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Abstract. In this paper, we consider the Yang-Mills heat flow on Rd×SO(d) with d ≥ 11. Under
a certain symmetry preserved by the flow, the Yang-Mills equation can be reduced to the following
nonlinear equation:

∂tu = ∂2
ru+

d+ 1

r
∂ru− 3(d− 2)u2 − (d− 2)r2u3, and (r, t) ∈ R+ × R+.

We are interested in describing the singularity formation of this parabolic equation. More precisely,
we aim to construct non self-similar blowup solutions in higher dimensions d ≥ 11, and prove that
the asymptotic of the solution is of the form

u(r, t) ∼ 1

λℓ(t)
Q

(
r√
λℓ(t)

)
, as t → T,

where Q is the steady state corresponding to the boundary conditions Q(0) = −1,Q′(0) = 0 and
the blowup speed λℓ verifies

λℓ(t) = (C(u0) + ot→T (1)) (T − t)
2ℓ
α as t → T, ℓ ∈ N∗

+, α > 1.

In particular, the case ℓ = 1 corresponds to the stable type II blowup regime, whereas for the cases
ℓ ≥ 2 corresponds to a finite co-dimensional stable regime.

Our approach here is not based on energy estimates but on a careful construction of time
dependent eigenvectors and eigenvalues combined with maximum principle and semigroup pointwise
estimates.

1. Introduction

Recently, geometric heat flows received a lot of attention from both the mathematics and physics
communities. Among these geometric flows, the Yang-Mills heat flow is of a great interest. Let
us give a brief survey of the physics behind it (more details can be found in [21] and [18]). The
Yang-Mills theory is in some sense a non-commutative version of Maxwell’s electromagnetism where
in the latter, the gauge group is the abelian group U(1). In order to describe the weak nuclear
force, governing the nuclear decay of some particles, Yang and Mills proposed to substitute for the
Maxwell’s gauge group U(1) the non-abelian gauge group SU(2). Let us describe the mathematical
setting of the theory. Consider a Riemannian manifold M of dimension d, with a structure group
G (i.e., a semi-simple Lie group) and denote by π the canonical projection. Let G be the Lie
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algebra of G and E a principal fibre bundle over M . Let DA be a covariant derivative from E
to Ad(E) ⊗ T ∗M . On each coordinate chart Uα, DA can be represented by the G-valued 1-form
of κ + Aα where κ is some fixed reference connection (e.g. usual exterior derivative), and A(α) a
G-valued 1-form

A(α) =
d∑

µ=1

Aα,µdx
µ.

Since the transition functions are smooth, we can set A(α) = A. Physically, the vector A represents
the electromagnetic potential.

Let the curvature FA be the tensor DADA. By using a local chart Uα, one can represent FA by
the G-valued 2-form

FA =
∑
µ,ν

Fµ,νdx
µ ∧ dxν ,

where

Fµ,ν = ∂µAν − ∂νAµ + [Aµ, Aν ] .

The second rank covariant tensor Fµ,ν is the well-known electromagnetic tensor. The Yang-Mills
connections are defined as the critical points of Yang-Mills functional FA given by

FA :=

∫
M

|FA|2 dvolM .

The Euler Lagrange equations corresponding to these critical points are

d∑
ν=1

DνFµ,ν = 0,∀µ = 1, ..., d,

where Dν = ∂ν + [Aν , ·].
The Yang-Mills heat flow is defined as the gradient flow associated to the above problem where

A is the Yang-Mills connection. By using a local chart, the time-dependent connection locally
satisfies {

∂tAµ(x, t) + ∂νFµν(x, t) + [Aν , Fµ,ν ] (x, t) = 0, t > 0,
Aµ(x, 0) = Aµ,0(x).

(1.1)

Note that equation (1.1) is invariant under the following scaling

Aλ(x, t) = λA
(
λx, λ2t

)
, for λ > 0. (1.2)

However, the Yang-Mills functional is invariant under scaling symmetry for d = 4, this is why
we refer to this dimension as the energy critical one. For d ≥ 5, we say that the equation is su-
percritical. Results on the long time existence and uniqueness were obtained in [28] for d = 2, 3,
[24, 31] for d = 4 for weak solutions (see also [29] and [30] for the existence of smooth solutions). In
particular, in the case d = 4, the authors in [30] conjectured finite time singularities do not occur
on a compact manifold which recently confirmed by [33]. For the energy supercritical problem, i.e.
d ≥ 5, there is few results on the global existence and this due to the the gauge invariance of the
Yang-Mills heat flow.

Let us restrict ourselves to a special case where M = Rd and E = Rd ⊗ SO(d) is the trivial
bundle. In this case, the Yang-Mills connection Aµ(µ ∈ {1, .., d}) is globally given by its SO(d)-
valued coefficient functions Aµ(µ = 1, ..., d). In particular, the Lie algebra SO(d) is simply the
space of skew-symmetric d× d matrices endowed with the commutator bracket. Let us denote the

coefficient functions by Aµ = Ai,j
µ and make (as in [14]) the following SO(d)-equivariant ansatz

Ai,j
µ (x, t) = u(|x|, t)σi,jµ (x), where σi,jµ (x) = δiµx

j − δjµx
i, i, j ∈ {1, ..., d}.
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We emphasize here that the covariant derivative of σ is zero, so that the ansatz amounts to consider
the problem in the Lorentz gauge. By following these settings (see [21]), it reduces to

∂tu = ∂2ru+
d+ 1

r
∂ru− 3(d− 2)u2 − (d− 2)r2u3, and (r, t) ∈ R+ × R+. (1.3)

The solution to this equation is invariant under the scaling

uλ(x, t) =
1

λ
u

(
x√
λ
,
t

λ

)
(1.4)

for λ > 0. Let us remark that (1.3) is locally well posed in some weighted L∞ spaces as

L∞
1+rα(R+) =

{
f measurable on R+ such that ∥(1 + rα)f(r)∥L∞(R+) < +∞, α ≥ 2

3

}
,

by following a fixed point argument and an extension to a Rd+2-problem. Consequently, with an
arbitrary initial data in L∞

1+rα , the corresponding solution is either global or develops singularity
in finite time T , in the sense that

lim sup
t→T

∥u(·, t)∥L∞
1+rα (R+) = +∞.

In this paper, we are interested in the blowup phenomenon and a variety of papers were devoted
to the study of singularity formation. First, in [18], the author constructed self-similar blowup
solutions with 5 ≤ d ≤ 9. Besides that, the authors in [35] also gave explicit examples (so-called
Weinkove solutions)

uW (x, t) =
1

T − t
W

(
r√
T − t

)
,

with

W (r) = − 1

a1(d)r2 + a2(d)
.

Here a1(d) =
√
d−2
2
√
2
, a2(d) = 1

2

(
6d− 16− (d+ 2)

√
2d− 4

)
. Recently, the authors in [13] have

constructed non trivial solutions in the range 5 ≤ d ≤ 9 which approach uW in L∞(R+) and these
solutions corresponding to similar blowup setting. The stability of Weinkove solutions was also
proved by [13] and [22]. For higher dimension d ≥ 10, the authors in [6] excluded the existence of
self similar blowup solutions and then non selfsimilar solutions are expected.

We have been successful in constructing non-self similar blowup solutions (so-called Type II
blowup solutions). Our results are stated in the following.

Theorem 1.1 (Existence of stable blowup solution). Let d ≥ 11 be an integer. Then, there exist
initial data u0 ∈ C∞

0 (R+,R) such that the corresponding solution to (1.3) blows up in finite time
T (u0). Moreover, the following decomposition holds true

u(r, t) = λ−1(t)Q

(
r√
λ(t)

)
+ ũ(r, t), t ∈ [0, T ), (1.5)

where Q is the ground state of (1.3) satisfying Q(0) = −1 and Q′(0) = 0; and the error ũ(r, t)
satisfies

λ(t)∥ũ(., t)∥L∞(R+) → 0 as t→ T, (1.6)

and the blowup speed λ(t) exactly behaves as follows

λ(t) = C(u0)(1 + o(1))(T − t)
2
α . (1.7)

as t→ T and α defined in (2.27). In particular, the constructed blowup behavior is stable.

By a suitable expansion the construction technique in Theorem 1.1, we can construct unstable
blowup solutions with different blowup speeds. More precisely, the result reads.
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Theorem 1.2 (Existence of unstable blowup solutions). Let us consider integer numbers ℓ ≥ 2
and d ≥ 11. Then, there exist initial data u0,ℓ ∈ C∞

0 (R+,R) such that the corresponding solution
uℓ to (1.3) blows up in finite time T (u0,ℓ). Moreover, the following decomposition holds true

uℓ(r, t) = λ−1
ℓ (t)Q

(
r√
λℓ(t)

)
+ ũℓ(r, t), (1.8)

where Q is the ground state satisfying Q(0) = −1 and Q′(0) = 0; and the error ũℓ(r, t) satisfies

λℓ(t)∥ũ(., t)∥L∞(R+) → 0 as in t→ T, (1.9)

and the blowup speed λℓ(t) exactly behaves as follows

λℓ(t) = C(u0)(1 + o(1))(T − t)
2ℓ
α as t→ T. (1.10)

Remark 1.3 (Related blowup results for PDE’s problem). Note that the Yang-Mills heat flow
(1.3) has a lot of similarities with the harmonic map heat flow (under corotational symmetry):

∂tu = ∂2ru+
d+ 1

r
∂ru− (d− 1)

sin(2u)

2r2
, and (r, t) ∈ R+ × R+. (1.11)

The harmonic map heat flow forms also singularity in finite time, and the self-similar nature of the
singularity appears only when 3 ≤ d ≤ 6, and for d ≥ 7 self-similar blowup solutions don’t exist [6].
For 3 ≤ d ≤ 6, the existence of the self-similar solutions is known [17] and the stability has been
proved only in the case d = 3 as in [1]. When d = 7 the blowup is not self-similar and the speed
λ has a log correction [19], it turns out that the non-self-similar regime is stable when d = 7. If
d ≥ 8, in [20] the authors proved similar results. The results in [20], also in [4], have been proved
with a different method. In [20], the result is based on an energy based method, whereas in [4]
is based on the maximum principle which does not allow to abtain the stability. In the present
paper, we present a new method that has been introduced previously in [7, 10] but combined with
ideas from [4]. We also mention that the author in [36] has obtained the same results for (1.3) in
comparising with our paper, by following a robust map based on energy estimates as in [20] which
one of co-author is also a co-author this new paper. Even though our paper presents the same
results and appears later for four months (noted on Arxiv), our one is more orginality that we have
built up a new technique to adapt to more general models that we will explain those novelties in
the remark below.

Remark 1.4 (Novelty of the paper). We point out that the approach pursued here is more intuitive
than the one in [20] for the heat flow map as it is based on a spectral approach rather than an energy
method. Note that here, the selection by the flow of the blow up speed is linked to the eigenvalue
λℓ of the time dependent linearized operator Lb, after perturbing initially Q in the direction of the
eigenvectors ϕℓ. Such an idea was not clear in [20]. The length of the paper is due to the heavy and
technical construction of the eigenvectors and eigenvalues of Lb. In comparison with [20], the use
of maximum principle reduce considerably the difficulty of the control of the infinite dimensional
part ε−. We believe that this method can be adapted to a large class of parabolic problems.

Remark 1.5 (Structure of the paper). To be more convenient for the readers, we aim to give
the structure of the paper here: We introduce and explain the importance of the different set of
variables: self-similar and blowup variables in the second section. In the third and fourth sections
we explain the strategy of the proof, and the time dependent spectral analysis strategy. The fifth
section aims to provide a proof of the main theorem without technical details where we show
that the infinite dimensional problem can be reduced to a finite dimensional one. In other words,
we show that the solution can be split into two parts a finite dimensional part and an infinite
dimensional one. In the sixth section we study the dynamic of the finite dimensional part under
the assumption that the infinite dimensional part of the solution is decaying in a suitable weighted
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L2 norm. The seventh section shows that the assumption made in the section 6 on the infinite
dimensional part holds after assuming an L∞ bound. In the 8th section we prove this L∞ bound
assumed in the previous section by using maximum principle and pointwise estimates which is
based on the semigroup associating to the linearised operator. The 9th section is devoted to prove
the existence of the ground state Q which solves an non-autonomous second order ODE. To do
so, we prove the existence of an heteroclinic trajectory by finding an appropriate trapping set. In
the 10th section we sketch the proof of the existence of the unstable blowup solutions and the last
section is devoted to the diagonalisation of the time dependent linearised operator Lb.

2. Mathematical setting

Let u be a solution to the following equation on [0, T ) for some T > 0

∂tu = ∂2ru+
d+ 1

r
∂ru− 3(d− 2)u2 − (d− 2)r2u3, and (r, t) ∈ R+ × R+. (2.1)

Let λ be an unknown blow-up speed satisfying λ(t) → 0 as t→ T and write

u(t, r) =
1

λ(t)
v(ξ, s) (2.2)

where the blow-up variables s and ξ are such that

ds

dt
=

1

λ
, ξ =

r√
λ
.

Simple computation yields

∂sv = ∂2ξ v +
d+ 1

ξ
∂ξv +

1

2

λs
λ
Λξv − 3(d− 2)v2 − (d− 2)ξ2v3. (2.3)

We anticipate that λs
λ → 0 as s → ∞, since the blow-up mechanism is non-self similar, thus, v is

expected to converge to the ground state Q, which is a solution to

Q′′(ξ) +
d+ 1

ξ
Q′

ξ − 3(d− 2)Q2 − (d− 2)ξ2Q3 = 0 (2.4)

with the boundary conditions Q(0) = −1 and Q′(0) = 0.
In order to establish the convergence of v to the stationary solution Q, we linearize around the
latter and study the operator

Hξ +
1

2

λs
λ
Λξ, (2.5)

where

Λξ = 2 + ξ∂ξ, (2.6)

and

Hξ = ∂2ξ +
d+ 1

ξ
∂ξ − 3(d− 2)(2Q(ξ) + ξ2Q2(ξ)). (2.7)

More precisely, we would like to determine the eigenvectors and eigenvalues of the linearized oper-
ator which depend on time. To do so, one has to switch to the so-called self-similar variables, i.e.,
we write the solution u as

u(r, t) =
1

T − t
w

(
r√
T − t

, τ

)
, τ = − log(T − t). (2.8)

One then finds that w satisfies

∂τw = ∂2yw +
d+ 1

y
∂yw − 1

2
Λyw − 3(d− 2)w2 − (d− 2)y2w3. (2.9)
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Now, introduce a function b of time such that

b =
λ

T − t
. (2.10)

If the blow-up is self-similar, b would be a (non-zero) constant. In our case, the blow-up is foreseen
to be non-self-similar and b has then to tend to zero as t→ T .

Stepping on the fact that our problem is invariant under time translation, we allow the blow-up
time to vary. That is, we replace T−t by some function µ and we prove that it behaves like T−t for
t→ T . Hence we relax b = λ

µ instead of λ
T−t . The parameter b is measuring the non-self similarity

of the solution.

- Notation: Based on the above, we write

u(r, t) =
1

µ(t)
w(y, τ), y =

r√
µ(t)

and
dτ

dt
=

1

µ(t)
. (2.11)

The function w now satisfies

∂τw = ∂2yw +
d+ 1

y
∂yw − β(τ)Λyw − 3(d− 2)w2 − (d− 2)y2w3, (2.12)

where

β(τ) = −1

2

µτ
µ(τ)

, (2.13)

and

Λyf = y∂yf + 2f. (2.14)

Note that in the self-similar scale µ, one needs to linearise around Qb instead of Q, where

Qb(τ)(y) =
1

b(τ)
Q

(
y√
b(τ)

)
. (2.15)

In addition, w is global but blows up in infinite time. Indeed, introduce the error

ε(y, τ) = w(y, τ)−Qb(τ)(y). (2.16)

By a simple calculations, it leads to

∂τε = Lb(ε) +B(ε) + Φ(y), (2.17)

where

Lb = ∂2y +
d+ 1

y
∂y − β(τ)Λy − 3(d− 2)

(
2Qb +Q2

b |y|2
)
, (2.18)

and

B(ε) = −3(d− 2)(1 + |y|2Qb)ε
2 − (d− 2)|y|2ε3, (2.19)

and

Φ(·, τ) =
1

2
ΛyQb(τ)

[
b′(τ)

b(τ)
− 2β(τ)

]
. (2.20)

From the expression of the operator Hξ, we have the relation

Lbw(y, τ) =
1

b
(Hξ − bβΛξ) v(ξ, τ). (2.21)

From Lemma 9.1, we infer that

3(d− 2)
[
2Qb(y) + y2Q2

b

]
→ −3(d− 2)

y2
as b→ 0 with y ̸= 0.
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We next introduce the limit operator

L β
∞ = ∂2y +

d+ 1

y
∂y − βΛy +

3(d− 2)

y2
, (2.22)

and we set L
1
2∞ = L∞

L∞ = ∂2y +
d+ 1

y
∂y −

1

2
Λy +

3(d− 2)

y2
. (2.23)

Let ρ = yd+1e−β y2

2 . Then a simple computation yields

L β
∞ϕ =

1

ρ

d

dy
(ρϕ′) +

3(d− 2)

y2
ϕ− 2βϕ. (2.24)

In the present paper, we use weighted Sobolev spaces L2
ρβ

and H1
ρβ

where the weight ρβ is defined

by

ρβ(y) =
(2β)

d+2
2

(4π)
d+2
2

yd+1e−(2β) y
2

4 . (2.25)

We also denote ρ 1
2
= ρ.

The space L2
ρβ

is equipped with the norm

∥f∥2L2
ρβ

(R+) =

∫
R+

f2(y)ρβ(y)dy,

and H1
ρβ
(R+) has the norm

∥f∥2H1
ρβ

(R+) = ∥f∥2L2
ρβ

(R+) + ∥∂yf∥2L2
ρβ

(R+).

We also define some special constants in our paper and we assume the dimension d ≥ 11. Let

γ =
1

2
(d−

√
d2 − 12d+ 24), (2.26)

α = γ − 2, (2.27)

and

ai,j =
(−1)i−j

(i− j)!
4i−j i!

j!

(d2 − γ)i!

(d2 − γ)j !
= ci,jCj , for all 0 ≤ j ≤ i,

with ci,j and Cj defined as follows

ci,j =
(−1)i−j4ii!

(
d
2 − γ

)
i
!

(i− j)!
, (2.28)

Cj =
1

4jj!
(
d
2 − γ

)
j
!
, (2.29)

where (
d

2
− γ

)
i

! =

(
d

2
− γ + 1

)(
d

2
− γ + 2

)
...

(
d

2
− γ + i

)
and

(
d

2
− γ

)
0

! = 1.

We also use the notation

⟨y⟩ =
√
1 + |y|2.
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3. Strategy of the proof

We aim to summarize in this paragraph our strategy for the proof of our results. As mentioned
above, our goal is to prove that v → Q as s→ ∞ which is equivalent to the control

∥ε(·, τ)∥L∞ ≪ ∥Qb(τ)∥L∞ = b−1(τ) as τ → ∞, (3.1)

where Qb defined as in (2.15), b determined as in (2.10), and w = Qb+ε with w defined in (2.8). Our
problem mainly focuses on the perturbative problem (2.17). In addition, the perturbative spectral
properties of the linear operator Lb is studied in Proposition 4.2 which allows us to expand the
error ε along its eigenmodes ϕi,b,β, i ∈ {0, 1, ..., ℓ}. More precisely, we arrive at the following
decomposition

ε(τ) =

ℓ−1∑
j=1

εj(τ)ϕj,b(τ),β(τ) + εℓ(τ)

[
ϕℓ,b(τ),β(τ)

cℓ,0
− ϕ0,b(τ),β(τ)

]
+ ε−(τ), (3.2)

where cℓ,0 defined in (2.28), ε− is the orthogonal part of ε to ϕi,b,β for all i ≤ ℓ i.e.

⟨ε−, ϕi,b,β⟩L2
ρβ

= 0,∀j = 0, ..., ℓ. (3.3)

Note that the decomposition in (3.3) is crucial to our approach, as first introduced in [9] (see also
[7]). On the one hand, this decomposition provides a good approximation to our solution, including
the main perturbative term i.e.

εℓ(τ)

[
ϕℓ,b(τ),β(τ)

cℓ,0
− ϕ0,b(τ),β(τ)

]
which offers a better approximation compared to the profile when the solution is far from the
singular domain. On the other hand, it plays an important role in driving the law of the blowup
speed, b(τ). In order to ensure the decomposition (3.2) be unique, we couple the problem (2.17)
with

cℓ,0∥ϕℓ,ϕ,β∥−2
L2
ρβ

⟨ε, ϕℓ,b,β⟩L2
ρβ

= −∥ϕ0,ϕ,β∥−2
L2
ρβ

⟨ε, ϕ0,b,β⟩L2
ρβ
i.e.εℓ = −cℓ,0ε0, (3.4)

and the following compatibility condition (for only the case ℓ = 1)

εℓ(τ) = − 2

α
m0b

α
2 (τ). (3.5)

Finally, the main issue is to control (ε, b, β) by a suitable asymptotic behaviors. Specifically, we
employ the concept of shrinking set, Vℓ[A, η, η̃] as defined in Definition 5.1 to handle the problem.
It’s worth noting that the set bears resemblance to recent studies on Type I blowup constructions,
such as those found in [3], [25], [27], [11], [16], [15], [12]. More precisely, we control εj , j = 0, .., ℓ,
ε−, the blowup speed b, the parameter β(·). Due to the nonlinearity y2ε3 in equation (2.17), we
need to control ∥ε−∥L2

β
to derive a priori estimates on εj and ε−. Besides that, it is not enough

to imply (3.1) from εj and ε−, since the eigenmodes ϕi,b,β, i ∈ N are not bounded as y → +∞.
To address this challenge, we also regulate the outer part εe introduce in (5.9). Furthermore, we
propose a simpler way for constructing Type II blowup solutions for parabolic problems, as an
alternative to a direct brute force energy method.

Additionally, we also point out main ideas of the proofs of Theorems 1.1 and 1.2.

- For ℓ = 1. This case involves Theorem 1.1. It is sufficient to control (ε, b, β)(τ) ∈ V1[A, η, η̃](τ), for
all τ ≥ τ0 for some τ0 a sufficient large value. The maim idea is to construct a suitable initial choice
(ε, b, β)(τ0) (see more in subsection 5.2), then we reply in a priori estimates provided in Lemmas
6.1, 7.1, 7.2 and 7.3 to improve the bounds in the V1[A, η, η̃]. Thus, by continuity of the solution in
time, we easily conclude that the maximum time trapped in the shrinking set is +∞. Finally, using
the renormalisation in time given in (5.50), we conclude the proof of Theorem 1.1. We also mention
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some interesting points in our proof. First, the control of ε− which we sufficiently do on the interval

[0, b−η̃(τ)]. On the one hand, on [0, b
η
4 ] we use the maximum principle, initialled in [4], to control

it in avoiding a heavy control from energy method. On the other hand, on [b
η
4 , b−η̃] which is far

the origin enough. Then, the result follows pointwise estimates based on the Poisson semigroup,
see more in section C. Second, the control of the outer part εe, follows pointwise estimates based
on the semigroup Kβ(τ, τ

′).

- For ℓ ≥ 2. This case is related to Theorem 1.2. Similar to the first one. We control the solution
to be trapped in the shrinking set Vℓ[A, η, η̃](τ) by a priori estimates. However, this case includes
unstable modes that εj for all j ∈ {0, ..., ℓ}. Thus, we reduce our problem to a finite dimensional
one which is solvent by a classical topological argument.

4. Spectral analysis

The aim of this section is to study the linear operator L β
b . In order to do so, we begin with the

limit operator L β
∞.

Proposition 4.1 (Diagonalisation of L β
∞, [23], [4], [9]). Let d ≥ 11, β ∈

(
1
4 ,

3
4

)
and L β

∞ defined

as in (2.22). Then, L β
∞ admits a unique Friedrichs extension, still denoted by L β

∞ with domain

D(L β
∞) ⊂ H1

ρβ
and H2

ρβ
⊂ D(L β

∞), is self-adjoint with compact resolvent. Moreover, the following

hold:

(i) Spectrum property: L β
∞ consists of countable many eigenvalues. More precisely, the eigenva-

lues and eigenfunctions are given by

λi,∞,β = 2β
(α
2
− i
)
, i ∈ N, (4.1)

ϕi,∞,β(y) = Ni

(√
2βy

)−γ
L
( d
2
−γ)

i

(
βy2

2

)
=

i∑
j=0

ai,j(2β)
jy2j−γ

=

{
ai,0y

−γ
(
1 +O(y2)

)
as y → 0,

ai,i(2β)
iy2i−γ

(
1 +O(y−2)

)
as y → +∞,

(4.2)

where L
(ν)
i (z) denotes the generalized Laguerre polynomial, Ni is a normalization constant

and γ, α, ai,j are defined in (2.26), (2.27) and (2.28), respectively.
(ii) Spectral gap estimate: for all u ∈ H1

ρβ
satisfying ⟨ϕi,β,∞, u⟩L2

ρβ
= 0,∀i ∈ {1, ..., ℓ}, then

⟨L β
∞u, u⟩L2

ρβ
≤ λℓ+1,∞,β∥u∥2L2

ρβ
.

As has been noted above, L β
∞ is formally the limit (b→ 0) of Lb defined in (2.18), and a priori

it is a good approximation of the latter for large values of τ . However, such an approximation is
good only for y large enough since ϕi,∞ is singular when y approaches 0. Hence, to understand
well the operator Lb around zero (i.e., y small), one has to use the blow-up variables (ξ, s) and our
operator then reads

Lb =
1

b
(Hξ − bβΛξ) . (4.3)

The strategy is is to construct the eigenvalues and eigenvectors of Lb in two different regions,
namely, for y > y0 (outer region) using the self-similar scale and and for ξ ≤ ξ0 (inner region)
using the variable ξ. Once such a construction is achieved, we glue at y0 and in a C1-manner the
obtained eigenvalues and eigenvectors. The result is summarized in the following proposition.
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Proposition 4.2 (Diagonalisation of Lb). Let d ≥ 11, b > 0, β ∈
(
1
4 ,

3
4

)
, ℓ ∈ N∗ and Lb be defined

as in (2.18). Then, Lb admits a unique Friedrichs extension, still denoted by Lb with domain
D(Lb) ⊂ H1

ρβ
and H1

ρβ
⊂ D(Lb), is self-adjoint with compact resolvent. Moreover, for all ℓ ∈ N∗

there exists b∗(ℓ) ≪ 1 such that for all b ∈ (0, b∗) and j ≤ ℓ, the following hold:

(I) Spectrum: the eigenvalues and eigenfunctions are given by

λi,β,b = 2β
(α
2
− i
)
+ λ̃i,β,b,∀i ∈ N, (4.4)

ϕi,β,b(y) =

i∑
j=0

ci,j(2β)
j(
√
b)2j−γTj

(
y√
b

)
+ ϕ̃i,β,b, (4.5)

where

∥ϕ̃i,β,b∥H1
ρβ

≲ b1−
ϵ
2 , ρβ defined in (2.25).

In particular, we have

|λ̃i,β,b| ≲ b1−
ϵ
2 and

∣∣∣∂bλ̃i,β,b∣∣∣ ≲ b−
ϵ
2 , and

∣∣∣∂βλ̃i,β,b∣∣∣ ≲ 1. (4.6)

(II) Difference estimate:

∥ϕi,β,b − ϕi,β,∞∥H1
ρ
≲ b1−

ϵ
2 , (4.7)

where ϕi,b,∞ defined as in (4.2)
(III) Pointwise estimate: for k ∈ {0, 1} we have∣∣∣∂kyϕi,β,b(y)∣∣∣ ≲ ⟨y⟩2i+2

(
√
b+ y)γ+k

, (4.8)

∣∣∣∂ky b∂bϕi,β,b(y)∣∣∣ ≲ ⟨y⟩2i+2

(
√
b+ y)γ+k

, (4.9)

and ∣∣∣∂ky ϕ̃i,β,b(y)∣∣∣+ ∣∣∣∂ky b∂bϕ̃i,β,b(y)∣∣∣+ ∣∣∣∂ky∂βϕ̃i,β,b(y)∣∣∣ ≲ b1−
ϵ
2 ⟨y⟩2i+2

(
√
b+ y)γ+k

. (4.10)

(iv) Spectral gap estimate: assume that u ∈ H1
ρβ
(R+) satisfies

⟨u, ϕi,β,b⟩L2
ρβ

= 0,∀i ∈ {0, 1, ..., ℓ},

then, there exists c(ℓ) > 0 such that

⟨Lbu, u⟩L2
ρβ

≤ − (λℓ,b,β + c(ℓ)) ∥u∥2L2
ρβ
. (4.11)

Proof. The spectral analysis is quite the same as in [8] and [9]. We kindly refer the reader to check
the details. In addition, we also give the matching ODE approach and the pointwise estimates in
Section 10.

5. Proof in the stable case without technical details

In this section, we aim to give the proof of Theorem 1.1 without technical details.
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5.1. Shrinking set

We define below the shrinking set that controls the asymptotic behavior of (ε, b, β) leading to
the global existence of the solution, and deriving Theorem 1.1. Let b and β be positive functions
satisfying the hypothesises in Proposition 4.2, then we decompose ε as in (3.2) by taking ℓ = 1

ε(τ) = ε1(τ)

(
ϕ1,b,β
c1,0

− ϕ0,b,β

)
+ ε−(τ) = ε+(τ) + ε−(τ). (5.1)

Definition 5.1 (Shrinking set). Let A, η, η̃ and τ0 be positive constants. For each τ̄ > τ0 we
introduce V1[A, η, η̃](τ̄) as the set of all triple time-dependent functions (ε, b, β) on [τ0, τ̄ ] such that
(ε, b, β)(τ) ∈ L∞(R+)× R2 for all τ ′ ∈ [τ0, τ̄ ] and the following estimates are satisfied:

(i) The dominating mode ε1 satisfies

ε1(τ) = − 2

α
m0b

α
2 (τ),∀τ ∈ [τ0, τ̄ ], (5.2)

and functions b and β satisfy

1

2
≤ b(τ) exp

((
2

α
− 1

)(∫ τ

τ0

2β(τ̃)dτ̃ + τ0

))
≤ 2,∀τ ∈ [τ0, τ̄ ], (5.3)

and ∣∣∣∣β(τ)− 1

2

∣∣∣∣ ≤ AIη(τ0), ∀τ̄ ∈ [τ0, τ̄ ], (5.4)

where m0 is given by (6.15), and I(τ) is defined by

I(τ) = e(1−
2
α)τ . (5.5)

(iii) The part ε− of ε defined as in (5.1) satisfies

∥ε−(., τ)∥L2
ρβ(τ)

≤ A2b
α
2
+η(τ),∀τ ∈ [τ0, τ̄ ], (5.6)

and ∥∥∥∥yγ ε−(., τ)⟨y⟩4

∥∥∥∥
L∞[0,b−η̃(τ)]

≤ A3b
α
2
+η̃(τ),∀τ ∈ [τ0, τ̄ ]. (5.7)

(iv) The part εe satisfy

∥|y|εe(., τ)∥L∞ ≤ A4b
α
2
+(γ−4)η̃(τ),∀τ ∈ [τ0, τ̄ ], (5.8)

where

εe(y, τ) = (1− χ0(2yb
η̃(τ)))ε(y, τ), and supp(εe) ⊂

{
|y| ≥ 1

2
b−η̃

}
, (5.9)

and χ0 defined by

χ0 ∈ C∞, χ0(x) = 1,∀x ∈ [0, 1], and χ0(x) = 0,∀x ≥ 2. (5.10)

Consequently, once (ε, b, β) belongs to V1[A, η, η̃], one can easily deduce the following pointwise
estimates.

Lemma 5.2 (Pointwise estimates). For all A ≥ 1 and 0 < η̃ < η ≪ 1, then there exists τ1(A, η̃, η) ≥
1 such that for all τ0 ≥ τ1 the following holds: Assume (ε, b, β)(τ) ∈ V1[A, η, η̃](τ) for all τ ∈ [τ0, τ̄ ]
with τ̄ > τ0 arbitrarily given, then we have

I1+
η̃
10 (τ) ≤ b(τ) ≤ I1−

η̃
10 (τ),∀τ ∈ [τ0, τ̄ ]. (5.11)

Accordingly (5.1), ε+ and ε− satisfy the following pointwise estimates

|ε+(y, τ)| ≤
Cb

α
2

yγ
{
y2 + b10η(τ)⟨y⟩4

}
, ∀y > 0, τ ∈ [τ0, τ̄ ], (5.12)
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and

|ε−(y, τ)| ≤ CA4b
α
2
+η̃(τ)

⟨y⟩4

yγ
,∀y > 0, τ ∈ [τ0, τ̄ ]. (5.13)

Proof. The results immediately follow from the bounds given in Definition 5.1 of the shrinking set
V1[A, η, η̃](τ).

5.2. Preparing initial data

In this part, we aim to construct a suitable falimy of initial data (ε, b, β)(τ0) such that the solution
to the problem (2.17-3.4-3.5) globally exists and satisfies

(ε, b, β) ∈ V1[A, η, η̃](τ̄), ∀τ̄ > τ0.

Let us define β0 = β(τ0) = 1
2 , b0 = b(τ0) = I

α
2 (τ0) where I(τ) introduced as in (5.5), δ ≪ 1

satisfying 0 < η̃ ≪ η ≪ δ ≪ 1. In addition, we recall χ0 defined as in (5.10) and we introduce then

ψ(τ0) = χ0

(
ybδ0

)(
1− χ0

(
y

bδ0

))(
− 2

α
m0b

α
2
0

){
[1 + ψ̂(τ0)]

ϕ1,b0,β0

c1,0
−
[
1 + ψ̃(τ0)

]
ϕ0,b0,β0

}
,

(5.14)

where the corrections ψ̃(τ0) and ψ̂(τ0) are uniquely determined such that (3.4-3.5) are satisfied at
τ = τ0. More precisely, via a direct computation, they satisfy∣∣∣ψ̃(τ0)∣∣∣+ ∣∣∣ψ̂(τ0)∣∣∣ ≲ bδ(τ0).

Thus, our initial data is of the form

(ε, b, β)(τ0) = (ψ(τ0), b0, β0). (5.15)

In addition, the initial data for problem (2.12) will be of the form

w(y, τ0) = Qb(τ0)(y) + ε(τ0). (5.16)

In the sequel, we prove by using modulation that we can propagate (3.4) and (3.5).

Lemma 5.3 (Modulation technique). There exists δ2 ≪ 1 such that for all δ ≤ δ2 there exists
A2 ≥ 1 such that for all A ≥ A2 there exists η2(A, δ) such that for all η ≤ η2 there exists η̃2(A, δ, η)
such that for all η̃ ≤ η̃2 there exists τ2(A, δ, η, η̃) ≥ 1 such that the following property holds: Assume
that initial datum is of the form in (5.14), then there exists τ∗loc > τ0 and smooth functions (b, β) ∈(
C [τ0, τ

∗
loc] ,R2

)
∩C1

(
(τ0, τ

∗
loc],R2

)
) such that the solution w (corresponding to initial data in (5.16))

to equation (2.12), locally exists on [τ0, τ
∗
loc] and uniquely admits the following decomposition

w(τ) = Qb(τ) + ε(τ), (5.17)

where (ε, b, β) satisfying (2.17-3.4-3.5) and Qb(τ) defined as in (2.15). In addition, it holds that
(ε, b, β) ∈ V1[A, η, η̃](τ̄), for all τ̄ ∈ [τ0, τ

∗
loc]. In particular, the existence of (ε, b, β) can be propagated

to the interval [τ0, τ
∗
loc + σ̃] for some σ̃ small thank to the bounds in V1.

