Nonuniform Berry-Esseen bound for self-normalized series

Nguyen Chi Dzung • Pham Viet Hung

Abstract

In this paper, we shall obtain nonuniform Berry-Esseen bounds in the central limit theorem for self-normalized series. We establish the exponential Berry-Esseen bounds for the probability of the self-normalized series under the condition that the third moment is finite.

Keywords Nonuniform bound, Berry-Esseen inequality, Random power series, Self-normalized series

Mathematics Subject Classification (2010) 60E15 • 60F15

1 Introduction

Let X_{1}, X_{2}, \ldots be a sequence of independent random variables with $\mathbb{E} X_{i}=0$ and $0<\mathbb{E} X_{i}^{2}<\infty$ for $i \geq 1$. Let $b \in(0,1)$ be the discount factor. The random power series S_{b} can be defined as

$$
S_{b}=X_{0}+b X_{1}+b^{2} X_{2}+\ldots
$$

From the financial point of view, X_{i} stands for the (random) money that we will get at i-th year of a contract, for example a coupon bond and S_{b} is the present value of the cash flow. In the literature, S_{b} is also called the perpetuities (see [2], [9], [10]) for more detail.

The study of this quantity has drawn much of interest and it has a long history for more than 50 years. Let us mention some remarkable results for the simplest case that the random variables X_{i} 's are independent, identically distribution (i.i.d). In 1971, Gerber [8] provided a Berry-Esseen bound for the following central limit theorem as $b \rightarrow 1^{-}$,

$$
\sqrt{1-b^{2}} S_{b} \xrightarrow{d} \mathcal{N}\left(0, \sigma^{2}\right),
$$

where $\sigma^{2}=\mathbb{E} X_{1}^{2}$.

[^0]In 1974, Lai [13] proved the strong law of large number

$$
\frac{X_{b}}{1-b} \xrightarrow{a . s} 0 .
$$

The law of iterated logarithm

$$
\limsup _{b \rightarrow 1^{-1}} \sqrt{\frac{1-b^{2}}{\log \log \left(1 /\left(1-b^{2}\right)\right)}} S_{b}=\sqrt{2} \sigma
$$

was proved by Gaposhkin [7] in 1965.
Recently, Iksanov consider a generalization with stochastic discount rates and provide the analogue versions of the above results.

In this paper, we are interested in the self-normalized series (denote by S_{b} / V_{b})

$$
\frac{X_{0}+b X_{1}+b^{2} X_{2}+\ldots}{\sqrt{X_{0}^{2}+b^{2} X_{1}^{2}+b^{4} X_{2}^{2}+\ldots}}
$$

with $V_{b}^{2}=X_{0}^{2}+b^{2} X_{1}^{2}+b^{4} X_{2}^{2}+\ldots$
Self-normalized series can be seen as an extension of self-normalized sum, defined as

$$
\frac{S_{n}}{V_{n}}=\frac{X_{1}+\ldots+X_{n}}{\sqrt{X_{1}^{2}+\ldots+X_{n}^{2}}}
$$

where again the random variables X_{i} 's are i.i.d with mean zero and finite variance.
The self-normalized sum is also an attractive research direction both in Probability and Statistics, (see [15, Self-normalized limit theorem: A survey, Probability Surveys]) for more detail.

From the distribution of S_{n} / V_{n}, one can make a suitable change of variable to deduce the distribution of the classical Student t - statistics and also the studentized t-statistics. This research direction has been studied extensively with many interesting and nice results: Nonuniform BerryEsseen bound [12, Wang and Jing], Cramér type large (moderate) deviation [11, Jing, Shao and Wang], the law of iterated logarithm [11, Jing, Shao and Wang], Donsker type functional central limit theorem [3, Csörgő, Szyszkowicz and Wang]. It is also interesting to consider some questions for the self-normalized series model. In 2006, Fu and Huang [6] confirmed the self-normalized law of iterated logarithm.

The purpose of this paper is to establish a nonuniform Berry-Esseen bound for the self-normalized series S_{b} / V_{b}. In other words, we wish to obtain a bound for

$$
\delta_{b}(x):=\left|\mathbb{P}\left(S_{b} / V_{b} \leq x\right)-\Phi(x)\right|
$$

Our main result is the following theorem.
Theorem 1 Let X_{1}, X_{2}, \ldots be a sequence of independent, symmetric random variables with $\mathbb{E}\left(\left|X_{j}\right|^{3}\right)<$ ∞ for all $j=1,2, \ldots$ Set $B_{b}^{2}=\sum_{j=1}^{\infty} b^{2 j} \mathbb{E} X_{j}^{2}, L_{3 b}=B_{b}^{-3} \sum_{j=1}^{\infty} b^{3 j} \mathbb{E}\left|X_{j}\right|^{3}$.
(i) If $|x| \leq\left(5 L_{3 b}^{1 / 3}\right)^{-1}$, we have

$$
\begin{equation*}
\delta_{b}(x) \leq A\left(\left(1+x^{2}\right) L_{3 b}+\sum_{j=1}^{\infty} \mathbb{P}\left(\left|b^{j} X_{j}\right|>B_{b} /(6|x|)\right)\right) \exp \left(-\frac{x^{2}}{2}\right) . \tag{1.1}
\end{equation*}
$$

(ii) If $|x|>\left(5 L_{3 b}^{1 / 3}\right)^{-1}$, we have

$$
\begin{equation*}
\delta_{b}(x) \leq\left(1+\frac{1}{\sqrt{2 \pi}|x|}\right) \exp \left(-\frac{x^{2}}{2}\right) \tag{1.2}
\end{equation*}
$$

Under the assumption $\mathbb{E}\left|X_{j}\right|^{3}<\infty$, by applying Markov's inequality for $|x| \leq\left(5 L_{3 b}^{1 / 3}\right)^{-1}$, we obtain the following corollary.

Corollary 1 Let X_{1}, X_{2}, \ldots be a sequence of independent, symmetric random variables with $\mathbb{E}\left(\left|X_{j}\right|^{3}\right)<$ ∞, for all $j=1,2, \ldots$ Then for all $x \in \mathbb{R}$, we have

$$
\delta_{b}(x) \leq A \min \left\{\left(1+|x|^{3}\right) L_{3 b}, 1\right\} \exp \left(-\frac{x^{2}}{2}\right)
$$

Before proving the main result, we need some the following technical lemmas.

