtain
2(-r) 2 . (ﬁ ﬁ) 2
/ v <1 + i ) e '"TT\* E (1+ x22+2)x“+3e*%dx
0 (1—r)

Vi—7r w
_ Ty 7“y2 22(141=r (1— T)é+1 2 (1— 7“)5+2
—r — - +2 w43
< Ce )/0 (1+(1_T)>e ( )(1—1— o ) peas 29Tdz
, 2 Vi—r
< C(1—r)st2e Y (1 + (1ry )) / e () (1 4 (1 = ) p2642) 8

r o
< (1- 7“)(—'—2674(1*”2/2 / 6_22(1 4 22 g < C(1 = r)t2, with ¢ = %
0

Finally, we obtain
20-n) | p. (¥ 22
T | B < == ,r) ry? y? 22 L2
_ P A (1 2£+2) w3+ —Td <
0 2(1—1) Ryt \ )| ) e rar S

- For the integral on [2(1\/;;) , +oo>, we apply (C.11) and (C.13) and noticing that z = 2(17"5’?) >1

z

2 .2 ¢
@ y 4 ( z )T(y%xz)(e z_3)
P —7777" = e 4(1 T> +O ez 2 bl
2(1— 1) <<4 4 ) 2 /FC (1 — r)(ya)s \2(1—7) Vams O
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and
2 2 2 2 C+1 z
ry°x y° ry‘x 4 T (y242?) ( e L 3 )
7P = 7,/]" = e 4(1-r) 7—#062 2 .
8(1—r) G+ ( 47 4 > 8(1—r) \/;C+1(1 — r)(yz)St! V212 ( )
Then
(2,2, 2 2 .2
C\4 4> Y p ye
x —x =, —,r
2(1 —r) 8(1—r) T\ 47 a”
< C .’E—\/’ij 4¢ e—ﬁ(yaﬂﬂ) e
N (T=7) T2y (1 - r)(ya) 2mz
+ C z 4 e—ﬁ(y%—:ﬁ)i
(L=7) 2/ (1 = r)(ya)¢ 23
+ C \/;y 4¢ e*ﬁ(yzﬁﬁ)i
(1—r) 2\/774(1 — ) (yz)S 2
< C % % —C= % a;l— \/fy e*L?rQJF%IfW*HfFQ
< %1 = —
_7‘92 1\/; x_T‘ZQ
b o byt |11 ket
V1i—r
Notice that we have the following identity
B o ()
e 1—r e 4 —e 4 1—r ,

P, <y2 z? r) 2 2 2
& C\4a> 4> Ty Y-z o0 2?2
_ P J T 1 +2\ w2 —5 d
/zuf_m D SIS R C+1(4’ 4’T) (1427 )e" e du
Ty
g S 00 . o v\ 2
S Cy 2r 4 4 z ﬁy (1+$2€+2)$<+%€7i( 1—Ty> dx
\/ﬁ 2(1\;7") 1—1r
Ty
—¢-3 &3 50 z—+/ry\2
vt THVTY] (g 4 g2yt () gy
\/ﬁ 2(\};;) V1i—r
—(-1 oo 3 2
r 2 3,
< C(\\[/lll)j 200 _ 7y |2|(1 4 (2v/1 = r 4+ /ry)?+?) ‘Z\/l —7r+ \/?y}ﬁ_? e 1dz
VI
—¢-2 00 2
r 2 A z
—7r Ty
VT

Now, we have

43 3 3
211+ VI =7+ Vi) ) VI =7+ Vg[S @) (2 VT = 4 |yl
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and
o 3 22
(VR [ (T e
’"ylf
—¢-1 g [ WA3+(+3
S (W) I—y 2/M_ﬁy<z> FHE g,
Sy YT
1—r
[e.9] 2 —
< XC+§/ ()23 o 42 <1, with X = \/\1[77“ S0,
2X-L ry
yielding
747% oo N P
W2 [ o 11+ VT =4 VP00 [V T =7+ il Tas
- T _vry
1—r
20+3
< W
~oVi-r
Similarly we have
2 22 2043
W2 [ (1 VT Vi) [ T 4 vyl e g W20
T