Proof. Let us consider initial data w(τ0) defined as in (5.16). Thanks to the local well-posedness in
L∞
1+rα , α ≥ 2

3 of the problem (1.3), there exists τ̃ > τ0 such that the solution w to equation (2.12)
uniquely exists on [τ0, τ̃ ]. We mention that the existence of modulations b and β and decomposition
(5.17) is a direct consequence of the implicit function theorem. Let us introduce the following maps F1(τ, b, β) := ⟨w(τ)−Qb, ∥ϕ1,b,β∥−2

L2
ρβ

c1,0ϕ1,b,β + ∥ϕ0,b,β∥−2
ρβ
ϕ0,b,β⟩L2

ρβ
,

F2(τ, b, β) := ⟨w(τ)−Qb, ϕ1,b,β⟩L2
ρβ

+ 2
αm0∥ϕ1,b,β∥2L2

ρβ

b
α
2 (τ).

(5.18)

Since ε(τ0) = ψ(τ0) defined as in (5.14), it immediately follows

F (τ0, b0, β0) = (F1, F2)(τ0, b0, β0) = 0.
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Now we admit the following expansion (the proof will be given below)

Det(J)(τ0, b0, β0) = m0∥ϕ1,b0,β0∥2L2
ρβ0

b
α
2
−1

0 ε1(τ0)

∥ϕ1,b0,β0∥2L2
ρβ0

∥ϕ0,b0,β0∥
−2
L2
ρβ0

4β0

 (5.19)

+ o(bα−1
0 ),

which implies

Det(J)(τ0, b0, β0) ̸= 0,

provided that b0 small enough i.e. τ0 ≥ τ2,1(δ). Finally, we apply the implicit function theorem
to conclude the unique existence of the functions (b, β) ∈ C([τ0, τ̃1],R2) ∩ C1((τ0, τ̃1],R2) for some
τ̃1 > τ0 such that

F (τ, b(τ), β(τ)) = 0,∀τ ∈ [τ0, τ̃1].

Now, we define τ∗loc = min(τ̃1, τ̃) and we define ε(τ) = w(τ)−Qb(τ), τ ∈ [τ0, τ1]. Thus, (ε, b, β) reads
(2.17-3.4-3.5) for all τ ∈ [τ0, τ

∗
loc].

Besides that, from definition (5.14) and the continuity of the solution, there exists A2(δ) such
that for all A ≥ A2 there exists η2(A, δ) such that for all η ≤ η2 there exists η̃2(A, δ, η) such that
for all η̃ ≤ η̃2 there exists τ2(A, δ, η, η̃) ≥ 1 such that for all τ0 ≥ τ2 and τ∗loc > τ0 such that
(ε, b, β) ∈ V1[A, η, η̃](τ̄),∀τ̄ ∈ (τ0, τ

∗
loc]. To finish the proof we now complete the proof of (5.19)

provided that δ ≤ δ2, η ≤ η2(δ), η̃ ≤ η̃2(δ, η) and τ0 ≥ τ2(δ, η, η̃).
Let us recall Jacobian matrix J defined by

J(τ, b, β) =

(
∂F1
∂b

∂F1
∂β

∂F2
∂b

∂F2
∂β

)
(τ, b, β).

We now explicitly write the partial derivatives:

∂F1

∂b
=

∫
1

2b
ΛyQb

(
∥ϕ1,b,β∥−2

L2
ρβ

cℓ,0ϕ1,b,β + ∥ϕ0,b,β∥−2
ρβ
ϕ0,b,β

)
ρβdy (5.20)

+

∫
(w(τ)−Qb)∂b

(
∥ϕ1,b,β∥−2

L2
ρβ

cℓ,0ϕ1,b,β + ∥ϕ0,b,β∥−2
ρβ
ϕ0,b,β

)
ρβdy,

and

dF1

∂β
= ∂β(∥ϕ1,b,β∥−2

L2
ρβ

)cℓ,0

∫
(w −Qb)ϕ1,b,βρβdy + ∥ϕ1,b,β∥−2

L2
ρβ

c1,0

∫
(w −Qb)∂βϕ1,b,βρβdy

+ ∥ϕ1,b,β∥−2
L2
ρβ

c1,0

∫
(w −Qb)ϕ1,b,β∂βρβdy + ∂β(∥ϕ0,b,β∥−2

L2
ρβ

)

∫
(w −Qb)ϕ0,b,βρβdy (5.21)

+ ∥ϕ0,b,β∥−2
L2
ρβ

∫
(w −Qb)∂βϕ0,b,βρβdy + ∥ϕ0,b,β∥−2

L2
ρβ

∫
(w −Qb)ϕ0,b,β∂βρβdy,

and

∂F2

∂b
=

∫
1

2b
ΛQbϕ1,b,βρβdy +

∫
(w(τ)−Qβ)∂bϕ1,b,βρβdy +

2

α
m0∂b∥ϕ1,b,β∥2L2

ρβ
b
α
2 (5.22)

+ m0∥ϕ1,b,β∥2L2
ρβ
b
α
2
−1,

and

∂F2

∂β
=

∫
(w(τ)−Qb)∂βϕ1,b,βρβdy +

∫
(w(τ)−Qb)ϕ1,b,β∂βρβdy +

2

α
m0∂β∥ϕ1,b,β∥2L2

ρβ
b
α
2 . (5.23)
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We now claim the following (which will be proved later)

∂F1

∂b
(τ0, b(τ0), β(τ0)) = m0b

α
2
−1 + o(b

α
2
−1), (5.24)

∂F1

∂β
(τ0, b(τ0), β(τ0)) = − 1

β ε1(τ0)− ∥ϕ1,b,β∥2∥ϕ0,b,β∥−2 ε1(τ0)
4β + o(b

α
2 ) , (5.25)

∂F2

∂b
(τ0, b(τ0), β(τ0)) = m0∥ϕ1,b,β∥2L2

ρβ
b
α
2
−1 + o(b

α
2
−1), (5.26)

∂F2

∂β
(τ0, b(τ0), β(τ0)) = − 1

β
∥ϕ1,b,β∥2L2

ρβ
ε1 + o(b

α
2 ). (5.27)

Indeed, using estimates ((5.24)-(5.27)) with (b(τ0), β(τ0)) = (b0, β0), we derive

Det(J)(τ0, b0, β0) = m0∥ϕ1,b0,β0∥2L2
ρβ0

b
α
2
−1ε1(τ0)

∥ϕ1,b0,β0∥2L2
ρβ0

∥ϕ0,b0,β0∥
−2
L2
ρβ0

4β0

+ o(bα−1).

Thus, we get
Det(J)(τ0, b(τ0), β(τ0)) ̸= 0,

provided that b0 is small enough. Finally, we apply the implicit function theorem to get existence of
(b, β) ∈ C([τ0, τ1],R2)∩C1((τ0, τ1],R2) for some τ1 > τ0 and ε = w−Qb satisfying the decomposition
(7.6) and the compatibility (3.5) for τ ∈ [τ0, τ1]. In addition to that, since ε = w −Qb, ε evidently
solves (2.17)

Let us now give the details of the computation.

- For (5.24):
we have∫

1

2b
ΛyQb

(
∥ϕ1,b,β∥−2

L2
ρβ

c1,0ϕ1,b,β + ∥ϕ0,b,β∥−2
ρβ
ϕ0,b,β

)
ρβdy = m0b

α
2
−1 + o(b

α
2
−1).

Next, we estimate

∂b∥ϕ1,b,β∥−2
L2
ρβ

= −∥ϕ1,b,β∥−4
L2
ρβ

(
2

∫
ϕℓ,b,β∂bϕℓ,b,βρβdy

)
.

From (6.25), we get

b∂b∥ϕ1,b,β∥−2
L2
ρβ

= O(b1−
ϵ
2 ). (5.28)

Since we choose an initial data ε(τ0) = ψ(τ0) defined as in (5.14) and satisfying w(τ0)−Qb0 = ε(τ0),
we obtain that

|ε(τ0)| = |w(τ0)−Qb| ≤ Cb
α
2
(1 + y4)

yγ
.

Hence, from (6.25), we infer that∣∣∣∣∫ (w −Qb)∂bϕℓ,b,βρβdy

∣∣∣∣ = o(b
α
2
−1).

It follows that, ∫
(w(τ0)−Qb)∂b

(
∥ϕ1,b,β∥−2

L2
ρβ

c1,0ϕ1,b,β

)
ρβdy = o(b1−

ϵ
2 ).

Similarly, ∫
(w(τ0)−Qb)∂b

(
∥ϕ0,b,β∥−2

L2
ρβ

ϕ0,b,β

)
ρβdy = o(b1−

ϵ
2 ).
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Finally, by adding all integrals in (5.20), (5.24) follows.

- For (5.25): from (5.21), we will establish the following estimates

∂β∥ϕ1,b,β∥−2
L2
ρβ

=

[(
d
2 − γ + 1

)
β

− d+ 2

2β

]
∥ϕ1,b,β∥−2

L2
ρβ

+O(b1−
ϵ
2 ), (5.29)

∂β∥ϕ0,b,β∥−2
L2
ρβ

=

[(
d
2 − γ + 1

)
β

− d+ 2

2β

]
∥ϕ0,b,β∥−2

L2
ρβ

+O(b1−
ϵ
2 ). (5.30)

We remark that these estimates are similar, so we only give the proof of (5.29). Indeed, we write

∂β∥ϕ1,b,β∥−2
L2
ρβ

= −∥ϕ1,b,β∥−4
L2
ρβ

(
2

∫
ϕ1,b,β∂βϕ1,b,βρβdy +

∫
ϕ1,b,βϕ1,b,β∂βρβdy

)
.

From the construction of ϕℓ,b,β in Proposition 4.2, we have

∂βϕ1,b,β =
1

β
c1,1(2β)(

√
b)2−γT1 (ξ) + ∂βϕ̃ℓ,b,β

=
1

β
ϕ1,b,β +

ℓ−1∑
j=0

c̃j(β)ϕj,b,β + Φ̃1,b,β, with ∥Φ̃1∥L2
ρβ

≤ Cb1−
ϵ
2 . (5.31)

Then, ∫ ∞

0
2ϕ1,b,β∂βϕ1,b,βρβdy = 2

(
1

β
∥ϕ1,b,β∥2ρβ +O(b1−

ϵ
2 )

)
. (5.32)

For the second integral, we use the identity

∂βρβ =
d+ 2

2β
ρβ − y2

2
ρβ, (5.33)

to derive ∫ ∞

0
ϕ21,b,β∂βρβdy =

d+ 2

2β
∥ϕ1,b,β∥2L2

ρβ
−
∫ ∞

0
ϕ1,b,βϕ1,b,β

y2

2
ρβdy.

Besides that, by Proposition 4.2 we have

∥ϕ1,b,β − ϕ1,∞,β∥L2
ρβ

≤ Cb1−
ϵ
2 ,

which yields ∫ ∞

0
ϕ1,b,βϕ1,b,β

y2

2
ρβdy =

∫ ∞

0
ϕ1,∞,βϕ1,∞,β

y2

2
ρβdy +O(b1−

ϵ
2 ). (5.34)

In addition, we use ϕℓ,∞,β as in (4.2) to get

y2

2
ϕ1,∞,β =

y2

2

{
a1,1(2β)y

2−γ + a1,0(2β)
ℓ−1y−γ

}
=

1

4β
(2β)2y4−γ − 1

β
(
d

2
− γ + 1)(2β)y2−γ

=
1

4β
ϕ2,∞,β − 1

4β
a2,1ϕ1,∞,β − 1

β

(
d

2
− γ + 1

)
ϕ1,∞,β

=
1

4β
ϕ2,∞,β +

(
2

β

(
d

2
− γ + 2

)
− 1

β

(
d

2
− γ + 1

))
ϕ1,∞,β.
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Then ∫ ∞

0
ϕ1,∞,βϕ1,∞,β

y2

2
ρβdy =

(
2

β

(
d

2
− γ + 2

)
− 1

β

(
d

2
− γ + 1

))
∥ϕ1,∞,β∥2L2

ρβ
+O(b1−

ϵ
2 )

=

(
2

β

(
d

2
− γ + 2

)
− 1

β

(
d

2
− γ + 1

))
∥ϕ1,b,β∥2L2

ρβ
+O(b1−

ϵ
2 ). (5.35)

This concludes the proof of (5.29).

Next, we will prove the following∫ ∞

0
ϕ0,b,β∂βϕ1,b,βρβdy =

1

4β
∥ϕ1,b,β∥2L2

ρβ
+O(b1−

ϵ
2 ). (5.36)

Indeed, using the orthogonality between ϕ0,b,β and ϕ1,b,β we get

0 = ∂β

∫
ϕ0,b,βϕ1,b,βρβdy =

∫
∂βϕ0,b,βϕ1,b,βρβdy +

∫
ϕ0,b,β∂βϕ1,b,βρβdy

+

∫
ϕ0,b,βϕ1,b,β∂βρβdy

=

∫
ϕ0,b,β∂βϕ1,b,βρβdy +

∫
ϕ0,b,βϕ1,b,β∂βρβdy +O(b1−

ϵ
2 ).

From (5.33), we obtain∫
ϕ0,b,β∂βϕ1,b,βρβdy =

∫
y2

2
ϕ0,b,βϕ1,b,βρβdy +O(b1−

ϵ
2 ). (5.37)

In addition to that, we have the following identity

y2

2
ϕ0,∞,β =

1

4β
ϕ1,∞,β +

d
2 − γ + 1

β
ϕ0,∞,β, (5.38)

and (5.36) follows.
- For (5.26): from (5.22), we have∫

ΛQb

b
ϕ1,b,βρβdy = o(b

α
2
−1), (5.39)

from (4.5) and the orthogonality between ϕ0,b,β and ϕ1,b,β. Moreover, (6.25) ensures that∫
(w −Qb)∂bϕ1,b,βρβ = o(b

α
2
−1),

and (5.28) implies
2

α
m0∥ϕ1,b,β∥2L2

ρβ
b
α
2 = o(b

α
2
−1).

Finally, we get

∂F2

∂b
(τ0, b(τ0), β(τ0)) = m0∥ϕ1,b,β∥2L2

ρβ
b
α
2
−1 + o(b

α
2
−1), (5.40)

which concludes (5.26).

- For (5.27) we use

|w(τ0)−Qb| ≤ Cb
α
2
(1 + y4)

yγ
,

and

∂βϕ1,b,β =
1

β
ϕ1,b,β + Φ̃1,b,β, with ∥Φ̃1∥L2

ρβ
≤ Cb1−

ϵ
2 .
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Using

w(τ0)−Qb = ε(τ0) =

1∑
j=0

εj(τ0)ϕj,b,β + ε−(τ0),

we infer ∫
(w(τ0)−Qb)∂βϕ1,b,βρβdy = εℓ(τ0)∥ϕℓ,b,β∥2 + o(b

α
2 ).

It follows that∫
(w(τ0)−Qb)ϕ1,b,β∂βρβdy =

d+ 2

2β

∫
(w(τ0)−Qb)ϕ1,b,βρβdy −

1

2

∫
(w(τ0)−Qb)ϕ1,b,βy

2ρβdy.

Since εj = O(b
α
2
+η(τ0)), |ε−|L2

ρ
≤ Cb

α
2
+η̃, we get for the first integral is∫

(w(τ0)−Qb)ϕ1,b,βρβdy = ε1(τ0)∥ϕ1,b,β∥2. (5.41)

For the second integral, we use the expansion of w(τ0)−Qb to obtain∫
(w(τ0)−Qb)ϕ1,b,β

y2

2
ρβdy = ε0(τ0)

∫
ϕ0,b,βϕ1,b,β

y2

2
ρβdy+ ε1(τ0)

∫
ϕ21,b,β

y2

2
ρβdy+ o(b

α
2 ). (5.42)

In addition, we have that∫ ∞

0
ϕ1,b,βϕ1,b,β

y2

2
ρβdy =

∫ ∞

0
ϕ1,∞,βϕ1,∞,β

y2

2
ρβdy +O(b1−

ϵ
2 )

and∫ ∞

0
ϕ1,∞,βϕ1,∞,β

y2

2
ρβdy =

(
2

β

(
d

2
− γ + 2

)
− 1

β

(
d

2
− γ + 1

))
∥ϕ1,b,β∥2L2

ρβ
+O(b1−

ϵ
2 ).

Hence∫
(w(τ0)−Qb)ϕ1,b,β

y2

2
ρβdy =

(
2

β

(
d

2
− γ + 2

)
− 1

β

(
d

2
− γ + 1

))
∥ϕ1,b,β∥2L2

ρβ
+O(b1−

ϵ
2 ). (5.43)

It remains to estimate the last term in dF2
dβ , namely, 2

αm0∂β∥ϕ1,b,β∥2L2
ρβ

b
α
2 . Indeed, we have

∂β∥ϕ1,b,β∥2L2
ρβ

= 2

∫
∂βϕ1,b,βϕ1,b,βρβ +

∫
ϕ21,b,β∂βρβ.

Arguing as above, we get

∂β∥ϕ1,b,β∥2L2
ρβ

=

(
2
1

β
+
d+ 2

2β
−
(
2

β

(
d

2
− γ + 2

)
− 1

β

(
d

2
− γ + 1

)))
∥ϕ1,b,β∥2ρβ +O(b1−

ϵ
2 )

(5.44)

Putting the different contributions of dF2
dβ together, we arrive at

dF2

dβ
= − 1

β
∥ϕ1,b,β∥2L2

ρβ
ε1 + o(b

α
2 ).

as claimed.
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5.3. The proof of Theorem 1.1

In this part, we focus on the proof of Theorem 1.1 which immediately the following result:

Proposition 5.4. There exist A, η, τ̃ such that we can find δ ≫ η, η̃ and τ0(A, η, η̃, δ) small enough

such that with initial data ε(τ0) defined as in (5.14) and (b, β)(τ0) =
(
e(1−

2
α)τ0 , 12

)
, the solution

(ε, b, β) exists for all τ ≥ τ0 and satisfies

(ε, b, β)(τ) ∈ V1[A, η, η̃](τ), ∀τ ≥ τ0.

Proof. Let us define τ∗ by

τ∗ = sup{τ1 ≥ τ0 such that (ε, b, β)(τ) ∈ V1[A, η, η̃](τ),∀τ ∈ [τ0, τ1]}. (5.45)

By contradiction we suppose that τ∗ < +∞. Lemmas 7.1, 7.2 and 7.3, the bounds in V1[A, η, η̃](τ
∗)

involving ∥ε∥L2
ρβ(τ)

, ε− and εe are improved by a factor 1
2 . In addition to that the improvement for

b and β comes from Lemma 6.1. Indeed, we have

|β(τ∗)− β(τ0)| ≲ A

∫ τ∗

τ0

b4η(τ ′)dτ ′ ≤ A

2
bη(τ0), (5.46)

provided that τ0 is large enough. For the bound on b(τ), we introduce

Ψ(τ) = b(τ) exp

((
2

α
− 1

)(∫ τ

τ0

2β(τ ′)dτ ′ + τ0

))
and Ψ(τ0) = 1, (5.47)

and from (6.3), we get

|Ψ(τ∗)− 1| ≲
∫ τ∗

τ0

∣∣Ψ(τ ′)b4η(τ ′)
∣∣ dτ ′ ≤ 1

10
, (5.48)

provided that τ0 large enough. Thus, the bound of b in the shrinking set is improved by the factor
1
2 . Besides that, by continuity of the solution, there exists ν > 0 small such that (ε, b, β)(τ) ∈
V1[A, η, η̃](τ), ∀τ ∈ [τ∗, τ∗ + ν] which contradicts to τ∗’s definition.

Now, we aim to give a proof of Theorem 1.1: Let us consider suitable constants such that
Proposition 5.4 holds that (ε, b, β) ∈ V [A, η, η̃](τ) for all τ > τ0. Next, we derive the laws of b and
β as follows:

(i): The law of b(τ): Let us introduce

Ψ(τ) = b(τ) exp

((
2

α
− 1

)[∫ τ

τ0

2β(τ ′) + τ0

])
, τ ∈ [τ0,+∞), with Ψ(τ0) = 1.

From Lemma 6.1, we have ∣∣Ψ′(τ)
∣∣ ≲ |Ψ(τ)|b4η(τ), ∀τ ≥ τ0,

since (ε, b, β) ∈ V1[A, η, η̃](τ) for all τ > τ0, we get

|Ψ(τ)| ≤ C, and b4η(τ) ≲ Iη(τ) where I(τ) defined in (5.5),

which yields

Ψ(τ) = Ψ(τ0) +

∫ ∞

τ0

Ψ′(ζ)dζ −
∫ ∞

τ
Ψ′(ζ)dζ = Ψ∞ +O(Iη(τ)) as τ → +∞,

with Ψ∞ = Ψ(τ0) +
∫∞
τ0

Ψ′(ζ)dζ = 1 +
∫∞
τ0

Ψ′(ζ)dζ. Thus, we get

b(τ) = Ψ∞ exp

((
1− 2

α

)(∫ τ

τ0

2β(ζ)dζ + τ0

))
[1 +O (Iη(τ))] as τ → +∞. (5.49)
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(ii) Renormalized flow β(τ) and derivation the law of µ(t) defined in (2.11): Using Lemma 6.1
again, we have

|β′(τ)| ≲ b4η(τ),

then we deduce

β(τ) = β(τ0) +

∫ ∞

τ0

β′(τ ′)dτ ′ −
∫ ∞

τ
β′(τ ′)dτ ′ = β∞ +

∫ ∞

τ
β′(τ ′)dτ ′ = β∞ +O(Iη(τ)), as τ → +∞,

with

β∞ =
1

2
+

∫ ∞

0
β′(ζ)dζ.

We introduce the renormalized time τ̃ by

τ̃ = 2β(τ)τ, (5.50)

which is an invertible function of τ . Indeed,

τ = (2β∞)−1τ̃(1 +O(Iη(τ̃))), as τ̃ → +∞. (5.51)

We shall remark that we will make an abuse of notation µ(τ) = µ(τ̃) = µ(t). The relation

dµ

dτ̃
=
dµ

dτ

dτ

dτ̃
,

implies, from the fact that µτ = −2βµ and (5.50)

dµ

dτ̃
= −µ(τ̃) [1 +O(Iη(τ̃))] as τ̃ → +∞.

Thus, we get

µ(τ̃) = e−τ̃ (1 +O(Iη(τ̃))), as τ̃ → +∞.

In addition, we derive from (2.11) that

dτ̃

dt
=
dτ̃

dτ

dτ

dt
= 2β∞e

τ̃(t)(1 +O(Iη(τ̃(t)))),

which implies

τ̃(t) = − ln(2β∞(T − t))(1 +O((T − t)η̃)), as t→ T,

for some T = T (τ0) > 0. From (5.51), we have

τ(t) = (2β∞)−1τ̃(t)(1 + I η̃(τ̃(t))) = −(2β∞)−1 ln(2β∞(T − t))(1 +O((T − t)η̃)), as t→ T.

Substituting µ(t)’s formula, we get

µ(t) = µ(τ̃(t)) = 2β∞(T − t)
(
1 +O((T − t)η̃)

)
as t→ T.

Recall that ∫ τ

τ0

2β(τ ′)dτ ′ = 2β∞τ(1 +O(τ−1)) as τ → +∞,

from which we deduce, with the use of (5.49), that

b(t) = Ψ∞ exp

((
1− 2

α

)(∫ τ

τ0

2β(ζ)dζ + τ0

))
(1 +O(Iη)(τ(t)))

= Ψ∞ (2β∞)
2
α
−1 (T − t)

2
α
−1
(
1 +O(|ln(T − t)|−1)

)
ast→ T.

Introducing λ(t) = µ(t)b(t) which satisfies

λ(t) = C(u0)(T − t)
2
α (1 +O(|ln(T − t)|−1)) as t→ T. (5.52)

Finally, the conclusion of the Theorem 1.1 immediately follows (2.11), (2.16), the fact (ε, b, β) ∈
V1[A, η, η̃](τ) for all τ > τ0, and (5.52). □



20 A. BENSOUILAH, G. K. DUONG, AND T. E. GHOUL

6. Finite dimensional system

In this part, we study the dynamics of finite modes εj(τ) and the modulation parameters b and
β.

Lemma 6.1. Consider A ≥ 1, η > 0, η̃ > 0, there exists τ2(A, η, η̃) such that for all τ0 ≥ τ2, the
following holds: Assume that (ε, b, β)(τ) ∈ V1[A, η, η̃](τ),∀τ ∈ [τ0, τ1], for some τ1 > τ0, then, we
have

(i) The dominating mode ε1 satisfies
∂τε1 −

[
2β
(
α
2 − 1

) ]
ε1 = O

(
b
α
2
+4η(τ)[|β′|+

∣∣ bτ
b

∣∣+ 1]
)
,

∂τε1 −

[
2β
(
α
2

) ]
ε1 +m0

(
bτ
b − 2β

)
b
α
2 = O

(
b
α
2
+4η(τ)[|β′|+

∣∣ bτ
b

∣∣+ 1]
)
,

(6.1)

for all τ ∈ [τ0, τ1].
(iii) For the b and β, we obtain ∣∣β′(τ)∣∣ ≤ CAb4η(τ), (6.2)

and ∣∣∣∣b′(τ)b(τ)
− 2β

(
1− 2

α

)∣∣∣∣ ≤ CAb4η(τ), (6.3)

for all τ ∈ (τ0, τ1).

Proof. Let us consider (ε, b, β)(τ) ∈ V1[A, η, η̃](τ),∀τ [τ0, τ1] and ε(τ) decomposed as in (5.1), and
we also recall that

εj = ∥ϕj,b,β∥−2
L2
ρβ

⟨ε, ϕj,b,β⟩L2
ρβ
. (6.4)

Then, we obtain from (3.4) that ε1(τ) = c1,0∥ϕℓ,b,β∥−2
L2
ρβ

⟨ε, ϕ1,b,β⟩L2
ρβ
,

ε1(τ) = −∥ϕ0,b,β∥−2
L2
ρβ

⟨ε, ϕ0,b,β⟩L2
ρβ
.

(6.5)

By taking τ -derivative of the second equation of the above system, we get

−∂τε1 = ∂τ∥ϕ0,b,β∥−2
L2
ρβ

⟨ε, ϕ0,b,β⟩L2
ρβ

+ ∥ϕ0,b,β∥−2
L2
ρβ

⟨∂τε, ϕ0,b,β⟩L2
ρβ

+ ∥ϕ0,b,β∥−2
L2
ρβ

⟨ε, ∂τϕ0,b,β⟩L2
ρβ

+ ∥ϕ0,b,β∥−2
L2
ρβ

〈
ε,
∂τρβ
ρβ

〉
L2
ρβ

, (6.6)

where ρβ defined as in (2.25). A direct computation gives

∂τ∥ϕ0,b,β∥−2
L2
ρβ

= ∂τ
1∫

R+
ϕ20,b,βρβdy

= −
2
∫
R+
ϕ0,b,β∂τϕ0,b,βρβdy +

∫
R+
ϕ0,b,βϕ0,b,β∂τρβdy(∫

R+
ϕ20,b,βρβdy

)2
= −∥ϕ0,b,β∥−4

L2
ρβ

(
2
b′

b
⟨ϕ0,b,β, b∂bϕ0,b,β⟩L2

ρβ
+ 2β′⟨ϕ0,b,β, ∂βϕ0,b,β⟩L2

ρβ

+ β′
〈
ϕ0,b,β, ϕ0,b,β

(
d+ 2

2β
− y2

2

)〉
L2
ρβ

 ,
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and

⟨ε, ∂τϕ0,b,β⟩L2
ρβ

=
b′

b
⟨ε, b∂bϕ0,b,β⟩L2

ρβ
+ β′⟨ε, ∂βϕ0,b,β⟩L2

ρβ
,〈

ε, ϕ0,b,β
∂τρβ
ρβ

〉
L2
ρβ

= β′
〈
ε, ϕ0,b,β

(
d+ 2

2β
− y2

2

)〉
L2
ρβ

.

We plug these equalities into (6.6) to derive

−∂τε1 = ∥ϕ0,b,β∥−2
L2
ρβ

⟨∂τε, ϕ0,b,β⟩L2
ρβ

+ K̃0, (6.7)

where

K̃0 = −∥ϕ0,b,β∥−4
L2
ρβ

⟨ε, ϕ0,b,β⟩L2
ρβ

{
2
b′

b
⟨ϕ0,b,β, b∂bϕ0,b,β⟩L2

ρβ
+ 2β′⟨ϕ0,b,β, ∂βϕ0,b,β⟩L2

ρβ
(6.8)

+ β′
〈
ϕ0,b,β, ϕ0,b,β

(
d+ 2

2β
− y2

2

)〉
L2
ρβ

+ ∥ϕ0,b,β∥−2
L2
ρβ

{
b′

b
⟨ε, b∂bϕ0,b,β⟩L2

ρβ

+ β′⟨ε, ∂βϕ0,b,β⟩L2
ρβ

+ β′
〈
ε, ϕ0,b,β

(
d+ 2

2β
− y2

2

)〉
L2
ρβ

 .

Similarly, we derive from the first one in (6.31) that

c−1
1,0∂τε1 = ∥ϕ1,b,β∥−2

L2
ρβ

⟨∂τε, ϕ1,b,β⟩L2
ρβ

+ K̃1,

where

K̃1 = −∥ϕ1,b,β∥−4
L2
ρβ

⟨ε, ϕ1,b,β⟩L2
ρβ

{
2
b′

b
⟨ϕ1,b,β, b∂bϕ1,b,β⟩L2

ρβ
+ 2β′⟨ϕ1,b,β, ∂βϕ1,b,β⟩L2

ρβ
(6.9)

+ β′
〈
ϕ1,b,β, ϕ1,b,β

(
d+ 2

2β
− y2

2

)〉
L2
ρβ

+ ∥ϕ1,b,β∥−2
L2
ρβ

{
b′

b
⟨ε, b∂bϕ1,b,β⟩L2

ρβ

+ β′⟨ε, ∂βϕ1,b,β⟩L2
ρβ

+ β′
〈
ε, ϕ1,b,β

(
d+ 2

2β
− y2

2

)〉
L2
ρβ

 .

We have the following system c−1
1,0∂τε1(τ) = ∥ϕ1,b,β∥−2

L2
ρβ

⟨∂τε, ϕ1,b,β⟩L2
ρβ

+ K̃1,

−∂τε1(τ) = ∥ϕ0,b,β∥−2
L2
ρβ

⟨∂τε, ϕ0,b,β⟩L2
ρβ

+ K̃0.
(6.10)

Since ε solves (2.17), we obtain

⟨∂τε, ϕ0,b,β⟩L2
ρβ

= ⟨Lbε, ϕ0,b,β⟩L2
ρβ

+ ⟨B(ε), ϕ0,b,β⟩L2
ρβ

+ ⟨Φ, ϕ0,b,β⟩L2
ρβ
,

which implies
c−1
1,0∂τε1 = ∥ϕ1,b,β∥−2

L2
ρβ

{
⟨Lbε, ϕ1,b,β⟩L2

ρβ
+ ⟨B(ε), ϕ1,b,β⟩L2

ρβ
+ ⟨Φ, ϕ1,b,β⟩L2

ρβ

}
+ K̃1

−∂τε1 = ∥ϕ0,b,β∥−2
L2
ρβ

{
⟨Lbε, ϕ0,b,β⟩L2

ρβ
+ ⟨B(ε), ϕ0,b,β⟩L2

ρβ
+ ⟨Φ, ϕ0,b,β⟩L2

ρβ

}
+ K̃0

. (6.11)

We only estimate all terms of the first equation in (6.11), the rest is left to the reader.
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- For ⟨Lbε, ϕj,b,β⟩L2
ρβ
: Using the fact that Lb is self-adjoint and the special decomposition (7.6),

we have

⟨Lbε, ϕ1,b,β⟩L2
ρβ

= ⟨ε,Lbϕ1,b,β⟩L2
ρβ

= λ1,b,β∥ϕ1,b,β∥2L2
ρβ

ε1
c1,0

(6.12)

where

λ1,b,β = 2β
(α
2
− 1
)
+ λ̃1,b,β, with

∣∣∣λ̃1,b,β∣∣∣ ≲ b1−
ϵ
2 .

- For ⟨B(ε), ϕj,b,β⟩L2
ρβ
: We recall B(ε) (2.19) in the below

B(ε) = −3(d− 2)(1 + |y|2Qb)ε
2 − (d− 2)|y|2ε3.

From (5.1) we have∣∣3(d− 2)(1 + y2Qb)ε
2
∣∣ ≲ ε21

(
ϕ1,b,β
c1,0

− ϕ0,b,β

)2

+ ε2−,

∣∣(d− 2)|y|2ε3
∣∣ ≲ y2

(
|εℓ|3

∣∣∣∣ϕ1,b,βc1,0
− ϕ0,b,β

∣∣∣∣3 + |ε−|3
)
.

Since (ε, b, β)(τ) ∈ V1[A, η, η̃](τ), for all τ ∈ [τ0, τ1] which ensures the pointwise estimates given in
Proposition (4.2) to deduce that∣∣∣∣⟨B(ε), ϕ1,b,β⟩L2

ρβ

∣∣∣∣ ≲ |ε1|2 +
∫
R

[
ε2− + y2 |ε−|3

]
|ϕj,b,β| ρβdy.

Lemma 5.2 yields

|ε−(y, τ)| ≤ CA4b
α
2
+η̃(τ)

⟨y⟩2ℓ+2

yγ
,∀y ∈ R∗

+, (6.13)

which yields ∫
R+

[
ε2− + y2 |ε−|3

]
|ϕj,b,β| ρβdy ≲ b

α
2
+4η(τ).

Hence, we get

⟨B(ε), ϕ1,b,β⟩L2
ρβ

≲ b
α
2
+4η(τ). (6.14)

- For ⟨Φ(., τ), ϕ1,b,β⟩L2
ρβ
: Following Φ’s definition in (2.20), we have

Φ(y, τ) =

[
b′(τ)

b(τ)
− 2β

]
1

2b
ΛyQ

(
y√
b

)
=

[
b′(τ)

b(τ)
− 2β

]
1

2b
ΛξQ(ξ), with ξ =

y√
b
.

Accordingly to ϕ0,b,β’s formula in Proposition 4.2, and the construction of T0 in Lemma 10.1, we
write Φ as follows

Φ =

[
b′

b
− 2β

]
m0b

α
2 ϕ0,b,β + Φ̃, (6.15)

for some m0 ̸= 0, and

∥Φ̃∥L2
ρβ

≲

∣∣∣∣bτb − 2β

∣∣∣∣ bα
2
+1− ϵ

2 .

This immediately implies

⟨Φ(., τ), ϕj,b,β⟩L2
ρβ

=

 m0b
α
2

[
b′(τ)
b(τ) − 2β

]
∥ϕ0,b,β∥2L2

ρβ

+O
(∣∣ bτ

b − 2β
∣∣ bα

2
+1− ϵ

2

)
if j = 0

O
(∣∣ bτ

b − 2β
∣∣ bα

2
+1− ϵ

2

)
if j = 1

.