2 Some technical lemmas

Lemma 1 Let X_{1}, X_{2}, \ldots be a sequence of independent, symmetric random variables with $\mathbb{E}\left(\left|X_{n}\right|^{3}\right)<$ ∞ for all $n=1,2, \ldots$
(i) For all $n \geq 1$ and $x>0$ such that $\left(1+x^{3}\right) L_{3 b} \leq \frac{1}{125}$, we have

$$
\begin{equation*}
\mathbb{P}\left(S_{b}>x\left(V_{b}^{2}+B_{b}^{2}\right) /\left(2 B_{b}\right)\right)=(1-\Phi(x)) \exp \left(r_{1 b}(x)\right)+\exp \left(\frac{-x^{2}}{2}\right) r_{2 b}(x) \tag{2.1}
\end{equation*}
$$

where $\left|r_{1 b}(x)\right| \leq 14 x^{3} L_{3 b}$ and $\left|r_{2 b}(x)\right| \leq A\left(1+x^{2}\right) L_{3 b} \exp \left(14 x^{3} L_{3 b}\right)$.
(ii) For $n \geq 1$ and $x \geq 1$ satisfying $x^{3} E_{3 b} \leq \frac{1}{125}$, we have

$$
\begin{equation*}
\mathbb{P}\left(S_{b}>x\left(V_{b}^{2}+B_{b}^{2}\right) /\left(2 B_{b}\right)\right)=(1-\Phi(x))\left(1+r_{3 b}(x)\right), \tag{2.2}
\end{equation*}
$$

where $\left|r_{3 b}(x)\right| \leq A x\left(1+x^{2}\right) L_{3 b} \exp \left(14 x^{3} L_{3 b}\right)$.
Proof Set

$$
h=\frac{x}{B_{b}}, \quad \eta_{j}=b^{j} X_{j}-\frac{h}{2}\left(b^{2 j} X_{j}^{2}-b^{2 j} \sigma_{j}^{2}\right) .
$$

Then the left-hand side of (2.1) is equivalent to

$$
\begin{equation*}
\mathbb{P}\left(S_{b}>x\left(V_{b}^{2}+B_{b}^{2}\right) /\left(2 B_{b}\right)\right)=\mathbb{P}\left(\sum_{j=1}^{\infty} \eta_{j}>x B_{b}\right) \tag{2.3}
\end{equation*}
$$

Next, we apply the conjugate method which was first introduced by Esscher [4] and improved by Feller [5]. Let ξ_{1}, ξ_{2}, \ldots be independent random variables with ξ_{i} having distribution function defined by

$$
V_{j}(u)=\mathbb{E}\left(\exp \left(h \eta_{j}\right) \mathbf{1}\left(\eta_{j} \leq u\right)\right) / \mathbb{E}\left(\exp \left(h \eta_{j}\right)\right) \quad \text { for } j=1,2, \ldots
$$

We also define

$$
M_{b}^{2}(h)=\sum_{j=1}^{\infty} \operatorname{Var}\left(\xi_{j}\right)
$$

and

$$
G_{b}(t)=\mathbb{P}\left(\frac{\sum_{j=1}^{\infty}\left(\xi_{j}-\mathbb{E} \xi_{j}\right)}{M_{b}(h)} \leq t\right), \quad R_{b}(h)=\frac{x B_{b}-\sum_{j=1}^{\infty} \mathbb{E} \xi_{j}}{M_{b}(h)}
$$

By the well-known equation $\int_{0}^{\infty} \exp (-s x) \mathrm{d} \Phi(x)=\exp \left(-\frac{x^{2}}{2}\right)(1-\Phi(s))$ and using inverse Laplace transform, we have

$$
\begin{align*}
\mathbb{P}\left(\sum_{j=1}^{\infty} \eta_{j}>x B_{b}\right)= & \left(\prod_{j=1}^{\infty} \mathbb{E} \exp \left(h \eta_{j}\right)\right) \int_{x B_{b}}^{\infty} \exp (-h u) \mathrm{d} \mathbb{P}\left(\sum_{j=1}^{\infty} \xi_{j} \leq u\right) \\
= & \left(\prod_{j=1}^{\infty} \mathbb{E} \exp \left(h \eta_{j}\right)\right) \int_{0}^{\infty} \exp \left(-h x B_{b}-h M_{b}(h) v\right) \mathrm{d} G_{b}\left(v+R_{b}(h)\right) \\
= & \left(\prod_{j=1}^{\infty} \mathbb{E} \exp \left(h \eta_{j}\right)\right) e^{-x^{2}}\left(\int_{0}^{\infty} \exp \left(-h M_{b}(h) v\right) \mathrm{d}\left(G_{b}\left(v+R_{b}(h)\right)-\Phi(v)\right)\right. \tag{2.4}\\
& \left.\quad+\int_{0}^{\infty} \exp \left(-h M_{b}(h) v\right) \mathrm{d} \Phi(v)\right) \\
= & I_{0}(h) \exp \left(-x^{2}\right)\left(\exp \left(\frac{x^{2}}{2}\right)(1-\Phi(x))+I_{1}(h)+I_{2}(h)+I_{3}(h)\right)
\end{align*}
$$

where

$$
\begin{aligned}
& I_{0}(h)=\prod_{j=1}^{\infty} \mathbb{E} \exp \left(h \eta_{j}\right), \\
& I_{1}(h)=\int_{0}^{\infty} \exp \left(-h M_{b}(h) v\right) \mathrm{d}\left(G_{b}\left(v+R_{b}(h)\right)-\Phi\left(v+R_{b}(h)\right)\right), \\
& I_{2}(h)=\int_{0}^{\infty} \exp \left(-h M_{b}(h) v\right) \mathrm{d}\left(\Phi\left(v+R_{b}(h)\right)-\Phi(v)\right), \\
& I_{3}(h)=\int_{0}^{\infty} \exp \left(-h M_{b}(h) v-\exp (-x v)\right) \mathrm{d} \Phi(v) .
\end{aligned}
$$

We will establish some inequalities before estimating $I_{j}(h)$ for $j=1,2,3$.
It follows from Jensen's inequality that $\sigma_{j}^{3} \leq \mathbb{E}\left|X_{j}\right|^{3}$.
Combining this and the assumption $\left(1+x^{3}\right) L_{3 b} \leq \frac{1}{125}$, we have

$$
\begin{equation*}
b^{j} \sigma_{j} h=\frac{b^{j} \sigma_{j} x}{B_{b}} \leq\left(x^{3} B_{b}^{-3} b^{3 j} \mathbb{E}\left|X_{j}\right|^{3}\right)^{1 / 3} \leq \frac{1}{5} \tag{2.5}
\end{equation*}
$$

Thus

$$
\begin{equation*}
h \eta_{j}=-\frac{1}{2} h^{2}\left(b^{j} X_{j}-h^{-1}\right)^{2}+\frac{1}{2}+\frac{1}{2} b^{2 j} \sigma_{j}^{2} h^{2} \leq \frac{13}{25} . \tag{2.6}
\end{equation*}
$$