Thus, we obtain

00 PC<4,4,> 2 2 .2 2 20+3
/2 . Y )Pc+1 <y z > (1—1—1‘2”2) 2= gy < (y) '

(1-r) 2(1 — 1-— 474" —
A (1—=r) 8( 1—r

By adding all related terms, we conclude (C.10) and with it the proof of the Lemma is accomplished.
O

D. Generators of the Kernel of H
We construct the family {7;4;} via the recursive formula
Ti1 = H'T;, and Ty = cA¢Q (D.1)
here ¢ is some constant which will be chosen later. In other words, we have for ¢ > 1
T, = H Y(Ty), i>1.
The operator H~! is explicitly given by

ELf(e ,
O =0 [ yhEe (D2)
with L
Lf(§) = 1/gf(ﬁ')AQ(fl)(S')de&'- (D.3)
EHTAQ(E) Jo
We start now our induction argument. For ¢ = 0, we have by assumption
T() = CAQ(g)

The asymptotic (9.4) yields

To(§) = { —2c+ Y8, €% + O(E%42) as £ -0,

_ (D.4)
apc€™ 7 4+ 0O (f 7*20) as £ — oo.
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This proves (10.4) for the case i = 0. Now, let us suppose that (10.4) is true for some k and let us
prove that it holds true for k£ + 1.

- At oo: we have

Ck _ In¢
) — yHLI2k (4 IS
Z(Tk) o rdi2ioRt O
Hence
_ Ck _ In&
Thr = H(T}) = TH2(k+1) (1+0<>>
s (i) 4(k+1)<g—7+k+1)5 £2
The above expansion yields
C
Cr+1 = d _k ;
4k+1)(5 —v+k+1)
so that
cap
Ch=——+7—"—.
FT R !

Choosing ¢ = % concludes the first part of the proof.

In a similar fashion and upon using that 8§Tz~+1 = H~'T;, one can establish the mentioned result
regarding the asymptotic behavior of the derivatives of T;. We omit the details.

E. Inner eigenfunctions computation

Now we prove Proposition 10.2. Taking into account (10.8), the eigenvalue problem (10.7) reads
a s : s a <

0 = {H —bBA — 28b (5 i+ )\)}sz’,im = ;Oci,j(zﬁ)ﬂbﬂ {H —bBA — 28b (5 - )\)}Tj

+ X; 28 {H = van =260 (5 — i+ 3) } T

< a
+ A;H*l{H—bBA—Qﬁb(Q —i+2)} )
a
+ b{H—ﬁbA—zﬁb(5 —z+)\>}RZ~.

Since Tj11 = H'T; and H(Tp) = 0, we get

ey {11 -2 (5 -4 3)}

. jz;Ci,jQﬁ)jbj {HT; = 8b((2) — )T, + ©;) — 260 (% —i) Ty — 26073 }

1 - < o
= =52 @Y =AY e 28TV,

J=0 J=0
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where we used the fact that ¢;; defined in (2.28) satisfies ¢; j+1 + ¢;;(i — j) = 0. Thus, the
construction of S; and R; reduces the following equations (for all j < )

a o1 '
HS; = 2pb { (2 —i+ A+ 2A) (S; + Cz‘,j(25)J+1Tj+1)} ) (E.1)
a 71 1Q +17
HR; = 28b <2—z—|—)\—|—2A> Ri+2ZOCi,j(25)] vO;. (E.2)
]:

We note that the construction of S; and R; follows [9] (see also [8]) which relies on the Banach
fixed point theorem in the functional space X go for some a € R and £, > 0 and where the norm is
given by

2 i
e = sup 32 1SS (5.3

£€l0,60] ;= <§>a 7

with (§) = /1 + &2. For sake of shortness and since the determination of both S; and R; follows
the same reasoning, we only consider S; in the sequel.