(6.16)
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- For K̃1: Let us consider δ ≪ min
(
1
2 , 1−

ϵ
2

)
with ϵ defined as in Proposition (4.2) and δ ≫ η ≫

η̃. From K̃1’s definition given in (6.9), we will prove the following bounds:

⟨ϕ1,b,β, b∂bϕ1,b,β⟩L2
ρ

≲ bδ, (6.17)

⟨ε, b∂bϕ1,b,β⟩L2
ρ

≲ bδ

|ε1|+
∥∥∥∥yγ ε−(·, τ)1 + y4

∥∥∥∥
L∞
[0,b−η̃ ]

+ ∥ε−∥L2
ρβ

 , (6.18)

⟨ϕ1,b,β, ∂βϕ1,b,β⟩L2
ρβ

=
1

β
∥ϕ1,b,β∥2L2

ρβ
+O(bδ), (6.19)〈

ϕ1,b,β, ϕ1,b,β

(
d+ 2

2β
− y2

2

)〉
L2
ρβ

=

[
d+ 2

2β
− 2

β

(
d

2
− γ + 2

)
+

1

β

(
d

2
− γ + 1

)]
∥ϕ1,b,β∥2L2

ρβ

+ O(bδ), (6.20)

and with the equality (7.6)

⟨ε, ∂βϕ1,b,β⟩L2
ρβ

=
1

β

ε1
c1,0

∥ϕ1,b,β∥2L2
ρβ

− ε1
4β

∥ϕ1,b,β∥2L2
ρβ

+O

(∥∥∥∥yγ ε−
1 + y4

∥∥∥∥
L∞

)
(6.21)

+ O

bδ
|εℓ|+

∥∥∥∥yγ ε−(·, τ)1 + y4

∥∥∥∥
L∞
[0,b−η̃ ]

+ ∥ε−∥L2
ρβ

 , (6.22)

and〈
ε, ϕ1,b,β

(
d+ 2

2β
− y2

2

)〉
L2
ρβ

=


ε1∥ϕ1,b,β∥2L2

ρβ

[
1

c1,0

(
d+2
2β − 2

β

(
d
2 − γ + 2

)
+ 1

β

(
d
2 − γ + 1

))
+ 1

4β

]
+ O

(
bδ

(
|ε1|+

∥∥∥yγ ε−(·,τ)
1+y4

∥∥∥
L∞
[0,b−η̃ ]

+ ∥ε−∥L2
ρβ

))
,

(6.23)
and 〈

ε, ϕ0,b,β

(
d+ 2

2β
− y2

2

)〉
L2
ρβ

=
γε1
β

∥ϕ0,b,β∥2L2
ρβ

+O(b
α
2
+δ). (6.24)

+ For (6.17): As we assumed δ ≪ 1
2 , then, for all y ≥ bδ, we have

ξ =
y√
b
→ +∞, as b→ 0.

Hence, we have∣∣∣∣∣∣∂b
1∑

j=0

c1,j(
√
b)2j−γTj(ξ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 12b
1∑

j=0

c1,j(2j − γ)(
√
b)2j−γTj(ξ)−

1

2b

1∑
j=0

c1,j(
√
b)2j−γξ∂ξTj(ξ)

∣∣∣∣∣∣
≲

1∑
j=0

√
b
2j−2−γ

ξ2j−γ−2| ln ξ|, as ξ → +∞,

and (10.6) ensures that

ξ∂ξTj(ξ) = (2j − γ)Tj(ξ) +O(ξ−γ+2j−2 ln ξ), as ξ → +∞.

Then ∣∣∣∣∣∣b∂b
i∑

j=0

ci,j(
√
b)2j−γTj(ξ)

∣∣∣∣∣∣ ≲
i∑

j=0

√
b
2j−γ

ξ2j−γ−2| ln ξ|, as ξ → +∞,
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which implies, from (4.5) and the above inequalities, that

|b∂bϕj,b,β(y)| ≲ b1−
ϵ
2
⟨y⟩2| ln y|
yγ+2

, ∀y ≥ bδ and j ≤ 1. (6.25)

Hence, we derive on the one hand∣∣∣∣∫
y≥bδ

ϕj,b,βb∂bϕi,b,βρβdy

∣∣∣∣ ≤ Cbδ, ∀i, j ≤ 1. (6.26)

On the other hand, we apply the pointwise estimates given in Proposition 4.2 that yields∣∣∣∣∫
y≤bδ

ϕj,b,βb∂bϕi,b,βρβdy

∣∣∣∣ ≲ ∫
y≤bδ

yd+1−2γe−
2βy2

4 dy ≲
∫
y≤bδ

yd+1−2γdy ≲ bδ(d+2−2γ). (6.27)

Combining (6.26) and (6.27), we obtain∣∣∣⟨ϕj,b,β, b∂bϕi,b,β⟩L2
ρβ

∣∣∣ ≲ b1−
ϵ
2 + bδ(d+2−γ) ≲ bδ, i, j ≤ 1, (6.28)

thus, (6.17) follows.
+ For (6.18): Using (7.6), we estimate as follows

|⟨ε, b∂bϕ1,b,β⟩| ≲
1∑

j=0

|εj |
∣∣∣⟨ϕj,b,β, b∂bϕ1,b,β⟩L2

ρβ

∣∣∣+ ∣∣∣⟨ε−, b∂bϕ1⟩L2
ρβ

∣∣∣ .
Using (6.28), we get

1∑
j=0

|εj |
∣∣∣⟨ϕj,b,β, b∂bϕ1⟩L2

ρβ

∣∣∣ ≲ bδ
1∑

j=0

|εj | .

Next, we estimate the projection on ∂bϕ1 of ε−. Indeed, we split the integral:∣∣∣⟨ε−(τ), b∂bϕ1,b,β⟩L2
ρβ

∣∣∣ ≤
∫ bδ

0
|ε−(τ)| |b∂bϕ1,b,β| ρβdy +

∫ b−η̃

bδ
|ε−(τ)| |b∂bϕ1,b,β| ρβdy

+

∫ ∞

b−η̃

|ε−(τ)| |b∂bϕ1,b,β| ρβdy.

For the integral on [0, bδ], we estimate as follows∣∣∣∣∣
∫ bδ

0
ε−(τ)b∂bϕ1,b,βρβdy

∣∣∣∣∣ ≤
∥∥∥∥yγ ε−(·, τ)⟨y⟩4

∥∥∥∥
L∞[0,b−η̃ ]

∫ bδ

0
yd+1−2γ

≤
∥∥∥∥yγ ε−(·, τ)⟨y⟩4

∥∥∥∥
L∞[0,b−η̃ ]

bδ(d+2−2γ) ≤
∥∥∥∥yγ ε−(·, τ)⟨y⟩4

∥∥∥∥
L∞[0,b−η̃ ]

bδ.

On the interval [bδ, b−η̃], we estimate∣∣∣∣∣
∫ b−η̃

bδ
ε−(τ)b∂bϕ1,b,βρβdy

∣∣∣∣∣ ≤ b1−
ϵ
2

∥∥∥∥yγ ε−(·, τ)1 + y4

∥∥∥∥
L∞[0,b−η̃ ]

∫ b−η̃

bδ

(1 + y4)(1 + y2)| ln y|
y2γ+2

yd+1e−
2βy2

4 dy

≲ b1−
ϵ
2

∥∥∥∥yγ ε−(·, τ)1 + y4

∥∥∥∥
L∞[0,b−η̃ ]

{∫ 1

bδ
yd−2γ−1dy +

∫ +∞

1

(1 + y4)(1 + y2)| ln y|
y2γ+2

yd+1e−
2βy2

4 dy

}
≲ bδ

∥∥∥∥yγ ε−(·, τ)1 + y4

∥∥∥∥
L∞[0,b−η̃ ]

.
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For the interval [b−η̃,+∞), we use Cauchy-Schwarz inequality and (6.25) to arrive at∣∣∣∣∫ +∞

b−η̃

|ε−| |b∂bϕ1,b,β|ρβ
∣∣∣∣ ≲ ∥ε−∥L2

ρβ

(∫ ∞

b−η̃

|b∂bϕ1,b,β|2ρβ
) 1

2

≲ b1−
ϵ
2 ∥ε−∥L2

ρβ
≲ bδ∥ε−∥L2

ρβ
,

which concludes (6.18) by adding all related terms.
+ For estimates (6.19) and (6.20): Indeed, from (5.31), we immediately deduce (6.19). In addition

to that, by combining (5.34) and (5.35) one gets (6.20).
+ For (6.22): According to (7.6), we decompose ε as follows

⟨ε, ∂βϕ1,b,β⟩L2
ρβ

= ε1(τ)

〈
ϕ1,b,β
c1,0

− ϕ0,b,β, ∂βϕ1,b,β

〉
L2
ρβ

+ ⟨ε−(τ), ∂βϕ1,b,β⟩L2
ρβ

.

Similarly to (6.18), one can deduce that

⟨ε−(y, τ), ∂βϕ1,b,β⟩L2
ρβ

≲ bδ

∥∥∥∥yγ ε−(·, τ)1 + y4

∥∥∥∥
L∞
[0,b−η̃ ]

+ ∥ε−∥L2
ρβ

 .

In addition to that, we derive from (5.32)〈
ϕ1,b,β
c1,0

, ∂βϕ1,b,β

〉
L2
ρβ

=
1

c1,0
∥ϕ1,b,β∥2L2

ρβ
+O(b1−

ϵ
2 ),

and from (5.36), we have

⟨ϕ0,b,β, ∂βϕ1,b,β⟩L2
ρβ

=
1

4β
∥ϕ1,b,β∥2L2

ρβ
+O(b1−

ϵ
2 ).

Finally, we use the above facts to get (6.22).
+ For (6.23): We firstly write as follows〈

ε, ϕ1,b,β

(
d+ 2

2β
− y2

2

)〉
L2
ρβ

= ε1(τ)

〈
ϕ1,b,β
c1,0

− ϕ0,b,β, ϕ1,b,β

(
d+ 2

2β
− y2

2

)〉
L2
ρβ

+

〈
ε−(y, τ), ϕ1,b,β

(
d+ 2

2β
− y2

2

)〉
L2
ρβ

.

On one hand, we have 〈
ε−(y, τ), ϕ1,b,β

(
d+ 2

2β
− y2

2

)〉
L2
ρβ

≲
1−1∑
j=1

|εj |+ bδ

∥∥∥∥yγ ε−(·, τ)
1 + y21+2

∥∥∥∥
L∞
[0,b−η̃ ]

+ ∥ε−∥L2
ρβ

 .

For the rest, we obtain〈
ϕ1,b,β
c1,0

− ϕ0,b,β, ϕ1,b,β

(
d+ 2

2β
− y2

2

)〉
L2
ρβ

=
1

c1,0

d+ 2

2β
∥ϕ1,b,β∥2L2

ρβ
− 1

c1,0

〈
ϕ1,b,β, ϕ1,b,β

y2

2

〉
L2
ρβ

+

〈
ϕ0,b,β, ϕ1,b,β

y2

2

〉
L2
ρβ

.
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Using (5.34), (5.35),(5.36) and (5.37), we have that〈
ϕ0,b,β, ϕ1,b,β

y2

2

〉
L2
ρβ

=
1

4β
∥ϕ1,b,β∥2

L2
ρβ

+O(b1−
ϵ
2 )

and 〈
ϕ1,b,β, ϕ1,b,β

y2

2

〉
L2
ρβ

=

(
2

β

(
d

2
− γ + 2

)
− 1

β

(
d

2
− γ + 1

))
∥ϕ1,b,β∥2L2

ρβ
+O(b1−

ϵ
2 ),

which implies (6.23).

- For (6.24): The proof is similar to (6.23) which also follows from (5.34), (5.35),(5.36) and (5.37).

Now, combining (6.17) to (6.24), we derive

K̃1 = − ε1β
′

c1,0β
+O

(∣∣∣∣b′b
∣∣∣∣+ 1

)
bδ

|ε1|+
∥∥∥∥yγ ε−(·, τ)1 + y4

∥∥∥∥
L∞
[0,b−η̃ ]

+ ∥ε−∥L2
ρβ


+ O

β′bδ
|ε1|+

∥∥∥∥yγ ε−(·, τ)1 + y4

∥∥∥∥
L∞
[0,b−η̃ ]

+ ∥ε−∥L2
ρβ

 .

In a convenient way, we denote

L =

(∣∣∣∣b′b
∣∣∣∣+ 1

)
bδ

|ε1|+
∥∥∥∥yγ ε−(·, τ)1 + y4

∥∥∥∥
L∞
[0,b−η̃ ]

+ ∥ε−∥L2
ρβ


+

∣∣β′∣∣
bδ |ε1|+ ∥∥∥∥yγ ε−(·, τ)1 + y4

∥∥∥∥
L∞
[0,b−η̃ ]

+ ∥ε−∥L2
ρβ

 .

Then, we have

K̃1 = − β′ε1
c1,0β

+O(L). (6.29)

- Applying K̃1’s process to K̃0, we get

K̃0 = −
∥ϕ1,b,β∥2∥ϕ0,b,β∥−2β′

4β

ε1
c1,0

+O(L). (6.30)

Now, we are ready to start to the proof of the Lemma.
- Proof for (i): We use system (6.11) combined with all of the previous estimates to derive ∂τε1 = 2β

(
α
2 − 1

)
− β′

β ε1 +O(L) +O
(∣∣ bτ

b − 2β
∣∣ bα

2
+δ
)
,

∂τε1 = 2β α
2 ε1 −m0

[
b′

b − 2β
]
b
α
2 +O(L) +O

(∣∣ bτ
b − 2β

∣∣ bα
2
+δ
)
.

(6.31)

In particular, since (ε, b, β)(τ) ∈ V [A, η, η̃](τ),∀τ ∈ [τ0, τ1], the pointwise estimates in Lemma 5.2,
imply (6.1).

- Proof for (ii): The results immediately follows item (i).

7. Control of the infinite dimensional part

In this part, we aim to give a priori estimates involving ε− and εe
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7.1. Energy estimate

In below, we will prove a priori estimates on ∥ε−∥2ρβ .

Lemma 7.1 (A L2
ρ-priori estimates on ε−). For all A ≥ 1, η, and η̃ satisfying 1 ≪ η ≪ η̃, there

exists τ3(A, η, η̃) and τ
∗ such that for all τ0 ≥ τ4 and the solution (ε, b, β)(τ) ∈ V1[A, η, η̃](τ

∗), ∀τ ∈
[τ0, τ

∗] and

∥ε−(τ)∥L2
ρβ

≤ CAb
α
2
+η(τ), ∀τ ∈ [τ0, τ

∗]. (7.1)

Proof. The result is mainly based on the spectral gap property. First, we claim that (7.1) follows
from

1

2

d

dτ
∥ε−∥2L2

ρβ
−
(α
2
− 2
)
∥ε−∥2L2

ρ
≤ CAbα+3η. (7.2)

Indeed, let us assume (7.2) holds, we infer that

d

dτ

(
e2(2−

α
2 )τ∥ε−(τ)∥2L2

ρ

)
≤ CAe2(2−

α
2 )τ b

α
2
+3η,∀τ ∈ [τ0, τ

∗].

From the fact (ε, b, β)(τ) ∈ V1[A, η, η̃](τ), for all τ ∈ [τ0, τ
∗], we can apply Lemma 5.2 to deduce

∥ε−∥2L2
ρ

≤ e−2(2−α
2 )(τ−τ0)∥ε−(τ0)∥2L2

ρ
+ CAe−2(2−α

2 )τ
∫ τ

τ0

e2(2−
α
2 )τ

′
b
α
2
+3η(τ ′)dτ ′

≤ CAbα+2η(τ),∀τ ∈ [τ0, τ
∗].

Then, (7.1) follows. Now, it remains to give the proof of (7.2). Indeed, we multiply equation (2.17)
by ε− and integrate

1

2

d

dτ
∥ε−∥2L2

ρ
= ⟨∂τε−, ε−⟩L2

ρβ
+ β′

〈
ε−, ε−

(
d+ 2

2β
− y2

2

)〉
L2
ρβ

. (7.3)

Next, we will prove that for all τ ∈ [τ0, τ
∗]

⟨∂τε−, ε−⟩L2
ρβ

≤
(α
2
− 2
)
∥ε−∥2L2

ρβ
+O(bα+3η)(τ), (7.4)∣∣∣∣∣∣β′

〈
ε−, ε−

(
d+ 2

2β
− y2

2

)〉
L2
ρβ

∣∣∣∣∣∣ ≲ bα+3η(τ). (7.5)

Let us start with (7.4). Indeed, from (2.17), and the decomposition

ε = εℓ

(
ϕℓ,b,β
cℓ,0

− ϕ0,b,β

)
+

ℓ−1∑
j=1

εjϕj,b,β + ε− := ε+ + ε−, (7.6)

ε− solves

∂τε− = Lb(ε−) +B(ε+ + ε−) + Φ− ∂τε+ + Lbε+.

Taking L2
ρβ

scalar product to the both sides of the above equation, we deduce

⟨∂τε,ε−⟩ρβ = ⟨Lbε−, ε−⟩ρβ + ⟨B(ε+ + ε−), ε−⟩ρβ + ⟨Φ− ∂τε+, ε−⟩ρβ ,
since ⟨Lbε+, ε−⟩L2

ρ
= 0.

+ Estimate to ⟨Lbε−, ε−⟩L2
ρ
: Using the orthogonality

⟨ϕj,b,β, ε−(τ)⟩L2
ρβ

= 0, forj = 0 and j = 1,

the spectral gap in Proposition 4.2 ensures

⟨Lbε−, ε−⟩L2
ρβ

≤ λ2,b,β∥ε−∥2L2
ρβ
.
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In addition, we have

λ2,b,β =
α

2
− 2 +O(b1−

ϵ
2 ),

which yields

⟨Lbε−, ε−⟩L2
ρβ

≤
(α
2
− (ℓ+ 1)

)
∥ε−∥2L2

ρ
+ Cbα+3η.

+ Estimate for ⟨Φ− ∂τε+, ε−⟩L2
ρβ
: Recall that

ε(τ) = ε1(τ)

(
ϕ1,b,β
c1,0

− ϕ0,b,β

)
+ ε−(τ) = ε+ + ε−.

We decompose

⟨Φ− ∂τε+, ε−⟩ = ⟨Φ, ε−⟩ − ⟨∂τε+, ε−⟩. (7.7)

For ⟨Φ, ε−⟩L2
ρβ
, we use (6.15) and by Cauchy-Schwarz inequality to deduce that∣∣∣⟨Φ, ε⟩L2

ρβ

∣∣∣ = ∣∣∣⟨Φ̃, ε−⟩L2
ρβ

∣∣∣ ≲ ∥Φ̃∥L2
ρβ
∥ε−∥L2

ρβ
≤ CA3bα+η̃+1− ϵ

2 ≤ bα+6η(τ), ∀τ ∈ [τ0, τ
∗].

For the second term, we have

∂τε+ = ε′1

[
ϕ1,b,β
c1,0

− ϕ0,b,β

]
+ εj

[
b′

b
b∂bϕj,b,β + β′∂βϕj,b,β

]
+ ε1

[
b′

b b∂bϕ1,b,β + β′∂βϕ1,b,β

c1,0
−
(
b′

b
b∂bϕ0,b,β + β′∂βϕ0,b,β

)]
.

Note that
⟨ε−, ϕj,b,β⟩L2

ρβ
= 0, forj = 0 and j = 1, (7.8)

combining this with (6.2), (6.3), the necessary bounds in V1[A, η, η̃](τ), and Cauchy-Schwarz in-
equality, we infer ∣∣∣⟨∂τε+, ε−⟩L2

ρβ

∣∣∣ ≤ bα+3η(τ).

Finally, we give the following estimate∣∣∣⟨Φ− ∂τε+, ε−⟩L2
ρβ

∣∣∣ ≤ bα+3η(τ),∀τ ∈ [τ0, τ
∗].

- For ⟨B (ε) , ε−⟩L2
ρβ

with ε = ε+ + ε−. We explicitly write B(ε) in (2.19) as follows

B(ε) = −3(n− 2)(1 + |y|2Qb)(ε
2
+ + 2ε+ε− + ε2−)− (d− 2)|y|2(ε3+ + 3ε2+ε− + 3ε+ε

2
− + ε3−).

From γ’s definition, we observe that once d ≥ 11, one has

γ ≤ 3.7 < 4.

In addition, from the fact that (ε, b, β)(τ) ∈ V1[A, η, η̃](τ),∀τ ∈ [τ0, τ
∗] and (6.13), we have

|ε+(y)| ≤
Ab

α
2
+η(τ)⟨y⟩4

yγ
+
b
α
2 y2⟨y⟩2

yγ
, and |ε−(y)| ≤

A4b
α
2
+η̃(τ)⟨y⟩4

yγ
,

which yields ∣∣∣∣⟨B(ε), ε−⟩L2
ρβ

∣∣∣∣ ≤ Cbα+3η.

Thus, we finish the proof of (7.4). In particular, using (6.2) and (6.13), we get∣∣∣∣∣∣β′
〈
ε−, ε−

(
d+ 2

2β
− y2

2

)〉
L2
ρβ

∣∣∣∣∣∣ ≤ bα+3η, ∀τ ∈ [τ0, τ
∗], (7.9)
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which implies (7.5). Finally, by combining (7.4) and (7.5) we deduce (7.2) and then the proof of
the Lemma follows.

7.2. L∞ bounds

In order to handle the nonlinear term in the L2
ρ-energy estimate, we used the control of a weighted

L∞-norm of ε−. The rest of the section is devoted to it. In the next step, we aim to give a priori
estimates to the infinite part, ε−. More precisely, we have the following proposition:

Lemma 7.2 (Control of the infinite dimensional part). Then, there exists A4 ≥ 1 such that for
A ≥ A3, δ ≪ 1, there exists η4(A, δ) ≪ 1 such that for all η ≤ η4, there exists η̃4(A, η) ≪ η such
that for all η̃ ≤ η̃4, there exists τ4(A, η, η̃) ≥ 1, such that for all τ0 ≥ τ5, the following holds: assume
that initial data is defined as in (5.14) and the solution (ε, b, β)(τ) ∈ V1[A, η, η̃](τ),∀τ ∈ [τ0, τ

∗],
for some τ∗ ≥ τ0 then we have the following∥∥∥∥ yγ

⟨y⟩4
ε−(., τ)

∥∥∥∥
L∞[0,b−η̃(τ)]

≤ A3

2
I

α
2
+η̃(τ),∀τ ∈ [τ0, τ1]. (7.10)

Proof. The proof relies on the maximum principal for the control near the origin i.e.
[
0, b

η
4

]
, and

pointwise estimates on
[
b
η
4 , b−η̃

]
.

a) Let us consider y ∈
[
0, b

η
4

]
. We apply Proposition 11.1 to obtain

|ε(y, τ)| ≤ b−1(τ)H

(
y√
b(τ)

)
≤ Cb

α
2
+ η

4 (τ)⟨y⟩4

yγ
, for ally ∈

[
0, b

η
4

]
.

In addition, ε+ can be estimated by

|ε+(y, τ)| ≤ |ε1(τ)|
∣∣∣∣ϕ1,b,βc1,0

− ϕ0,b,β

∣∣∣∣ . (7.11)

On the one hand, we use the pointwise estimates given in Proposition 4.2∣∣∣∣ϕ1,b,βc1,0
− ϕ0,b,β

∣∣∣∣ ≤ ∣∣∣∣c1,1c1,0
(
√
b)2−γT1

(
y√
b

)∣∣∣∣+ ∣∣∣ϕ̃1,b,β∣∣∣+ ∣∣∣ϕ̃0,b,β∣∣∣ ≤ Cb1−
ϵ
2 (τ)⟨y⟩2

yγ
.

On the other hand, from the compatibility

ε1(τ) = − 2

α
m0b

α
2 (τ),

we deduce that

|ε+(y, τ)| ≤
Cb

α
2
+ η

2 (τ)⟨y⟩4

yγ
.

Thus, we obtain

sup
y∈[0,b

η
4 (τ)]

yγ

⟨y⟩2ℓ+2
|ε−(y, τ)| ≤ CAb

α
2
+ η

4 (τ) ≤ A3

2
b
α
2
+η̃(τ), (7.12)

provided that A ≥ A4.

b) Let us consider the control on
[
b
η
4 , b−η̃(τ)

]
. On this domain, we are far the origin so we can

not use the spectrum properties of L∞. The idea is inspired from [4]. We are going to use pointwise
estimates based on the semi-group. As for β = 1

2 , L∞ has explicit structure. We introduce the
basis of L∞

ϕ0,∞ = ϕ0,∞, 1
2
and ϕ1,∞ = ϕ1,∞, 1

2
,
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and for all j ≥ 2 we renormalize as in [4, Lemma 3.4] that

ϕj,∞(y) = Njy
−γL

( d
2
−γ)

j

(
y2

4

)
,

where Lν
j denoted by the generalized Laguerre polynomial, and the renormalisation constant Nj

ensures that ∥ϕj,∞∥L2
ρ
= 1 and

ϕj,∞(y) =

{
αjy

−γ (1 + o(1)) as y → 0

βjy
2j−γ(1 + o(1)) as y → +∞,

with αj and βj satisfies

αj ∼ j
ω
4 and βn =

j−
ω
4

4jj!
as j → +∞.

The pointwise estimates given in Proposition 4.2 ensures that ϕj,b,β is very close to ϕj,∞,β on
this interval by the following∣∣ϕj,b(τ),β(y)− ϕj,∞,β(y)

∣∣ ≲ b
η
2 (τ)⟨y⟩4

yγ
, ∀y ≥ b

η
4 , j ≤ 1. (7.13)

In addition, the condition ∣∣∣∣β(τ)− 1

2

∣∣∣∣ ≤ AIη(τ0),

defined in the Shrinking set V1[A, η, η̃](τ) shows that ϕj,∞,β is close to ϕj,∞, 1
2
:= ϕj,∞ since for all j∣∣∣ϕj,∞,β(y)− ϕj,∞, 1

2
(y)
∣∣∣ ≲

∣∣∣∣β(τ)− 1

2

∣∣∣∣ ⟨y⟩4yγ
, (7.14)∣∣∣∣e− (2β)y2

4 − e−
y2

4

∣∣∣∣ ≲

∣∣∣∣β(τ)− 1

2

∣∣∣∣ y24 e− y2

8 , (7.15)

since for all α, it holds |eα − 1| ≤ Cαeα, we have

|ε̂1(τ)| ≲ b
α
2 (τ), (7.16)

where ε̂j = ∥ϕj,∞∥−2
L2
ρ
⟨ε, ϕj,∞⟩L2

ρ
is the projection of ε on the basis {ϕj,∞, j ≥ 0}. Hence, we use the

semi-group pointwise estimates and we decompose ε on the basis ϕj,0

ε = ε̂+ + ε̂−. (7.17)

Thus, we will prove that

sup
y∈
[
b
η
4 (τ),b−η̃(τ)

]
∣∣∣∣ yγ⟨y⟩4

ε̂−(y, τ)

∣∣∣∣ ≤ A3

4
b
α
2
+η̃(τ). (7.18)

Since ε satisfies (2.17), ε̂− solves

∂τ ε̂− = L∞ε̂− + B̂(ε̂+ + ε̂−) +

(
1

2
− β(τ)

)
Λy (ε̂−) , (7.19)

where L∞ was defined in (2.22) by taking β = 1
2 and B̂ is defined by

B̂ = −3(d− 2)

[
2Qb + y2Q2

b +
1

y2

]
(ε̂+ + ε̂−) +B(ε̂+ + ε̂−) (7.20)

+ Φ(τ) + L β
∞(ε̂+)− ∂τ ε̂+,
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with B and Φ defined in (2.19) and (2.20), respectively. By using Duhamel’s formula, we get

ε̂−(τ) = e(τ−τ0)L∞ ε̂−(τ0) +

∫ τ

τ0

e(τ−τ ′)L∞

[
B̂(ε̂+ + ε̂−) +

(
1

2
− β(τ ′)

)
Λy ε̂−

]
(τ ′)dτ ′. (7.21)

In addition, we denote f− as the part of f which is orthogonal to ϕ0,∞ and ϕ1,∞. Then

f−(y) = f −
1∑

j=0

⟨f, ϕj,∞⟩L2
ρ
ϕj,∞.

In particular, if the series
∞∑
j=0

⟨f, ϕj,∞⟩L2
ρ
ϕj,∞

is convergent and well defined, then we can define f− pointwisely as

f−(y) =

∞∑
j=2

⟨f, ϕj,∞⟩L2
ρ
ϕj,∞.

Since ε− is orthogonal to ϕ0,∞ and ϕ1,∞, we can write

ε− =
(
e(τ−τ0)L∞(ε−(τ0))

)
−

(7.22)

+

∫ τ

τ0

(
e(τ−τ ′)L∞(B̂(τ ′))

)
−
dτ ′ +

∫ τ

τ0

([
1

2
− β(τ ′)

]
Λε̂−(τ

′)

)
−
dτ ′.

We remark that (7.18) immediately follows from

sup
y∈
[
b
η
4 (τ),b−η̃(τ)

]
∣∣∣∣ yγ⟨y⟩4

(
e(τ−τ0)L∞ ε̂−(τ0)

)
−
(y, τ)

∣∣∣∣ ≤ A3

16
b
α
2
+η̃(τ), (7.23)

sup
y∈
[
b
η
4 (τ),b−η̃(τ)

]
∣∣∣∣ yγ⟨y⟩4

∫ τ

τ0

(
e(τ−τ ′)L∞

[
B̂(τ ′)

])
−
dτ ′
∣∣∣∣ ≤ A3

16
b
α
2
+η̃(τ), (7.24)

sup
y∈
[
b
η
4 (τ),b−η̃(τ)

]
∣∣∣∣ yγ⟨y⟩4

∫ τ

τ0

(
e(τ−τ ′)L∞

[
1

2
− β(τ ′)

]
Λy(ε̂−)

)
−
(τ ′)dτ ′

∣∣∣∣ ≤ A3

16
b
α
2
+η̃(τ). (7.25)

To prove estimates ((7.23) -(7.25)), we need to consider different cases as

- The first case, we consider τ − τ0 ≤ lnA
K0

- The second case, we consider τ − τ0 >
lnA
K0

. In addition, the second will be divided again

by two sub-cases that 1
L0
e

τ−τ0
2 (1−η( 2ℓ

α
−1)) ≤ b−η̃(τ) and 1

L0
e

τ−τ0
2 (1−η( 2ℓ

α
−1)) > b−η̃(τ) and in these

sub-cases also includes some smaller case that there are some large constant L0,K0, R appear which
are fixed at the end of the proof. Let us go to the details of the proof.

First case τ − τ0 ≤ lnA
K0

- Proof of (7.23) : Note that K0 ≫ 1 will be fixed at the end of the proof. Now, we deduce
from (5.14) in accordance with the decomposition (7.17), we arrive at

|ε̂−(τ0)yγ | ≤ CAb
α
2
+η(τ0)⟨y⟩4, (7.26)
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where b(τ0) = I(τ0) defined in (5.5). Since ⟨y⟩4 is increasing, then, we apply Lemma C.1 and we
obtain ∣∣∣e(τ−τ0)L∞ ε̂−(τ0)(y, τ)

∣∣∣ ≤ y−γe
α(τ−τ0)

2 M(ε̂−(τ0))(y) (7.27)

≤ CAe
α(τ−τ0)

2 b
α
2
+η(τ0)y

−γ

∫∞
y ⟨y′⟩4(y′)1+ωe−

(y′)2
4 dy′∫∞

y (y′)1+ωe−
(y′)2

2 dy′

≤ CAe
α
2
(τ−τ0)b

α
2
+η̃(τ)b−

α
2
−η̃(τ)b

α
2
+η(τ0)y

−γ⟨y⟩4.

Using (5.11), we get

e
α
2
(τ−τ0)b

α
2
+η(τ0)b

−α
2
−η̃(τ) ≤ Ce

α
2
(τ−τ0)e(1−

2
α)((

α
2
+δ)(1− η̃

10
)τ0−(α

2
+η̃)(1+ η̃

10
)τ) (7.28)

≤ Ce−c(η)τ0e
α
2
(τ−τ0)e(1−

2
α)((

α
2
+η̃)(1+ η̃

10
)τ0−(α

2
+η̃)(1+ η̃

10
)τ)

≤ Ce−c(η)τ0e(
α
2
+( 2

α
−1)(α

2
+η̃)(1+ η̃

10
))(τ−τ0)

≤ Ce−c(η)τ0A(
α
2
+( 2

α
−1)(α

2
+η̃)(1+η̃)) 1

K0 , for some c(η) > 0,

which yields ∣∣∣∣ yγ⟨y⟩4
e(τ−τ0)L∞ ε̂−(τ0)(y, τ)

∣∣∣∣ ≤ A3

16
b
α
2
+η̃(τ), (7.29)

provided that K0 ≥ K4, A ≥ A4. Finally, we conclude (7.23).

-Proof of (7.24): for τ ′ ∈ [τ0, τ ], we apply Lemma C.1 to get∣∣∣e(τ−τ ′)L∞ [B̂](τ ′)
∣∣∣ ≤ Cy−γe

α(τ−τ ′)
2

{
M(1(0,bδ(τ ′)]B̂) +M(1y≥bδ(τ ′)B̂)

}
. (7.30)

To evaluate M(1(0,bδ(τ ′)]B̂)(τ ′), we apply the result in Lemma A.1 to obtain

M(1[0,bδ(τ ′)]B̂(τ ′)) ≤ C
[
b
α
2 (τ ′)M(1(0,bδ(τ ′)]y

−γ) +A3b
α
2
+η̃(τ ′)M(1(0,bδ(τ ′)]y

−γ−2)

+ A8b2(
α
2
+η̃)(τ ′)M(1(0,bδ(τ ′)]y

−2γ) +A12b3(
α
2
+η̃)(τ ′)M(1[0,bδ(τ ′)]y

−3γ+2)
]
.

For the first term on the right hand side of the above inequality, we rewrite from (C.3)

M(1[0,bδ(τ ′)]y
−γ) = sup

y∈I

∫
I |1[0,bδ(τ ′)]|(y

′)1+ωe−
(y′)2

4 dy′∫
I(y

′)1+ωe−
(y′)2

4 dy′
,

since 1[0,bδ(τ ′)] is non increasing, then, we apply the result in Lemma C.1 to get

M(1(0,bδ(τ ′)]y
−γ) ≤

∫ bδ(τ ′)
0 |1[0,bδ(τ ′)]|(y′)1+ωe−

(y′)2
4 dy′∫ y

0 (y
′)1+ωe−

(y′)2
4 dy′

≲
(bδ(τ ′))2+ω∫ y

0 (y
′)1+ωe−

(y′)2
4 dy′

.

Besides that, once y ≥ 1, it follows that∫ y

0
(y′)1+ωe−

(y′)2
4 dy′ ≥ C,

which yields (∫ y

0
(y′)1+ωe−

(y′)2
4 dy′

)−1

≲
⟨y⟩2+ω

y2+ω
.
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Otherwise, once y ≤ 1, we have(∫ y

0
(y′)1+ωe−

(y′)2
4 dy′

)−1

≲

(∫ y

0
(y′)1+ωdy′

)−1

≲
⟨y⟩2+ω

y2+ω
.

Then, we derive

M(1(0,bδ(τ ′)]y
−γ) ≤

∫ bδ(τ ′)
0 |1[0,bδ(τ ′)]|(y′)1+ωe−

(y′)2
4 dy′∫ y

0 (y
′)1+ωe−

(y′)2
4 dy′

≲
(bδ(τ ′))2+ω⟨y⟩2+ω

y2+ω
.