From (2.5), the symmetry assumption and $\mathbb{E}\left|X_{j}\right|^{3}<\infty$, we have

$$
\begin{align*}
&\left|\mathbb{E}\left(\eta_{j} \mathbf{1}\left(\left|b^{j} X_{j}\right| \leq h^{-1}\right)\right)\right|=\left|\mathbb{E}\left(\left(b^{j} X_{j}-\frac{h}{2}\left(b^{2 j} X_{j}^{2}-b^{2 j} \sigma_{j}^{2}\right)\right) \mathbf{1}\left(\left|b^{j} X_{j}\right|>h^{-1}\right)\right)\right| \\
& \leq \mathbb{E}\left(\left|b^{j} X_{j}\right| \mathbf{1}\left(\left|b^{j} X_{j}\right|>h^{-1}\right)\right)+\frac{h}{2} \mathbb{E}\left(\left(b^{j} X_{j}\right)^{2} \mathbf{1}\left(\left|b^{j} X_{j}\right|>h^{-1}\right)\right) \\
&+\frac{h}{2} \mathbb{E}\left(\left(b^{j} \sigma_{j}\right)^{2} \mathbf{1}\left(\left|b^{j} X_{j}\right|>h^{-1}\right)\right) \tag{2.7}\\
& \leq h^{2} \mathbb{E}\left(\left|b^{j} X_{j}\right|^{3} \mathbf{1}\left(\left|b^{j} X_{j}\right|>h^{-1}\right)\right)+\frac{h^{2}}{2} \mathbb{E}\left(\left|b^{j} X_{j}\right|^{3} \mathbf{1}\left(\left|b^{j} X_{j}\right|>h^{-1}\right)\right) \\
&+\frac{h^{2}}{2} \mathbb{E}\left(\left|b^{j} \sigma_{j}\right|^{3} b^{2 j} \sigma_{j}^{2} h^{2} \mathbf{1}\left(\left|b^{j} X_{j}\right|>h^{-1}\right)\right) \\
& \leq 2 h^{2} \mathbb{E}\left(\left|b^{j} X_{j}\right|^{3} \mathbf{1}\left(\left|b^{j} X_{j}\right|>h^{-1}\right)\right) .
\end{align*}
$$

Similarly, we also have

$$
\begin{gather*}
\left|\mathbb{E}\left(\eta_{j}^{2} \mathbf{1}\left(\left|b^{j} X_{j}\right| \leq h^{-1}\right)-b^{2 j} \sigma_{j}^{2}\right)\right| \leq \frac{3}{2} h\left(\mathbb{E}\left|b^{j} X_{j}\right|^{3}+h b^{4 j} \sigma_{j}^{4}\right), \tag{2.8}\\
\mathbb{E}\left(\left|\eta_{j}\right|^{3} \mathbf{1}\left(\left|b^{j} X_{j}\right| \leq h^{-1}\right)\right) \leq 6 \mathbb{E}\left(\left|b^{j} X_{j}\right|^{3} \mathbf{1}\left(\left|b^{j} X_{j}\right| \leq h^{-1}\right)\right)+2 h^{3} b^{6 j} \sigma_{j}^{6} . \tag{2.9}
\end{gather*}
$$

We have

$$
\begin{align*}
\mathbb{E} \exp \left(n \eta_{j}\right)= & \mathbb{E}\left(\exp \left(h \eta_{j}\right) \mathbf{1}\left(\left|b^{j} X_{j}\right| \leq h^{-1}\right)\right)+\mathbb{E}\left(\exp \left(h \eta_{j}\right) \mathbf{1}\left(\left|b^{j} X_{j}\right|>h^{-1}\right)\right) \\
& =\mathbb{E}\left(\left(1+h \eta_{j}+\frac{1}{2}\left(h \eta_{j}\right)^{2}\right) \mathbf{1}\left(\left|b^{j} X_{j}\right| \leq h^{-1}\right)\right)+\mathbb{E}\left(\exp \left(h \eta_{j}\right) \mathbf{1}\left(\left|b^{j} X_{j}\right|>h^{-1}\right)\right) \\
& +\mathbb{E}\left(\left(\exp \left(h \eta_{j}\right)-1-h \eta_{j}-\frac{1}{2}\left(h \eta_{j}\right)^{2}\right) \mathbf{1}\left(\left|b^{j} X_{j}\right| \leq h^{-1}\right)\right) \tag{2.10}\\
= & 1+\frac{1}{2} h^{2} b^{2 j} \sigma_{j}^{2}+l_{1 j}(h) \\
= & \exp \left(\frac{1}{2} h^{2} b^{2 j} \sigma_{j}^{2}+l_{2 j}(h)\right) \\
& \left(\mathbb{E} \exp \left(h \eta_{j}\right)\right)^{-1}=1-\frac{1}{2} h^{2} b^{2 j} \sigma_{j}^{2}+l_{3 j}(h) \tag{2.11}
\end{align*}
$$

where

$$
\begin{aligned}
l_{1 j}(h) & =-\mathbb{P}\left(\left|b^{j} X_{j}\right|>h^{-1}\right)+h \mathbb{E}\left(\eta_{j} \mathbf{1}\left(\left|b^{j} X_{j}\right| \leq h^{-1}\right)\right)+\frac{1}{2} h^{2} \mathbb{E}\left(\eta_{j}^{2} \mathbf{1}\left(\left|b^{j} X_{j}\right| \leq h^{-1}\right)-b^{2 j} \sigma_{j}^{2}\right) \\
& +\mathbb{E}\left(\exp \left(h \eta_{j}\right) \mathbf{1}\left(\left|b^{j} X_{j}\right|>h^{-1}\right)\right)+\mathbb{E}\left(\left(\exp \left(h \eta_{j}\right)-1-h \eta_{j}-\frac{1}{2}\left(h \eta_{n}\right)^{2}\right) \mathbf{1}\left(\left|b^{j} X_{j}\right| \leq h^{-1}\right)\right)
\end{aligned}
$$