Step 1: Construction of §;
Identity (E.1) can be put in the form

S; =2BbH"! [(‘;‘ —i+ A+ ;A> (S;+ cz,j(zﬁ)ﬂ'HTjH)] : (E.4)

Now, write S; as
Sj = L(S;) = L(0) + DL(S;), (E.5)

where

. ~ 1
L(0) = be;ij(28)T2H! [(‘; — i+ A+ 2A> Tjﬂ} ,

~ 1
DL(S;) = b(28)H" [(;‘ it A 2A> Sj] .
Our goal is to prove that for all j <¢ </
[ L(0) || y2i—v+2
€0

HDL(SJ)HXg;‘—M < Cy3||SjHX§g—v+2~ (E.7)

IN

Cyt, (E.6)

Once these estimates are established, we apply the Banach fixed point theorem to L(S;) mapping

the ball B (0,203/8) into itself with yg < ﬁ This yields the existence and uniqueness of Sj

satisfying
11 -vs < 2003 (ES)
0
We are now in position to prove (E.6) and (E.7):
- Proof of (E.6): take a = 2j 4+ 2 — , we get
; a Lk _ | —
IL(0)llxg, < lesslb(28)7*2 <\2 i+ A I (Ty) Ixg, + 51H 1(ATj+1>ngO> :
Lemma E.1 yields
ILO)xg, < Cl T4l a2 < COGI Tjallxg -
£o 0
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From lemma 10.1 and X go’s definition, one infers
1 Tj1llxg < C.

= yo , we get

Plugging §o =
IL(O)l|xz, < O,

which concludes (E.6).
- Proof of (E.7): we argue as in the proof of (E.6). Indeed, we apply Lemma E.1 so that

IDL(Sj)llxe, < COB)YHT(Sj)llxg, + I (AS))]xe,)
CysllSillxe

A

We conclude (E.8) as above.
Our task now is to establish the desired estimates for 955, 0,S; and 0gS;. Since the proofs are
quite the same we only estimate 0,5;. Apply 0y to both sides of (E.5) to get

S = cig(2B)PH! [(2‘ —it+ A+ A) JH} +(28)H ! [(;‘ —it+ A+ ;A> SJ}

(3 ha)as).
Using Lemma E.1 with a = 25 +4 — ~, we derive
ouSillxg, < € (ITuallgg + 1551+ 106512
0 &0 &0 0]
< O+ R) + ObEI0uS; e < OO +d) + CoBlanS; s ).

this implies that ||0,.5}| X2 < C, provided yp < yg is small enough.
+ For 03S;: Applying (95 to (E.5), we get

9pS; = b2(j+2)28Y e H! [(‘;‘ —i+ A+ A) JH} +20H ! K; —i+ A+ ;A> Sj]

+ b(2B)H! K;‘ — i+ A+ 2A) aﬁsj} .

using the boundedness of j, we get (with a =25 +2 — )

A

05551z, < €0 (ITyuall g + 1S5 + 1055,y 2
0 o0 €o

IN

cved (IT5llxe, +11Ssllxe, + 191z, )
< Oy} (1+10s85lxg, ) < Cui.

provided that yo < y; small enough.
Step 2: construction of R;
Taking H~! to (E.2), we get

R; = b(28)H! [(‘;‘ —it At ;A) Ri] + % i:ci,j(m)j“bfﬂfl(@j) (E.9)
j=0
= J(R)).
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Let us consider a = —v + € > —~, then, we apply Lemma E.1

IT(R)lxe, < C|b@2B)IH " Rillxg, + Y (28 VIIH(0;)]xg,
=0

IN

C | VlIRlLxe 2 + V185
=0

j=
Now, we derive from (10.6) that
15 x2-+e < CLOE.
Thus, we derive
17(R)llxg < CuillRilxg, +C(e): (E.10)

Taking yo small enough, J maps the ball B(0,2C(¢)) into itself. In addition to that, it is similar
to prove J is a contraction. Hence, by using Banach fixed point theorem, we imply the existence
and the uniqueness of R; satisfying

||RZ’Hng+e S 20(6)
0

Similarly for S, we can respectively take 0y, 05, and Jg to (E.9) by using R; € B(0,2C(¢)), and
we get

HabRinxg“/Jr?+€ < Cle),

0

05 Rillg s < Clelb
0

108 Fill xv+2+e < Ce),
0

where the constant C(€) is universal. Finally, we conclude the proof of the Proposition 10.2 . [

HR; = (28)H! KZ —i A+ ;A> Ri] +b(28)H! [<3 —i+ A+ ;A> 8bRi]