Similarly, we have

M(1[0,bδ(τ ′)]y
−γ−2) ≲

(bδ(τ ′))ω⟨y⟩2+ω

y2+ω
, and M(1(0,bδ(τ ′)]y

−2γ) ≲
(Iδ(τ ′))ω+2−γ⟨y⟩2+ω

y2+ω

and

M(1(0,bδ(τ ′)]y
−3γ+2) ≲

(bδ(τ ′))ω+4−2γ⟨y⟩2+ω

y2+ω
.

Combining all the related terms with the condition that y ∈
[
b
η
4 (τ), b−η̃

]
, we deduce∣∣∣e(τ−τ ′)L∞

[
1(0,bδ(τ ′)]B̂

]
(τ ′)

∣∣∣ ≲ y−γe
α
2
(τ−τ ′)bδ(ω+4−2γ)(τ ′)

⟨y⟩ω+2

yω+2
≲ y−γe

α
2
(τ−τ ′)bδ(ω+4−2γ)− η

4
(ω+2)(τ ′)

≲
b
α
2
+η̃(τ)⟨y⟩4

yγ

[
e

α
2
(τ−τ ′)bδ(ω+4−2γ)− η

4
(ω+2)(τ ′)b−

α
2
−η̃(τ)

]
. (7.31)

In addition, by the same argument used in (7.28) and (7.29) and that fact that τ − τ0 ≤ lnA
K0

, we
have ∫ τ

τ0

[
e

α
2
(τ−τ ′)bδ(ω+4−2γ)− η

4
(ω+2)(τ ′)b−

α
2
−η̃(τ)

]
dτ ′ ≲ A

C(δ,η,η̃)
K0 .

Finally, we conclude

sup
y∈
[
b
η
4 (τ),b−η̃(τ)

]
∣∣∣∣ yγ

⟨y⟩2ℓ+2

∫ τ

τ0

e(τ−τ ′)L∞
∣∣∣1(0,bδ(τ ′)]B̂(τ ′)

∣∣∣ dτ ′∣∣∣∣ ≤ A3

16
b
α
2
+η̃(τ),

provided that K0 ≥ K4, A ≥ A5, and τ0 ≥ τ5(A,K0, δ, η, η̃).

It remains to evaluate M(1y≥bδ(τ ′)B̂(τ ′)). Using Lemma A.1 with ℓ = 1, we get

M(1y≥bδ(τ ′)B̂(τ ′)) ≲ b
α
2
(τ ′)+4ηM

(
1y≥bδ(τ ′)⟨y⟩4y−γ

)
+ bα+δ(1−γ)M

(
1y≥bδ(τ ′)⟨y⟩12y−γ

)
+ b

3α
2
−2δγ(τ ′)M

(
1y≥bδ(τ ′)⟨y⟩20y−γ

)
.

First, we observe that the function 1y≥bδ(τ ′)⟨y⟩4 is non decreasing, we apply Lemma C.1 and we
have

M
(
1y≥bδ(τ ′)⟨y⟩4y−γ

)
≲

∫∞
y ⟨y′⟩4(y)′1+ωe−

(y′)2
4

dy′∫∞
y (y′)1+ωe−

(y′)2
4

dy′
.

From a standard result on Γ function, we have∫∞
y ⟨y′⟩4(y′)1+ωe−

(y′)2
4

dy′∫∞
y (y′)1+ωe−

(y′)2
4

dy′
≲ ⟨y⟩4,
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which implies

M
(
1y≥bδ(τ ′)⟨y⟩2ℓ+2y−γ

)
≲ ⟨y⟩2ℓ+2.

Similarly, from Lemma A.1 and the fact y ≤ b−η̃(τ), we write

M
(
1y≥bδ(τ ′)⟨y⟩4+8y−γ

)
≲ ⟨y⟩4+8 ≲ b−η̃(2+6)(τ)⟨y⟩4,

M
(
1y≥bδ(τ ′)⟨y⟩6+14y−γ

)
≲ ⟨y⟩6+14 ≲ b−η̃(4+12)(τ)⟨y⟩4.

Thus, we derive for all y ∈
[
bη(τ), b−η̃(τ)

]∣∣∣e(τ−τ ′)L∞
[
1y≥bδ(τ ′)B̂

]
(τ ′)

∣∣∣ (7.32)

≲ y−γ⟨y⟩2+2e
α
2
(τ−τ ′)

[
b
α
2
+4η(τ ′) + bα+δ(1−γ)(τ ′)b−η̃(2+6)(τ) + b

3α
2
−2δγ(τ ′)b−η̃(4+12)(τ)

]
,

which implies

yγ

⟨y⟩2+2

∫ τ

τ0

e(τ−τ ′)L∞M(1y≥bδ(τ ′)B̂(τ ′))dτ ′ (7.33)

≲ b
α
2
+η̃(τ)

∫ τ

τ0

e
α
2
(τ−τ ′)b−

α
2
−η̃(τ)

[
b
α
2
+4η(τ ′) + bα+δ(1−γ)(τ ′)b−η̃(2+6)(τ) + b

3α
2
−2δγ(τ ′)b−η̃(4+12)(τ)

]
dτ ′.

From the assumption τ − τ0 ≤ lnA
K0

with K0 large enough, A ≥ A4 and α ≫ δ ≫ η ≫ η̃, and

τ0 ≥ τ4(A,K0, δ, η, η̃), we proceed similarly as in (7.28) and (7.29) and we obtain∫ τ

τ0

e
α
2
(τ−τ ′)b−

α
2
−η̃(τ)

[
b
α
2
+4η(τ ′) + bα+δ(1−γ)(τ ′)b−η̃(2ℓ+6)(τ) + b

3α
2
−2δγ(τ ′)b−η̃(4ℓ+12)(τ)

]
dτ ′ ≤ A3

32
.

Finally, we get

yγ

⟨y⟩4

∫ τ

τ0

e(τ−τ ′)L∞M(1y≥bδ(τ ′)B̂(τ ′))dτ ′ ≤ A3

32
b
α
2
+η̃(τ),

and (7.24) immediately follows.
- The proof of (7.25): We first recall the following identity

ε+ + ε− = ε = ε̂+ + ε̂−,

then, we get
ε̂−(τ

′) = ε+(τ
′) + ε−(τ

′) + ε̂+(τ
′).

Since (ε, b, β)(τ) ∈ V1[A, η, η̃](τ1),∀τ ∈ [τ0, τ1], the pointwise estimates given in Lemma (5.2) and
also (7.16) hold, so we get a rough estimate for all τ ′ ∈ [τ0, τ ], τ ≤ τ1∣∣∣∣(1

2
− β(τ ′)

)
ε̂−(τ

′)

∣∣∣∣ ≤ CA6b
α
2 (τ ′)Iη(τ0)

⟨y⟩4

yγ
. (7.34)

Now, we apply Lemma C.2 and we obtain∣∣∣∣e(τ−τ ′)L∞

((
1

2
− β(τ ′)

)
ε̂−(τ

′)

)∣∣∣∣ ≤ CA6b
α
2 (τ ′)Iη(τ0)

⟨y⟩6

yγ
, ∀τ ′ ∈ [τ0, τ),

which yields∣∣∣∣∫ τ

τ0

e(τ−τ ′)L∞

((
1

2
− β(τ ′)

)
ε̂−(τ

′)

)
dτ ′
∣∣∣∣ ≤ CA6Iη(τ0)

⟨y⟩6

yγ

∫ τ

τ0

b
α
2 (τ ′)dτ ′.

Using Lemma 5.2 and a similar estimate as in (7.28), we derive∣∣∣∣A6Iη(τ0)
⟨y⟩6

yγ

∫ τ

τ0

b
α
2 (τ ′)dτ ′

∣∣∣∣ ≤ A3

16
b
α
2
+η̃(τ),
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provided that K0 ≥ K4, A ≥ A4, τ0 ≥ τ4(K0, A, η, η̃) and τ − τ0 ≤ lnA
K0

. Finally, (7.25) follows.

The second case τ − τ0 ≥ lnA
K0

As we mentioned, this case will be divided into two sub-cases

1

L0
e

τ−τ0
2 (1−η( 2ℓ

α
−1)) ≤ b−η̃(τ) and

1

L0
e

τ−τ0
2 (1−η( 2ℓ

α
−1)) > b−η̃(τ),

where L0 is large enough.

The first subcase 1
L0
e

τ−τ0
2 (1−η( 2

α
−1)) ≤ b−η̃(τ)

From (5.11) and 1
L0
e

τ−τ0
2 (1−η( 2

α
−1)) ≤ b−η̃(τ), we get

τ <
τ0
(
1− η

(
1− 2

α

))
+ 2 lnL0

1−
(
η − 2η̃

(
1 + η̃

10

)) (
1− 2

α

) , (7.35)

which yields

lnA

K0
≤ τ − τ0 ≤

2η̃τ0
(
2
α − 1

) (
1 + η̃

10

)
+ 2 lnL0

1−
(
η − 2η̃

(
1 + η̃

10

)) (
2
α − 1

) . (7.36)

for L0 large enough. According to (7.36), we see that this the present sub-case can be handled
similarly as the fist one, since τ is not too far from τ0.

- The proof of (7.23): From (7.27), we have∣∣∣e(τ−τ0)L∞ ε̂−(τ0)(y, τ)
∣∣∣ ≤ CAb

α
2
+η̃(τ)

⟨y⟩4

yγ

[
e

α
2
(τ−τ0)b−

α
2
−η̃(τ0)b

α
2
+η(τ0)

]
.

The same process used for (7.28) yields

e
α
2
(τ−τ0)b

α
2
+η(τ0)b

−α
2
−η̃(τ) ≤ e−c(η)τ0eX(τ−τ0), with X =

(
α

2
+

(
2

α
− 1

)(α
2
+ η̃
)
(1 +

η̃

10
)

)
.

From (7.36), we can prove that there exists c(η) > 0 such that

e−c(η)τ0eX(τ−τ0), with X =

(
α

2
+

(
2

α
− 1

)(α
2
+ η̃
)
(1 +

η̃

10
)

)

≲ e
−c(η)τ0+X

(
2η̃τ0( 2

α−1)(1+ η̃
10)+2 lnL0

1−(η−2η̃(1+ η̃
10))( 2

α−1)

)
≤ 1,

provided that η̃ ≤ η̃4(η, L0) and this gives (7.23).
- The proof of (7.24): we use (7.31) and (7.32) to get∣∣∣∣ yγ

⟨y⟩2+2

∫ τ

τ0

e(τ−τ ′)L∞
[
B̂(ε̂β,+, ε̂β,−)

]
(τ ′)dτ ′

∣∣∣∣
≤ Cb

α
2
+η̃(τ)

{∫ τ

τ0

[
e

α
2
(τ−τ ′)bδ(ω+4−2γ)− η

4
(ω+2)(τ ′)b−

α
2
−η̃(τ)

]
dτ ′

+

∫ τ

τ0

e
α
2
(τ−τ ′)b−

α
2
−η̃(τ)

[
b
α
2
+4η(τ ′) + bα+δ(1−γ)(τ ′)b−η̃(2+6)(τ) + b

3α
2
−2δγ(τ ′)b−η̃(16)(τ)

]
dτ ′
}
.
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From (7.28) and (7.36), we have∫ τ

τ0

[
e

α
2
(τ−τ ′)bδ(ω+4−2γ)− η

4
(ω+2)(τ ′)b−

α
2
−η̃(τ)

]
dτ ′

+

∫ τ

τ0

e
α
2
(τ−τ ′)b−

α
2
−η̃(τ)

[
b
α
2
+4η(τ ′) + bα+δ(1−γ)(τ ′)b−η̃(8)(τ) + b

3α
2
−2δγ(τ ′)b−η̃(16)(τ)

]
dτ ′

≤ C,

provided that η̃ ≤ η̃4(η, δ, L0), A ≥ A4 and τ0 ≥ τ4(A, η, η̃, L0). Then, we infer∣∣∣∣ yγ⟨y⟩4

∫ τ

τ0

e(τ−τ ′)L∞
[
B̂(ε̂β,+, ε̂β,−)

]
(τ ′)dτ ′

∣∣∣∣ ≤ A3

16
b
α
2
+η̃(τ),∀y ∈

[
bη(τ), b−η̃(τ)

]
,

which implies (7.24).
- Proof of (7.25): it is similar to the that of (7.24) in the first case.

The second sub-case 1
L0
e

τ−τ0
2 (1−η( 2ℓ

α
−1)) > b−η̃(τ)

We introduce R large, to be fixed later, and we decompose[
bη(τ), b−η̃(τ)

]
= [bη(τ), R] ∪

[
R, b−η̃(τ)

]
.

Recall that for each f ∈ L2
ρ(R+), for each ν > 0, there exists Y (v) > 0 satisfying Y (ν) → +∞ as

ν → +∞ and such that ∀y ∈ [Y −1(ν), Y (ν)]

eνL∞f(y) =
∞∑
j=0

e(
α
2
−j)ν⟨f, ϕj,∞⟩L2

ρ
ϕj,∞(y) pointwisely . (7.37)

Following the above remarks, the expression (7.21) and the fact that ε̂− is orthogonal to ϕ0,∞
and ϕ1,∞ we are led to

ε̂−(y, τ) =
(
e(τ−τ0)L∞(ε−(τ0))

)
−
+

∫ τ

τ0

(
e(τ−τ ′)L∞(B̂(τ ′))

)
−
dτ ′ +

∫ τ

τ0

([
1

2
− β(τ ′)

]
Λε̂−(τ

′)

)
−
dτ ′

=
∞∑
j=2

e(
α
2
−j)(τ−τ0) ⟨ε̂−(τ0), ϕj,∞⟩L2

ρ
ϕj,∞(y)

+

∫ τ−L0

τ0

∞∑
j=2

e(
α
2
−j)(τ−τ ′)

〈
B̂(τ ′), ϕj,∞

〉
L2
ρ

ϕj,∞(y)dτ ′ +

∫ τ

τ−L0

(
e(τ−τ ′)L∞(B̂(τ ′))

)
−
dτ ′

+

∫ τ−L0

τ0

∞∑
j=2

e(
α
2
−j)(τ−τ ′)

〈([
1

2
− β(τ ′)

]
Λε̂−(τ

′)

)
dτ ′, ϕj,∞

〉
L2
ρ

ϕj,∞(y)dτ ′

+

∫ τ

τ−L0

([
1

2
− β(τ ′)

]
Λε̂−(τ

′)

)
−
dτ ′ (7.38)

on [Y −1(τ), Y (τ)] (Y (τ) → +∞ as τ → +∞). Let us consider y ∈ [bη(τ), R]. We consider the
initial data ε(τ0) defined in (5.14), we have∣∣∣⟨ε̂−(y, τ0), ϕj,∞⟩L2

ρ

∣∣∣ ≤ Cb
α
2
+δ,∀j ≥ 2.
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Note that δ ≫ η ≫ η̃ and we are in the case τ − τ0 >
lnA
K0

, we have the estimate∣∣∣∣∣∣
∞∑
j=2

e(
α
2
−j)(τ−τ0)⟨ε̂−(τ0), ϕj,∞⟩L2

ρ
ϕj,∞(y)

∣∣∣∣∣∣
≤ Cb

α
2
+η̃(τ)

⟨y⟩4

yγ

∞∑
j=2

e(
α
2
−j)(τ−τ0)b

α
2
+δ(τ0)b

−α
2
−η̃(τ)αj(1 + y)2(j−1)

≤ CCb
α
2
+η̃(τ)

⟨y⟩4

yγ

∞∑
j=2

j
ω
4 e(

α
2
−j)(τ−τ0)b

α
2
+δ(τ0)b

−α
2
−η̃(τ)(1 + y)2(j−1).

Similarly to the technique given in (7.28), we have

e(
α
2
−j)(τ−τ0)b

α
2
+δ(τ0)b

−α
2
−η̃(τ) ≲ Ce(

α
2
−j)(τ−τ0)e(

2
α
−1)(α

2
+η̃)(1+η̃)(τ−τ0)

≲ Ce(τ−τ0)(1−j+c(η̃)) with c(η̃) ≲ η̃, j ≥ 2,

which yields to ∣∣∣∣∣∣
∞∑
j=2

e(
α
2
−j)(τ−τ0)⟨ε̂−(τ0), ϕj,∞⟩L2

ρ
ϕj,∞(y)

∣∣∣∣∣∣
≤ Cb

α
2
+η̃ ⟨y⟩4

yγ

∞∑
j=2

j
ω
4R2(j−1)

(
A

1
K0

)1−j+c(η̃)

≤ A3

32
b
α
2
+η̃(τ)

⟨y⟩4

yγ
, (7.39)

provided that K0 ≥ K4, A ≥ A4(R,K0), and η̃ ≤ η̃4(R,K0, A, η, η̃, L0).

Next, observe that τ − (τ − L0) = L0 ≤ lnA
K0

if A ≥ A4(L0), so we go back to the first case.

Indeed, we argue similarly as in (7.31) and (7.33) to get

∣∣∣∣∫ τ

τ−L0

e(τ−τ ′)L∞(B̂)(τ ′)dτ ′
∣∣∣∣ ≤ ⟨y⟩4

yγ

∫ τ

τ−L0

e
α
2
(τ−τ ′)b

α
2
+4η(τ ′)dτ

≤ Cb
α
2
+3η(τ)

⟨y⟩4

yγ
,

provided that s0 ≥ s4(η, L0). This yields∣∣∣∣∫ τ

τ−L0

(
e(τ−τ ′)L∞(B̂)(τ ′)

)
−
dτ ′
∣∣∣∣ ≤ Cb

α
2
+3η(τ)

⟨y⟩4

yγ
.

For the integral
∫ τ−L0

τ0

∑∞
j=2 e

(α
2
−j)(τ−τ ′)

〈
B̂(τ ′), ϕj,∞

〉
L2
ρ

ϕj,∞(y)dτ ′, we deduce from Lemma A.1

that ∣∣∣⟨B̂(τ ′), ϕj,∞⟩L2
ρ

∣∣∣ ≲ b
α
2
+4η(τ ′).

Then, for all y ∈ [bη(τ), R], we have∣∣∣∣∣∣
∫ τ−L0

τ0

 ∞∑
j=2

e(
α
2
−j)(τ−τ ′)⟨B̂(τ ′), ϕj,∞⟩L2

ρ
ϕj,∞

 dτ ′

∣∣∣∣∣∣
≲

⟨y⟩4b
α
2
+η̃(τ)

yγ

∞∑
j=2

|αj |R2(j−1)

∫ τ−L0

τ0

e(
α
2
−j)(τ−τ ′)b−

α
2
−η̃(τ)b

α
2
+4η(τ ′)dτ ′.
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We repeat the techniques given in (7.28) and (7.29) to obtain

b−
α
2
−η̃(τ)e(

α
2
−j)(τ−τ ′)b

α
2
+η(τ ′) ≲ b−

α
2
−η̃(τ)b

α
2
+η̃(τ ′)e(

α
2
−j)(τ−τ ′)

≲ e(1−j+c(η̃))(τ−τ ′), with c(η̃) ≲ η̃.

It follows that for all j ≥ 2, we have∫ τ−L0

τ0

b−
α
2
−η̃(τ)e(

α
2
−j)(τ−τ ′)b

α
2
+η(τ ′)dτ ′ ≲ exp ([1− j + c(η̃)] (L0)) , and 1− j + c(η̃) < 0.

By taking L0 ≫ R, we get
∞∑
j=2

|αj |R2(j−1)

∫ τ−L0

τ0

e(
α
2
−j)(τ−τ ′)b−

α
2
−η̃(τ)b

α
2
+4η(τ ′)dτ ′

≲
∞∑
j=2

j
ω
4R2(j−1) exp ([1− j + c(η̃)] (L0)) ≲ 1,

provided that L0 ≫ Rand τ0 ≥ τ4(A,L0, R, δ, η, η̃). Then∣∣∣∣∣∣
∫ τ−L0

τ0

∞∑
j=2

e(
α
2
−j)(τ−τ ′)

〈
B̂(τ ′), ϕj,∞

〉
L2
ρ

ϕj,∞(y)dτ ′

∣∣∣∣∣∣ ≤ Cb
α
2
+η̃(τ)

⟨y⟩4

yγ
, y ∈ [b

η
4 , R].

Recall that ∣∣∣∣β(τ)− 1

2

∣∣∣∣ ≤ CAIη(τ0),

so by repeating the above arguments to handle the remaining terms in (7.38), the following result
holds ∣∣∣∣∣∣

∫ τ−L0

τ0

∞∑
j=2

e(
α
2
−j)(τ−τ ′)

〈([
1

2
− β(τ ′)

]
Λε̂−(τ

′)

)
dτ ′, ϕj,∞

〉
L2
ρ

ϕj,∞(y)dτ ′

∣∣∣∣∣∣
+

∣∣∣∣∫ τ

τ−L0

([
1

2
− β(τ ′)

]
Λε̂−(τ

′)

)
−
dτ ′
∣∣∣∣ ≤ Cb

α
2
+η̃(τ)

⟨y⟩4

yγ
.

We conclude that∣∣∣∣∫ τ

τ0

e(τ−τ ′)L∞

[
1

2
− β(τ ′)

]
Λy(ε̂β,−)(τ

′)dτ ′
∣∣∣∣ ≤ A3

16
b
α
2
+η̃(τ)⟨y⟩4y−γ , ∀y ∈ [b

η
4 , R]. (7.40)

- For the case y ∈
[
R, b−η̃(τ)

]
. First, we observe that once y ≤ b−η̃(τ) ≤ 1

L0
e

τ−τ0
2 (1−η( 2

α
−1)),

then, there exists τ̄ ∈ [τ0, τ−1] such that y ∈
[

1
2L0

e
τ−τ̄
2 (1−η( 2

α
−1)), 1

L0
e

τ−τ̄
2 (1−η( 2

α
−1))

]
. Since y ≥ R

we have τ − τ̄ ≥ C(R) → +∞ as R→ +∞. Now, write the integral equation at the initial data τ̄

ε̂−(τ) = e(τ−τ̄)L∞ ε̂−(τ̄) +

∫ τ

τ̄
e(τ−τ ′)L∞

[
B̂(τ ′) +

(
1

2
− β(τ ′)

)
Λy ε̂−

]
(τ ′)dτ ′. (7.41)

Note that for all j ≥ 2, we have

⟨ε̂−, ϕj,∞⟩L2
ρ
= ⟨ε+, ϕj,∞⟩L2

ρ
+ ⟨ε−, ϕj,∞⟩.

Using the fact that ε+ is orthogonal to ϕj,b,β, estimate (4.7), ϕj,∞,β’s definition given in Proposition
4.1 and ϕi,∞ = ϕj,∞, 1

2
, we derive that∣∣∣⟨ε+, ϕj,∞⟩L2

ρ

∣∣∣ ≤ Cb
α
2
+η(τ̄), ∀j ≥ 2.
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Moreover, using the definition of ρβ given in (2.25) and ρ = ρ 1
2
, we apply Cauchy Schwarz inequality

and estimate (7.1) to derive∣∣∣⟨ε−, ϕj,∞⟩L2
ρ

∣∣∣ =

∣∣∣∣∫
R+

ε−ϕj,∞ρdy

∣∣∣∣ ≤ C

∫
R+

|ε−|
√
ρβ|ϕj,∞| ρ

√
ρβ
dy

≤ C∥ε−∥L2
ρ

√∫
R+

|ϕj,∞|2 ρ
2

ρβ
dy ≤ Cb

α
2
+η.

Hence, we have ∣∣∣⟨ε̂−(τ̄), ϕj,∞⟩L2
ρ

∣∣∣ ≤ Cb
α
2
+η(τ̄).

Now, we use formula (7.37) to get∣∣∣e(τ−τ̄)L∞ ε̂−(τ̄)(y, τ)
∣∣∣ ≲

∞∑
j=2

e(
α
2
−j)(τ−τ̄)

∣∣∣⟨ε̂−(τ̄)ϕj,∞⟩L2
ρ

∣∣∣ |ϕj,∞(y)|

≲
∞∑
j=2

4jj!e(
α
2
−j)(τ−τ̄)b

α
2
+η(τ̄) |ϕj,∞(y)|

≲ ⟨y⟩4y−γb
α
2
+η̃(τ)

∞∑
j=2

|βj | e(
α
2
−j)(τ−τ̄)b−

α
2
−η̃(τ)b

α
2
+η(τ̄)y2(j−1).

Using (5.11), we have for all j ≥ 2

e(
α
2
−j)(τ−τ̄)b

α
2
+η(τ̄)b−

α
2
−η̃(τ) ≲ e(

α
2
−j)(τ−τ̄)e(1−

2
α)[(

α
2
+η)(1− η̃

10)τ̄−(
α
2
+η̃)(1+ η̃

10)τ ].

In addition, since η̃ ≪ η, and
(
1− 2

α

)
< 0, it follows the following(

1− 2

α

)[(α
2
+ η
)(

1− η̃

10

)
τ̄ −

(α
2
+ η̃
)(

1 +
η̃

10

)
τ

]
≤

(
1− 2

α

)[(α
2
+
η

2

)(
1 +

η̃

10

)
τ̄ −

(α
2
+ η̃
)(

1 +
η̃

10

)
τ

]
=

(
1− 2

α

)(
1 +

η̃

10

)[α
2
(τ̄ − τ) +

η

2
τ̄ − η̃τ

]
≤

(
1− 2

α

)(
1 +

η̃

10

)[α
2
(τ̄ − τ) +

η

2
(τ̄ − τ)

]
,

and (α
2
− j
)
(τ − τ̄) +

(
1− 2

α

)(
1 +

η̃

10

)[α
2
(τ̄ − τ) +

η

2
(τ̄ − τ)

]
≤

[
1− j +

η̃

10

(
2

α
− 1

)
α

2
+
η

2

(
2

α
− 1

)(
1 +

η̃

10

)]
(τ − τ̄)

≤
[
1− j + η

(
2

α
− 1

)]
(τ − τ̄),

and |βj | ≤ C j−
ω
4

4jj!
. Hence, we obtain∣∣∣e(τ−τ̄)L∞ ε̂−(τ̄)(y, τ)

∣∣∣ ≲ Ab
α
2
+η̃(τ)

∞∑
j=2

j−
ω
4

4jj!

(
ye−

τ−τ̄
2 (1−η( 2ℓ

α
−1))

)2(j−1)

≲ Ab
α
2
+η̃(τ)

∞∑
j=2

j−
ω
4

4jj!
(L−1

0 )2(j−ℓ) ≤ A3

16
b
α
2
+η̃(τ),
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when L0 is large and A ≥ A4.

From the restriction 1
2L0

e
τ−τ̄
2 (1−η( 2ℓ

α
−1)) ≤ y ≤ b−η̃(τ), it follows

τ <
τ̄
(
1− η

(
1− 2ℓ

α

))
+ 2 lnL0

1−
(
η − 2η̃

(
1 + η̃

10

)) (
1− 2ℓ

α

) ,
which yields

τ − τ̄ ≤
2η̃τ̄

(
2ℓ
α − 1

) (
1 + η̃

10

)
+ 2 lnL0

1−
(
η − 2η̃

(
1 + η̃

10

)) (
2ℓ
α − 1

) . (7.42)

Hence, it turns out that the second case is obtained by replacing τ0 by τ̄∣∣∣∣∫ τ

τ̄
e(τ−τ ′)L∞

[
B̂(ε̂β,+ + ε̂β,−)

]
(τ ′)dτ ′

∣∣∣∣ ≤ A3

16
b
α
2
+η̃(τ)⟨y⟩2ℓ+2y−γ , (7.43)∣∣∣∣∫ τ

τ̄
e(τ−τ ′)L∞

(
1

2
− β(τ ′)

)
Λy ε̂β,−(τ

′)dτ ′
∣∣∣∣ ≤ A3

16
b
α
2
+η̃(τ)⟨y⟩2ℓ+2y−γ . (7.44)

At final, by adding all the terms, we get

|εβ,−(τ)| ≤
A3

2
b
α
2
+η̃ ⟨y⟩2ℓ+2

yγ
,∀y ∈

[
R, b−η̃(τ)

]
,

which concludes the third case.

The final step is to focus on the a priori estimates on the exterior part εe. More precisely, we
have the following Lemma

Lemma 7.3 (A priori estimates on the exterior part). Let us consider ε to satisfy equation (2.17)
with initial data given in (5.16), and ε(τ) ∈ V [A, η, η̃](τ) for all τ ∈ [τ0, τ1], for some τ1 > τ0.
Then, we have the following estimate

∥|y|εe(·, τ)∥L∞ ≤ A4

2
b
α
2
+(γ−4)η̃(τ).

Proof. To get the conclusion of the Lemma, we consider the natural (d+ 2)-dimensional extension
as follows

εext(z, τ) = ε(y, τ), |z| = y and z ∈ Rd+2, (7.45)

and we introduce

εext,e(z, τ) = |z|
(
1− χ0

(
8

3
|z|bη̃(τ)

))
εext(z, τ),

where χ0 was defined in (5.10) and γ defined was in (B). Note that u’s extension defined in (7.45) is
C2(Rd+2), thanks to the parabolic regularity of the semi-group et∆d+2 and so is εext and we derive
from (2.17) that εext satisfies

∂τεext = ∆εext − β(τ)y · ∇εext − 2β(τ)εext

− 3(d− 2)
[
2Qb(|z|) + |z|2Q2

b(|z|)
]
εext +B(εext, |z|) + Φ(|z|, τ),

where Λz is similarly defined as in (2.14), B and Φ were defined in (2.19) and (2.20), respectively.
Now, we introduce

εext,e(z, τ) = |z| (1− χη̃) εext, and χη̃(z, τ) = χ0

(
8

3
|z|bη̃(τ)

)
, (7.46)



BLOWUP SOLUTIONS FOR YANG MILLS HEAT FLOW 41

where χ0 was defined in (5.10) and we have the following facts

supp(1− χη̃) ⊂
{
z ∈ Rn such that |z| ≥ 3

8
b−η̃(τ)

}
, (7.47)

and εext,e = εext for all |z| ≥ 3
4b

−η̃(τ). We here mention that the conclusion of the Lemma
immediately follows from

∥εext,e(·, τ)∥L∞[b−η̃(τ),+∞) ≤
A4

2
b
α
2
+(γ−4)η̃(τ),∀τ ∈ [τ0, τ1].

By using εext’s equation above, we that εext,e exactly solves

∂τεext,e = Lβ(εext,e) + C(εext) +N (εext), (7.48)

where Lβ is defined by

Lβ = ∆− β(τ)z · ∇ − β(τ)Id (7.49)

and the terms C(εext) and N (εext) are respectively defined by

C(εext) = −2div(εext∇(|z|(1− χη̃)))− 3(d− 2)
[
2Qb(|z|) + |z|2Q2

b(|z|)
]
εext,e

+ εext [∂τ (1− χη̃)|z|+∆(|z|(1− χη̃)) + β(τ)z · ∇(1− χη̃)|z|] ,

and

N (εext) = |z|(1− χη̃) (B(εext) + Φ(·, τ)) .

- The semi-group of Lβ: Let us define Kβ(τ
′, τ), τ > τ ′ ≥ τ0; the semi-group associated to Lβ with

Kβ(τ, τ
′)f =

∫
Rd+2

Kβ(τ, τ
′, z, z′)f(z′)dz′

and the Kernel Kβ(τ, τ
′, z, z′)

Kβ(τ, τ
′, z, z′) =

ζ(τ, τ ′)[
4π
∫ τ
τ ′ ζ

2(τ̃ , τ ′)dτ̃
] d+2

2

exp

(
−(z′ − zζ(τ, τ ′))2

4
∫ τ
τ ′ ζ

2(τ̃ , τ ′)dτ̃

)
,

ζ(τ, τ ′) = e−
∫ τ
τ ′ β(τ̃)dτ̃ , τ > τ ′.

In particular, when β ≡ 1
2 , our situation is the same as the operator considered in [26, Lemma A.1]

since

ζ(τ, τ ′) = e−
τ−τ ′

2 , and

∫ τ

τ ′
ζ2(τ̃ , τ ′)dτ̃ = 1− e−(τ−τ ′).

Since our operator has the same structure as the one in [26, Lemma A.1], we can apply the
arguments there to get

∥Kβ(τ
′, τ)(φ)∥L∞ ≤ ζ(τ, τ ′)∥φ∥L∞ ≤ e−

(τ−τ ′)
4 ∥φ∥L∞ , (7.50)

∥Kβ(τ, τ
′)div(φ)∥L∞ ≤ C

ζ(τ, τ ′)√∫ τ
τ ′ ζ

2(τ̃ , τ ′)dτ̃
∥φ∥L∞ ≤ C

e−
τ−τ ′

4

√
τ − τ ′

, (7.51)

since (5.4) holds for all τ ∈ [τ0, τ1]. By Duhamel’s formula, we now write equation (7.48) as follows

εext,e(τ) = Kβ(τ, τ
′)εext,e(τ

′) +

∫ τ

τ ′
Kβ(τ, τ̃) [C(εext) +N (εext)] (τ̃)dτ̃ . (7.52)

We now aim to estimate the terms involving N (εext(τ)) and C(εext).
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- For N , since (7.47) holds, we only consider |z| ≥ 3
8b

−η̃(τ) that will be divided into two small

cases |z| ∈
[
3
8b

−η̃(τ), b−η̃(τ)
]
and |z| ≥ b−η̃(τ). Since ε(τ) ∈ V1[A, η, η̃](τ), ∀τ ∈ [τ0, τ1], we get the

following

||z|εext(z, τ)| ≤ A3b
α
2
+γη̃⟨|z|⟩4 ≤ CA3b

α
2
+(γ−4)η̃(τ), ∀|z| ∈

[
3

8
b−η̃(τ), b−η̃(τ)

]
,

and

||z|εext(z, τ)| ≤ A4b
α
2
+(γ−4)η̃(τ), ∀|z| ≥ b−η̃(τ)

which yields

∥N (εext)∥L∞ ≤ CA3b
α
2
+10η̃(τ), ∀τ ∈ [τ0, τ1],

provided that η̃ ≤ η̃5(α), τ0 ≥ τ5(A, η̃). Using (7.50), we deduce

∥Kβ(τ, τ̃)N (τ̃))∥L∞ ≤ CA3e−
τ̃−τ̃
4 b

α
2
+10η̃(τ̃).

- For C(εext): From (7.51), we have

∥Kβ(τ, τ̃)div(εext∇[(1− χη̃)|z|])(τ̃)∥L∞ ≤ C
e−

τ−τ̃
4

√
τ − τ̃

∥(εext∇[(1− χη̃)|z|])(τ̃)∥L∞

≤ CA3 e
− τ−τ̃

4

√
τ − τ̃

b
α
2
+(γ−4)η̃(τ̃).

Similarly, we have∥∥Kβ(τ, τ̃)[3(d− 2)(2Qb + |z|2Q2
b)εext,e](τ̃)

∥∥
L∞ ≤ CA3e−

τ−τ̃
4 b

α
2
+(γ−4)η̃(τ̃).

Besides that, we derive from (7.46) that

∥εext(τ̃)∂τ (1− χη̃)|z|∥L∞ ≤ Cη̃A4b
α
2
+(γ−4)η̃(η̃) ≤ CA3b

α
2
+(γ−4)η̃(τ̃).