Applying the elementary inequality $\left|e^{x}-1-x-\frac{x^{2}}{2}\right| \leq \frac{|x|^{3} e^{|x|}}{6}$ for all $x \in \mathbb{R}$, and noting that $\exp \left(x h \eta_{j} \leq 2\right)$ for $0 \leq x \leq 1$, we get

$$
\begin{aligned}
\left|l_{1 j}(h)\right| & \left.\leq h\left|\mathbb{E}\left(\eta_{j} \mathbf{1}\left(\left|b^{j} X_{j}\right| \leq h^{-1}\right)\right)+\frac{1}{2} h^{2}\right| \mathbb{E}\left(\eta_{j}^{2} \mathbf{1}\left(\left|b^{j} X_{j}\right| \leq h^{-1}\right)-b^{2 j} \sigma_{j}^{2}\right) \right\rvert\, \\
& +\frac{1}{3} h^{3} \mathbb{E}\left(\left|\eta_{j}\right|^{3} \mathbf{1}\left(\left|b^{j} X_{j}\right| \leq h^{-1}\right)\right)+3 \mathbb{P}\left(\left|b^{j} X_{j}\right|>h^{-1}\right) \\
& \leq 2 h^{3} \mathbb{E}\left(\left|\eta_{j}\right|^{3} \mathbf{1}\left(\left|b^{j} X_{j}\right|>h^{-1}\right)\right)+\frac{3}{4} h^{3}\left(\mathbb{E}\left|b^{j} X_{j}\right|^{3}+h b^{4 j} \sigma_{j}^{4}\right) \\
& +\frac{1}{3} h^{3} 6 \mathbb{E}\left(\left|\eta_{j}\right|^{3} \mathbf{1}\left(\left|b^{j} X_{j}\right| \leq h^{-1}\right)\right)+2 h^{3} b^{6 j} \sigma_{j}^{6} \\
& \leq 7 h^{3} \mathbb{E}\left|b^{j} X_{j}\right|^{3},
\end{aligned}
$$

$$
\left|l_{2 j}(h)\right| \leq 2\left|l_{1 j}(h)\right| \leq 14 h^{3} \mathbb{E}\left|b^{j} X_{j}\right|^{3},
$$

$$
\left|l_{3 j}(h)\right| \leq 2\left|l_{1 j}(h)\right| \leq 14 h^{3} \mathbb{E}\left|b^{j} X_{j}\right|^{3} .
$$

It is proved by Wang and Jing [12] that

$$
\begin{gather*}
\left|\mathbb{E}\left(\eta_{j} \exp \left(h \eta_{j}\right)\right)-h b^{2 j} \sigma_{j}^{2}\right| \leq 16 h^{2} \mathbb{E}\left|b^{j} X_{j}\right|^{3}, \tag{2.12}\\
\left|\mathbb{E}\left(\eta_{j}^{2} \exp \left(h \eta_{j}\right)\right)-b^{2 j} \sigma_{j}^{2}\right| \leq 30 h \mathbb{E}\left|b^{j} X_{j}\right|^{3}, \tag{2.13}\\
\mathbb{E}\left(\left|\eta_{j}\right|^{3} \exp \left(h \eta_{j}\right)\right) \leq 30 \mathbb{E}\left|b^{j} X_{j}\right|^{3} . \tag{2.14}
\end{gather*}
$$

It follows from (2.5)-(2.14) that

$$
\begin{equation*}
\mathbb{E} \xi_{j}=\frac{\mathbb{E}\left(\eta_{j} \exp \left(h \eta_{j}\right)\right)}{\mathbb{E}\left(\exp \left(h \eta_{j}\right)\right)}=h b^{2 j} \sigma_{j}^{2}+l_{4 j}(h) \tag{2.15}
\end{equation*}
$$

where

$$
l_{4 j}(h)=\left(\frac{1}{\mathbb{E}\left(\exp \left(h \eta_{j}\right)\right)}-1\right) \mathbb{E}\left(\eta_{j} \exp \left(h \eta_{j}\right)\right)+\mathbb{E}\left(\eta_{j} \exp \left(h \eta_{j}\right)\right)-h b^{2 j} \sigma_{j}^{2}
$$

Thus, by (2.5),(2.11), (2.12), we get

$$
\begin{aligned}
\left|l_{4 j}(h)\right| & \leq\left|\left(\frac{1}{\mathbb{E}\left(\exp \left(h \eta_{j}\right)\right)}-1\right) \mathbb{E}\left(\eta_{j} \exp \left(h \eta_{j}\right)\right)\right|+\left|\mathbb{E}\left(\eta_{j} \exp \left(h \eta_{j}\right)\right)-h b^{2 j} \sigma_{j}^{2}\right| \\
& \leq\left|\left(l_{3 j}(h)-\frac{1}{2} h^{2} b^{2 j} \sigma_{j}^{2}\right)\left(h b^{2 j} \sigma_{j}^{2}+16 h^{2} b^{3 j} \mathbb{E}\left|X_{j}\right|^{3}\right)\right|+16 h^{2} b^{3 j} \mathbb{E}\left|X_{j}\right|^{3} \\
& \leq 22 h^{4} b^{5 j} \sigma_{j}^{2} \mathbb{E}\left|X_{j}\right|^{3}+224 h^{5} b^{6 j}\left(\mathbb{E}\left|X_{j}\right|^{3}\right)^{2}+16 h^{2} b^{3 j} \mathbb{E}\left|X_{j}\right|^{3}+\frac{1}{2} h^{3} b^{4 j} \sigma_{j}^{4} \\
& \leq 20 h^{2} b^{3 j} \mathbb{E}\left|X_{j}\right|^{3} .
\end{aligned}
$$

Similarly, we also have

$$
\begin{equation*}
\operatorname{Var}\left(\xi_{j}\right)=\frac{\mathbb{E}\left(\eta_{j}^{2} \exp \left(h \eta_{j}\right)\right)}{\left(\mathbb{E} \exp \left(h \eta_{j}\right)\right)^{2}}-\left(\mathbb{E} \xi_{j}\right)^{2}=b^{2 j} \sigma_{j}^{2}+l_{5 j}(h) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left|\xi_{j}\right|^{3}=\mathbb{E}\left(|\eta|^{3} \exp \left(h \eta_{j}\right)\right) / \mathbb{E} \exp \left(h \eta_{j}\right) \leq 34 b^{3 j} \mathbb{E}\left|X_{j}\right|^{3} \tag{2.17}
\end{equation*}
$$

where $\left|l_{5 j}(h)\right| \leq 41 h b^{3 j} \mathbb{E}\left|X_{j}\right|^{3}$.
It follows $\left|\bar{l}_{5 j}(h)\right| \leq 41 h b^{3 j} \mathbb{E}\left|X_{j}\right|^{3}$ and the assumption $\left(1+x^{3}\right) L_{3 b} \leq 1 / 125$, it is easy to obtain that

$$
\begin{equation*}
M_{b}^{2}(h)=B_{b}^{2}+\sum_{j=1}^{\infty} l_{5 j}(h)>\frac{2}{3} B_{b}^{2} \tag{2.18}
\end{equation*}
$$

We are now estimate $I_{j}(h), 0 \leq j \leq 3$. For $I_{0}(h)$, using (2.10) we have

$$
\begin{equation*}
I_{0}(h)=\exp \left(\frac{1}{2} h^{2} B_{b}^{2}+\sum_{j=1}^{\infty} l_{2 j}(h)\right)=\exp \left(\frac{x^{2}}{2}\right) \exp \left(\sum_{j=1}^{\infty} l_{2 j}(h)\right) \tag{2.19}
\end{equation*}
$$