)

1

+ 3 D eigi28yY YT HTO;,
j=0
and
dsR; = 20H! [(Z —i+ A+ ;A> Ri] +b(28)H ! [<3 —i+ A+ ;A> 851%1}
+ > e+ 1)(@2B)YYHT;,
7=0
and

OR; = (2B)bH'R; +b(28)H ™! [(;‘ —i A+ ;A) aXR,] :

The rest of this part is devoted to the results which are used to complete the proof of Proposition

10.2.
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Lemma E.1 (Continuity of H~! in X¢ ). For all a > —v, we have

|1H~ lfHXa < C sup ()7 f (),
£€[0,60]

and

IH= (Af) xg < Cla) o [>1F () + (©)° |0 f(9)]] -

In particular
1E fllxe < Cllfll o s,
0 1)

and
IH=H(Af) llxe, < Clifllxz-=-
Using the fact that, for & > 1, we have
1 e < 26311 flxe
Formulae (E.11) and (E.12) read, for § > 1
I~ fllxe, < C&3I fllxe,

and

IH (AF) llxg < Ol llxg -
Proof. Regarding (E.3), we have

2
> (IO < (r-eigt@) + 206)'~1oeal + (> 1220l
=0

In addition to that we derive from ( ) that

13
o (H'f) = 9:AQ / LI ehae + 2(h)),

2 (g1 _ 2 LS e 0eAQ
Bt = ona [ Zhene + %) o),
where .Z defined as in (D.3). We remark that (E.11) follows from: for all £ € [0, &p] :

o m5E)] < £ s 20— afe),
lal ecfo.g)

@ o HrE)] < S sup @0 - e,
lal ecjo.g)

a _ C
O FHT(E)] < 7 osup €71 =EIf(E)]
lal eefo.go)
where C' does not depend on &y. Let us start with the proof of these estimates:
- The proof of (E.17): From .£’s formula in (D.3), we have

fy2a ¢a—2 NI+ g

20 < g / FEHEN2IAQE) (€)1 de
su 2—a s 5 Na—2 , , d+1 )
< 56[020] {<€> |f(€)|} ’§|d+1|AQ| /0 <£> ’AQ(& )|(§) d¢

= sup {(&*IF©I} L)
£€[0,&0]

7

(E.11)

(E.12)

(E.13)

(E.14)

(E.15)

(E.16)

(E.17)

(E.18)

(E.19)
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Plugging this estimate to H~'f, we obtain

‘L)
v

£€ [0750}

[H1(8) < [ sup (€)°7°|£(€)]

Hence, it is sufficient to prove

SLE)
2Q| [ e < e,
AQLJ Tagr® =
where C does not depend on &y. Indeed, we consider two cases where &y < 1 and &y > 1:
+ The case & < 1: We have the following for all £ € [0, &]

S<hal<o
and )
~ 1
L - - na—2 A / d+1d / C
(©) = g |, €0 IAQIE) a < ce
this yields

éz(fl) ! 2
AQ]/O ‘AQ‘df < et <ac.

which concludes the case £ < 1.
+ The case & > 1: We observe that there exists M > 0 such that for all £ € [M, &

SE7 < IAQI < CET

Then, we have

SLE ., ML), , [CLE) .,
/0 g = /0 rA@id“/M g%

§
< o +c /M L)€y

Besides that, we estimate L(£'), for all & € [M, &] as follows

L) = 0 M<€’>“‘2|AQ\(§’)d+1d€’+ é<fs’>a‘2rAczMs’)d“to’
EHIAQ \ Jo M

C(M) <€fd71+'y + 5a71> ,

IN

it follows that

/5 L(€)(€)de" < O(M)(1 + &2 4 ¢17).

M
Thus, we derive

CEE) s
AQ] [ g < COL) (€ +¢).