Hence, we get

∥Kβ(τ, τ̃)εext(τ̃)∂τ (1− χη̃)|z|∥L∞ ≤ CA3e−
τ−τ̃
4 b

α
2
+(γ−4)η̃(τ̃). (7.53)

By the same technique, we can establish the following

∥Kβ(τ, τ̃)εext(τ̃) [∆(|z|(1− χη̃)) + β(τ)z · ∇(1− χη̃)|z|]∥L∞ ≤ CA3e−
τ−τ̃
4 b

α
2
+(γ−4)η̃(τ̃).

Taking L∞-estimate on both sides of (7.52), we get

∥εext,e(τ)∥L∞ ≤ e−
τ−τ ′

4 ∥εext,e(τ ′)∥L∞ + CA3

∫ τ

τ ′
e−

τ−τ̃
4 b

α
2
+(γ−4)η̃(τ̃)

[
1√
τ − τ̃

+ 1

]
dτ̃

≤ e−
τ−τ ′

4 ∥εext,e(τ ′)∥L∞ + CA3b
α
2
+(γ−4)η̃(τ ′)

(√
τ − τ ′ + (τ − τ ′)

)
.

We now apply the technique used in [26, Proposition 4.5]. Our the choice of the initial data in
(5.14) allows us to improve the bound on εext,e by

∥εext,e(τ)∥L∞ ≤ A4

2
b
α
2
+(γ−4)η̃(τ), ∀τ ∈ [τ0, τ1],

provided that A ≥ A5 and η̃ ≤ η̃5(A) and τ0 ≥ τ5(A, η̃). Finally, the conclusion of the lemma
follows.
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8. The existence of unstable blowup solutions

In this Section, we aim to give a sketch of the proof to the existence of unstable blowup solutions
to equation (1.3) with blowup speeds

λℓ(t) = C(u0)(T − t)
2ℓ
α as t→ T.

The general strategy of the proof is the same as in the stable setting, except to some technical
modifications. For that reason, we only give main changes which lead to the unstable existence.
Let us consider the similarity variable (2.11) with µ(τ) = T − t and τ = − ln(T − t) then w satisfies
(2.12) with β ≡ 1

2 . We linearize around Qb(τ) given in (2.15) by ε = w − Qb(τ) and it holds that

ε satisfies (2.17). Note that all terms in the equation remain the same with β ≡ 1
2 . In particular,

the spectral analysis of Lb is valid without the appearance of β. Now, we consider the composition
(7.6) with ℓ ≥ 2.

8.1. Shrinking set for ℓ ≥ 2

In this part, we modify a little bit the set in Definition 5.1 to be compatible with the new setting

Definition 8.1 (Shrinking set). Let A, η, η̃ be positive constants satisfying A≫ 1 and 1 ≫ η ≫ η̃,
we define Vℓ[A, η, η̃](τ) as the set of all (ε, b) ∈ L∞ × R satisfying:

(i) The dominating mode εℓ and b satisfy∣∣∣∣εℓ + 2

α
m0b

α
2

∣∣∣∣ ≤ Ab
α
2
+η, (8.1)

and
1

2
≤ bI−1

ℓ (τ) ≤ 2, (8.2)

where
Iℓ(τ) = e(

2ℓ
α
−1)τ . (8.3)

In addition the others modes εj ∈ j ∈ {1, ..., ℓ− 1} satisfy

|εj | ≤ Ab
α
2
+η. (8.4)

(iii) L2
ρ-decay: The part ε− satisfies the following:

∥ε−(.)∥L2
ρβ

≤ A2b
α
2
+η(τ).

(iv) The remainders ε− given in (7.6), and εe satisfy∥∥∥∥yγ ε−(., τ)⟨y⟩2ℓ+2

∥∥∥∥
L∞[0,b−η̃(τ)]

≤ A3b
α
2
+η̃(τ),

∥|y|εe(., τ)∥L∞ ≤ A4b
α
2
+(γ−(2ℓ+2))η̃(τ),

where εe defined as in (5.9).

8.2. Preparing initial data

In this part, we aim to construct a class of initial data corresponding to the Shrinking set
Vℓ[A, η, η̃]. Let us consider A ≥ 1, and 0 < η̃ ≪ η ≪ δ ≤ 1, α,m0 and cℓ,0 defined as in (2.27),
(6.15) and (2.28), respectively.

ψ(ℓ, τ0) = χ
(
yb

δ
2 (τ0)

)(
1− χ

(
y

b
δ
2 (τ0)

))
(8.5)

×


ℓ−1∑
j=1

Adjb
α
2
+η(τ0)ϕj,b(τ0),β(τ0) −

2

α
m0b

α
2 (τ0)

[
1 + dℓAb

α
2
+η(τ0)

](ϕℓ,b(τ0),β(τ0))
cℓ,0

− ϕ0,b(τ0),β(τ0))

)
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In particular, the class of initial data implies the following result

Lemma 8.2 (Preparing the initial data). There exists A6 ≥ 1, such that for all A ≥ A6, there
exist η6(A) > 0 such that for all δ ≤ δ6 there exists η6(A, δ) > 0 such that for all η ≤ η6 there exists
η̃6(A, δ, η) such that for all η̃ ≤ η̃6 there exists τ6(A, δ, η, η̃) > 1 such that for all τ0 ≥ τ6, there

exists DA ⊂ [−2, 2]ℓ such that the following properties are valid

(i) the mapping

Γ : Rℓ → Rℓ

(d1, ..., dℓ−1) 7→ (ψ1, ..., ψℓ) (τ0),

is affine and one to one from DA to V̂ [A, η](τ0), where

V̂ [A, η](τ) =
[
−Ab

α
2
+η(τ), Ab

α
2
+η(τ)

]ℓ
. (8.6)

In particular, we have the following property

Γ |∂DA
∈ ∂V̂A(τ0),

and deg(Γ |∂DA
) ̸= 0.

(ii) for all (d1, ..., dℓ) ∈ DA, it follows that ψℓ(τ0) ∈ Vℓ[A, τ, η̃](τ0) with strictly improved bounds
as follows ∣∣∣∣ψℓ(τ0) +

2

α
m0b

α
2 (τ0)

∣∣∣∣ ≤ b
α
2
+η(τ0),

∥ψ−(τ0)∥L2
ρ

≤ b
α
2
+η(τ0),∥∥∥∥ yγ

⟨y⟩2ℓ+2
ψ−(., τ0)

∥∥∥∥
L∞[0,b−

η̃
2 (τ0)]

≤ b
α
2
+η(τ0),

∥ψe(·, τ)∥L∞ ≤ b
α
2
+η(τ0),

and b(τ0)I
−1
ℓ (τ0) ∈

[
1
4 ,

3
2

]
.

Proof. The bounds in item (ii) immediately follow from the explicit form of ψ(ℓ, τ0) in (8.5). In
addition, the existence of DA and mapping Γ follows from the concentration of modes ψj , j ∈
{0, 1, ...., ℓ} of ψ(ℓ, τ0) and the argument is quite the same as in [32, Proposition 4.5]. We kindly
refer the reader to check the details of this result.

8.3. Finite dimensional reduction

Since the shrinking set Vℓ[A, η, η̃](τ) has special properties, the conclusion of Theorem 1.2 im-
mediately the following

(ε, b)(τ) ∈ Vℓ[A, η, η̃](τ)∀τ ∈ [τ0,+∞), for some τ0 large enough.

In particular, we prove in this part that this control is reduced to a finite dimensional problem on
(εj)j∈{1,2,...,ℓ}

Proposition 8.3 (Finite dimensional reduction). There exists A7 ≥ 1, such that for all A ≥ A7,
there exists δ7(A) such that for all δ ≤ δ7 there exists η7(A, δ) such that for all η ≤ η7 there exists
η̃7(A, δ, η) such that for all η̃ ≤ η̃7 there exists τ7(A, δ, η, η̃) such that for all τ0 ≥ τ7, the following
property is valid: If (ε, b) is the solution to the coupled system (2.17-3.4) with initial data (8.5),
(ε, b)(τ) ∈ Vℓ[A, η, η̃](τ) for all τ ∈ [τ0, τ

∗] for some τ∗ > τ0 and (ε, b)(τ∗) ∈ ∂Vℓ[A, η, η̃](τ
∗), then

we have the following:

(i) It holds that (ε1, ..., εℓ) (τ
∗) ∈ ∂V̂ [A, η](τ∗) defined as in (8.6).
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(ii) Transversality: There exists ν0 > 0 such that

(ε1, ..., εℓ) (τ
∗ + ν) /∈ ∂V̂ [A, η](τ∗ + ν),∀ν ∈ (0, ν0)

which implies

(ε, b)(τ∗ + ν) /∈ V [A, η, η̃](τ∗ + ν), ∀ν ∈ (0, ν0).

Proof. The proof mainly relies on the priori estimate which is the same as in Lemmas [6.1-7.3].
- Proof of item (i): Let us consider A ≥ A7, δ ≤ δ7(A), η ≤ η7(A, δ), η̃ ≤ η̃7(A, δ, η), τ0 ≥

τ7(A, δ, η, η̃) and (ε, b)(τ) ∈ Vℓ[A, η, η̃](τ)∀τ ∈ [τ0, τ
∗] such that Lemmas 7.1, 7.2, and 7.3 remain

true (the technique of the proof is exactly the same and we kindly refer the reader to check the
details). So, it immediately follows that the bounds of ε− and εe given in Definition 8.1 for Vℓ[A, η, η̃]
are always improved by 1

2 -factor. In addition, we completely reproduce the argument of Lemma
6.1 to establish the following results: For all τ ∈ [τ0, τ

∗], we have∣∣∣ε′j(τ)− (α2 − j
)
εj(τ)

∣∣∣ ≤ Cb
α
2
+4η(τ), ∀τ ∈ [τ0, τ1] , (8.7)

and {
∂τεℓ −

(
α
2 − ℓ

)
εℓ = O

(
b
α
2
+4η(τ)

)
,

∂τεℓ −
(
α
2

)
εℓ +m0

(
bτ
b − 1

)
b
α
2 = O(b

α
2
+4η),

(8.8)

and ∣∣∣∣b′(τ)b(τ)
−
(
1− 2ℓ

α

)∣∣∣∣ ≤ CAb4η(τ). (8.9)

From (8.9), we derive that
3

4
< b(τ)I−1

ℓ (τ) ≤ 3

2
∀τ ∈ [τ0, τ

∗],

provided that τ0 ≥ τ7(A, η, η̃). Thus, we derive from the fact that (ε, b)(τ) ∈ ∂Vℓ[A, η, η̃](τ
∗) the

following

(ε1, ε2, ..., εℓ)(τ
∗) ∈ ∂V̂ [A, η](τ∗)

which concludes item (i).
- Proof of item (ii): it is sufficient to prove that there exists ν0 small enough such that

• Either there exists j ∈ {1, ..., ℓ− 1}, such that

|εj(τ∗ + ν)| > Ab
α
2
+η(τ1 + ν), ∀ν ∈ (0, ν0), (8.10)

• or the following holds∣∣∣∣εℓ(τ∗ + ν) +
2

α
m0b

α
2 (τ1 + ν)

∣∣∣∣ > Ab
α
2
+η(τ1 + ν), ∀ν ∈ (0, ν0), (8.11)

As we proved in item (i), one of the following two cases holds

• Case 1: There exists j ∈ {1, ..., ℓ− 1} such that

εj(τ
∗) = σjAb

α
2
+η(τ∗),

• Case 2:

εℓ(τ1) +
2

α
m0b

α
2 (τ1) = σℓAb

α
2
+η(τ1),

where σj = ±1. The goal is to prove that the first case implies (8.10) and the second one concludes
(8.11). Indeed, we have

+ Assume that case 1 occurs. Without loss of generality, we can assume σj = 1 and introduce

Bj(τ) = εj(τ)−Ab
α
2
+η(τ).
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It is obvious that B(τ∗) = 0 and we also get from (8.7) and (8.9),

B′
j(τ

∗) =
(α
2
− j
)
εj(τ

∗)−A
(α
2
+ η
) b′(τ∗)
b(τ∗)

b
α
2
+η(τ∗) +O(b

α
2
+4η(τ∗))

= Ab
α
2
+η(τ∗)

(
(ℓ− j)− η

(
1− 2ℓ

α

))
+O

(
b
α
2
+4η(τ∗)

)
> 0,

provided that ℓ − j ≥ 1 and η ≤ η7(A, η, η̃) and τ∗ ≥ τ0 ≥ τ7(A). Then, Bj(τ
∗ + ν) > 0 for all

ν ∈ (0, ν0) for some ν0 small enough. Thus, (8.10) follows.

+ If the case 2 occurs. We also assume σ = 1 (the opposite sign is the same), we then define

Bℓ(τ) = εℓ(τ) +
2

α
m0b

α
2 (τ)−Ab

α
2
+η(τ),

and it holds that Bℓ(τ
∗) = 0. and we derive from (8.8) and (8.9) that

B′
ℓ(τ

∗) =
(α
2
− ℓ
)
εℓ(τ

∗) +
2

α
m0

α

2

b′

b
b
α
2 (τ∗)−A

(α
2
+ η
) b′
b
b
α
2
+η(τ∗) +O(b

α
2
+4η(τ1))

= Ab
α
2
+η(τ∗)

[
η

(
2ℓ

α
− 1

)]
+O(b

α
2
+4η(τ∗)) > 0,

since η
(
2ℓ
α − 1

)
> 0 and τ∗ ≥ τ0 ≥ τ7(A, η, η̃). Thus, we conclude that Bℓ(τ

∗ + ν) > 0 for all
ν ∈ (0, ν0), and (8.11) follows. This concludes the proof of the Proposition.

8.4. Topological argument

In this part, we aim to prove the existence of an initial datum (ε, b)(τ0) that leads to the global
existence of (ε, b)(τ) ∈ Vℓ[A, η, η̃](τ),∀τ ∈ [τ0,+∞). The following is our result:

Proposition 8.4. There exist A, η, η̃ and δ ≪ 1 satisfying A ≫ 1, 1 ≫ δ ≫ η ≫ η̃ > 0, η̃ and
τ0(A, η, η̃, δ) ≫ 1 such that there exists d̃ = (d1, ..., dℓ) ∈ DA defined in Lemma 8.2 such that with
initial data ε(ℓ, τ0) defined as in (8.5), the solution (ε, b) to the coupled problem (2.17-3.4), globally
exists and the following holds

(ε, b)(τ) ∈ Vℓ[A, η, η̃](τ),∀τ ≥ τ0.

Proof. The proof follows from the topological argument which was used in [3] and [25]. Let us
assume A, η, η̃ and δ are suitably chosen such that Lemma 8.2 and Proposition 8.3 hold true. We
now proceed to the proof by contradiction and we assume that for all d̃ = (d1, ..., dℓ) ∈ DA, there

exists τ(d̃) ∈ [τ0,+∞) such that (ε, b)(τ(d̃)) /∈ Vℓ[A, η, η̃](τ(d̃)). Then, we can define for each

d̃ ∈ DA the maximum time

τ∗(d̃) = sup {τ1 such that (ε, b)(τ) ∈ Vℓ[A, η, η̃](τ), ∀τ ∈ [τ0, τ1], } (8.12)

Now, let the mapping Π be defined by

Π : DA,τ0 → ∂ [−1, 1]ℓ (8.13)

d̃ = (d1, ..., dℓ) 7→ Π(d̃), (8.14)

where

Π(d̃) = (Ab
α
2
+η(τ∗(d̃)))−1

(
ε1, ..., εℓ +

2

α
m0b

α
2

)
(τ∗(d̃)).

In particular, the following properties hold:

(i) Π is continuous from DA to ∂ [−1, 1]ℓ. Indeed, since τ∗(d̃)’s definition implies

(ε, b)(τ∗(d)) ∈ ∂Vℓ[A, η, η̃](τ
∗(d)),

and item (ii) of Proposition 8.3 immediately yields the result.
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(ii) Deg(Π|∂DA
) ̸= 0. The result follows from item (i) of Lemma 8.2.

Thus, such a mapping Π can not exist, since it contradicts the index theory and the conclusion of
the Proposition follows.

9. Existence of ground state

We show in this part the asymptotic behavior of the ground state solution to (2.1). Let us
introduce Q to be the function satisfying

Q′′(ξ) +
d+ 1

ξ
Q′

ξ − 3(d− 2)Q2 − (d− 2)ξ2Q3 = 0, Q(0) = −1 and Q′(0) = 0. (9.1)

We have the following result:

Lemma 9.1. Let d ≥ 10, then there exists a unique solution Q to equation (9.1) satisfying the
following:

(i) Asymptotic behavior of Q:

Q(ξ) = −1 +

k∑
i=1

aiξ
2i +O(ξ2k+2) as ξ → 0, (9.2)

Q(ξ) = − 1

ξ2
+ q0ξ

−γ +O(ξ−3γ−4) as ξ → +∞, (9.3)

and q0 > 0.
(ii) In particular, when d = 10, the ground state is explicitly given by

Q10(ξ) = − 1

ξ2 + 1

(iii) Asymptotic of ΛQ = 2Q+ ξ · ∂ξQ :

ΛQ(ξ) < 0, and ΛQ =

 −2 + 4
(
3d−6
3d+6

)
ξ2 +

∑k
i=2 a

′
iξ

2i +O(ξ2k+2) as ξ → 0,

a0ξ
−γ +O(ξ−γ−g) as ξ → +∞,

(9.4)

for some a0 < 0.
We note that ΛQ’s asymptotic at infinity is stable under ∂kξ for all k ∈ N, more precisely

∂kξΛQ = ∂kξ
(
a0ξ

−γ
)
+O(ξ−γ−g−k) as ξ → +∞. (9.5)

Proof. - The proof of item (i): Following [18], we reformulate the ground state equation as an
autonomous ODE. Indeed, let

Z(ξ) = −ξ2Q(ξ),

then

Z ′′ +
d− 3

ξ
Z ′ − (d− 2)

ξ2
Z(Z − 1)(Z − 2) = 0. (9.6)

Again, apply the change of function

Z(ξ) = v(x) where ξ = ex,

to get

v′′(x) + (d− 4)v′(x)− (d− 2)v(v − 1)(v − 2) = 0, x ∈ (−∞,+∞). (9.7)

To prove global existence and asymptotic behavior of the solution, we employ the phase portrait
analysis that used in [4] for the ground-state of the heat flow maps. First observe that (9.7) has three
critical points v = 0, 1, 2. We choose v = 1 to start our analysis (for v = 0, 2, the linear operator
will have complex or positive eigenvalues). According to our initial condition Q(0) = −1, Q′(0) = 0,
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Q locally exists which in turn implies v’s existence on (−∞, x0) for some x0 < 0 and |x0| large
enough. In particular, we have the boundary condition at −∞:

v(x) = e2x +
k∑

i=2

cie
2ix +O(e(2k+2)x) as x→ −∞.

This allows us to consider v(x) as the flow starting at (0, 0) and ending at (1, 0). Following [2],
we linearize around 1, i.e.

ϵ = v − 1,

then ϵ solves

ϵ′′ + (d− 4)ϵ′ − (d− 2)ϵ(ϵ+ 1)(ϵ− 1) = 0. (9.8)

The linearisation is given by

ϵ′′ + (d− 4)ϵ′ + (d− 2)ϵ = (d− 2)ϵ3,

We write the above equation in matrix form(
ϵ′

ϵ

)′
=

(
−(d− 4) − (d− 2)

1 0

)(
ϵ′

ϵ

)
+

(
(d− 2)ϵ3

0

)
.

The eigenvalues are

λ1 =
1

2
(
√
d2 − 12d+ 24− d+ 4) (9.9)

λ2 =
1

2
(−
√
d2 − 12d+ 24− d+ 4),

provided that

d2 − 12d+ 24 ≥ 0,

otherwise, the solution is spiral at +∞. We see that λ1,2(d) < 0 for all d ≥ 10.
- Construction of no-escape region: Let us define

F (ϵ, ϵ′) = (ϵ′,−(d− 4)ϵ′ + (d− 2)(ϵ3 − ϵ)).

We introduce a trapping region

S = {(ϵ, ϵ′)| ϵ3 − ϵ ≤ ϵ′ ≤ 2(ϵ3 − ϵ), ϵ ∈ (−1, 0)}.

• The lower boundary curve ϵ′ = (ϵ3 − ϵ). In the phase portrait space (ϵ, ϵ′), we define the
normal vector νin which points inward S

νin = (−(3ϵ2 − 1), 1).

We easily check that

F (ϵ, ϵ′) · νin = (ϵ3 − ϵ)3(1− ϵ2) > 0,∀ϵ ∈ (−1, 0).

• The upper boundary curve ϵ′ = 2(ϵ3 − ϵ). In the phase portrait space (ϵ, ϵ′), we define the
normal vector νin which points inward S

νin = (2(3ϵ2 − 1),−1).

Then,

F (ϵ, ϵ′) · νin = (ϵ3 − ϵ)(12ϵ2 + d− 10) > 0,∀ϵ ∈ (−1, 0) and m ≥ 10.

The vector field F points always inward on the whole boundary of S (excluding the sta-
tionary points (−1, 0) and (0, 0)). This implies that the integral curve of F starting in S must
stay in S.
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- The boundary conditions trapped in S: Note that with initial data Q(0) = −1, Q′(0) = 0, Q
locally exists, this leads that ϵ exists locally, i.e., it exists on (−∞, x0), for some x0 near −∞. In
particular, we have Q ∈ C∞. Using Taylor expansion together with equation (9.1), we see that
Q(y) behaves as follows

Q(ξ) = −1 +

(
3d− 6

2d+ 6

)
ξ2 +

(
1

4
.
21d2 − 74d+ 64

(3d+ 4)(d+ 4)

)
ξ4 +O(ξ6) as ξ → 0.

- Asymptotic of the trapped solution in S: Let us discuss the boundary condition at −∞: we
have

ϵ(x) = −1 + e2x − 3d− 6

3d+ 6
e4x − 1

4

21d2 − 74d+ 64

(3d+ 4)(d+ 4)
e6x +O(e8x), as x→ −∞.

Using this asymptotic, the solution can’t end up at (−1, 0). In addition, at (0, 0), it gives the
following general asymptotic of ϵ:

ϵ(x) = h+e
λ1x(1 +O(e−2x)) + h−e

λ2x(1 +O(e−2x)),

where

λ1 =
1

2
(
√
d2 − 12d+ 24− d+ 4) and λ2 =

1

2
(−
√
d2 − 12d+ 24− d+ 4).

Assuming that h+ = 0, we derive from the shrinking set S that

−ϵ < ϵ′ < −2ϵ∀

Then

h−(1 + λ2) > 0 and h−(2 + λ2) < 0,

this contradicts the formula of λ2.
So, h+ ̸= 0.
In addition to that, we require the same condition as h−

h+(1 + λ1) > 0 and h+(2 + λ1) < 0.

since

λ1 + 1 < 0 and λ1 + 2 > 0

we see that h+ < 0 and we get the conclusion.
- The proof of item (ii): can be done in straightforward way, we omit the details.
- The proof of item (iii): We reformulate Q(ξ) by

Q(ξ) = −(ϵ(x) + 1)

e2x
, ξ = ex. (9.10)

Computation yields

ξQ′
ξ = −ϵ

′
x(x)

e2x
− 2Q.

Thus,

ΛQ = 2Q+ y∂yQ = −ϵ
′
x(x)

e2x
< 0 ∀x ∈ (−∞,∞). (9.11)

Now, we aim to find the higher derivative of ϵ, i.e., ∂kxϵ for all k ≥ 1. In fact, ϵ satisfies the following
integral equation

ϵ(x) = h+e
λ1x + h−e

λ2x − 1

λ1 − λ2

∫ ∞

x

(
eλ1(x−x′) − eλ2(x−x′)

)
g(ϵ(x′))dx′, (9.12)

where g(z) = (d− 2)z3. This gives us

ϵ(x) = h+e
λ1x +O

(
e3λ1x

)
,
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as x → +∞. In particular, applying ∂kx to the right hand side of equation (9.12) , we derive the
following

∂kxϵ(x) = ∂kx(h+e
λ1x) +O(e3λ1x), as x→ +∞. (9.13)

Let us remark that, it remains to prove (9.5). Indeed, we have the following

ΛQ = −ϵ′(x)e−2x,

∂yΛQ = −ϵ′′(x)e−3x + 2ϵ′(x)e−3x,

∂2yΛQ = −ϵ′′′(x)e−4x + 3ϵ′′e−4x + 2ϵ′′(x)e−4x − 6ϵ′(x)e−4x,

= (−ϵ′′′ + 5ϵ′′ − 6ϵ′)e−4x,

∂3yΛQ = (−ϵ(4) + 5ϵ′′′ − 6ϵ′′)e−5x − 4(−ϵ′′′ + 5ϵ′′ − 6ϵ′)e−5x.

By induction, we can prove that

∂kyΛQ = −Πk−1
j=0(∂x − 2− j)∂xϵ(x)e

(−2−k)x,∀k ≥ 1.

Using (9.13) and the fact that ξ = ex, we get

ΛξQ(ξ) = a0ξ
−γ +O(ξ−3γ−4),

∂ξΛQ(ξ) = a0(λ1 − 2)ξ−γ−1 +O(ξ−3γ−5),

∂2ξΛQ(ξ) = a0(λ
2 − 5λ1 + 6)ξ−γ−2 +O(ξ−3γ−6).

In particular, we have the general case as follows: for all k ≥ 1

∂kξΛQ = a0Π
k−1
j=0(λ1 − 2− j)ξλ1−2−k +O(ξ−λ1−2−k)

= a0(−γ)...(−γ − (k − 1))ξ−γ−k +O(ξ−3γ−4−k),

where γ = 2 − λ1, a0 = −λ1h+. Thus, (9.5) directly follows. This finishes the proof of the
Lemma.

10. Diagonalisation of Lb

The goal of this section is to give a detailed proof of Proposition 4.2 which is the same as the
route map established in the Section 2 of [9].

10.1. Interior problem

In the sequel, we construct eigenfunctions for Lb in the region 0 ≤ y ≤ y0 ≪ 1. First, we
introduce

w(y, τ) = v(ξ, τ), with ξ =
y√
b
. (10.1)

The interior zone can be written in terms of the blow-up variable ξ as

0 ≤ ξ ≤ ξ0 :=
y0√
b
.

Recall the definition of Lb

Lbw(y) =
1

b
(Hξ − βbΛξ) v.

where the Shrödinger type operator Hξ defined by

H = ∂2ξ +
d+ 1

ξ
∂ξ − 3(d− 2)

(
2Q(ξ) + ξ2Q2(ξ)

)
. (10.2)
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Lemma 10.1 (Generators of the Kernel of H). There exists a family {Ti}i≥0 with initial element

T0 = a−1
0 ΛξQ belonging to the kernel of Hξ and such that for all i ∈ N

H (Ti+1) = Ti. (10.3)

Moreover, Ti admits the expansion

Ti(ξ) =


∑q

l=0 ti,lξ
2i+2l +O(ξ2i+2q+2),∀q ∈ N, as ξ → 0,

Ciξ
−γ+2i

(
1 +O

(
ln ξ
ξ2

))
, as ξ → +∞,

(10.4)

and the derivatives, up to order k = 3, are such that

∂kξ Ti(ξ) = ∂kξ
(
Ciξ

−γ+2i
)
+O

(
ξ−γ+2i−2−k ln ξ

)
, as ξ → +∞. (10.5)

Here γ and Cj were defined in (2.26), and (2.29), respectively.
Let

Θi = ΛTi − (2i− α)Ti.

then, for all k ∈ {0, 1, 2}

∂kξΘi(ξ) = O
(
ξ−γ+2i−k−2 ln ξ

)
as ξ → +∞. (10.6)

Proof. A detailed proof is to be presented in Appendix D.

The generators of the kernel of Hξ are at hand, we are in position to perform the construction
of the eigenvalues and the eigenfunctions in the interior zone. More precisely, our result reads

Proposition 10.2 (Inner eigenfunctions). Let ℓ ∈ N, ℓ ≥ 1, i ∈ {0, ..., ℓ} and β ∈
[
1
4 ,

3
4

]
. Then,

there exists ϵ0(β) > 0 small enough such that for all ϵ ∈ (0, ϵ0) such that there exists y∗(ϵ) ≪ 1 such

that for all 0 < y0 ≤ y∗ there exist b∗(y0) and λ̃∗(y0) such that for all 0 < b < b∗(y0) and |λ̃| ≤ λ̃∗

there exists ϕi,int ∈ C∞
([

0, y0√
b

]
,R
)
such that the following hold:

(H − bβΛ)ϕi,int,β = 2βb
(α
2
− i+ λ̃

)
ϕi,int,β, (10.7)

where ϕi,int,β has the following decomposition

ϕi,int,β(ξ) =

i∑
j=0

ci,j(2β)
jbjTj(ξ) + λ̃

i∑
j=0

bj+1
(
ci,j(2β)

j+1Tj+1(ξ) + Sj(ξ)
)
+ bRi(ξ), (10.8)

where the correction Ri and Sj satisfy the following estimates

∥Sj∥X2j+2−γ
ξ0

≤ Cy20, ∥∂bSj∥X2j+4−γ
ξ0

≤ C, ∥∂λ̃Sj∥X2j+2−γ
ξ0

≤ Cy20, and ∥∂βSj∥X2j+2−γ
ξ0

≤ Cy20,

∥Ri∥X−γ+ϵ
ξ0

≤ C(ϵ), ∥∂bRi∥X2−γ+ϵ
ξ0

≤ C(ϵ), ∥∂λ̃Ri∥X2−γ+ϵ
ξ0

≤ C(ϵ)b, and ∥∂βRi∥X2−γ+ϵ
ξ0

≤ C(ϵ).

Proof. Due to the lengthy proof, we aim to put the details in Appendix E.

10.2. Exterior problem

In this part, we aim to construct the eigenfunctions of Lb on [y0,+∞), for some y0 ≪ 1. The
following is our result

Proposition 10.3 (Outer eigenfunctions). Let ℓ ∈ N, ℓ ≥ 1, i ∈ {0, ..., ℓ} and β ∈
[
1
4 ,

3
4

]
. Then,

there exists y∗(β) ≪ 1 such that for all y0 ≤ y∗, there exist b∗(y0, β) and λ̃
∗(y0, β, b

∗) such that for

all b ∈ (0, b∗) and λ̃ ∈ (−λ̃∗, λ̃∗), there exits a C∞ [y0,+∞) function ϕi,out,β satisfying

Lbϕi,out,β =
(
2β
(α
2
− i
)
+ λ̃

)
ϕi,out,β,
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and having the following decomposition

ϕi,out,β = ϕi,∞,β + λ̃(ϕ̃i,β + R̃i,1) + R̃i,2,

where ϕ̃i,β satisfies(
L β

∞ − 2β
(α
2
− i
))

ϕ̃i,β = ϕi,∞,β with ϕi,∞,β defined as in (4.2),

and R̃i,1 and R̃i,2 fulfil the following estimates

∥R̃i,1∥Xγ−d,2i−γ+2
y0

≤ C|λ̃|, ∂bR̃i,1 = 0, ∥∂λ̃R̃i,1∥Xγ−d,2i−γ+2
y0

≤ C, ∥∂βR̃i,1∥Xγ−d,2i−γ+2
y0

≤ C,

and

∥R̃i,2∥X−d,a′
y0

≤ Cb
α
2 , ∥∂bR̃i,2∥X−d,a′

y0

≤ Cb
α
2
−1, ∥∂λ̃R̃i,2∥X−d,a′

y0

≤ Cb
α
2 , ∥∂βR̃i,2∥X−d,a′

y0

≤ Cb
α
2 ,

for a′ = 2i+ 2− γ and Xa,a′
y0 is a Banach space generated by the norm

∥f∥
Xa,a′

y0

= sup
y∈[y0,1]

y−a

{
2∑

i=0

yi
∣∣∂iyf(y)∣∣

}
+ sup

y∈[1,+∞)
y−a′

{
2∑

i=0

yi
∣∣∂iyf(y)∣∣

}
. (10.9)

Proof. See Appendix F.

10.3. Matching asymptotic

This part is devoted to conclude the proof of the diagonalisation on Lb.

Proof of Proposition 4.2: Let i ∈ {0, 1, ..., ℓ} where ℓ ∈ N, ℓ ≥ 2, β ∈
[
1
4 ,

3
4

]
, y0 ≤ y∗1, b ≤ b∗1 such

that Propositions (10.2- 10.3) hold and ϕi,int and ϕi,out,β are defined in there.

A) The proof of item (I): We define

ϕi,b,β(y) =


b−

γ
2 ϕi,int,β

(
y√
b

)
if y ∈ [0, y0],

b−
γ
2 ϕi,int,β

(
y0√
b

)
ϕi,out,β(y0)

ϕi,out,β(y) if y ∈ [y0,+∞).

(10.10)

The main goal is to prove that there exists y0 ∈ (0, 1) small enough and b∗(y0) > 0 such that, for

all b ∈ (0, b∗), there exists a unique λ̃i(b, β) = λ̃ satisfying

Lbϕi,b,β =
(
2β
(α
2
− i
)
+ λ̃

)
ϕi,b,β, (10.11)

and λ̃ satisfies (4.6).

First, we observe that ϕi,int,β ∈ C∞
([

0, y0√
b

])
and ϕi,out,β ∈ C∞[y0,+∞) and they solve the

regular second order differential equations, so ϕi,b,β ∈ C∞[0,+∞) if and only if

b−
γ
2
− 1

2∂ξϕi,int,β

(
y0√
b

)
= b−

γ
2

ϕi,int,β

(
y0√
b

)
ϕi,out,β(y0)

∂yϕi,out,β(y0), (10.12)

this condition ensures ϕi,b,β’s differential is continuous at y0. In particular, it is equivalent to

b−
1
2∂ξϕi,int,β

(
y0√
b

)
ϕi,out,β(y0)− ϕi,int,β

(
y0√
b

)
∂yϕi,out,β(y0) = 0. (10.13)

Here we use the implicit function theorem by applying it to the function F̃ [y0](λ̃, b, β) defined by

F̃ [y0](λ̃, b, β) = b−
1
2∂ξϕi,int,β

(
y0√
b

)
ϕi,ext,β(y0)− ϕi,int,β

(
y0√
b

)
∂yϕi,out,β(y0).
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We firstly prove the following expansions:

F̃ [y0](λ̃, b, β) = λ̃K0ai,0(γ̃ − γ)y−γ−γ̃−1
0 (1 +O(y20) +O(|λ̃|))

+ O(b1−
ϵ
2 ), (10.14)

∂bF̃ [y0](λ̃, b, β) = O(y−2γ−1+ϵ
0 b−

ϵ
2 ) +O(|λ̃|b−1y−2γ+3

0 ), (10.15)

∂λ̃F̃ [y0](λ̃, b, β) = (γ̃ − γ)K0ai,0y
−γ−γ̃−1
0 (1 +O(y20) +O(|λ̃|)), (10.16)

and for β-derivative

(10.17)

∂βF̃ [y0](λ̃, b, β) =


λ̃2ai,1K0(2 + γ̃ − γ)y−γ̃−γ+1

0 (1 +O(|y0|2) +O(|λ̃|)) if i ≥ 1,

+O(b1−
ϵ
2 )

O(|λ̃|y−γ̃−γ+3
0 ) +O(|λ̃2|) +O(b1−

ϵ
2 ) if i = 0.