By (2.15)-(2.19), the Berry-Esseen bound and Taylor expansion, we have

$$
\begin{gather*}
I_{1}(h) \leq \sup _{x}\left|G_{n}(v)-\Phi(v)\right| \leq \frac{A}{M_{b}^{3}(h)} \sum_{j=1}^{\infty} \mathbb{E}\left|\xi_{j}-\mathbb{E} \xi_{j}\right|^{3} \leq A L_{3 b}, \tag{2.20}\\
I_{2}(h) \leq \sup _{x}\left|\Phi\left(v+R_{n}(h)\right)-\Phi(v)\right| \leq \frac{A}{M_{b}(h)} \sum_{j=1}^{\infty}\left|l_{4 j}(h)\right| \leq A x^{2} L_{3 b} . \tag{2.21}
\end{gather*}
$$

By applying the mean value estimate to $I_{3}(h)$ [see Petrov [14], page 227], we have

$$
\begin{align*}
I_{3}(h) & \leq \frac{1}{x}\left|\frac{M_{b}(h)}{B_{b}}-1\right| \max \left\{1, \frac{B_{b}^{2}}{M_{b}^{2}}\right\} \\
& \leq \frac{3}{2 x}\left|\frac{M_{b}^{2}(h)-B_{n}^{2}}{B_{b}\left(M_{b}(h)+B_{n}\right)}\right| \tag{2.22}\\
& \leq A L_{3 b} .
\end{align*}
$$

Combining (2.3), (2.4) and (2.19)-(2.22), we get

$$
\begin{aligned}
\mathbb{P}\left(S_{b}>x\left(V_{b}^{2}+B_{b}^{2}\right) /\left(2 B_{b}\right)\right) & =\exp \left(-\frac{x^{2}}{2}\right) \exp \left(r_{1 b}(x)\right)\left(\exp \left(\frac{x^{2}}{2}\right)(1-\Phi(x))+I_{1}(h)+I_{2}(h)+I_{3}(h)\right) \\
& =(1-\Phi(x)) \exp \left(r_{1 b}(x)\right)+\exp \left(-\frac{x^{2}}{2}\right) r_{2 b}(x),
\end{aligned}
$$

where $r_{1 b}(x)=\sum_{j=1}^{\infty} l_{2 j}(h)$ and $r_{2 b}(x)=\exp \left(r_{1 b}(x)\right)\left(I_{1}(h)+I_{2}(h)+I_{3}(h)\right)$.
Thus

$$
\left|r_{1 b}(x)\right|=\sum_{j=1}^{\infty}\left|l_{2 j}(h)\right| \leq 14 x^{3} L_{3 b}
$$

and

$$
\left|r_{2 b}(x)\right|=\exp \left(\left|r_{1 b}(x)\right|\right)\left(\left|I_{1}(h)\right|+\left|I_{2}(h)\right|+\left|I_{3}(h)\right|\right) \leq A\left(1+x^{2}\right) L_{3 b} \exp \left(14 x^{3} Ł_{3 b}\right)
$$

We thus have completed the proof of Lemma 2.1(i).
(ii) By the same proof as part (i), we also see that in the case $n \geq 1$ and $x \geq 1$ satisfying $x^{3} L_{3 b} \leq 1 / 125$, (2.1) holds. Hence, the proof of (2.2) obtains by using the inequalities $e^{t} \leq 1+t e^{t}$ and $1-\Phi(t) \leq \frac{1}{\sqrt{2 \pi} t} \exp \left(-\frac{t^{2}}{2}\right)$ for $t>0$.

Lemma 2 Let $\varepsilon_{1}, \varepsilon_{2}, \ldots$ be i.i.d. Rademacher random variables, that is, $\mathbb{P}\left(\varepsilon_{j}= \pm 1\right)=1 / 2$. Then for any $x \geq 1$ and any sequence a_{1}, a_{2}, \ldots satisfying $\left|a_{j}\right| \leq B_{b} /(6 x)$ and $\sum_{n=1}^{\infty} a_{j}^{2}>\frac{4}{9} B_{b}^{2}$, we have

$$
\begin{equation*}
\mathbb{P}\left(\sum_{j=1}^{\infty} a_{j} \varepsilon_{j}>x\left(\sum_{j=1}^{\infty} a_{j}^{2}\right)^{1 / 2}\right) \leq(1-\Phi(x))\left(1+A x\left(1+x^{2}\right) L_{3 b}^{*} \exp \left(2 x^{3} L_{3 b}^{*}\right)\right) \tag{2.23}
\end{equation*}
$$

where $L_{3 b}^{*}=B_{b}^{-3} \sum_{j=1}^{\infty}\left|a_{j}\right|^{3}$.
The proof of Lemma 2 follows very similar lines to those of Lemma 1, so we omit it.
Lemma 3 Let $\left\{a_{i}, i \geq 1\right\}$ be any sequence of real numbers. Set $A_{\infty}^{2}=\sum_{i=1}^{\infty} a_{i}^{2}$ and $T_{\infty}=\sum_{i=1}^{\infty} \varepsilon_{i} a_{i}$. Then, for all $x>0$

$$
\mathbb{P}\left(T_{\infty}>x A_{\infty}\right) \leq \exp \left(-\frac{x^{2}}{2}\right)
$$

where $\left\{\varepsilon_{i}, i \geq 1\right\}$ is i.i.d Rademacher random variables.
Proof For any $u>0$, by Markov's inequality, we have

$$
\begin{aligned}
\mathbb{P}\left(T_{\infty}>x A_{\infty}\right) & \leq \exp \left(-u x A_{\infty}\right) \mathbb{E} \exp \left(u T_{\infty}\right)=\exp \left(-u x A_{\infty}\right) \prod_{i=1}^{\infty} \cosh \left(u a_{i}\right) \\
& \leq \exp \left(-u x A_{\infty}\right) \prod_{i=1}^{\infty} \exp \left(\frac{u^{2} a_{i}^{2}}{2}\right)=\exp \left(-u x A_{\infty}+u^{2} A_{\infty}^{2} / 2\right)
\end{aligned}
$$

The proof of Lemma 3 is complete by choosing $u=-x A_{\infty}^{2}$.
Lemma 4 Let X_{1}, X_{2}, \ldots be independent, symmetric random variables. Then for any $x \geq 0$ and $n \geq 1$, we have

$$
\mathbb{P}\left(S_{b}>x V_{b}\right) \leq \exp \left(-\frac{x^{2}}{2}\right)
$$

Proof Similarly, in [12, Lemma 43], we assume that $\left\{X_{j}, j \geq 1\right\}$ are defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ which also supports a sequence of independent Rademacher random variables $\left\{\varepsilon_{j}, j \geq 1\right\}$ independent of $\left\{X_{j}, j \geq 1\right\}$. By the symmetry of X_{j} and independence X_{j} and ε_{j}, we have that

$$
\begin{aligned}
\mathbb{P}\left(S_{b}>x V_{b}\right) & =\mathbb{P}\left(\sum_{j=1}^{\infty} X_{j} \varepsilon_{j}>x V_{b}\right) \\
& =\iint \ldots \mathbb{P}\left(\sum_{j=1}^{\infty} x_{j} \varepsilon_{j}>x\left(\sum_{j=1}^{\infty} x_{j}^{2}\right)^{1 / 2}\right) \mathrm{d} F_{1}\left(x_{1}\right) \mathrm{d} F_{2}\left(x_{2}\right) \ldots \\
& \leq \exp \left(-\frac{x^{2}}{2}\right)(\text { by Lemma } 3)
\end{aligned}
$$

This ends the proof of the lemma.