Finally, we have
[H'f(&)] < Cla)(6)?,
provided that
a> —.
- The proofs of (E.18) and (E.19) are the same.
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Now, it remains to prove that if f € X go, then we have

£l xe—2 < Cla)&3 I fllxg »
€0 0
provided that & > 1. Indeed, this comes from

(€7 = (&)™) < 265(6) ™",
provided that & > 1. Thus, we have

((6)0)"f 2| ((€)9%)"f 5
[fll xa—2 = sup ez | S sup ) 26 | | < 261 fllxg -
Yol el jz;) (&) ge[o,go]jz(:) I (© ° €
This concludes the proof of the Lemma. O

In the following Lemma, we aim to estimate 82Sj and 8?Ri:

Lemma E.2 (Higher estimates for 8§Sj and 8§’Ri). Let us consider S; and R; which satisfying
(E.4) and (E.9). Furthermore, we assume that the following estimates hold

- Yo
HSjHngJrQ*'Y < Cyg and ||R1H)(§0—W < C, with 50 = %
Then, the following holds: for all & € [0, &o]
|0£5;(6)] < Cle¥ 7, (E.20)
BER.(€)] < Cl ", (B21)

Proof. - The proof of (E.20): We remark that when b — 0, g — +o00. Then, we will consider two
situations, namely, £ < 1 and £ > 1 . Recall the inverse formula

~ 1
;= V(1) = (G i+ 34 3A) () + T

and write 825} as follows
2

_ SL(f) ., O:AQ (d+1)(d+2) (d+1)9:AQ
193 ¢q. _ 3 _ - 75 ¥
vlogsi(e) = oiaQ [ Shde + ST + o L) — )
o (d+ 1)f
=y

+ The case £ € [0,1]: We observe that when £ < 1, it follows that |f(£)| < C, then, plugging to
(E.4), we obtain
15;(O)| = |[Hf| < C€,
Hence, we refine the behavior near 0 as follows
If()] < C&,
IL()E)] < Ce,
continuing this process we enhance the behavior to
F()] < CeP?,
IL(f)(&)] < O3,
(we can get a precise behavior for S; at 0 by S;j(£) = O(€274) ). Then, it is easy to derive
b 1029;5(€) = O(6¥ ) as € — 0.
+ The case £ > 1: we have the following fact
|55(6)] < CEPH7 and [Ty (€)| < O,
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which yields
f(&)] < CEHH2.

Since
IL(F)()] < CEFH37 and [5;(6)] < C)PH2,
we get
025;(6)] < ChEPHT < )P,
due to the fact that
bg® = yo < 1.

Thus, we conclude the proof of (E.20). By the same technique, we derive (E.21). This finalizes the
proof of the Lemma. O

F. Outer eigenfunctions construction

This paragraph is devoted to give the complete proof to Proposition 10.3:
Proof. Now, let ¢; out,3 be of the form
d)i,out,ﬁ(y) = ¢i,oo,,3(y) + 5‘(&1,6 (y) + Rl,l(y)) + Ri,Q(y)a (Fl)
where R; ;1 and R; 2 are to be constructed. Rewrite (2.18) as

1
L= 28— 3(d—2) <y2+2@b+czzy2),

where 22 was defined in (2.22) and K74

i,ext

[fb —2p (% - Z) - 5\} (Pi0ut,3) = 0,

=45 23 (4 — ). Plugging (F.1) into

which yields

. 1 -
iﬂfext‘ﬁivoutﬁ = APiout,s — 3(d — 2) <y2 +2Qp + ng2> Gi out,f = (iﬂi,ﬁemRm — M¢oip + Ri,l))

1 -
+ <°§ffextRi,2 —3(d-2) <y2 +2Qp + Q§y2> Giout — )\Ri,2> =0,

where we used .i”f 21 Pico = 0 as well as iﬂf ext(éi,ﬁ) = i 00,3- Thus, it is sufficient to construct R; 1

,€:

and R; o satisfying
Lh(Rin) = ARii+Adig

- 1
-iﬂfext(Ri,Z) = <)\ +3(d - 2) <y2 +2Qp + Q%?ﬁ)) R; 2

+ 3(d—-2) <y12 +20Qy + Qiyﬁ) ($i0op + Mis + Rin)),

or equivalently

Ry = S‘%Teit(Ri,l)+5\¢i,oo,ﬁa (F.2)
Rip = £ 2, (H\Ris)+ L 0, (Hy). (F.3)
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Here
m) = (Aea-2) (54204 Qh?) )