(10.18)

Since the proof of asymptotic expansions (10.14-10.18) are technical and long, we complete them
when we finish the proof of Proposition 4.2. Assume that the asymptotic expansions hold for all
b ∈ (0, b∗(y0)), y0 ≤ y∗0, and β ∈

[
1
4 ,

3
4

]
. We mention that the expansions are uniform in β, λ̃ and

β. So, the argument from the implicit function theorem yields that ∀b ∈ (0, b∗(y0)) and β ∈
[
1
4 ,

3
4

]
,

there exists a unique λ̃ = λ̃(b, β) such that

F̃ [y0](λ̃, b, β) = 0.

In particular, (10.14) ensures that λ̃(b, β) = O
(
b1−

ϵ
2

)
and expansions (10.15-10.18) imply∣∣∣b∂bλ̃(b, β)∣∣∣ ≲y0 b

1− ϵ
2 and

∣∣∣∂βλ̃(b, β)∣∣∣ ≲y0 1

yielding (4.6). Next, we decompose ϕi,b,β as follows

ϕi,b,β(y) =
i∑

j=0

ci,j(2β)
j(
√
b)2j−γTj

(
y√
b

)
+ ϕ̃i,b(y), (10.19)

and we aim to prove
∥ϕ̃i,b∥H1

ρ
≤ Cb1−

ϵ
2 . (10.20)

In particular, we can specify it by

ϕ̃i,b,β(y) =


b−

γ
2 ϕi,int,β

(
y√
b

)
−
∑i

j=0 ci,j

(√
b
)2j−γ

Tj

(
y√
b

)
if y ∈ [0, y0],

b−
γ
2 ϕi,int,β

(
y0√
b

)
ϕi,out,β(y0)

ϕi,out,β(y)−
∑i

j=0 ci,j

(√
b
)2j−γ

Tj

(
y√
b

)
if y ∈ [y0,+∞).

Now, we aim to prove that

|∂ky ϕ̃i,b,β(y)| ≤ C
(
y−γ+2−kIy∈[0,y0] + y−γ+2i+2−kIy∈[y0,+∞)

)
b1−

ϵ
2 , y ∈ R and k = 0, 1. (10.21)

Since the proofs for k = 0 and k = 1 are the same, we only give the proof of (10.21) for the case
k = 0 and we kindly refer the reader to check the details. Let us start the proof by considering two
cases, namely, y ∈ [0, y0] and y ∈ [y0,+∞).

1. y ∈ [0, y0]: write ϕ̃i,b as

ϕ̃i,b(y) = λ̃
i∑

j=0

bj+1− γ
2

[
ci,jTj+1

(
y√
b

)
+ Sj

(
y√
b

)]
+ b1−

γ
2Ri

(
y√
b

)
.

According to Lemma 10.1, we have

|Tj+1(ξ)| ≤ Cξ−γ+2j+2, ∀ξ ∈ R+,
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so that ∣∣∣∣λ̃b1+j− γ
2 ci,jTj+1

(
y√
b

)∣∣∣∣ ≤ C|λ̃|y2j+2−γ .

Proposition 10.2 yields∣∣∣∣λ̃b1+j− γ
2 Sj

(
y√
b

)∣∣∣∣ ≤ C
∣∣∣λ̃∣∣∣ y2j+2−γ , and b1−

γ
2

∣∣∣∣Ri

(
y√
b

)∣∣∣∣ ≤ Cb1−
ϵ
2 y−γ+ϵ.

The above three estimates allows us to infer that, for y ∈ [0, y0]

|ϕ̃i,b(y)| ≤ Cb1−
ϵ
2 y2−γ .

2. y ∈ [y0,+∞]: write ϕ̃i,b as follows

ϕ̃i,b(y) =
b−

γ
2 ϕi,int

(
y0√
b

)
ϕi,ext(y0)

ϕi,ext(y)−
i∑

j=0

ci,j

(√
b
)2j−γ

Tj

(
y√
b

)

= ϕi,ext(y)−
i∑

j=0

ci,j(
√
b)2j−γTj

(
y√
b

)
︸ ︷︷ ︸

=I

+

b− γ
2 ϕi,int

(
y0√
b

)
ϕi,ext(y0)

− 1

ϕi,ext(y)︸ ︷︷ ︸
=II

.

Let
T̃j(ξ) = Tj(ξ)− Cjξ

2j−γ , (10.22)

and we decompose ϕi,ext,β as follows

I = ϕi,ext(y)−
i∑

j=0

ci,j(
√
b)2j−γCj

(
y√
b

)2j−γ

−
i∑

j=0

ci,j(
√
b)2j−γ T̃j

(
y√
b

)

= −
i∑

j=0

ci,j(
√
b)2j−γ T̃j

(
y√
b

)
+ λ̃(ϕ̃i + R̃i,1) + R̃i,2

Lemma 10.1 gives, for y ≥ y0∣∣∣∣(√b)2j−γ T̃j

(
y√
b

)∣∣∣∣ ≤ Cy−γ+2j−2| ln y|b| ln b|

≤ Cy−γ+2j−2| ln y|b1−
ϵ
2 .

From Proposition 10.3, we deduce that∣∣∣ϕ̃i(y)∣∣∣ ≤ Cy2i−γ | ln y|,∣∣∣R̃i,1(y)
∣∣∣ ≤ C

(
y−γ̃ + y2i−γ+2

)
|λ̃|,∣∣∣R̃i,2(y)

∣∣∣ ≤ C(y−γ̃−2−α + y2i+2−γ)bα,

for all y ≥ y0. Since α ≥ 1− ϵ
2 , we obtain for all y ≥ y0∣∣∣∣∣∣ϕi,out,β(y)−

i∑
j=0

ci,j(
√
b)2j−γTj

(
y√
b

)∣∣∣∣∣∣ ≤ Cy2i+2−γ | ln y|b1−
ϵ
2 . (10.23)

For the term II, we use the estimate obtained for I at y = y0 to get

|II| =

∣∣∣∣∣∣
b−

γ
2 ϕi,int

(
y0√
b

)
ϕi,ext(y0)

− 1

∣∣∣∣∣∣ ≤ C(y0)b
1− ϵ

2 .
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Putting together the estimates for I and II yields for all y ≥ y0∣∣∣ϕ̃i,b(y)∣∣∣ ≤ C(y0)y
−γ+2i+2b1−

ϵ
2 .

Similarly for ∂yϕ̃i,b, we establish∣∣∣∂yϕ̃i,b(y)∣∣∣ ≤ C(y0)y
−γ+2i+1b1−

ϵ
2 .

- Now, we have

∥ϕi,b − ϕi,∞∥H1
ρ
≤

∥∥∥∥∥∥
i∑

j=0

ci,j(
√
b)2j−γTj

(
y√
b

)
− ϕi,∞

∥∥∥∥∥∥
H1

ρ

+ ∥ϕ̃i,b∥H1
ρ
.

Taking into account, (10.20), it is sufficient to establish∥∥∥∥∥∥
i∑

j=0

ci,j(
√
b)2j−γTj

(
y√
b

)
− ϕi,∞

∥∥∥∥∥∥
H1

ρ

≤ Cb1−
ϵ
2 .

As above, we have

i∑
j=0

ci,j(
√
b)2j−γTj

(
y√
b

)
− ϕi,∞(y) =

i∑
j=0

ci,j(
√
b)2j−γ T̃j

(
y√
b

)
.

which yields, after splitting the integral in two regions {y ≤
√
b} and {y ≥

√
b} then using Lemma

10.1, to ∥∥∥∥∥∥
i∑

j=0

ci,j(
√
b)2j−γ T̃j

(
y√
b

)∥∥∥∥∥∥
H1

ρ

≤ Cb1−
ϵ
2 .

- Now, we move to the proof of item (iii) in Proposition 4.2. We distinguish two regions:

• y ∈ [0, y0]: from definition (10.10), we have

ϕi,b(y) = b−
γ
2 ϕi,int

(
y√
b

)
=

i∑
j=0

ci,j(
√
b)2j−γTj

(
y√
b

)

+ λ̃
i∑

j=0

bj+1− γ
2

[
ci,jTj+1

(
y√
b

)
+ Sj

(
y√
b

)]
+ b1−

γ
2Ri

(
y√
b

)
.

Since, for all ξ ∈ R

|Tj(ξ)| ≤ C
ξ2j

1 + ξγ
,

we have, by Lemma 10.1∣∣∣∣∣∣
i∑

j=0

bj−
γ
2 Tj

(
y√
b

)∣∣∣∣∣∣ ≤ C(i+ 1)
⟨y⟩2i

(
√
b+ y)γ

.

and ∣∣∣∣∣∣
i∑

j=0

bj+1− γ
2 Tj+1

(
y√
b

)∣∣∣∣∣∣ ≤ C(i+ 1)
⟨y⟩2i+2

(
√
b+ y)γ

.
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For Sj , we have ∣∣∣∣∣∣λ̃
i∑

j=0

b1+j− γ
2 Sj

(
y√
b

)∣∣∣∣∣∣ ≤ C
⟨y⟩2i+2

(
√
b+ y)γ

,

while for Ri ∣∣∣∣b1− γ
2Ri

(
y√
b

)∣∣∣∣ ≤ C
⟨y⟩ϵ

(
√
b+ y)γ

.

The above allows one to conclude that

|ϕi,b(y)| ≤ C
⟨y⟩2i+2

(
√
b+ y)γ

,∀y ∈ [0, y0].

• y ∈ [y0,+∞): from the definition of ϕb on this region and the fact that∣∣∣∣∣b− γ
2

ϕi,int(
y0√
b
)

ϕi,ext(y0)

∣∣∣∣∣ ≤ C(y0),

it is sufficient to estimate ϕi,ext. Recall that

ϕi,ext(y) = ϕi,∞(y) + λ̃(ϕ̃i(y) + R̃i,1) + R̃i,2.

The asymptotic behavior of ϕ̃i yields, for all y ≥ y0∣∣∣ϕ̃i(y)∣∣∣ ≤ C
y2i| ln y|
yγ

≤ C(y0)
⟨y⟩2i+2

(
√
b+ y)γ

.

Moreover, we have the following facts: for all y ≥ y0∣∣∣R̃i,1(y)
∣∣∣ ≤ C(y0)|λ̃|

⟨y⟩2i+2

(
√
b+ y)γ

,∣∣∣R̃i,2(y)
∣∣∣ ≤ C(y0)b

α ⟨y⟩2i+2

(
√
b+ y)γ

.

Putting together the above estimates, one gets

|∂yϕi,b(y)| ≤ C
⟨y⟩2i+2

(
√
b+ y)γ

, ∀y ∈ [y0,∞).

A similar reasoning allows us to obtain the rest of the estimates, we omit the details.

- Proof of (10.14) :
First, we decompose ϕi,int,β and ϕi,out,β by

ϕi,int,β

(
y0√
b

)
= b

γ
2

ϕi,∞,β(y0) + λ̃

i∑
j=0

ci,jCj+1(2β)
j+1y−γ+2j+2

0 +Ai,1(λ̃, y0, b, β)

 ,

b−
1
2∂ξϕi,int,β

(
y0√
b

)
= b

γ
2

∂yϕi,∞,β(y0) + λ̃
i∑

j=0

ci,jCj+1(2β)
j+1(−γ + 2j + 2)y−γ+2j+1

0

+ Ai,2(λ̃, y0, b, β)
}
,

and

ϕi,out,β (y0) = ϕi,∞,β(y0) + λ̃K0y
−γ̃
0 +Bi,1(λ̃, y0, b, β),

∂yϕi,out,β(y0) = ∂yϕi,∞,β(y0)− λ̃K0γ̃y
−γ̃−1
0 +Bi,2(λ̃, y0, b, β).
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where

Ai,1 =

i∑
j=0

ci,j(2β)
jbj−

γ
2 T̃j

(
y0√
b

)
+ λ̃

i∑
j=0

ci,j(2β)
j+1bj+1− γ

2 T̃j+1

(
y0√
b

)

+ λ̃
i∑

j=0

bj+1− γ
2 Sj

(
y0√
b

)
+ b1−

γ
2Ri

(
y0√
b

)
,

Ai,2 =
i∑

j=0

ci,j(2β)
jbj−

1
2
− γ

2 ∂ξT̃j

(
y0√
b

)
+ λ̃

i∑
j=0

ci,j(2β)
j+1bj+

1
2
− γ

2 ∂ξT̃j+1

(
y0√
b

)

+ λ̃
i∑

j=0

bj+
1
2
− γ

2 ∂ξSj

(
y0√
b

)
+ b

1
2
− γ

2 ∂ξRi

(
y0√
b

)
,

and

Bi,1 = λ̃(ϕ̃i,β −K0y
−γ̃
0 ) + λ̃R̃i,1 + R̃i,2,

Bi,2 = λ̃∂y

(
ϕ̃i,β −K0y

−γ̃
0

)
+ λ̃∂yR̃i,1 + ∂yR̃i,2,

and T̃j and Cj defined as in (10.22) and (2.29), respectively.
We aim to estimate Ai and Bi by using the results of Propositions 10.2 and 10.3.

• estimate on Ai,1: From Lemma 10.1, we use Tj ’s expansion at ∞, to obtain the following

|T̃j(ξ)| ≤ Cξ−γ+2j−2 ln ξ,

for all ξ large enough, i.e ξ ≥ ξ0 > 1. Applying the above for ξ0 =
y0√
b
, we derive the following∣∣∣∣T̃j ( y0√

b

)∣∣∣∣ ≤ C

(
y0√
b

)−γ+2j−2

(| ln y0|+ | ln b|), ∀j ≥ 1,

and for j = 0, we have ∣∣∣∣T̃0( y0√
b

)∣∣∣∣ ≤ C

(
y0√
b

)−γ−2

.

This yields ∣∣∣∣∣∣
i∑

j=0

ci,jb
− γ

2
+j T̃j

(
y0√
b

)∣∣∣∣∣∣ ≤ Cy−γ−2
0 b| ln b|.

For the second term of Ai,1, the same process as above gives∣∣∣∣∣∣
i∑

j=0

ci,jb
j+1− γ

2 T̃j+1

(
y0√
b

)∣∣∣∣∣∣ ≤ Cy−γ−2
0 b| ln b|.

We now estimate to Sj . Accordingly to Proposition 10.2, and the definition of X2j+2−γ
ξ0

, we

have ∣∣∣∣Sj ( y0√
b

)∣∣∣∣ ≤ Cy20

(
y0√
b

)2j+2−γ

,

so that ∣∣∣∣∣∣λ̃
i∑

j=0

bj+1− γ
2 Sj

(
y0√
b

)∣∣∣∣∣∣ ≤ Cλ̃y4−γ
0 .
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The last term in A1is to be estimated again via Proposition 10.2, where we have∣∣∣∣Ri

(
y0√
b

)∣∣∣∣ ≤ C

(
y0√
b

)−γ+ϵ

, with ϵ≪ 1.

Hence ∣∣∣∣b1− γ
2Ri

(
y0√
b

)∣∣∣∣ ≤ Cy−γ+ϵ
0 b1−

ϵ
2 .

Finally, we get

A1 = O(λ̃y4−γ
0 ) +O

(
y−γ−2
0 b1−

ϵ
2

)
.

• For Ai,2: First, by Lemma 10.1 we get∣∣∣∂ξT̃j (ξ0)∣∣∣ ≤ Cξ−γ+2j−3
0 | ln ξ0|,∀j ≥ 1,

and ∣∣∣∂ξT̃0(ξ0)∣∣∣ ≤ C|ξ0|−γ−g−1.

Then∣∣∣∣∣∣
i∑

j=0

ci,jb
− γ

2
− 1

2
+j∂ξT̃j(ξ0)

∣∣∣∣∣∣ ≤ C

i∑
j=1

bj−
γ
2
− 1

2 |ξ0|−γ+2j−3| ln ξ0|+ Cb−
γ
2
− 1

2 |ξ0|−γ−g−1

≤ Cy−γ−1
0 | ln y0|b| ln b|+ Cy−γ−g−1

0 b
g
2 .

Next, we estimate the second term in Ai,2:∣∣∣∣∣∣λ̃
i∑

j=0

ci,jb
j+ 1

2
− γ

2 ∂ξT̃j+1

(
y0√
b

)∣∣∣∣∣∣ ≤ C|λ̃|y−γ−1
0 | ln y0|b

3
2 | ln b|.

Using Proposition 10.2 for Sj

|∂ξSj(ξ0)| ≤ C|ξ0|a−1 ≤ C|ξ0|2j+1−γ ,

we obtain ∣∣∣∣∣∣λ̃
i∑

j=0

bj+
1
2
− γ

2 ∂ξSj

(
y0√
b

)∣∣∣∣∣∣ ≤ C|λ̃|y−γ+1
0 .

The last term in Ai,2 is estimated similarly and we have

|b1−
γ
2 ∂ξRi(ξ0)| ≤ Cy−γ+ϵ−1

0 b
3
2
− ϵ

2 .

Hence, the expansion of Ai,2 is

Ai,2 = O(|λ̃|y−γ+1
0 ) +O(y−γ−1

0 | ln y0|b| ln b|).
• For Bi,1 Using Lemma F.1 we have∣∣∣λ̃(ϕ̃i(y0)−K0y

−γ̃
0 )
∣∣∣ ≤ C|λ̃|y−γ̃+2

0 .

For the second and third term, we use Proposition 10.3

|R̃i,1(y0)| ≤ C|λ̃|y−γ̃
0

and ∣∣∣R̃i,2(y0)
∣∣∣ ≤ Cy−γ̃−2−α

0 bα.

Then, Bi,1 reads as follows

Bi,1(y0) = O
(
|λ̃|y−γ̃+2

0

)
+O(|λ̃|2y−γ̃

0 ) +O(y−γ̃−2−α
0 bα).
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• For Bi,2: a similar reasoning gives

Bi,2(y0) = O
(
|λ̃|y−γ̃+1

0

)
+O(|λ̃|2y−γ̃−1

0 ) +O(y−γ̃−3−α
0 bα).

Putting the above expansions together, we derive for F̃ [y0](λ̃, b)

F̃ [y0](λ̃, b, β) = (∂yϕi,∞,β(y0) + λ̃
i∑

j=0

ci,j(2β)
j+1Cj+1(−γ + 2j + 2)y−γ+2j+1

0 +A2(λ̃, y0, b, β))

× (ϕi,∞,β(y0) + λ̃K0y
−γ̃
0 +B1(λ̃, y0, b, β))

− (∂yϕi,∞,β(y0)− λ̃K0γ̃y
−γ̃−1
0 +B2(λ̃, y0, b, β))

× (ϕi,∞,β(y0) + λ̃
i∑

j=0

ci,jCj+1(2β)
j+1y−γ+2j+2

0 +A1(λ̃, y0, b, β))

= λ̃K0ai,0(γ̃ − γ)y−γ−γ̃−1
(
1 +O(y20) +O(|λ̃|)

)
+ O

(
y−2γ−2
0 b1−

ϵ
2

)
+O

(
y−γ−γ̃−3−α
0 bα

)
.

The proofs of (10.15) and (10.16) follow the same outline.

11. Maximum principal

The main goal in this section is to use Maximum principal to construct the sub solution and the

super solution to (2.17) on the interval
[
0, b

η
4 (τ)

]
that leads to suitable estimates for ε.

Proposition 11.1 (Sub and super solutions). Let us consider η, η̃ be positive constants such that
1 ≫ η ≫ η̃, A ≥ 1. We assume furthermore that ε is the solution to (2.17) on [τ0, τ1] with initial
data given in (5.16) and the flow (b, β)(τ) ∈ (C1(τ0, τ1])

2 satisfy (ε, b, β)(τ) ∈ V [A, η, η̃](τ) for all
τ ∈ [τ0, τ1]. Then, there exists H(ξ) satisfying

|H(ξ)| ≤ C(η)

[
b(τ)

ξ2

1 + ξγ
+
b
η
4 (τ)

1 + ξγ

]
, for all ξ ∈ R+,

such that

|ε(y, τ)| ≤ b−1(τ)H

(
y√
b(τ)

)
,∀y ∈ [0, b

η
4 (τ)), (11.1)

where Qb defined as in (2.15). In other words, (11.2) remains true with τ lager than τ1 as long as
w exists and b satisfies the hypothesis of the Proposition.

Proof. First, we claim that the following∣∣w(y, τ)−Qb(τ)(y)
∣∣ ≤ b−1(τ)H

(
y√
b(τ)

)
, ∀y ∈ [0, b

η
4 (τ)) (11.2)

implies (11.1). We also mention that the proof is similar to the one in [5] where the authors

constructed sub-solution and super-solution to equation (2.12) on the small interval [0, b
η
4 (τ)]. Let

us consider the blowup variable (ξ, τ) and

w(y, τ) =
1

b(τ)
ω

(
y√
b(τ)

, τ

)
=

1

b(τ)
ω(ξ, τ).
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Introducing v = ω −Q(ξ) and v reads

b(τ)∂τv = ∂2ξ v +
d+ 1

ξ
∂ξv − 3(d− 2)(2Q+ ξ2Q2)v +B(v) + θ(τ)ΛξQ+ θ(τ)Λξv, (11.3)

where B defined as in (2.19) and θ(τ) defined by

θ(τ) = β(τ)
(
b′(τ)− b(τ)

)
. (11.4)

We also introduce the operator P as follows

P(v) := ∂2ξ v +
d+ 1

ξ
∂ξv − 3(d− 2)(2Q+ ξ2Q2)v + B̄(v) + θ(τ)ΛξQ+ θ(τ)Λξv − b(τ)∂τv, (11.5)

In order to construct the sub-solution and the super-solution, we need to construct two functions
as follows: let Q be the ground state satisfying (9.1), Q(0) = −1,Q′(0) = 0, and we introduce

Qσ =
1

σ
Q

(
ξ√
σ

)
, σ > 0,

exactly solves (9.1) thanks to the scaling (1.4). Next, define

H0(ξ) = ΛξQσ(ξ), (11.6)

satisfying

H ′′
0 +

d+ 1

ξ
H ′

0 − 3(d− 2)(2Qσ + ξ2Q2
σ)H0 = 0, (11.7)

and let H1(ξ) solve the following

H ′′
1 +

d+ 1

ξ
H ′

1 − 3(d− 2)(2Qσ + ξ2Q2
σ)H1 = T (ξ), (11.8)

where T (ξ) = −ΛξQ. In particular, H1 is explicitly given by

H1(ξ) = H0

∫ ξ

0

L (T )(ξ′)

H0(ξ′)
dξ′, (11.9)

where L was defined in (D.3) Using (11.6) and (11.9), H0 and H1 have the following asymptotics:

H0 (ξ) =

{
− 2

σ as ξ → 0,
a0σ

αξ−γ as ξ → ∞,
(11.10)

where a0 < 0 and α = 2− γ and

H1 (ξ) =

{
ξ2

d+2 as ξ → 0,
−a0

2(d+2−γ)ξ
2−γ as ξ → ∞.

(11.11)

Inspired by [5], we define

v+(ξ, τ) = θ+(τ)H1(ξ)−M(η)b
η
4 (τ)H0 (ξ) and v− = θ−(τ)H1(ξ) +M(η)b

η
4 (τ)H0(ξ), (11.12)

where

θ+(τ) = b(τ)

[
β(2β − 1)− 4β2

ℓ

α
− b

η
8 (τ)

]
and θ−(τ) = b(τ)

[
β(2β − 1)− 4β2

ℓ

α
+ b

η
8 (τ)

]
.(11.13)

Note that H0(ξ) = ΛξQσ < 0 see more (9.4). In particular, our aim is to prove

w+(y, τ) = Qb(τ)(y) +
1

b(τ)
v+

(
y√
b(τ)

)
and w−(y, τ) = Qb(τ)(y) +

1

b(τ)
v−

(
y√
b(τ)

)
are respectively the super-solution and the sub-solution to (2.12) which immediately implies (11.2).
Following [5], it is sufficient to check that

(i) P(v+) < 0 (P(v−) > 0),∀τ ∈ [τ0, τ1] and ξ ≤ b
η
4
− 1

2 (τ).
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(ii) Initial estimate: 1
b(τ0)

v−
(

y√
b(τ0)

, τ0

)
< w(y, τ0) − Qb(τ0)(ξ) <

1
b(τ0)

v+
(

y√
b(τ0)

, τ0

)
,∀y ≤

b
η
4 (τ0).

We remark that the proof of the estimates on v− are quite the same as for v+. Thus, we only
handle the latter.

- Proof of (i): plugging v+ into (11.5), we get

P(v+) = θ+(τ)∂2ξH1 −Mb
η
4 (τ)∂2ξH0 + θ+(τ)

(
d+ 1

ξ
∂ξH1

)
−M

η

4
(τ)

d+ 1

ξ
∂ξH0

− 3(d− 2)
[
2Q+ ξ2Q2

] (
µ+(τ)H1 −Mb

η
4 (τ)H0(ξ)

)
+ θ(τ)ΛξQ+ B̄(v+)

+ θ(τ)
[
θ+ΛξH1 −Mb

η
4ΛξH0

]
− b(τ)

[
∂τθ

+(τ)H1 −M∂τ b
η
4 (τ)H0 (ξ)

]
= −3(d− 2)

[
2Q+ ξ2Q2 − (2Qσ + ξ2Q2

σ)
] (
θ+(τ)H1(ξ)−Mbη(τ)H0(ξ)

)
+ B̄(v+) +

[
θ − θ+

]
ΛξQ+ θ(τ)

[
θ+ΛξH1 −Mb

η
4ΛξH0

]
− b(τ)

[
∂τθ

+H1 −M∂τ b
η
4H0

]
,

where the simplification comes from the facts that H0 and H1 solve (11.7) and (11.8), respectively.

Since ξ ≤ b
η
4
− 1

2 (τ) with η ≪ 1 and b(τ) → 0, the range of ξ will be large, and we should divide it
into two cases ξ = O(1) and ξ ≫ 1.

+ For the case ξ ≫ 1, we derive on the one hand, from the definitions of θ, θ+ in (11.4) (11.13),
and (6.3), that

θ(τ)− θ+(τ) = b1+
η
8 +O(b1+4η).

Thus we derive from (9.4) that[
θ(τ)− θ+

]
ΛξQ = a0b

1+ θ
8 (τ)ξ−γ +O(ξ−γb1+4η) +O(b1+

η
8 ξ−γ−2),

where a0 < 0. On the other hand, by a similar argument, we have

−b(τ)
[
∂τθ

+H1 −M∂τ b
η
4H0

]
= O

(
b1+

η
4 ξ−γ

)
,

θ(τ)
[
θ+H1 −Mb

η
4H0

]
= 0

(
b1+

η
4 ξ−γ

)
as ξ → ∞.

Thus, we conclude the following inequality

P(z+) ≤ −3(d− 2)
[
2Q+ ξ2Q2 − (2Qσ + ξ2Q2

σ)
]
v+ + B̄(v+),

provided that b, η small enough.

Next, note that ξ ≤ b
η
4
− 1

2 (τ) implies the following

|b(τ)ξ2| ≤ b
η
2 (τ).

Hence, by using v+’s definition in (11.12), along with (11.10) and (11.11), we obtain

v+(ξ, τ) = −Ma0σ
αb

η
4 ξ−γ +O(bηξ−γ−2) +O(b2βξ−γ), as ξ → +∞.

In addition, recall that

2Q(ξ) + ξ2Q2(ξ) ∼ − 1

ξ2
+ q20ξ

−2γ+2 + o(ξ−2γ+2),

2Qσ(ξ) + ξ2Q2
σ(ξ) ∼ − 1

ξ2
+ q20σ

γ−2ξ−2γ+2 + o(ξ−2γ+2),

as ξ → +∞. Then, fixing σ less that 1, we derive

2Q(ξ) + ξ2Q2(ξ)−
[
2Qβ(ξ) + ξ2Q2

β(ξ)
]
= q20

(
1− σγ−2

)
ξ−3γ+2 + o(ξ−2γ+2).
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Thus,

−3(d− 2)
[
2Q+ ξ2Q2 − (2Qσ + ξ2Q2

σ)
]
v+ = m0b

η
4 (τ)ξ−3γ+2 + o(ξ−3γ+2), as ξ → +∞. (11.14)

where m0 = 3(d− 2)q20(1− σγ−2)Ma0σ
γ < 0. Next, we study B̄(v+) defined by

B̄(v+) = −3(d− 2)(1 + ξ2Q(ξ))(v+)2 − (d− 2)ξ2(v+)3

=
(
m1b

η
2 +m2b

3η
4

)
ξ−3γ+2 + o(ξ−3γ+2), as ξ → +∞,

where

m1 = −3(d− 2)q0M
2a20σ

2α and m1 = −(d− 2)M3a30σ
3α.

Finally, we derive

P(v+) < 0,

provided that ξ ≫ 1, b ≤ b1 ≪ 1 and η ≪ 1.
+ For ξ = O(1), i.e., ξ ∈ [0,K] for some K > 0 large enough: thanks to the smallness of b, the

dominating term in v+ is −Mb
η
4 (τ)H0(ξ) > 0. Besides that, we have

∂σ
(
2Qσ + ξ2Q2

σ

)
= − 1

σ
ΛξQσ − ξ2

Qσ

σ
ΛξQσ = −

ΛξQσ

σ

(
1 + ξ2Qσ(ξ)

)
.

Note that the construction of Q (see more in (9.10)) ensures ξ2Qσ(ξ) > −1 and we derive

∂σ
(
2Qσ + ξ2Q2

σ

)
> 0,

from which we infer the existence of m3(σ,K) > 0 such that

2Q+ ξ2Q2 − (2Qα + ξ2Q2
α) ≥ m3 with σ < 1.

Since [0,K] is compact, we get

v+ = θ+H1(ξ)−Mb
η
4H0 ≥ m4(σ,K)b

η
4 with m4 > 0.

Thus, we get

−3(d− 2)
[
2Q+ ξ2Q2 − (2Qα + ξ2Q2

α)
]
v+ ≤ −3(d− 2)m3m4b

η
4 .

This concludes P(z+) < 0 for the case ξ = O(1).
- Proof of (ii): Notice that for M(η) large enough and σ small, we have

v+
(

y√
b(τ0)

)
b(τ0)

> 0,

and from ε(τ0)’s definition in (5.16), we see that it vanishes when y ≤ b(τ0) and it is sufficient to

check it for y ∈ [b
δ
2 (τ0), b

η
4 (τ0)] giving

y√
b(τ0)

→ +∞.

Thus, using (11.10) and (11.11), we can find a c0 such that

v+
(

y√
b(τ0)

)
b(τ0)

≥ c0b
α
2
+ η

4 (τ0)y
−γ .

On the other hand, ε’s formula and the fact that y ≤ b
η
4 (τ0) imply∣∣∣∣ϕℓ,b(τ0),β(τ0)cℓ,0

− ϕ0,b(τ0),β(τ0)

∣∣∣∣ ≲ b
η
4 (τ0).
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This yields

|ε(τ0)| ≲ b
α
2
+ η

2 (τ0)y
−γ .

A. Details on pointwise estimates

In the sequel, we give details to some pointwise estimates used in our paper.

Lemma A.1. Let us consider B̂ defined as in (7.20), (ε, b, β)(τ) ∈ V [A, η, η̃](τ), for all τ ∈ [τ0, τ
∗]

for some τ∗ ≥ τ0, and δ > η > η̃. Then, there exists τ9(A, δ, η, η̃) ≥ 1, such that for all τ0 ≥ τ9, the
following holds∣∣∣1y∈(0,bδ]B̂(y, τ)

∣∣∣ ≤ Cb
α
2

yγ
+
CA3b

α
2
+η̃(τ)

yγ+2
+
CA6b2(

α
2
+η̃)(τ)

y2γ
+
CA9b3(

α
2
+η̃)(τ)

y3γ−2
,∣∣∣1y≥bδB̂(y, τ)

∣∣∣ ≤ C
b
α
2
+4η⟨y⟩2ℓ+2

yγ
+
Cbα+δ(1−γ)⟨y⟩4ℓ+8

yγ
+
Cb

3α
2
−2γδ⟨y⟩6ℓ+14

yγ
, ∀τ ∈ [τ0, τ

∗].

Proof. Let us consider δ ≫ η ≫ η̃. First, since (ε, b, β)(τ) ∈ Vℓ[A, η, η̃](τ) and by applying Lemma
6.1 we have ∣∣β′(τ)∣∣ ≲ Ab4η(τ) and

∣∣∣∣b′b − 2β

(
1− 2ℓ

α

)∣∣∣∣ ≲ Ab4η(τ).

Write

ε̂β,j = ∥ϕj,∞,β∥−2
L2
ρβ

⟨ε, ϕj,∞,β⟩L2
ρβ
. (A.1)

We observe that even though ϕj,b,β is not orthogonal to ϕk,∞,β, k ̸= j, we have∣∣∣⟨ϕj,b,β, ϕk,∞,β⟩L2
ρβ

∣∣∣ ≤ ∫
y≤bδ

|ϕj,b,βϕk,∞,β| ρβdy +
∫
y≥bδ

|ϕj,b,βϕk,∞,β| ρβdy ≲ bδ.

Thus, we use pointwise estimates in Lemma 5.2 to obtain

|ε̂β,j(τ)| ≤ CAb
α
2
+η̃,∀j < ℓ, ε̂β,ℓ =

εℓ
cℓ,0

+O(b
α
2
+4η), and ε̂β,0 = −εℓ +O(b

α
2
+4η). (A.2)

In particular, repeating the technique in Lemma 6.1 we get{
∂τ ε̂β,ℓ = 2β

(
α
2 − ℓ

)
ε̂β,ℓ +O(b

α
2
+4η),

∂τ ε̂β,0 = 2β α
2 ε̂β,0 +

[
b′

b − 2β
]
m0b

α
2 +O(b

α
2
+4η).

(A.3)

- The first case: y ∈
(
0, bδ(τ)

]
. From (7.20), we have∣∣∣B̂(ε̂β,+ + ε̂β,−)

∣∣∣
≤

∣∣∣∣3(d− 2)

(
2Qb + y2Q2

b +
1

y2

)
(ε̂β,+ + ε̂β,−)

∣∣∣∣+ |B(ε̂β,+ + ε̂β,−)|+
∣∣∣Φ+ L β

∞ε̂β,+ − ∂τ ε̂β,+

∣∣∣ .
From Q’s asymptotic given in Lemma 9.1 and (2.15), we get∣∣∣∣2Qb + y2Qb +

1

y2

∣∣∣∣ ≲ y−2.

Besides that, since ε̂β,++ ε̂β,− = ε = ε++ε−, and the pointwise estimates in Lemma 5.2, we obtain

|ε̂β,+ + ε̂β,−| ≤ C
(
A4b

α
2
+η̃(τ)y−γ + b

α
2 y2−γ

)
,
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Thus, the following is valid∣∣∣∣3(d− 2)

(
2Qb + y2Q2

b +
1

y2

)
(ε̂β,+ + ε̂β,−)

∣∣∣∣ ≤ C
(
A4b

α
2
+η̃y−2−γ + b

α
2 (τ)y−γ

)
.

Similarly, we have

|B(ε̂β,+ + ε̂β,−)| ≤ C
(
|ε|2 + y2|ε|3

)
≤ C

(
A8bα+2η̃y−2γ +A12b

3
2
α+3η̃y2−3γ

)
.

For the last term, we immediately deduce from (A.2) and (A.3) that∣∣∣Φ+ L β
∞ε̂β,+ − ∂τ ε̂β,+

∣∣∣ ≤ Cb
α
2 y−γ .

By adding all related terms, we conclude the estimate on 1y∈(0,bδ]B̂.