Lemma 5 Let X_{1}, X_{2}, \ldots be independent random variables. Then for $x \geq 1, y \geq 0$ and $k \geq 1$, we have

$$
\mathbb{P}\left(S_{b}>x V_{b},\left|b^{k} X_{k}\right|>y\right) \leq \mathbb{P}\left(\left|b^{k} X_{k}\right|>y\right) \mathbb{P}\left(\sum_{j \neq k, j=1}^{\infty} b^{j} X_{j}>\left(x^{2}-1\right)^{1 / 2}\left(\sum_{j \neq k, j=1}^{\infty} b^{2 j} X_{j}^{2}\right)^{1 / 2}\right)
$$

Proof We observe that, for any real number a, then

$$
\begin{aligned}
a b^{k} X_{k}-\frac{x}{2}\left(b^{2 k} X_{k}^{2}+a^{2}\right) & =-\frac{x}{2}\left(b^{k} X_{k}-\frac{a}{x}\right)^{2}-\frac{x a^{2}}{2}+\frac{a^{2}}{2 x} \\
& \leq \frac{a^{2}}{2}\left(\frac{1}{x}-x\right)
\end{aligned}
$$

Thus, we get that

$$
\begin{align*}
\mathbb{P}\left(S_{b}>x V_{b},\left|b^{k} X_{k}\right|>y\right) & =\mathbb{P}\left(S_{b}>\inf _{a>0} \frac{x}{2 a}\left(V_{b}^{2}+a^{2}\right),\left|b^{k} X_{k}\right|>y\right) \\
& =\mathbb{P}\left(\sup _{a>0}\left(\sum_{j=1}^{\infty}\left(a b^{j} X_{j}-\frac{x}{2} b^{2 j} X_{j}^{2}\right)-\frac{x}{2} a^{2}\right)>0,\left|b^{k} X_{k}\right|>y\right) \\
& =\mathbb{P}\left(\sup _{a>0}\left(\sum_{j \neq k, j=1}^{\infty}\left(a b^{j} X_{j}-\frac{x}{2} b^{2 j} X_{j}^{2}\right)+a b^{k} X_{k}-\frac{x}{2} b^{2 k} X_{k}^{2}-\frac{x}{2} a^{2}\right)>0,\left|b^{k} X_{k}\right|>y\right) \\
& \leq \mathbb{P}\left(\sup _{a>0}\left(\sum_{j \neq k, j=1}^{\infty}\left(a b^{j} X_{j}-\frac{x}{2} b^{2 j} X_{j}^{2}\right)+\frac{a^{2}}{2}\left(\frac{1}{x}-x\right)\right)>0,\left|b^{k} X_{k}\right|>y\right) \\
& =\mathbb{P}\left(\sum_{j \neq k, j=1}^{\infty} b^{j} X_{j}>\inf _{a>0} \frac{x}{2 a}\left(\sum_{j \neq k, j=1}^{\infty} b^{2 j} X_{j}^{2}+a^{2}\left(1-\frac{1}{x^{2}}\right)\right),\left|b^{k} X_{k}\right|>y\right) \\
& =\mathbb{P}\left(\sum_{j \neq k, j=1}^{\infty} b^{j} X_{j}>\left(x^{2}-1\right)^{1 / 2}\left(\sum_{j=1, j \neq k}^{\infty} b^{2 j} X_{j}^{2}\right)^{1 / 2},\left|b^{k} X_{k}\right|>y\right) \\
& =\mathbb{P}\left(\left|b^{k} X_{k}\right|>y\right) \mathbb{P}\left(\sum_{j \neq k, j=1}^{\infty} b^{j} X_{j}>\left(x^{2}-1\right)^{1 / 2}\left(\sum_{j \neq k, j=1}^{\infty} b^{2 j} X_{j}^{2}\right)\right. \tag{2.24}
\end{align*}
$$

The lemma is proved.
We are now ready to prove Theorem 1 . To bound $\delta_{b}(x)$, it suffices to consider $x>0$ since we can simply apply result to $-X_{j}$ when $x<0$. For $0<x \leq 1$, (1.1) was proved by Bentkus, Bloznelis and Götze [1]. We consider the case where $1 \leq x \leq\left(5 L_{3 b}^{1 / 3}\right)^{-1}$. By applying the elementary inequality $2 B_{b} V_{b} \leq B_{b}^{2}+V_{b}^{2}$ and Lemma 1(ii), we have

$$
\begin{align*}
\mathbb{P}\left(S_{b}>x V_{b}\right) & \geq \mathbb{P}\left(2 B_{b} S_{b}>x\left(V_{b}^{2}+S_{b}^{2}\right)\right) \\
& \geq(1-\Phi(x))\left(1-A x\left(1+x^{2}\right) L_{3 b}\right) . \tag{2.25}
\end{align*}
$$

Combining this and the inequality $1-\Phi(x) \leq \frac{1}{\sqrt{2 \pi} x} \exp \left(-\frac{x^{2}}{2}\right)$ for $x \geq 0$ implies that

$$
\mathbb{P}\left(S_{b} \leq x V_{b}\right)-\Phi(x) \leq(1-\Phi(x)) A x\left(1+x^{2}\right) L_{3 b} \leq A\left(1+x^{2}\right) L_{3 b} \exp \left(-\frac{x^{2}}{2}\right)
$$

Hence, to prove (1.1), it suffices to show that

$$
\begin{equation*}
\mathbb{P}\left(S_{b}>x V_{b}\right) \leq(1-\Phi(x))+A\left(\left(1+x^{2}\right) L_{3 b}+\sum_{j=1}^{\infty} \mathbb{P}\left(\left|b^{j} X_{j}\right|>B_{b} /(6 x)\right) \exp \left(-\frac{x^{2}}{2}\right)\right) \tag{2.26}
\end{equation*}
$$

Set

$$
Y_{j}=b^{j} X_{j} \mathbf{1}\left(\left|b^{j} X_{j}\right| \leq B_{b} /(6 x)\right), \quad S_{b}^{*}=\sum_{j=1}^{\infty} Y_{j}, \quad V_{b}^{* 2}=\sum_{j=1}^{\infty} Y_{j}^{2}
$$