Hy(y) = 3(d—2) (yl2 +2Qp + QE?Jz) (00,8 + Mig + Rin))-

Step 1: Construction of R;1: The construction is based on Banach fixed point theorem on

Banach space Xg(;a, equipped with the norm introduced in (10.9). Now, denote the right hand side
of (F.2) by K(R;1), and apply Lemma F.2 witha =~y —dand o/ =2i+2—~

(s ) e < Ci(a,a’)|A (IIRi,lllX;(,)af + [ Pi00,8

‘X;(’)a,> a‘nd Hd)i,oo,ﬁHX;éa’ S 02'

Then, K maps the ball B(0,2C;Cs|)|) into itself provided that |A| < min <%, 2—&) In addition to
that, for all X1, X5 € B(0,2C,Cs|)|), we have
1K (X1) = K(X2) | oo S A1 X1 = Xo|

’
a,a’ ~5 a,a’ -
Xy Xys

Hence, for A small enough, K is a contraction and the existence of R;1 follows with the bound

Rl aar < 2C1CalA.

Xy
Now, we establish the estimates for O,R; 1,0, R;1 and OgR; 1.
- For OyR;;1: From (F.2), we see that R; ; is independent of b so OyR; 1 = 0.

- For O5R;1: Applying 05 to (F.2), we obtain

- -1
aS\Riyl = ("%ixt) (Ri,l) + A (’%éext) (85\R%1) + ¢7j,oo,,6’-
Lemma F.2 implies

O Ritll cuw < CLIRiAl caw + C1IN|||05 R
1105 z,lHXyé/_ 1] z,1||Xy6f+ 1Al[[O5Ri 1

X;(,)a/ + ||¢i,oo,ﬁHX;6a/a

hence

105 Ri1| <C.

/
a,a
Xy

- For 0gR;1: Applying 0p to (F.2), we obtain

dsRi1 = Ap ((%,ﬁm)_l> (Rin) + A ("E/ﬂi,ﬂext>_1 (05Ri1) + ADphi oo p-

Applying X:ff(;“/ norm to the above equality and Lemma F.2, we deduce

HaﬁRiJHX;éa’ < Cll)\lllRi,lllxgéa' + Czl)\|||3ﬂRz‘,1||X;6a' + ’)‘|||8ﬁ¢i,oo,ﬁ||xgéa’-

On the one hand, we have

I Boll o + 1836:00,5l g < C-

Finally, we get

19 Ri 1| g < CIAL.

X0t
The construction and estimates on R; 2 are very similar to those established above and are left to
the reader.

- Step 2: Construction of R;2:
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/
The construction is also based on the Banach fixed point theorem on the Banach space X,;“

with a = =y —2—«, and @’ = 2i+2—~. First, we define the right hand side of (F.3) to be J(R; 2).
Using Lemma F.2, we have the following

190 < o (1H: Rial g + 12 g5 ).

We now aim to prove the following estimates

11 Rzl o < Clyo)b® | Rzl o (F.4)
ol g < Clao)t
- The proof of (F.4): From Lemma 9.1, we have
(7)o e ) o (n)
=Q(—F=)=7|-"—"=+ = +0 — ,
Vb
since y > o, % — +oo. This implies that for all y > yo and b € (0,0*(yo))
2 e .
’2Qb(y) - <—y2+2QOy 752)‘ < C(yo)d,
212 1 -y < o
Y Qi(y) — g 2oy b2 || < Clyo)b®,
since g = —2A1 = 2(y — 2). Thus, for all y > yo, we have
1 a
20u) + QU + | < Clwt® 5% (F.6)

- Proof of (F.5): Recall that
R; s <O,
|| 7/71||Xy0‘/7 ’ |

which implies
|Riall oo < Clyo)|A| with a = —5 — 2 — a
v0

Similarly, we also have
; e + (~Z)‘ a.al < C .
H¢1:0075H X H Z,ﬂ” xga = (yO)

Thus, the above estimates and (F.6) immediately conclude (F.5).
Using estimates (F.4) and (F.5), we get

192 g < Colomt? (Wil +1).