- The second case: y ∈
[
bδ(τ) +∞

)
. Regarding (6.15), we can improve it as follows

Φ =

[
b′

b
− 2β

]
m0b

α
2 ϕ0,∞,β + Φ̃(y, τ),

where ∣∣∣Φ̃(y, τ)∣∣∣ ≤ Cb
α
2
+δy−γ⟨y⟩2ℓ+2, ∀y ≥ bδ(τ).

In addition to that, we have∣∣∣∣∣∣L β
∞ε̂β,+ −

ℓ∑
j=0

(α
2
− j
)
ε̂β,jϕj,∞,β

∣∣∣∣∣∣ ≲ b
α
2
+4η⟨y⟩2ℓ+2y−γ ,

∣∣∣∣∣∣∂τ ε̂β,+ −
ℓ∑

j=0

(α
2
− j
)
ε̂β,jϕj,∞,β

∣∣∣∣∣∣ ≲ b
α
2
+4η⟨y⟩2ℓ+2y−γ .

Finally, we conclude ∣∣∣Φ+ L β
∞ε̂β,+ − ∂τ ε̂β,+

∣∣∣ ≤ CAb
α
2
+4η(τ)⟨y⟩2ℓ+2

yγ
.

Next, we study the estimate involving Qb. Using (9.3) and the facts that y ≥ bδ, δ ≪ 1, we get

ξ =
y√
b
≫ 1,

then, it follows

Qb(y) = − 1

y2

(
1 + Q̃

)
,

where ∣∣∣Q̃(y)
∣∣∣ ≤ C(δ)b

α
2 y2−γ ≤ b

α
2
−γδ ≤ Cbδ(τ), y ≥ bδ.

Hence, we have ∣∣∣∣2Qb(y) + y2Q2
b(y) +

1

y2

∣∣∣∣ ≤ Cbδ,

which implies ∣∣∣∣(2Qb(y) + y2Q2
b(y) +

1

y2

)
(ε̂β,+ + ε̂β,−)

∣∣∣∣ ≤ Cb
α
2
+δ⟨y⟩2ℓ+2y−γ .

Similarly, since ∣∣1 + y2Qb(y)
∣∣ ≤ Cb

α
2 (τ)y2−γ ≤ Cbδ, ∀y ≥ bδ(τ),
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we deduce

|B(ε̂β,+ + ε̂β,−)| ≲ bδ
(
bαy4⟨y⟩4ℓ+4

y2γ
+
A8bα+2η̃⟨y⟩4ℓ+4

y2γ

)
+ y2

(
b
3α
2 y6⟨y⟩6ℓ+6

y3γ
+
A12b

3α
2
+3η̃⟨y⟩6ℓ+6

y3γ

)
≲ bα+δ⟨y⟩2ℓ+8y−2γ + b

3α
2 ⟨y⟩6ℓ+14y−3γ .

In particular, once y ≥ bδ(τ ′), it follows 1
yγ ≲ b−γδ. By adding the related bounds, we conclude the

estimate on 1y≥bδB̂. This achieves the proof of the Lemma.

B. Detail on spectral analysis computation of L∞
In this part, we aim to give a complete computation to formulate constant in Proposition 4.1.

Let us consider the following quadratic equation

γ2 − dγ + 3(d− 2) = 0. (B.1)

The equation has two distinct solutions{
γ1 = 1

2(d−
√
d2 − 12d+ 24),

γ2 = 1
2(d+

√
d2 − 12d+ 24).

We remark that 1
rγ2 does not belong to H1

ρ , but
1

rγ1 does. In addition, we also define

γ = γ1 =
1

2
(d−

√
d2 − 12d+ 24), and γ̃ = γ2 =

1

2
(d+

√
d2 − 12d+ 24).

From γ’s formula above, we can get the first eigenfunction and eigenvalue as follows

ϕ0,β,∞(r) =
1

rγ
and λ0,β,∞ = 2β

(
1

2
(γ − 2)

)
:= 2β

(α
2

)
.

Following [9] (also [8], and [7]), we search the eigenfunctions and eigenvalues in the following forms

ϕi,β,∞(r) =

i∑
j=0

ai,j(2β)
jr2j−γ , and ai,i = 1, and λi,β,∞ = 2β

(α
2
− i
)
,∀i ≥ 0. (B.2)

Plugging the form (B.2) into the following relation

L β
∞ϕi,β,∞ = 2β

(α
2
− i
)
ϕi,β,∞, (B.3)

we get

L β
∞ϕi,β,∞ =

i∑
j=0

ai,j(2β)
jAjr

2(j−1)−γ +

i∑
j=0

ai,j(2β)
j(−2β − β(2j − γ))r2j−γ

= 2β
(α
2
− i
) i∑

j=0

ai,j(2β)
jr2j−γ , (B.4)

where Aj = (2j − γ)(2j − γ − 1) + (d+ 1)(2j − γ) + 3(d− 2). Fix 0 ≤ j ≤ i− 1.

+ For j = i: We choose ai,i = 1, then, we get

(−2β − β(2i− γ)) = 2β
(α
2
− i
)
,

then, (B.4) is satisfied.

+ For all j ≤ i− 1: (B.4) yields

ai,j+1(2β)
j+1Aj+1 + ai,j(2β)

j(−2β − β(2j − γ)) = 2β
(α
2
− i
)
ai,j(2β)

j ,
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which yields

ai,j+1Aj+1 = (j − i)ai,j . (B.5)

By a simple recurrence, we obtain

ai,j = (−1)i−jΠi−1
k=j

Ak+1

i− k
=

(−1)i−j

(i− j)!
Πi

k=j+1Ak.

Thus

ai,j =
(−1)j

(i− j)!
×Πi−1

k=j+1 ((2k − γ)(2k − γ − 1) + (d+ 1)(2k − γ) + 3(d− 2)) .

In particular, in (B.4), the order r−γ−2 remains. However, its coefficient is equal to 0, since γ solves
(B.1). Finally, (B.3) is completely satisfied by the choice of ai,j above. Next, we aim to decompose
ai,j as follows: First, we deduce from (B.1) that

(2k − γ)(2k − γ − 1) + (d+ 1)(2k − γ) + 3(d− 2)

= 2k.2k + 2kd− 4kγ = 2k(2k + d− 2γ) = 4k

(
d

2
− γ + k

)
.

Then, ai,j is decomposed as

ai,j =
(−1)i−j

(i− j)!
Πi

k=j+14k

(
d

2
− γ + k

)
=

(−1)i−j

(i− j)!
4i−j i!

j!

(d2 − γ)i

(d2 − γ)j
= ci,jCj ,

where ci,j =
(−1)i−j4ii!( d

2
−γ)

i
!

(i−j)! , Cj =
1

4jj!( d
2
−γ)

j
!
, and(

d

2
− γ

)
i

! =

(
d

2
− γ + 1

)(
d

2
− γ + 2

)
...

(
d

2
− γ + i

)
and

(
d

2
− γ

)
0

! = 1.

C. Poisson kernel for Laguerre expansions

In this part, we aim to provide some pointwise estimates involving semi-group eτL∞ with L∞
defined as in (2.22). Recall that for f ∈ L1(R+, x

ωe−xdx), we have the following presentation[
e(τ−τ0)L∞

]
f(y, τ) = 2ω+1y−γe

α
2
(τ−τ0)

∫ ∞

0
Pω

2

(
y2

4
,
x2

4
, e−(τ−τ0)

)
[f(x)xγ ]xω+1e−

x2

4 dx. (C.1)

where Pζ is defined by

Pζ

(
y2

4
,
x2

4
, r

)
= e

− r
1−r

(
y2

4
+x2

4

)
(−r x

2·y2
16 )−

ζ
2

1− r
Jζ

(
2(−r x

2·y2
16 )

1
2

1− r

)
,

=
(
√
r y

2

4
x2

4 )
−ζ

1− r
e
− r

1−r

(
y2

4
+x2

4

)
iζJζ

(
2r

1
2
y
2
x
2

1− r
i

)

=
4ζ

√
r
ζ
(1− r)(yx)ζ

e
− r

1−r

(
y2

4
+x2

4

)
Iζ

(
r

1
2 yx

2(1− r)

)
,

and Iζ is the function of imaginary argument corresponding to

Iζ(z) =

(
1
2z
)ζ

Γ(ζ + 1
2)Γ(

1
2)

∫ π

0
cosh (z cos θ) sin2ζ(θ)dθ, (C.2)

provided that Re(ζ + 1
2) > 0, the reader can check the formula at page 79, formula (2) in [34]. We

have the following result
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Lemma C.1 (Maximal estimate, [4]). Let us consider f ∈ L2
ρ with ρ = ρ 1

2
defined in (2.25), then,∣∣∣e(τ−τ0)L∞f(y)

∣∣∣ ≤ Cy−γe
α
2
(τ−τ0)[Mf ](y),∀y > 0, τ > τ0, (C.3)

where α and γ were defined in (2.27) and (2.26), respectively, and Mf is given by

Mf(y) = sup
y∈I

∫
I |f(y

′)(y′)γ |(y′)1+ωe−
(y′)2

4 dy′∫
I(y

′)1+ωe−
(y′)2

4 dy′
, ω =

√
d2 − 12d+ 24, (C.4)

here the supremum is taken over all sub-intervals I containing y. In particular, if |f(y)yγ | is a non
decreasing function, then the supremum in (C.4) is attained by I = [y,+∞). Otherwise, if |f(y)yγ |
is a non increasing, then the supremum is attained by I = [0, y].

Proof. The proof is quite the same as for Lemma V I.2 in [4].

Next, we will estimate the growth of the action e(τ−τ ′)L∞ to Λ:

Lemma C.2. Let us consider f ∈ L2
ρ and Λf ∈ L2

ρ where Λ was defined in (2.14). Assume further
more that

|f(y)| ≤ B⟨y⟩2ℓ+2

yγ
, for some B ∈ R∗

+. (C.5)

Then, it holds that for τ > τ ′∣∣∣e(τ−τ ′)L∞(Λf)
∣∣∣ ≲ eτ−τ ′B⟨y⟩2ℓ+3y−γ . (C.6)

Proof. Recall from (2.14) that Λf = y∂yf + 2f and apply (C.1) in deriving[
e(τ−τ ′)L∞

]
Λf(y) = 2ω+1y−γe

α
2
(τ−τ ′)

∫ ∞

0
Pζ

(
y2

4
,
x2

4
, r

)
(x∂xf + 2f)xω+1+γe−

x2

4 dx,

where r = e−(τ−τ ′) and ζ = ω
2 . First, Lemma C.1 results in∣∣∣∣2ω+1y−γe

α
2
(τ−τ ′)

∫ ∞

0
Pζ

(
y2

4
,
x2

4
, r

)
f(x)xω+1+γe−

x2

4 dx

∣∣∣∣ ≲ Be
α
2
(τ−τ ′)⟨y⟩2ℓ+2y−γ .

Then, it is sufficient to prove that

|I(y)| ≲ B⟨y⟩2ℓ+3 where I =

∫ ∞

0
Pζ

(
y2

4
,
x2

4
, r

)
(x∂xf(x))x

ω+1+γe−
x2

4 dx.

Using the integration by parts provided that the functions go to 0 at +∞ and 0, we get

I = −
∫ ∞

0
f(x)∂x

(
Pζ

(
y2

4
,
x2

4
, r

)
xω+2+γe−

x2

4

)
dx

= −
∫ ∞

0
f(x)∂x

(
Pζ

(
y2

4
,
x2

4
, r

))
xω+2+γe−

x2

4 dx.

− (ω + 2 + γ)

∫ ∞

0
f(x)Pζ

(
y2

4
,
x2

4
, r

)
xω+1+γe−

x2

4 dx

+
1

2

∫ ∞

0
f(x)Pζ

(
y2

4
,
x2

4
, r

)
xω+3+γe−

x2

4 dx.
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We now explicitly compute

∂x

(
Pζ

(
y2

4
,
x2

4
, r

))
= ∂x

(
4ζ

√
r
ζ
(1− r)(yx)ζ

e
− r

1−r

(
y2

4
+x2

4

)
Iζ

(
r

1
2 yx

2(1− r)

))

= ∂x

(
4ζ

√
r
ζ
(1− r)(yx)ζ

e
− r

1−r

(
y2

4
+x2

4

))
Iζ

(
r

1
2 yx

2(1− r)

)

+
4ζ

√
r
ζ
(1− r)(yx)ζ

e
− r

1−r

(
y2

4
+x2

4

)
∂x

(
Iζ

(
r

1
2 yx

2(1− r)

))

= ∂x

(
4ζ

√
r
ζ
(1− r)(yx)ζ

e
− r

1−r

(
y2

4
+x2

4

))
Iζ

(
r

1
2 yx

2(1− r)

)

+
4ζ

x
√
r
ζ
(1− r)(yx)ζ

e
− r

1−r

(
y2

4
+x2

4

)
r

1
2 yx

2(1− r)
I′ζ

(
r

1
2 yx

2(1− r)

)
,

from equality (3) at page 79 in [34]

r
1
2 yx

2(1− r)
I′ζ

(
r

1
2 yx

2(1− r)

)
= ζIζ

(
r

1
2 yx

2(1− r)

)
+

r
1
2 yx

2(1− r)
Iζ+1

(
r

1
2 yx

2(1− r)

)
,

we infer

∂x

(
Pζ

(
y2

4
,
x2

4
, r

))
= ∂x

(
4ζ

√
r
ζ
(1− r)(yx)ζ

e
− r

1−r

(
y2

4
+x2

4

))
Iζ

(
r

1
2 yx

2(1− r)

)

+
4ζ

x
√
r
ζ
(1− r)(yx)ζ

e
− r

1−r

(
y2

4
+x2

4

)
ζIζ

(
r

1
2 yx

2(1− r)

)

+
4ζ

x
√
r
ζ
(1− r)(yx)ζ

e
− r

1−r

(
y2

4
+x2

4

)
r

1
2 yx

2(1− r)
Iζ+1

(
r

1
2 yx

2(1− r)

)
.

Besides, we have

∂x

(
4ζ

√
r
ζ
(1− r)(yx)ζ

e
− r

1−r

(
y2

4
+x2

4

))
=

4ζ(−ζ)
√
r
ζ
(1− r)(yx)ζx

e
− r

1−r

(
y2

4
+x2

4

)

− r

1− r

x

2

4ζ
√
r
ζ
(1− r)(yx)ζ

e
− r

1−r

(
y2

4
+x2

4

)
.

At final, we arrive to

x∂x

(
Pζ

(
y2

4
,
x2

4
, r

))
= − r

1− r

x2

2

4ζ
√
r
ζ
(1− r)(yx)ζ

e
− r

1−r

(
y2

4
+x2

4

)
Iζ

(
r

1
2 yx

2(1− r)

)

+
4ζ

√
r
ζ
(1− r)(yx)ζ

r
1
2 yx

2(1− r)
e
− r

1−r

(
y2

4
+x2

4

)
Iζ+1

(
r

1
2 yx

2(1− r)

)

= − rx2

2(1− r)
Pζ

(
y2

4
,
x2

4
, r

)
+

ry2x2

8(1− r)
Pζ+1

(
y2

4
,
x2

4
, r

)
.
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Plugging into I’s formula, we get

I =
r

2(1− r)

∫ ∞

0
f(x)Pζ

(
y2

4
,
x2

4
, r

)
xω+3+γe−

x2

4

− ry2

8(1− r)

∫ ∞

0
f(x)Pζ+1

(
y2

4
,
x2

4
, r

)
xω+3+γe−

x2

4

− (ω + 2 + γ)

∫ ∞

0
f(x)Pζ

(
y2

4
,
x2

4
, r

)
xω+1+γe−

x2

4

+
1

2

∫ ∞

0
f(x)Pζ

(
y2

4
,
x2

4
, r

)
xω+3+γe−

x2

4

=

∫ ∞

0

Pζ

(
y2

4 ,
x2

4 , r
)

2(1− r)
− ry2

8(1− r)
Pζ+1

(
y2

4
,
x2

4
, r

) f(x)xω+3+γe−
x2

4 dx (C.7)

− (ω + 2 + γ)

∫ ∞

0
f(x)Pζ

(
y2

4
,
x2

4
, r

)
xω+1+γe−

x2

4 dx.

It also follows from Lemma C.1 that∣∣∣∣∫ ∞

0
f(x)Pζ

(
y2

4
,
x2

4
, r

)
xω+1+γe−

x2

4 dx

∣∣∣∣ ≲M(f),

and from (C.5), we have

M(f)(y) = sup
y∈I

∫
I |f(y

′)(y′)γ |(y′)1+ωe−
(y′)2

4 dy′∫
I(y

′)1+ωe−
(y′)2

4 dy′
≲ B

∫∞
y ⟨y′⟩2ℓ+2(y′)1+ωe−

(y′)2
4 dy′∫∞

y (y′)1+ωe−
(y′)2

4 dy′
(C.8)

≲ B⟨y⟩2ℓ+2. (C.9)

Now, it remains to prove the following:

|I1(y)| ≲
B√
1− r

⟨y⟩2ℓ+3, (C.10)

where

I1(y) =

∫ ∞

0

Pζ

(
y2

4 ,
x2

4 , r
)

2(1− r)
− ry2

8(1− r)
Pζ+1

(
y2

4
,
x2

4
, r

) f(x)xω+3+γe−
x2

4 dx

We recall formulae (2) at page 77 and formula (2) at page 203 in [34] regarding the function Iζ of
imaginary argument

czζ ≤ Iζ(z) ≤ Czζ if z ∈ [0, 1],

cz−
3
2 ez ≤

∣∣∣Iζ(z)− ez√
2πz

∣∣∣ ≤ Cz−
3
2 ez if z ∈ [1,+∞),

(C.11)

In particular, (C.11) implies

C−1Hζ(y, x, r) ≤ Pζ

(
y2

4
,
x2

4
, r

)
≤ CHζ(y, x, r), (C.12)

where

Hζ(y, x, r) =


(1− r)−ζ−1e−

r(
y2

4 +x2

4 )

1−r if x ∈
[
0, 2(1−r)√

ry

]
(4r)−

ζ
2− 1

4 (yx)−ζ− 1
2

e(
√
1−r)

e
−r

y2

4 +1
2 (r)

1
2 (yx)−r x2

4
1−r if z ∈

[
2(1−r)√

ry
,+∞

) . (C.13)
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Using (C.5), we estimate∣∣I1(y, τ, τ ′)∣∣
≲ B

∫ 2(1−r)√
ry

0

∣∣∣∣∣∣
Pζ

(
y2

4 ,
x2

4 , r
)

2(1− r)
− ry2

8(1− r)
Pζ+1

(
y2

4
,
x2

4
, r

)∣∣∣∣∣∣ (1 + x2ℓ+2)xω+3+γe−
x2

4 dx

+

∫ 2(1−r)√
ry

0

∣∣∣∣∣∣
Pζ

(
y2

4 ,
x2

4 , r
)

2(1− r)
− ry2

8(1− r)
Pζ+1

(
y2

4
,
x2

4
, r

)∣∣∣∣∣∣ (1 + x2ℓ+2)xω+3+γe−
x2

4 dx

 .

+ For the integral on
[
0, 2(1−r)√

ry

]
, we use the first asymptotic in (C.13) to obtain

∫ 2(1−r)√
ry

0

∣∣∣∣∣∣
Pζ

(
y2

4 ,
x2

4 , r
)

2(1− r)
− ry2

8(1− r)
Pζ+1

(
y2

4
,
x2

4
, r

)∣∣∣∣∣∣
(
1 + x2ℓ+2

)
xω+3+γe−

x2

4 dx

≤ C(1− r)−ζ−2

∫ 2(1−r)√
ry

0

(
1 +

ry2

(1− r)

)
e
− r

1−r

(
y2

4
+x2

4

)
(1 + x2ℓ+2)xω+3e−

x2

4 dx.

On the one hand, once r ∈ (0, 14), it immediately follows that

(1− r)−ζ−2

∫ 2(1−r)√
ry

0

(
1 +

ry2

(1− r)

)
e
− r

1−r

(
y2

4
+x2

4

)
(1 + x2ℓ+2)xω+3e−

x2

4 dx

≤ C

∫ 2(1−r)√
ry

0
(1 + x2ℓ+2)xω+3e

−x2

4
− rx2

4(1−r)dx ≤ C

∫ ∞

0
(1 + x2ℓ+2)xω+3e−

x2

4 dx ≤ C,

where C is independent of r. On the other hand, once r ≥ 1
4 and by a change of variable z =

√
r

2
√
1−r

x

we obtain∫ 2(1−r)√
ry

0

(
1 +

ry2

(1− r)

)
e
− r

1−r

(
y2

4
+x2

4

)
(1 + x2ℓ+2)xω+3e−

x2

4 dx

≤ Ce
− ry2

4(1−r)

∫ √
1−r
y

0

(
1 +

ry2

(1− r)

)
e−z2(1+ 1−r

r )(1 +
(1− r)ℓ+1

rℓ+1
z2ℓ+2)

(1− r)
ω
2
+2

r
ω
2
+2

zω+3dz

≤ C(1− r)
ω
2
+2e

− r
4(1−r)

y2
(
1 +

ry2

(1− r)

)∫ √
1−r
y

0
e−z2(1+ 1−r

r )(1 + (1− r)ℓ+1z2ℓ+2)zω+3dz

≤ (1− r)ζ+2e
− r

4(1−r)
y2
∫ ∞

0
e−z2(1 + z2ℓ+2+ω+3)dz ≤ C(1− r)ζ+2, with ζ =

ω

2
.

Finally, we obtain∣∣∣∣∣∣
∫ 2(1−r)√

ry

0

∣∣∣∣∣∣
Pζ

(
y2

4 ,
x2

4 , r
)

2(1− r)
− ry2

8(1− r)
Pζ+1

(
y2

4
,
x2

4
, r

)∣∣∣∣∣∣
(
1 + x2ℓ+2

)
xω+3+γe−

x2

4 dx

∣∣∣∣∣∣ ≲ ⟨y⟩2ℓ+3

√
1− r

.

- For the integral on
[
2(1−r)√

ry
,+∞

)
, we apply (C.11) and (C.13) and noticing that z =

√
ryx

2(1−r) ≥ 1

x

2(1− r)
Pζ

(
y2

4
,
x2

4
, r

)
=

4ζ

2
√
r
ζ
(1− r)(yx)ζ

(
x

2(1− r)

)
e
− r

4(1−r)
(y2+x2)

(
ez√
2πz

+O(ezz−
3
2 )

)
,
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and

ry2x

8(1− r)
Pζ+1

(
y2

4
,
x2

4
, r

)
=

ry2x

8(1− r)

4ζ+1

√
r
ζ+1

(1− r)(yx)ζ+1
e
− r

4(1−r)
(y2+x2)

(
ez√
2πz

+O(ezz−
3
2 )

)
.

Then ∣∣∣∣∣∣x
Pζ

(
y2

4 ,
x2

4 , r
)

2(1− r)
− x

ry2

8(1− r)
Pζ+1

(
y2

4
,
x2

4
, r

)∣∣∣∣∣∣
≤ C

∣∣∣∣x−
√
ry

(1− r)

∣∣∣∣ 4ζ

2
√
r
ζ
(1− r)(yx)ζ

e
− r

4(1−r)
(y2+x2) ez√

2πz

+ C
x

(1− r)

4ζ

2
√
r
ζ
(1− r)(yx)ζ

e
− r

4(1−r)
(y2+x2) e

z

z
3
2

+ C

√
ry

(1− r)

4ζ

2
√
r
ζ
(1− r)(yx)ζ

e
− r

4(1−r)
(y2+x2) e

z

z
3
2

≤ C
r−

ζ
2
− 1

4 (yx)−ζ− 1
2

√
1− r

∣∣∣∣x−
√
ry

1− r

∣∣∣∣ e− ry2

4 +1
2
√
ryx− rx2

4
1−r

+ Cr−
ζ
2
− 3

4 (yx)−ζ− 3
2

∣∣∣∣x+
√
ry√

1− r

∣∣∣∣ e− ry2

4 +1
2
√
ryx− rx2

4
1−r

Notice that we have the following identity

e
−r

y2

4 +1
2 (r)

1
2 (yx)−r x2

4
1−r e−

x2

4 = e
− 1

4

(
x−

√
ry√

1−r

)2
,

and by a change of variable z = x−
√
ry√

1−r
, we get

∫ ∞

2(1−r)√
ry

∣∣∣∣∣∣x
Pζ

(
y2

4 ,
x2

4 , r
)

2(1− r)
− x

ry2

8(1− r)
Pζ+1

(
y2

4
,
x2

4
, r

)∣∣∣∣∣∣ (1 + x2ℓ+2)xω+2e−
x2

4 dx

≤ C
y−ζ− 1

2 r−
ζ
4
− 1

4

√
1− r

∫ ∞

2(1−r)√
ry

∣∣∣∣x−
√
ry

1− r

∣∣∣∣ (1 + x2ℓ+2)xζ+
3
2 e

− 1
4

(
x−

√
ry√

1−r

)2
dx

+ C
y−ζ− 3

2 r−
ζ
2
− 3

4

√
1− r

∫ ∞

2(1−r)√
ry

∣∣∣∣x+
√
ry√

1− r

∣∣∣∣ (1 + x2ℓ+2)xζ+
1
2 e

− 1
4

(
x−

√
ry√

1−r

)2
dx

≤ C
(
√
ry)−ζ− 1

2

√
1− r

∫ ∞
2(1−r)√

ry
−
√
ry

√
1−r

|z|(1 + (z
√
1− r +

√
ry)2ℓ+2)

∣∣z√1− r +
√
ry
∣∣ζ+ 3

2 e−
z2

4 dz

+ C
(
√
ry)−ζ− 3

2

√
1− r

∫ ∞
2(1−r)√

ry
−
√
ry

√
1−r

(1 + (z
√
1− r +

√
ry)2ℓ+2)

∣∣z√1− r +
√
ry
∣∣ζ+ 3

2 e−
z2

4 dz.

Now, we have

|z|(1 + (z
√
1− r +

√
ry)2ℓ+2)

∣∣z√1− r +
√
ry
∣∣ζ+ 3

2 ≲ ⟨y⟩2ℓ+2⟨z⟩2ℓ+3
[
|z
√
1− r|ζ+

3
2 + |

√
ry|ζ+

3
2

]
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and

(
√
ry)−ζ− 1

2

∫ ∞
2(1−r)√

ry
−
√
ry

√
1−r

⟨z⟩2ℓ+3|z
√
1− r|ζ+

3
2 e−

z2

4 dz

≲ (
√
ry)−ζ− 1

2

√
1− r

ζ+ 3
2

∫ ∞
2(1−r)√

ry
−
√
ry

√
1−r

⟨z⟩2ℓ+3+ζ+ 3
2 e−

z2

4 dz

≲ Xζ+ 1
2

∫ ∞

2X− 1
X

⟨z⟩2ℓ+3+ζ+ 3
2 e−

z2

4 dz ≲ 1, with X =

√
1− r√
ry

> 0,

yielding

(
√
ry)−ζ− 1

2

√
1− r

∫ ∞
2(1−r)√

ry
−
√

ry
√
1−r

|z|(1 + (z
√
1− r +

√
ry)2ℓ+2)

∣∣z√1− r +
√
ry
∣∣ζ+ 3

2 e−
z2

4 dz

≲
⟨y⟩2ℓ+3

√
1− r

.

Similarly we have

(
√
ry)−ζ− 3

2

√
1− r

∫ ∞
2(1−r)√

ry
−
√
ry

√
1−r

(1 + (z
√
1− r +

√
ry)2ℓ+2)

∣∣z√1− r +
√
ry
∣∣ζ+ 3

2 e−
z2

4 dz ≲
⟨y⟩2ℓ+3

√
1− r

.

Thus, we obtain∫ ∞

2(1−r)√
ry

∣∣∣∣∣∣x
Pζ

(
y2

4 ,
x2

4 , r
)

2(1− r)
− x

ry2

8(1− r)
Pζ+1

(
y2

4
,
x2

4
, r

)∣∣∣∣∣∣ (1 + x2ℓ+2)xω+2e−
x2

4 dx ≲
⟨y⟩2ℓ+3

√
1− r

.

By adding all related terms, we conclude (C.10) and with it the proof of the Lemma is accomplished.

D. Generators of the Kernel of H

We construct the family {Ti+1} via the recursive formula

Ti+1 = H−1Ti, and T0 = cΛξQ (D.1)

here c is some constant which will be chosen later. In other words, we have for i ≥ 1

Ti = H−i(T0), i ≥ 1.

The operator H−1 is explicitly given by

H−1f(ξ) = ΛQ(ξ)

∫ ξ

0

Lf(ξ′)

ΛQ(ξ′)
dξ′, (D.2)

with L

Lf(ξ) =
1

ξd+1ΛQ(ξ)

∫ ξ

0
f(ξ′)ΛQ(ξ′)(ξ′)d+1dξ′. (D.3)

We start now our induction argument. For i = 0, we have by assumption

T0 = cΛQ(ξ).

The asymptotic (9.4) yields

T0(ξ) =

{
−2c+

∑k
i=1 a

′′
i ξ

2i +O(ξ2k+2) as ξ → 0,

a0cξ
−γ +O

(
ξ−γ−2α

)
as ξ → ∞.

(D.4)
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This proves (10.4) for the case i = 0. Now, let us suppose that (10.4) is true for some k and let us
prove that it holds true for k + 1.

- At ∞: we have

L (Tk) =
Ck

−2γ + d+ 2 + 2k
ξ−γ+1+2k

(
1 +O

(
ln ξ

ξ2

))
.

Hence

Tk+1 = H−1(Tk) =
Ck

4(k + 1)(d2 − γ + k + 1)
ξ−γ+2(k+1)

(
1 +O

(
ln ξ

ξ2

))
The above expansion yields

Ck+1 =
Ck

4(k + 1)(d2 − γ + k + 1)
,

so that

Ck =
ca0

4kk!(d2 − γ)k!
.

Choosing c = 1
a0

concludes the first part of the proof.

In a similar fashion and upon using that ∂kξ Ti+1 = H−1Ti, one can establish the mentioned result
regarding the asymptotic behavior of the derivatives of Ti. We omit the details.

E. Inner eigenfunctions computation

Now we prove Proposition 10.2. Taking into account (10.8), the eigenvalue problem (10.7) reads

0 =
{
H − bβΛ− 2βb

(α
2
− i+ λ̃

)}
ϕi,int =

i∑
j=0

ci,j(2β)
jbj
{
H − bβΛ− 2βb

(α
2
− i+ λ̃

)}
Tj

+ λ̃
i∑

j=0

ci,j(2β)
j+1bj+1

{
H − bβΛ− 2βb

(α
2
− i+ λ̃

)}
Tj+1

+ λ̃

i∑
j=0

bj+1
{
H − bβΛ− 2βb

(α
2
− i+ λ̃

)}
Sj

+ b
{
H − βbΛ− 2βb

(α
2
− i+ λ̃

)}
Ri.

Since Ti+1 = H−1Ti and H(T0) = 0, we get

i∑
j=0

ci,j(2β)
jbj
{
H − βbΛ− 2βb

(α
2
− i+ λ̃

)}
Tj

=
i∑

j=0

ci,j(2β)
jbj
{
HTj − βb((2j − α)Tj +Θj)− 2βb

(α
2
− i
)
Tj − 2βbλ̃Tj

}

= −1

2

i∑
j=0

ci,j(2β)
2jbj+1Θj − λ̃

i∑
j=0

ci,j(2β)
j+1bj+1Tj ,
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where we used the fact that ci,j defined in (2.28) satisfies ci,j+1 + ci,j(i − j) = 0. Thus, the
construction of Sj and Ri reduces the following equations (for all j ≤ i)

HSj = 2βb

{(
α

2
− i+ λ̃+

1

2
Λ

)
(Sj + ci,j(2β)

j+1Tj+1)

}
, (E.1)

HRi = 2βb

(
α

2
− i+ λ̃+

1

2
Λ

)
Ri +

1

2

i∑
j=0

ci,j(2β)
j+1bjΘj . (E.2)

We note that the construction of Sj and Ri follows [9] (see also [8]) which relies on the Banach
fixed point theorem in the functional space Xa

ξ0
for some a ∈ R and ξ0 > 0 and where the norm is

given by

∥f∥Xa
ξ0

= sup
ξ∈[0,ξ0]

2∑
i=0

∣∣(ξ∂ξ)if(ξ)∣∣
⟨ξ⟩a

, (E.3)

with ⟨ξ⟩ =
√
1 + ξ2. For sake of shortness and since the determination of both Sj and Ri follows

the same reasoning, we only consider Sj in the sequel.

Step 1: Construction of Sj

Identity (E.1) can be put in the form

Sj = 2βbH−1

[(
α

2
− i+ λ̃+

1

2
Λ

)(
Sj + ci,j(2β)

j+1Tj+1

)]
. (E.4)

Now, write Sj as

Sj = L(Sj) = L(0) +DL(Sj), (E.5)

where

L(0) = bci,j(2β)
j+2H−1

[(
α

2
− i+ λ̃+

1

2
Λ

)
Tj+1

]
,

DL(Sj) = b(2β)H−1

[(
α

2
− i+ λ̃+

1

2
Λ

)
Sj

]
.

Our goal is to prove that for all j ≤ i ≤ ℓ

∥L(0)∥
X2j−γ+2

ξ0

≤ Cy20, (E.6)

∥DL(Sj)∥X2j−γ+2
ξ0

≤ Cy20∥Sj∥X2j−γ+2
ξ0

. (E.7)

Once these estimates are established, we apply the Banach fixed point theorem to L(Sj) mapping
the ball B(0, 2Cy20) into itself with y0 ≤ 1

2
√
C
. This yields the existence and uniqueness of Sj

satisfying

∥Sj∥X2j−γ+2
ξ0

≤ 2Cy20. (E.8)

We are now in position to prove (E.6) and (E.7):

- Proof of (E.6): take a = 2j + 2− γ, we get

∥L(0)∥Xa
ξ0

≤ |ci,j |b(2β)j+2

(∣∣∣α
2
− i+ λ̃

∣∣∣ ∥H−1(Tj+1)∥Xa
ξ0

+
1

2
∥H−1(ΛTj+1)∥Xa

ξ0

)
.

Lemma E.1 yields

∥L(0)∥Xa
ξ0

≤ C∥Tj+1∥Xa−2
ξ0

≤ Cbξ20∥Tj+1∥Xa
ξ0
.
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From lemma 10.1 and Xa
ξ0
’s definition, one infers

∥Tj+1∥Xa
ξ0

≤ C.

Plugging ξ0 =
y0√
b
, we get

∥L(0)∥Xa
ξ0

≤ Cy20,

which concludes (E.6).
- Proof of (E.7): we argue as in the proof of (E.6). Indeed, we apply Lemma E.1 so that

∥DL(Sj)∥Xa
ξ0

≤ Cb(2β)(∥H−1(Sj)∥Xa
ξ0

+ ∥H−1(ΛSj)∥Xa
ξ0
)

≤ Cy20∥Sj∥Xa
ξ0
,

We conclude (E.8) as above.
Our task now is to establish the desired estimates for ∂λ̃Sj , ∂bSj and ∂βSj . Since the proofs are
quite the same we only estimate ∂bSj . Apply ∂b to both sides of (E.5) to get

∂bSj = ci,j(2β)
j+2H−1

[(
α

2
− i+ λ̃+

1

2
Λ

)
Tj+1

]
+ (2β)H−1

[(
α

2
− i+ λ̃+

1

2
Λ

)
Sj

]
+ b(2β)H−1

[(
α

2
− i+ λ̃+

1

2
Λ

)
∂bSj

]
.