For $x \geq 1$, it follows from Lemma 4 and Lemma 5 that

$$
\begin{align*}
\mathbb{P}\left(S_{b}>x V_{b}\right) & \leq \sum_{k=1}^{\infty} \mathbb{P}\left(S_{b}>x V_{b},\left|b^{k} X_{k}\right|>\frac{B_{b}}{6 x}\right)+\mathbb{P}\left(S_{b}^{*}>x V_{b}^{*}\right) \\
& \leq \sum_{k=1}^{\infty} \mathbb{P}\left(\left|b^{k} X_{k}\right|>\frac{B_{b}}{6 x}\right) \mathbb{P}\left(\sum_{j \neq k, j=1}^{\infty} b^{j} X_{j}>\left(x^{2}-1\right)^{1 / 2}\left(\sum_{j \neq k, j=1}^{\infty} b^{2 j} X_{j}^{2}\right)^{1 / 2}\right)+\mathbb{P}\left(S_{b}^{*}>x V_{b}^{*}\right) \\
& \leq \sum_{k=1}^{\infty} \mathbb{P}\left(\left|b^{k} X_{k}\right|>\frac{B_{b}}{6 x}\right) \exp \left(-\frac{x^{2}-1}{2}\right)+\mathbb{P}\left(S_{b}^{*}>x V_{b}^{*}\right) \\
& \leq e \sum_{k=1}^{\infty} \mathbb{P}\left(\left|b^{k} X_{k}\right|>\frac{B_{b}}{6 x}\right) \exp \left(-\frac{x^{2}}{2}\right)+\mathbb{P}\left(S_{b}^{*}>x V_{b}^{*}\right) \tag{2.27}
\end{align*}
$$

Denote $F_{j}(x)$ to be distribution function of X_{j} for $j \geq 1$. Using the assumption $|x| \leq\left(5 L_{3 b}^{1 / 3}\right)^{-1}$, the inequalities $e^{t} \leq 1+t e^{t}$ and $e^{t} \geq 1+t$ for $t \geq 0$, we have for $i \geq 1$,

$$
\begin{align*}
\prod_{j \neq i, j=1}^{\infty} \mathbb{E}\left(\exp \left(2 x^{3} B_{b}^{-3}\left|Y_{j}\right|^{3}\right)\right) & \leq \prod_{j \neq i, j=1}^{\infty}\left(1+2 x^{3} B_{b}^{-3} \mathbb{E}\left|Y_{j}\right|^{3} e^{2 / 125}\right) \\
& \leq \prod_{j \neq i, j=1}^{\infty} \exp \left(4 x^{3} B_{b}^{-3} \mathbb{E}\left|Y_{j}\right|^{3}\right) \tag{2.28}\\
& \leq \exp \left(4 x^{3} L_{3 b}\right) \\
& \leq 2
\end{align*}
$$

We will now bound $\mathbb{P}\left(S_{b}^{*}>x V_{b}^{*}\right)$. Similarly in the proof of Lemma 3, we assume that $\left\{Y_{j}, j \geq 1\right\}$ are defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ which also supports a sequence of independent Rademacher
random variables $\left\{\varepsilon_{j}, j \geq 1\right\}$ independent of the sequence $\left\{Y_{j}, j \geq 1\right\}$. By symmetry of X_{j}, we have that

$$
\begin{align*}
\mathbb{P}\left(S_{b}^{*}>x V_{b}^{*}\right) & =\mathbb{P}\left(\sum_{j=1}^{\infty} Y_{j} \varepsilon_{j}>x V_{b}^{*}\right) \\
& \leq \mathbb{P}\left(\sum_{j=1}^{\infty} Y_{j} \varepsilon_{j}>x V_{b}^{*}, V_{b}^{* 2}>\frac{4}{9} B_{b}^{2}\right)+\mathbb{P}\left(V_{b}^{* 2} \leq \frac{4}{9} B_{b}^{2}\right) . \tag{2.29}
\end{align*}
$$

It follows from (2.28) and Lemma 2 that

$$
\begin{align*}
& \mathbb{P}\left(\sum_{j=1}^{\infty} Y_{j} \varepsilon_{j}>x V_{b}^{*}, V_{b}^{* 2}>\frac{4}{9} B_{b}^{2}\right) \\
= & \iint \ldots \sum_{\sum_{j=1}^{\infty} y_{j}^{2}>\frac{4}{9} B_{b}^{2},\left|y_{j}\right| \leq B_{b} /(6 x), j=1,2, \ldots} \mathbb{P}\left(\sum_{j=1}^{\infty} y_{j} \varepsilon_{j}>x\left(\sum_{j=1}^{\infty} y_{j}^{2}\right)^{1 / 2}\right) \mathrm{d} F_{1}\left(y_{1}\right) \mathrm{d} F_{2}\left(y_{2}\right) \ldots \\
\leq & (1-\Phi(x)) \iint \ldots\left|y_{j}\right| \leq B_{b} /(6 x), j=1,2, \ldots \\
\times & \left(1+A x\left(1+x^{2}\right) B_{b}^{-3} \sum_{i=1}^{\infty}\left|y_{j}\right|^{3} \exp \left(2 x^{3} B_{b}^{-3} \sum_{j=1}^{\infty}\left|y_{j}\right|^{3}\right)\right) \mathrm{d} F_{1}\left(y_{1}\right) \mathrm{d} F_{2}\left(y_{2}\right) \ldots \tag{2.30}\\
\leq & (1-\Phi(x))\left(1+A x\left(1+x^{2}\right) B_{b}^{-3} \sum_{i=1}^{\infty} \mathbb{E}\left(\left|Y_{j}\right|^{3} \exp \left(2 x^{3} B_{b}^{-3} \sum_{j=1}^{\infty}\left|Y_{j}\right|^{3}\right)\right)\right) \\
\leq & (1-\Phi(x))\left(1+A x\left(1+x^{2}\right) B_{b}^{-3} \sum_{i=1}^{\infty}\left(\mathbb{E}\left|Y_{j}\right|^{3}\left(\prod_{j \neq i, j=1}^{\infty} \mathbb{E} \exp \left(2 x^{3} B_{b}^{-3} \sum_{j=1}^{\infty}\left|Y_{j}\right|^{3}\right)\right)\right)\right) \\
\leq & (1-\Phi(x))+A\left(1+x^{2}\right) L_{3 b} \exp \left(\frac{-x^{2}}{2}\right) .
\end{align*}
$$