Consequently, once b < 1, J becomes a contraction from the ball B(C1b%,0) to itself. Thus, it
follows Banach fixed point theorem the existence of R; o satisfying

| Riall o0 < Cb2. (F.7)

Next, we focus on evaluating 05 R; 2, OpR; 2 and dgR; »:
+ For 05 R;2: We have

8;R,~72 =1 (Rig) + R (HlaS\Ri72) + w1 (a;\Hg)

1,ext i,ext 1,ext
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then
|05 Ri2 |l

IN

Chl|R;, 4+ Co|| H1O5Ril| o, + C]|05 Ho|

/
a,a a,a
Xyg Xy

Clb% + C’Qb% ||(95\R7;72 H

Xy
o
r =+ 03b5

/
a,a
Xy

A

Xy
which yields to
O Ria| aw < Cb2.
105 i < OB
- For OyR; 2 : We have
6bRi,2 = g

i,ext

(OpH1Ri2) + ;o (H1OpRi2) + ;1 (OpHa)
then

Hasz‘,QHXZ,a/ < CillopH1 R 2| a,0r + C2||©10,R;, 1+ Cs|0p Ha ||
0

Xt
< C1b%71 + Cgb% Hé);Ri,gH

X{}é“
F+O3b2 < o2t

X;}é”/

Xy

- For 0gR;2: We have
OgR;i2 = 0p (DS,”

i,ext

(GlRZ 2)) + "% emt(@laﬁRiﬁ) + 85(9% e:pt(@Q))

then we use Lemma F.2 to get
|09 ol ggor < Clm) (92 I Rsal gy + 571052 ygor +1°) < CO%.

Finally, we conclude the proof of the Proposition. O

In the sequel, we aim to complete the results used in the proof of Proposition 10.3. To be begin

with, we need the following result on the resonance of P . For sake of shortness we set

1,ext”
Ll = (2228 (% ~i))u (F.8)
We have

Lemma F.1 (Resonance of 62”1’6 wrt) We consider i € N, then, there exists @Eiﬁ such that it solves
7P extwiﬁ = 0. Moreover, we have

Ker("%zﬁext) Span{¢i,oo,,8> qzi,ﬁ}a

where ¢; o g 15 the i-th eigenfunction of fo’%, given in Proposition 4.1; and zﬁm has the following
asymptotic:

v arbo(d 27)(1+O( )) G/Sy_>07
Jialy) = s | (F.9)
—aaY (] e 4[1+O(y )] as y — oo
where v and a; ; were defined in (2.26) and (2.28) . In particular, there exists a solution 431-”3 to
,,Zfeth;i = i 00,3, Satisfying the following asymptotic
Gialy) = Koy (14 O0(y?)) as y — 0,
16 Kooy? /(Iny + O(1)) as y — +oo,

Ko = 2(2B)" and 7 is defined by

1
7= 5(d+ Vd2 —12d + 24). (F.11)

(F.10)

_ 1
where KO = W’
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Proof. Recall that ¢; o g solves ZB wt(bz 00,3 = 0, this follows from the fact that ¢; o is the i-th

eigenfunction of .Z,,. According to #P . the Wronskian is given by

i,eat?
W(y) =y~ @020 (F.12)
Then, we can formulate an independent linear solution @Eiﬂ to £, ; ewtq/)l 3=0
- Y (y)~(d+1) zﬁ(y:f ,
Vi8(Y) = —Pico,8 /1 P2 dy. (F.13)

From (4.2), we derive

a; 0y~ (1 + O(y2)) asy — 0,
Pioo,8(y) = . L (F.14)
aii(28)'y* 77 (1+0(y~?)) asy — +oo,
where a; ;’s general formula given in (2.28), and we plug the above fact into (F.13) to get
y—d
1; (y) ai,Oy(Q'Y—d) (1 + O(yQ)) as 5 - O’ (F 15)
i = . 2 .
_ai,i(22ﬁ)iy—2l+’y_d_2€2ﬂ% (1 + O(y_2)) as £ — +oo.
In particular, it is easy to see that
Ker("% ext) = Span{¢l 00,85 w%ﬁ}
which leads to
-1 T;Z)z ¢z, ,
("%ixt) f( ) —; Oo,ﬁ/ f ﬂ( )) f + whﬁ/ f(y) Vf/(y() )dy + Cl@,ﬂ oo T 02¢z,57

and since we need to construct a spemal solution with explicit asymptotics, we choose ¢; = ca = 0,
then, we can omit the generality and write