Using Lemma E.1 with ã = 2j + 4− γ, we derive

∥∂bSj∥X ã
ξ0

≤ C

(
∥Tj+1∥X ã−2

ξ0

+ ∥Sj∥X ã−2
ξ0

+ b∥∂bSj∥X ã−2
ξ0

)
≤ C(1 + y20) + Cbξ20∥∂bSj∥X ã

ξ0

≤ C(1 + y20) + Cy20∥∂bSj∥Xa
ξ0
),

this implies that ∥∂bSj∥X2j+4−γ
ξ0

≤ C, provided y0 ≤ y∗0 is small enough.

+ For ∂βSj : Applying ∂β to (E.5), we get

∂βSj = b2(j + 2)(2β)j+1ci,jH
−1

[(
α

2
− i+ λ̃+

1

2
Λ

)
Tj+1

]
+ 2bH−1

[(
α

2
− i+ λ̃+

1

2
Λ

)
Sj

]
+ b(2β)H−1

[(
α

2
− i+ λ̃+

1

2
Λ

)
∂βSj

]
.

using the boundedness of j, we get (with a = 2j + 2− γ)

∥∂βSj∥Xa
ξ0

≤ Cb

(
∥Tj+1∥Xa−2

ξ0

+ ∥Sj∥Xa−2
ξ0

+ ∥∂βSj∥Xa−2
ξ0

)
≤ Cbξ20

(
∥Tj+1∥Xa

ξ0
+ ∥Sj∥Xa

ξ0
+ ∥∂βSj∥Xa

ξ0

)
≤ Cy20

(
1 + ∥∂βSj∥Xa

ξ0

)
≤ Cy20.

provided that y0 ≤ y∗0 small enough.

Step 2: construction of Ri

Taking H−1 to (E.2), we get

Ri = b(2β)H−1

[(
α

2
− i+ λ̃+

1

2
Λ

)
Ri

]
+

1

2

i∑
j=0

ci,j(2β)
j+1bjH−1(Θj) (E.9)

= J(Ri).
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Let us consider a = −γ + ϵ > −γ, then, we apply Lemma E.1

∥J(Ri)∥Xa
ξ0

≤ C

b(2β)∥H−1Ri∥Xa
ξ0

+
i∑

j=0

(2β)j+1bj∥H−1(Θj)∥Xa
ξ0


≤ C

b∥Ri∥Xa−2
ξ0

+
i∑

j=0

bj∥Θj∥Xa−2
ξ0

 .

Now, we derive from (10.6) that

∥Θj∥X−2−γ+ϵ
ξ0

≤ C(ϵ)ξ2j0 .

Thus, we derive

∥J(Ri)∥Xa
ξ0

≤ Cy20∥Ri∥Xa
ξ0

+ C(ϵ). (E.10)

Taking y0 small enough, J maps the ball B(0, 2C(ϵ)) into itself. In addition to that, it is similar
to prove J is a contraction. Hence, by using Banach fixed point theorem, we imply the existence
and the uniqueness of Ri satisfying

∥Ri∥X−γ+ϵ
ξ0

≤ 2C(ϵ).

Similarly for Sj , we can respectively take ∂b, ∂λ̃, and ∂β to (E.9) by using Ri ∈ B(0, 2C(ϵ)), and
we get

∥∂bRi∥X−γ+2+ϵ
ξ0

≤ C(ϵ),

∥∂λ̃Ri∥X−γ+2+ϵ
ξ0

≤ C(ϵ)b,

∥∂βRi∥X−γ+2+ϵ
ξ0

≤ C(ϵ),

where the constant C(ϵ) is universal. Finally, we conclude the proof of the Proposition 10.2 . □

∂bRi = (2β)H−1

[(
α

2
− i+ λ̃+

1

2
Λ

)
Ri

]
+ b(2β)H−1

[(
α

2
− i+ λ̃+

1

2
Λ

)
∂bRi

]
+

1

2

i∑
j=0

ci,jj(2β)
j+1bj−1H−1Θj ,

and

∂βRi = 2bH−1

[(
α

2
− i+ λ̃+

1

2
Λ

)
Ri

]
+ b(2β)H−1

[(
α

2
− i+ λ̃+

1

2
Λ

)
∂βRi

]
+

i∑
j=0

ci,j(j + 1)(2β)jbjH−1Θj ,

and

∂λ̃Ri = (2β)bH−1Ri + b(2β)H−1

[(
α

2
− i+ λ̃+

1

2
Λ

)
∂λ̃Ri

]
.

The rest of this part is devoted to the results which are used to complete the proof of Proposition

10.2.
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Lemma E.1 (Continuity of H−1 in Xa
ξ0
). For all a ≥ −γ, we have

∥H−1f∥Xa
ξ0

≤ C sup
ξ∈[0,ξ0]

⟨ξ⟩2−a|f(ξ)|, (E.11)

and
∥H−1 (Λf) ∥Xa

ξ0
≤ C(a) sup

ξ∈[0,ξ0]

[
⟨ξ⟩2−a|f(ξ)|+ ⟨ξ⟩3−a|∂ξf(ξ)|

]
. (E.12)

In particular
∥H−1f∥Xa

ξ0
≤ C∥f∥Xa−2

ξ0

, (E.13)

and
∥H−1 (Λf) ∥Xa

ξ0
≤ C∥f∥Xa−2

ξ0

. (E.14)

Using the fact that, for ξ0 ≥ 1, we have

∥f∥Xa−2
ξ0

≤ 2ξ20∥f∥Xa
ξ0
,

Formulae (E.11) and (E.12) read, for ξ0 ≥ 1

∥H−1f∥Xa
ξ0

≤ Cξ20∥f∥Xa
ξ0
, (E.15)

and
∥H−1 (Λf) ∥Xa

ξ0
≤ Cξ20∥f∥Xa

ξ0
. (E.16)

Proof. Regarding (E.3), we have

2∑
j=0

∣∣(ξ∂ξ)ig(ξ)∣∣
⟨ξ⟩a

≤ ⟨ξ⟩−a|g(ξ)|+ 2⟨ξ⟩1−a|∂ξg|+ ⟨ξ⟩2−a|∂2ξ g|.

In addition to that, we derive from (D.2) that

∂ξ
(
H−1f

)
= ∂ξΛQ

∫ ξ

0

L f

ΛQ
(ξ′)dξ′ + L (f)(ξ),

∂2ξ
(
H−1f

)
= ∂2ξΛQ

∫ ξ

0

L f

ΛQ
(ξ′)dξ′ +

∂ξΛQ

ΛQ
L (f) + ∂ξ(L (f)),

where L defined as in (D.3). We remark that (E.11) follows from: for all ξ ∈ [0, ξ0] :

⟨ξ⟩−a
∣∣H−1f(ξ)

∣∣ ≤ C

|a|
sup

ξ∈[0,ξ0]
ξ2−a(1− ξγ)|f(ξ)|, (E.17)

⟨ξ⟩1−a
∣∣∂ξ(H−1f(ξ))

∣∣ ≤ C

|a|
sup

ξ∈[0,ξ0]
ξ2−a(1− ξγ)|f(ξ)|, (E.18)

⟨ξ⟩2−a
∣∣∂2ξ (H−1f(ξ))

∣∣ ≤ C

|a|
sup

ξ∈[0,ξ0]
ξ2−a(1− ξγ)|f(ξ)|, (E.19)

where C does not depend on ξ0. Let us start with the proof of these estimates:

- The proof of (E.17): From L ’s formula in (D.3), we have

|L (f)| ≤ 1

|ξ|d+1|ΛQ|

∫ ξ

0
⟨ξ′⟩2−a|f(ξ′)|⟨ξ′⟩a−2|ΛQ(ξ′)|(ξ′)d+1dξ′

≤ sup
ξ∈[0,ξ0]

{
⟨ξ⟩2−a|f(ξ)|

} 1

|ξ|d+1|ΛQ|

∫ ξ

0
⟨ξ′⟩a−2|ΛQ(ξ′)|(ξ′)d+1dξ′

= sup
ξ∈[0,ξ0]

{
⟨ξ⟩2−a|f(ξ)|

}
L̃(ξ).
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Plugging this estimate to H−1f , we obtain∣∣H−1f(ξ)
∣∣ ≤ [ sup

ξ∈[0,ξ0]
⟨ξ⟩2−a|f(ξ)|

]
|ΛQ|

∫ ξ

0

L̃(ξ′)

|ΛQ|
dξ′.

Hence, it is sufficient to prove

|ΛQ|
∫ ξ

0

L̃(ξ′)

|ΛQ|
dξ′ ≤ C⟨ξ⟩a,

where C does not depend on ξ0. Indeed, we consider two cases where ξ0 ≪ 1 and ξ0 ≫ 1:
+ The case ξ0 ≪ 1: We have the following for all ξ ∈ [0, ξ0]

1

C
≤ |ΛQ| ≤ C,

and

L̃(ξ) =
1

|ξ|d+1|ΛQ|

∫ ξ

0
⟨ξ′⟩a−2|ΛQ|(ξ′)d+1dξ′ ≤ Cξ,

this yields

|ΛQ|
∫ ξ

0

L̃(ξ′)

|ΛQ|
dξ′ ≤ Cξ2 ≤ 2C.

which concludes the case ξ0 ≪ 1.
+ The case ξ0 ≫ 1: We observe that there exists M > 0 such that for all ξ ∈ [M, ξ0]

1

C
ξ−γ ≤ |ΛQ| ≤ Cξ−γ .

Then, we have ∫ ξ

0

L̃(ξ′)

|ΛQ|
dξ′ =

∫ M

0

L̃(ξ′)

|ΛQ|
dξ′ +

∫ ξ

M

L̃(ξ′)

|ΛQ|
dξ′

≤ C(M) + C

∫ ξ

M
L̃(ξ′)(ξ′)γdξ′.

Besides that, we estimate L̃(ξ′), for all ξ′ ∈ [M, ξ0] as follows

L̃(ξ) =
1

ξd+1ΛQ

(∫ M

0
⟨ξ′⟩a−2|ΛQ|(ξ′)d+1dξ′ +

∫ ξ

M
⟨ξ′⟩a−2|ΛQ|(ξ′)d+1dξ′

)
≤ C(M)

(
ξ−d−1+γ + ξa−1

)
,

it follows that ∫ ξ

M
L̃(ξ′)(ξ′)γdξ′ ≤ C(M)(1 + ξ−d+2γ + ξa+γ).

Thus, we derive

|ΛQ|
∫ ξ

0

L̃(ξ′)

|ΛQ|
dξ′ ≤ C(M,a)

(
ξ−γ + ξa

)
.

Finally, we have

|H−1f(ξ)| ≤ C(a)⟨ξ⟩a,
provided that

a > −γ.
- The proofs of (E.18) and (E.19) are the same.
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Now, it remains to prove that if f ∈ Xa
ξ0
, then we have

∥f∥Xa−2
ξ0

≤ C(a)ξ20∥f∥Xa
ξ0
,

provided that ξ0 ≥ 1. Indeed, this comes from

⟨ξ⟩2−a = ⟨ξ⟩−a⟨ξ⟩2 ≤ 2ξ20⟨ξ⟩−a,

provided that ξ0 ≥ 1. Thus, we have

∥f∥Xa−2
ξ0

= sup
ξ∈[0,ξ0]

2∑
j=0

∣∣∣∣(⟨ξ⟩∂ξ)if⟨ξ⟩a−2

∣∣∣∣ ≤ sup
ξ∈[0,ξ0]

2∑
j=0

2ξ20

∣∣∣∣(⟨ξ⟩∂ξ)if⟨ξ⟩a

∣∣∣∣ ≤ 2ξ20∥f∥Xa
ξ0
.

This concludes the proof of the Lemma.

In the following Lemma, we aim to estimate ∂3ξSj and ∂3ξRi:

Lemma E.2 (Higher estimates for ∂3ξSj and ∂3ξRi). Let us consider Sj and Ri which satisfying

(E.4) and (E.9). Furthermore, we assume that the following estimates hold

∥Sj∥X2j+2−γ
ξ0

≤ Cy20 and ∥Ri∥Xϵ−γ
ξ0

≤ C, with ξ0 =
y0√
b
.

Then, the following holds: for all ξ ∈ [0, ξ0]∣∣∂3ξSj(ξ)∣∣ ≤ C⟨ξ⟩2j−γ−1, (E.20)∣∣∂3ξRi(ξ)
∣∣ ≤ C⟨ξ⟩ϵ−γ−3. (E.21)

Proof. - The proof of (E.20): We remark that when b→ 0, ξ0 → +∞. Then, we will consider two
situations, namely, ξ ≪ 1 and ξ ≫ 1 . Recall the inverse formula

Sj = bH−1(f), f =

(
α

2
− i+ λ̃+

1

2
Λ

)
(Sj + ci,jTj+1)

and write ∂3ξSj as follows

b−1∂3ξSj(ξ) = ∂3ξΛQ

∫ ξ

0

L(f)
ΛQ

dξ′ +
∂2ξΛQ

ΛQ
L(f) + ∂ξf − (d+ 1)(d+ 2)

ξ2
L(f)−

(d+ 1)∂ξΛQ

ξΛQ
L(f)

− (d+ 1)

ξ
f.

+ The case ξ ∈ [0, 1]: We observe that when ξ ≤ 1, it follows that |f(ξ)| ≤ C, then, plugging to
(E.4), we obtain

|Sj(ξ)| = |H−1f | ≤ Cξ2,

Hence, we refine the behavior near 0 as follows

|f(ξ)| ≤ Cξ2,

|L(f)(ξ)| ≤ Cξ3,

continuing this process we enhance the behavior to

|f(ξ)| ≤ Cξ2j+2,

|L(f)(ξ)| ≤ Cξ2j+3,

(we can get a precise behavior for Sj at 0 by Sj(ξ) = O(ξ2j+4) ). Then, it is easy to derive

b−1∂3ξSj(ξ) = O(ξ2j+1) as ξ → 0.

+ The case ξ ≥ 1: we have the following fact

|Sj(ξ)| ≤ C⟨ξ⟩2j+2−γ and |Tj+1(ξ)| ≤ C⟨ξ⟩2j+2−γ ,
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which yields

|f(ξ)| ≤ C⟨ξ⟩2j+2−γ .

Since

|L(f)(ξ)| ≤ C⟨ξ⟩2j+3−γ , and |Sj(ξ)| ≤ C⟨ξ⟩2j+2−γ ,

we get ∣∣∂3ξSj(ξ)∣∣ ≤ Cb⟨ξ⟩2j+1−γ ≤ C⟨ξ⟩2j−γ−1,

due to the fact that

bξ2 = y0 ≤ 1.

Thus, we conclude the proof of (E.20). By the same technique, we derive (E.21). This finalizes the
proof of the Lemma.

F. Outer eigenfunctions construction

This paragraph is devoted to give the complete proof to Proposition 10.3:

Proof. Now, let ϕi,out,β be of the form

ϕi,out,β(y) = ϕi,∞,β(y) + λ̃(ϕ̃i,β(y) +Ri,1(y)) +Ri,2(y), (F.1)

where Ri,1 and Ri,2 are to be constructed. Rewrite (2.18) as

Lb = L β
∞ − 3(d− 2)

(
1

y2
+ 2Qb +Q2

by
2

)
,

where L β
∞ was defined in (2.22) and L β

i,ext = L β
∞ − 2β

(
α
2 − i

)
. Plugging (F.1) into[

Lb − 2β
(α
2
− i
)
− λ̃

]
(ϕi,out,β) = 0,

which yields

L β
i,extϕi,out,β − λ̃ϕi,out,β − 3(d− 2)

(
1

y2
+ 2Qb +Q2

by
2

)
ϕi,out,β =

(
L β

i,extRi,1 − λ̃(ϕ̃i,β +Ri,1)
)

+

(
L β

i,extRi,2 − 3(d− 2)

(
1

y2
+ 2Qb +Q2

by
2

)
ϕi,out − λ̃Ri,2

)
= 0,

where we used L β
i,extϕi,∞ = 0 as well as L β

i,ext(ϕ̃i,β) = ϕi,∞,β. Thus, it is sufficient to construct Ri,1

and Ri,2 satisfying

L β
i,ext(Ri,1) = λ̃Ri,1 + λ̃ϕ̃i,β

L β
i,ext(Ri,2) =

(
λ̃+ 3(d− 2)

(
1

y2
+ 2Qb +Q2

by
2

))
Ri,2

+ 3(d− 2)

(
1

y2
+ 2Qb +Q2

by
2

)
(ϕi,∞,β + λ̃(ϕ̃i,β +Ri.1)),

or equivalently

Ri,1 = λ̃L −1
i,ext(Ri,1) + λ̃ϕi,∞,β, (F.2)

Ri,2 = L −1
i,ext(H1Ri,2) + L −1

i,ext(H2). (F.3)
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Here

H1(y) =

(
λ̃+ 3(d− 2)

(
1

y2
+ 2Qb +Q2

by
2

))
H2(y) = 3(d− 2)

(
1

y2
+ 2Qb +Q2

by
2

)
(ϕi,∞,β + λ̃(ϕ̃i,β +Ri,1)).

Step 1: Construction of Ri,1: The construction is based on Banach fixed point theorem on

Banach space Xa,a′
y0 equipped with the norm introduced in (10.9). Now, denote the right hand side

of (F.2) by K(Ri,1), and apply Lemma F.2 with a = γ − d and a′ = 2i+ 2− γ

∥K(Ri,1)∥Xa,a′
y0

≤ C1(a, a
′)|λ̃|

(
∥Ri,1∥Xa,a′

y0

+ ∥ϕi,∞,β∥Xa,a′
y0

)
and ∥ϕi,∞,β∥Xa,a′

y0

≤ C2.

Then, K maps the ball B(0, 2C1C2|λ̃|) into itself provided that |λ̃| ≤ min
(
1
2 ,

1
2C1

)
. In addition to

that, for all X1, X2 ∈ B(0, 2C1C2|λ̃|), we have

∥K(X1)−K(X2)∥Xa,a′
y0

≲ |λ̃| ∥X1 −X2∥Xa,a′
y0

.

Hence, for λ̃ small enough, K is a contraction and the existence of Ri,1 follows with the bound

∥Ri,1∥Xa,a′
y0

≤ 2C1C2|λ̃|.

Now, we establish the estimates for ∂bRi,1, ∂bRi,1 and ∂βRi,1.
- For ∂bRi,1: From (F.2), we see that Ri,1 is independent of b so ∂bRi,1 = 0.

- For ∂λ̃Ri,1: Applying ∂λ̃ to (F.2), we obtain

∂λ̃Ri,1 =
(
L β

i,ext

)−1
(Ri,1) + λ̃

(
L β

i,ext

)−1
(∂λ̃Ri,1) + ϕi,∞,β.

Lemma F.2 implies

∥∂λ̃Ri,1∥Xa,a′
y0

≤ C1∥Ri,1∥Xa,a′
y0

+ C1|λ̃|∥∂λ̃Ri,1∥Xa,a′
y0

+ ∥ϕi,∞,β∥Xa,a′
y0

,

hence

∥∂λ̃Ri,1∥Xa,a′
y0

≤ C.

- For ∂βRi,1: Applying ∂β to (F.2), we obtain

∂βRi,1 = λ̃∂β

((
L β

i,ext

)−1
)
(Ri,1) + λ̃

(
L β

i,ext

)−1
(∂βRi,1) + λ̃∂βϕi,∞,β.

Applying Xa,a′
y0 norm to the above equality and Lemma F.2, we deduce

∥∂βRi,1∥Xa,a′
y0

≤ C1|λ̃|∥Ri,1∥Xa,a′
y0

+ C2|λ̃|∥∂βRi,1∥Xa,a′
y0

+ |λ̃|∥∂βϕi,∞,β∥Xa,a′
y0

.

On the one hand, we have

∥Ri,1∥Xa,a′
y0

+ ∥∂βϕi,∞,β∥Xa,a′
y0

≤ C.

Finally, we get

∥∂βRi,1∥Xa,a′
y0

≤ C|λ̃|.

The construction and estimates on Ri,2 are very similar to those established above and are left to
the reader.

- Step 2: Construction of Ri,2:
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The construction is also based on the Banach fixed point theorem on the Banach space Xa,a′
y0

with a = −γ̃−2−α, and a′ = 2i+2−γ. First, we define the right hand side of (F.3) to be J(Ri,2).
Using Lemma F.2, we have the following

∥J(R2,i)∥Xa,a′
y0

≤ C1

(
∥H1Ri,2∥Xa,a′

y0

+ ∥H2∥Xa,a′
y0

)
.

We now aim to prove the following estimates

∥H1Ri,2∥Xa,a′
y0

≤ C(y0)b
α∥Ri,2∥Xa,a′

y0

, (F.4)

∥H2∥Xa,a′
y0

≤ C(y0)b
α. (F.5)

- The proof of (F.4): From Lemma 9.1, we have

Qb(y) =
1

b
Q

(
y√
b

)
=

1

b

− 1(
y√
b

)2 + q0

(
y√
b

)−γ

+Ob→0

(
y√
b

)−γ−g

 ,

since y ≥ y0,
y√
b
→ +∞. This implies that for all y ≥ y0 and b ∈ (0, b∗(y0))∣∣∣∣2Qb(y)−

(
− 2

y2
+ 2q0y

−γb
α
2

)∣∣∣∣ ≤ C(y0)b
α,∣∣∣∣y2Q2

b(y)−
(

1

y2
− 2q0y

−γb
α
2

)∣∣∣∣ ≤ C(y0)b
α,

since g = −2λ1 = 2(γ − 2). Thus, for all y ≥ y0, we have∣∣∣∣2Qb(y) +Q2
b(y)y

2 +
1

y2

∣∣∣∣ ≤ C(y0)b
α ≲ b

α
2 . (F.6)

- Proof of (F.5): Recall that

∥Ri,1∥X−γ̃,a′
y0

≤ C|λ̃|,

which implies

∥Ri,1∥Xa,a′
y0

≤ C(y0)|λ̃| with a = −γ̃ − 2− α.

Similarly, we also have

∥ϕi,∞,β∥Xa,a′
y0

+ ∥ϕ̃i,β∥Xa,a′
y0

≤ C(y0).

Thus, the above estimates and (F.6) immediately conclude (F.5).
Using estimates (F.4) and (F.5), we get

∥J(R2,i)∥Xa,a′
y0

≤ C1(y0)b
α

(
∥Ri,2∥Xa,a′

y0

+ 1

)
.

Consequently, once b ≪ 1, J becomes a contraction from the ball B(C1b
α, 0) to itself. Thus, it

follows Banach fixed point theorem the existence of Ri,2 satisfying

∥Ri,2∥Xa,a′
y0

≤ Cb
α
2 . (F.7)

Next, we focus on evaluating ∂λ̃Ri,2, ∂bRi,2 and ∂βRi,2:
+ For ∂λ̃Ri,2: We have

∂λ̃Ri,2 = L −1
i,ext(Ri,2) + L −1

i,ext(H1∂λ̃Ri,2) + L −1
i,ext(∂λ̃H2)
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then

∥∂λ̃Ri,2∥Xa,a′
y0

≤ C1∥Ri,2∥Xa,a′
y0

+ C2∥H1∂λ̃Ri,2∥Xa,a′
y0

+ C3∥∂λ̃H2∥Xa,a′
y0

≤ C1b
α
2 + C2b

α
2 ∥∂λ̃Ri,2∥Xa,a′

y0

+ C3b
α
2

which yields to

∥∂λ̃Ri,2∥Xa,a′
y0

≤ Cb
α
2 .

- For ∂bRi,2 : We have

∂bRi,2 = L −1
i,ext(∂bH1Ri,2) + L −1

i,ext(H1∂bRi,2) + L −1
i,ext(∂bH2)

then

∥∂bRi,2∥Xa,a′
y0

≤ C1∥∂bH1Ri,2∥Xa,a′
y0

+ C2∥Θ1∂bRi,2∥Xa,a′
y0

+ C3∥∂bH2∥Xa,a′
y0

≤ C1b
α
2
−1 + C2b

α
2 ∥∂λ̃Ri,2∥Xa,a′

y0

+ C3b
α
2
−1 ≤ Cb

α
2
−1.

- For ∂βRi,2: We have

∂βRi,2 = ∂β(L
−1
i,ext(Θ1Ri,2)) + L −1

i,ext(Θ1∂βRi,2) + ∂β(L
−1
i,ext(Θ2)),

then we use Lemma F.2 to get

∥∂βRi,2∥Xa,a′
y0

≤ C(y0)

(
b
α
2 ∥Ri,2∥Xa,a′

y0

+ b
α
1 ∥∂βRi,2∥Xa,a′

y0

+ bα
)

≤ Cb
α
2 .

Finally, we conclude the proof of the Proposition.

In the sequel, we aim to complete the results used in the proof of Proposition 10.3. To be begin

with, we need the following result on the resonance of L β
i,ext. For sake of shortness we set

L β
i,extu =

(
L β

∞ − 2β
(α
2
− i
))

u. (F.8)

We have

Lemma F.1 (Resonance of L β
i,ext). We consider i ∈ N, then, there exists ψ̃i,β such that it solves

L β
i,extψ̃i,β = 0. Moreover, we have

Ker(L β
i,ext) = Span{ϕi,∞,β, ψ̃i,β},

where ϕi,∞,β is the i-th eigenfunction of L β
∞, given in Proposition 4.1; and ψ̃i,β has the following

asymptotic:

ψ̃i,β(y) =


yγ−d

ai,0(d−2γ)(1 +O(y2)) as y → 0,

− 2
ai,i(2β)i

y−2i+γ−(d+2)e2β
y2

4

[
1 +O(y−2)

]
as y → +∞

(F.9)

where γ and ai,j were defined in (2.26) and (2.28) . In particular, there exists a solution ϕ̃i,β to

L β
i,extϕ̃i = ϕi,∞,β, satisfying the following asymptotic

ϕ̃i,β(y) =

{
K0y

−γ̃(1 +O(y2)) as y → 0,
K∞y

2i−γ(ln y +O(1)) as y → +∞,
(F.10)

where K0 =
1

(2γ−d)(d+2−2γ) ,K∞ = 2(2β)i and γ̃ is defined by

γ̃ =
1

2
(d+

√
d2 − 12d+ 24). (F.11)
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Proof. Recall that ϕi,∞,β solves L β
i,extϕi,∞,β = 0, this follows from the fact that ϕi,∞ is the i-th

eigenfunction of L∞. According to L β
i,ext, the Wronskian is given by

W (y) = y−(d+1)e2β
y2

4 . (F.12)

Then, we can formulate an independent linear solution ψ̃i,β to L β
i,extψ̃i,β = 0

ψ̃i,β(y) = −ϕi,∞,β

∫ y

1

(y′)−(d+1)e2β
(y′)2

4

ϕ2i,∞,β(y
′)

dy′. (F.13)

From (4.2), we derive

ϕi,∞,β(y) =

{
ai,0y

−γ
(
1 +O(y2)

)
as y → 0,

ai,i(2β)
iy2i−γ

(
1 +O(y−2)

)
as y → +∞,

(F.14)

where ai,j ’s general formula given in (2.28), and we plug the above fact into (F.13) to get

ψ̃i(y) =


yγ−d

ai,0(2γ−d)

(
1 +O(y2)

)
as ξ → 0,

− 2
ai,i(2β)i

y−2i+γ−d−2e2β
y2

4

(
1 +O(y−2)

)
as ξ → +∞.

(F.15)

In particular, it is easy to see that

Ker(L β
i,ext) = Span{ϕi,∞,β, ψ̃i,β},

which leads to(
L β

i,ext

)−1
f(y) = −ϕi,∞,β

∫ y

1
f(y′)

ψ̃i,β(y
′)

W (y′)
dξ′ + ψ̃i,β

∫ +∞

y
f(y′)

ϕi,β,∞(y′)

W (y′)
dy′ + c1ϕi,β,∞ + c2ψ̃i,β,

and since we need to construct a special solution with explicit asymptotics, we choose c1 = c2 = 0,
then, we can omit the generality and write(

L β
i,ext

)−1
f(y) = −ϕi,∞,β

∫ y

1
f(y′)

ψ̃i,β(y
′)

W (y′)
dy′ + ψ̃i,β

∫ +∞

y
f(y)

ϕi,β,∞(y′)

W (y′)
dy′. (F.16)

Thus, the solution ϕ̃i,β to L β
i,extϕ̃i,β = ϕi,∞,β can be written

ϕ̃i,β =
(
L β

i,ext

)−1
(ϕi,∞,β).

- Behavior at 0: From (F.14) and (F.15), we have

−ϕi,∞,β

∫ y

1

ϕi,∞,β(ξ
′)ψ̃i,∞,β(ξ

′)

W (ξ′)
dξ′ =

ai,0
2(2γ − d)

y−γ+2(1 +O(ξ2)) as y → 0

and also

ψ̃i,β

∫ ∞

y

ϕ2i,∞,β(ξ
′)

W (ξ′)
dξ′ =

ai,i
(2γ − d)(−2γ + d+ 2)

yγ−d(1 +O(ξ2)) as y → 0,

noting that γ − d = −1
2(d+

√
d2 − 12d+ 24) = −γ̃, we get

ϕ̃i,β(y) = K0y
−γ̃(1 + y2) as y → 0,

where K0 =
1

(2γ−d)(d+2−2γ) .

- Behavior at +∞: Using (F.14) and (F.15) again, we obtain

−ϕi,∞,β

∫ y

1

ϕi,∞,β(ξ
′)ψ̃i,∞,β(ξ

′)

W (ξ′)
dξ′ = 2ai,i(2β)

iy2i−γ (ln y +O(1)) as y → +∞,
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and for the second one

ψ̃i,β

∫ ∞

y

ϕ2i,∞,β(ξ
′)

W (ξ′)
dξ′ = − 2

ai,i(2β)i
y−2i+γ−d−2e

2βy2

4 O(y4i−2γ+de
−2βy2

4 ) as ξ → +∞.

Thus, we have

ϕ̃i,β(y) = 2(2β)iy2i−γ (ln ξ +O(1)) asξ → +∞,

and this concludes the proof of the Lemma.

It remains only to prove the continuity of L −1
i,ext in the Banach space Xa,a′ , a result that we have

used above.

Lemma F.2 (Continuity of L −1
i,ext). For all a ≤ γ − d, a ̸= −d− 2 and a′ > 2i− γ with y0 ∈ (0, 1)

and β ∈
(
1
4 ,

3
4

)
, we have the following estimate∥∥∥∥(L β

i,ext

)−1
f

∥∥∥∥
Xa,a′

y0

≤ C(a, a′, β)∥f∥
Xa,a′

y0

and

∥∥∥∥∂β (L β
i,ext

)−1
f

∥∥∥∥
Xa,a′

y0

≤ C(a, a′, β)∥f∥
Xa,a′

y0

.

Proof. Define g =
(
L β

i,ext

)−1
f and recall from (F.16) that

g(y) =
(
L β

i,ext

)−1
f(y) = −ϕi,∞,β

∫ y

1
f(ξ′)

ψ̃i,β(ξ
′)

W (ξ′)
dξ′ + ψ̃i,β

∫ +∞

y
f(ξ)

ϕi,β,∞(ξ′)

W (ξ′)
dξ′.

Then

∂yg(y) = −∂yϕi,∞,β

∫ y

1
f(ξ′)

ψ̃i,β(ξ
′)

W (ξ′)
dξ′ + ∂yψ̃i,β

∫ +∞

y
f(ξ)

ϕi,β,∞(ξ′)

W (ξ′)
dξ′ϕi,∞,β

−2ϕi,∞,βf(y)
ψ̃i,β(y)

W (y)

and

∂2yg(y) = −∂2yϕi,∞,β

∫ y

1
f(ξ′)

ψ̃i,β(ξ
′)

W (ξ′)
dξ′ + ∂2y ψ̃i,β

∫ +∞

y
f(ξ)

ϕi,β,∞(ξ′)

W (ξ′)
dξ′ϕi,∞,β

−3∂yϕi,∞,βf(y)
ψ̃i,β(y)

W (y)
− 3∂yψ̃i,βf(y)

ϕi,β,∞(y)

W (y)

−2ϕi,∞,β∂yf(y)
ψ̃i,β(y)

W (y)
+ 2ϕi,∞,βf(y)

ψ̃i,β(y)∂yW (y)

W 2(y)
.

In order to establish the desired estimate, we will only need to control higher order derivatives,
namely, y2−a∂2yg(y) for y ∈ [y0, 1] and y

2−a′∂2yg(y) for y ∈ [1,∞).
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• y ∈ [y0, 1], we have∣∣y2−a∂2yg(y)
∣∣ ≲ y2−a|∂2yϕi,∞,β|

∫ 1

y
(ξ′)−a|f(ξ′)|

|(ξ′)a||ψ̃i,β(ξ
′)|

W (ξ′)
dξ′

+ y2−a|∂2y ψ̃i,β|

(∫ 1

y
(ξ′)−a|f(ξ′)|

|(ξ′)a||ϕi,β,∞(y)|
W (ξ′)

dξ′ +

∫ ∞

1
(ξ′)−a′ |f(ξ′)|

|(ξ′)a′ ||ϕi,β,∞(y)|
W (ξ′)

dξ′

)

+ y2−a|f(y)|

(
|∂yϕi,∞,β|

|ψ̃i,β(y)|
W (y)

+ |∂yψ̃i,β|
|ϕi,β,∞(y)|
W (y)

+ |ϕi,∞,β|
|ψ̃i,β(y)∂yW (y)|

W 2(y)

)

+ y1−a|∂yf(y)|

(
y|ϕi,∞,β|

|ψ̃i,β(y)|
W (y)

)
≲ sup

y∈[y0,1]
|y−af(y)|+ sup

y∈[y0,1]
|y1−a∂yf(y)|+ sup

y∈[1,+∞)
|y−a′f(y)| ≲ ∥f∥

Xa,a′
y0

,

provided that a ≤ γ − d and a′ ≥ 2i− γ.

• y ∈ [1,+∞), we have∣∣∣y2−a′∂2yg(y)
∣∣∣ ≲ y2−a′ |∂2yϕi,∞,β|

∫ ∞

1
(ξ′)−a′ |f(ξ′)|

|(ξ′)a′ ||ψ̃i,β(ξ
′)|

W (ξ′)
dξ′

+ y2−a′ |∂2y ψ̃i,β|
∫ ∞

1
(ξ′)−a′ |f(ξ′)|

|(ξ′)a′ ||ϕi,β,∞(y)|
W (ξ′)

dξ′

+ y−a′ |f(y)|

(
y2|∂yϕi,∞,β|

|ψ̃i,β(y)|
W (y)

+ y2|∂yψ̃i,β|
|ϕi,β,∞(y)|
W (y)

+ y2|ϕi,∞,β|
|ψ̃i,β(y)∂yW (y)|

W 2(y)

)

+ y1−a′ |∂yf(y)|

(
y|ϕi,∞,β|

|ψ̃i,β(y)|
W (y)

)
≲ sup

y∈[1,+∞)
|y−a′f(y)|+ sup

y∈[1,+∞)
|y1−a′∂yf(y)| ≲ ∥f∥

Xa,a′
y0

which yields

∥g∥
Xa,a′

y0

= ∥
(
L β

i,ext

)−1
f∥

Xa,a′
y0

≤ C(a, a′)∥f∥
Xa,a′

y0

as claimed. Finally, we finish the proof of the Lemma.
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