We will next bound $\mathbb{P}\left(V_{b}^{* 2} \leq \frac{4}{9} B_{b}^{2}\right)$. Firstly, we note that

$$
\begin{gather*}
\sum_{j=1}^{\infty} \mathbb{E}\left(b^{2 j} X_{j}^{2} \mathbf{1}\left(\left|b^{j} X_{j}\right|>\frac{B_{b}}{6 x}\right)\right) \leq \frac{6 x}{B_{b}} \sum_{j=1}^{\infty} \mathbb{E}\left|b^{j} X_{j}\right|^{3} \leq \frac{6}{125} B_{b}^{2} \tag{2.31}\\
\sum_{j=1}^{\infty} \mathbb{E} Y_{j}^{2}=B_{b}^{2}-\sum_{j=1}^{\infty} \mathbb{E}\left(b^{2 j} X_{j}^{2} \mathbf{1}\left(\left|b^{j} X_{j}\right|>B_{b} /(6 x)\right)\right) \tag{2.32}
\end{gather*}
$$

Then for any $t>0$, by using (2.31), (2.32), the inequalities $1+|x| \leq e^{|x|}, e^{x} \leq 1+x+1 / 2 x^{2} e^{|x|}$, $\operatorname{Var}\left(Y_{j}^{2}\right) \leq \mathbb{E} Y_{j}^{4} \leq b^{3 j} E\left|X_{j}\right|^{3} B_{b} /(6 x)$ and Markov's inequality, we have

$$
\begin{aligned}
\mathbb{P}\left(V_{b}^{* 2} \leq \frac{4}{9} B_{b}^{2}\right) & =\mathbb{P}\left(\sum_{j=1}^{\infty}\left(\mathbb{E} Y_{j}^{2}-Y_{j}^{2}\right)>\frac{5}{9} B_{b}^{2}-\sum_{j=1}^{\infty} \mathbb{E}\left(b^{2 j} X_{j}^{2} \mathbf{1}\left(\left|b^{j} X_{j}\right|>B_{b} /(6 x)\right)\right)\right) \\
& \leq \mathbb{P}\left(\sum_{j=1}^{\infty}\left(\mathbb{E} Y_{j}^{2}-Y_{j}^{2}\right)>\frac{1}{2} B_{b}^{2}\right) \\
& \leq e^{-t / 2} \prod_{j=1}^{\infty} \mathbb{E} \exp \left(t B_{b}^{-2}\left(\mathbb{E} Y_{j}^{2}-Y_{j}^{2}\right)\right) \\
& \leq e^{-t / 2} \prod_{j=1}^{\infty}\left(1+\frac{1}{2} t^{2} B_{b}^{-4} \operatorname{Var}\left(Y_{j}^{2}\right) \exp \left(\frac{t x^{-2}}{36}\right)\right) \\
& \leq e^{-t / 2} \prod_{j=1}^{\infty} \exp \left(\frac{t^{2} b^{3 j} \mathbb{E}\left|X_{j}\right|^{3}}{6 x B_{b}^{3}}\left(\frac{t x^{-2}}{36}\right)\right) \\
& \leq e^{-t / 2} \prod_{j=1}^{\infty} \exp \left(\frac{t^{2}}{6 x} L_{3 b}\left(\frac{t x^{-2}}{36}\right)\right) .
\end{aligned}
$$

Choosing $t=4 x^{2}\left(1+x^{-2} \log L_{3 b}^{-1 / 2}\right)$, we obtain

$$
\begin{equation*}
\mathbb{P}\left(V_{b}^{* 2} \leq \frac{4}{9} B_{b}^{2}\right) \leq A L_{3 b} \exp \left(\frac{-x^{2}}{2}\right) \tag{2.33}
\end{equation*}
$$

Combining (2.29), (2.30) and (2.33), we get

$$
\begin{equation*}
\mathbb{P}\left(S_{b}^{*}>x V_{b}^{*}\right) \leq(1-\Phi(x))+A\left(1+x^{2}\right) L_{3 b} \exp \left(\frac{-x^{2}}{2}\right) \tag{2.34}
\end{equation*}
$$

Then (2.26) implies from (2.27) and (2.34). The proof of Theorem 1.1 is thus completed.
(ii) The proof of (1.2) implies from the inequality $1-\Phi(x) \leq \frac{1}{\sqrt{2 \pi} x} \exp \left(-\frac{x^{2}}{2}\right)$ for $x>0$ and Lemma 4.

Acknowledgments The research is supported under grant no. ICRTM03-2020.04.

References

1. Bentkus, V., Bloznelis, M., Götze, F.: A berry-esséen bound for student's statistic in the non-iid case. Journal of Theoretical Probability 9(3), 765-796 (1996)
2. Buraczewski, D., Damek, E., Mikosch, T., et al.: Stochastic models with power-law tails. The equation $\mathrm{X}=\mathrm{AX}+$ B. Cham: Springer (2016)
3. Csörgő, M., Szyszkowicz, B., Wu, Q.: Donsker's theorem for self-normalized partial sums processes. The Annals of Probability 31(3), 1228-1240 (2003)
4. Escher, F.: On the probability function in the collective theory of risk. Skand. Aktuarie Tidskr. 15, 175-195 (1932)
5. Feller, W.: An introduction to probability theory and its applications. 1, 2nd
6. Fu, K.A., Huang, W.: A self-normalized law of the iterated logarithm for the geometrically weighted random series. Acta Mathematica Sinica, English Series 32(3), 384-392 (2016)
7. Gaposhkin, V.F.: The law of the iterated logarithm for cesaros and abels methods of summation. Theory of Probability \& Its Applications 10(3), 411-420 (1965)
8. Gerber, H.U.: The discounted central limit theorem and its berry-esseen analogue. The Annals of Mathematical Statistics pp. 389-392 (1971)
9. Goldie, C.M., Maller, R.A.: Stability of perpetuities. The Annals of Probability 28(3), 1195-1218 (2000)
10. Iksanov, A.: Renewal theory for perturbed random walks and similar processes. Springer (2016)
11. Jing, B.Y., Shao, Q.M., Wang, Q.: Self-normalized cramér-type large deviations for independent random variables. The Annals of probability 31(4), 2167-2215 (2003)
12. Jing, B.Y., Wang, Q.: An exponential nonuniform berry-esseen bound for self-normalized sums. The Annals of Probability 27(4), 2068-2088 (1999)
13. Lai, T.L.: Summability methods for independent identically distributed random variables. Proceedings of the American Mathematical Society 45(2), 253-261 (1974)
14. Petrov, V.V.: Sums of independent random variables. In: Sums of Independent Random Variables. De Gruyter (2022)
15. Shao, Q.M., Wang, Q.: Self-normalized limit theorems: A survey. Probability Surveys 10, 69-93 (2013)

[^0]: Nguyen Chi Dzung
 Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam E-mail: nczung@gmail.com

 Pham Viet Hung
 Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
 E-mail: pvhung@math.ac.vn