5\ ! tee  Pise¥)
<°% ea:t) f —; oo,ﬁ/ f y +wzﬁ \ f(y)Wdy (Flﬁ)

Thus, the solution ¢i,5 to OZ extﬁbi,ﬁ = ¢z‘,oo,5 can be written

f 1
¢Z B = < i ea:t) (Qbi,oo,,é’)-
- Behavior at 0: From (F.14) and (F.15), we have

' Y $ioo () Pioos(€) i @0 2
i [ PRI g = Yy R+ 0(6) sy =0

and also

~ 0 ¢12,oo,5(£/) ;o (7% d 2
b [ S = e a0 0@ sy 0

noting that v —d = —(d + vd2 — 12d + 24) = —7, we get
Gip(y) = Koy (1 +y?) asy — 0,

_ 1
where K(] = m

- Behavior at +o00: Using (F.14) and (F.15) again, we obtain

i [ Poeall )éffo’ﬁ(f)dﬁ’=2ai,i<2miy%—” (lny+O(1) as y — +oc,
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and for the second one

~ oo (2)2 3(&’) 2 . 28 2 ) 25 9
B e dél = — —2i+y—d—2 a 4i—2~v+d  —=2Y_

‘ 7‘17 - e O 0% .
¢Z7 /y (5/) ai,i(Qﬁ)ly 4 (y e 4 ) as é — 400

Thus, we have
$ip(y) = 2(28)'y* 7 (In& + O(1)) as¢ — +oo,

and this concludes the proof of the Lemma. O

It remains only to prove the continuity of .,Z ext I the Banach space X% | a result that we have
used above.

Lemma F.2 (Continuity of .2}

1,ext

). Foralla<~y—d, a# —d—2 and a’ > 2i —~ with yo € (0,1)
and 8 € (Z Z)’ we have the following estimate

[(22.) 1] < ctad e ana o (22)° f\ Cla,a B gy
Proof. Define g = (‘,Z;ﬁex»il f and recall from (F.16) that
6 71 _ oo ¢i,,6’,00(§/) y
o) = (2 10 = i [ 1OV a4 G | e
Then
8yg(y) = ygbzooﬁ/ f df +8ywz,8/ f(€)¢l/87(55§)d§ ¢ZOOB
(y)
—2 1,00
Pico,nf (Y ) W)
and
+oo
Bt = ~Bons [ 1) s [ 0% o
3ay¢z oo,ﬁf( ) ((y)) - 38ywz,5f( )W
i, i oW

In order to establish the desired estimate, we will only need to control higher order derivatives,
namely, y*~*02g(y) for y € [yo,1] and y?~792g(y) for y € [1, 00).
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e y € [yo, 1], we have

1 nall.J, /
2—a82 < 2—a 82 i oo n—a ! ‘(f) leﬁ(é)’d/
T e e TR
N 1 Na . 00 , i B.oo
byl ( [ @i Ml yg [ ey (€ s ”’d&)
Y
~z 7 7,53,00 ~i 6W
) <|ay¢i,oo,5| oy P g, IR “”‘)
by ) (mmm‘w’ﬁé})")
< s )+ s g0 W+ sl S S 1 g
vE[yo.1] vE[yo,1] y€[l,+00) o

provided that a <y —d and a’ > 2i —

e y € [l,400), we have

| S sl [ € e g

W(&')
il [ @i el g
o e IR X R )] BT [9i()0, W ()]
+ vy ‘f(y)‘ <y |8 ¢2oo,8| (y) +y ‘aywz,ﬂ Wi(y) +y |¢’L,oo,ﬂ| WZ(y) )
1—a’ W)Z B( )|
+ v If?yf(y)|<y|¢mg| W) )
S osw yr@l+ sup [y Y0 f W SISl gow
y€[1,+00) y€[1,400) 0

which yields
1
Il oo = (L) Fllynor < Cla )£l g

as claimed. Finally, we finish the proof of the Lemma. O
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