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Abstract. In this paper we will establish a Polya - Szego type inequality for a
weighted gradient of a function on R2 with respect to to a weighted area. In order
to do that we need to study an isoperimetric problem for the weighted area. We
then apply the inequality to prove embedding theorems for a weighted Sobolev
space and to calculate the best constant in the Sobolev imbedding theorem. In
our upcoming manuscript the obtained results in this note will be used to study
boundary value problems for semilinear degenerate elliptic equations.

1 Introduction

The classical Polya - Szego inequality is a very important tool in many branches
of mathematics such a analysis, partial differential equations, geometry, ... In
this note, motived by studying degenerate elliptic equations, we will extend this
inequality in the context of a weighted area in R2. To do this we need to solve an
isoperimetric problem, namely to find a figure in R̄2

+ with a fixed weighted area
that has the least weighted perimeter. Here the weight of the area appears in the
connection with the degenerate elliptic equations we have in mind. To solve the
isoperimetric problem we use a result in [4]. The extended Polya - Szego inequality
is then the result of the application of the co-area formula. Isoperimetric problems
were studied by many authors, see for example [1], [2], [4], [7], [8], [9], and the
references therein. As an application of the extended Polya - Szego inequality we
present some imbedding theorems for weighted Sobolev spaces that come from the
study of boundary value problems for semilinear degenerate elliptic equations. We
also calculate the best constant and find the minimizers in the obtained Sobolev
inequality. This can be seen as a generalization of the results in [2], [10], [3],
[6]. We will use the obtained Sobolev embedding theorems in this paper to study
semiliear degenerate equations in upcoming manuscripts.
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2 Main Results

In this section we will state our main results. For this purpose let us give some
notations. Let E ⊂ R2 be a bounded open set with ∂E Lipschitz. Denote
by ν = (ν1, ν2) the outward unit normal to ∂E. Let k > 0, p > 1 we denote
m = (k + 2 + pk)/(k + 1).

Definition 1. The (p, k)-area of E is defined by

|E|p,k =
∫∫

E

|x|pkdxdy.

Definition 2. The (p, k)-perimeter of E is defined by

Pp,k(E) =

∫
∂E

√
x2(p−1)kν2

1 + x2pkν2
2dH1.

Note that the fraction Pp,k(E)/|E|(m−1)/m
p,k is invariant under the scaling (x, y) 7→

(λx, λk+1y). Moreover we establish isoperimetric inequality as following.

Theorem 1. Let k > 0, p > 1, E ⊂ R2 be a bounded open set with ∂E Lipschitz.
Then we have

Pp,k(E)

|E|(m−1)/m
p,k

≥ Pp,k(Bk+)

|Bk+|(m−1)/m
p,k

where Bk+ = {(x, y) ∈ R2 : x2k+2 + (k + 1)2y2 < 1, x > 0}.

Using the above isoperimetric inequality and co-area formular we get a new
Polya-Szego type inequality. Firstly let us give a new arrangement.

Definition 3. Let c ∈ R, u ∈ C∞
0 (R̄2

c+;R+) where R̄2
c+ = {(x, y) ∈ R2 : x ≥ c}.

The arrangement u∗ : R̄2
+ → R+, where R̄2

+ = R̄2
0+, is defined by

u∗(x, y) = φ(ρk) here ρk = (x2k+2 + (k + 1)2y2)
1

2k+2 , φ : R+ → R+,

such that |{u > t}|p,k = |{u∗ > t}|p,k for all t > 0.

Our Polya - Szego type inequality is stated as follows.

Theorem 2. Let k > 0, p > 1, c ∈ R and u ∈ C∞
0 (R̄2

c+;R+) Then∫∫
R2
+

|∇Gu
∗|p dxdy ≤

∫∫
R2
c+

|∇Gu|p dxdy,

where |∇Gu| = (u2
x + x2ku2

y)
1/2.
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For giving our best Sobolev inequality, we need Sobolev type spaces as follows.

Definition 4. Let k, p as above and q > 1. We defineW 1,p,q
0,k (R2) is the completion

of C∞
0 (R2) with respect to the norm

||u||W 1,p,q
0,k

=

(∫∫
R2

|∇Gu|p dxdy
)1/p

+

(∫∫
R2

|x|pk |u|q dxdy
)1/q

.

For u ∈ W 1,p,q
0,k (R2) \ {0} we consider the ratio

Cp,q,k(u) =

(∫∫
R2 |∇Gu|p dxdy

)1/p(∫∫
R2 xpk |u|q dxdy

)1/q . (1)

By rescaling X = λx, Y = λk+1y, we have U(x, y) = u(λx, λk+1y) and∫∫
R2

|∇GU |p dxdy = λp−(k+2)

∫∫
R2

|∇Gu|p dXdY,∫∫
R2

xpk |U |q dxdy = λ−(p+1)k−2

∫∫
R2

Xpk |u|q dXdY,

so Cp,q,k(U) = λ
p−(k+2)

p
− pk+k+2

q Cp,q,k(u). Hence, in order to have

inf
W 1,p,q

0,k (R2)
Cp,q,k(u) > 0

we need 1 < p < k + 2 and q = p((p+1)k+2)
k+2−p

is the critical exponent. For this case
we obtain the best Sobolev inequality as follows:

Theorem 3. Let k > 0, 1 < p < k+2 and q = p((p+1)k+2)/(k+2− p). Then
we have(∫∫

R2

xpk |u|q dxdy
)1/q

≤ C−1
p,q,k

(∫∫
R2

|∇Gu|p dxdy
)1/p

,∀u ∈ W 1,p,q
0,k (R2), (2)

with the best constant obtained by

Cp,q,k = (k+1)m
1
p

(
p− 1

m− 1

)− 1
p′
[

2

(k + 1)2
B

(
2k + 1

2(k + 1)
,
1

2

)] 1
p
− 1

q
[
1

p′
B

(
m

p
,
m

p′

)] 1
m

where m = ((p+ 1)k + 2)/(k + 1), p′ = p/(p− 1). The equality sign holds in (2)
if u has the form

u(x, y) =
(
a+ bρ

p′(k+1)
k

)1−m/p

where ρk = (x2k+2 + (k + 1)2y2)
1

2(k+1) and a, b are positive constants.
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3 Proofs

3.1 Isoperimetric Inequality

In order to proof Theorem 1 we consider isoperimetric inequality in half plane as
follows.

Proposition 1. Let k > 0, p > 1, E ⊂ R̄2
+ be a bounded open set with ∂E

Lipschitz. There is an R > 0 such that

E∗ =
{
(x, y) ∈ R2

+ : ρk (x, y) < R
}
, |E∗|p,k = |E|p,k

where ρk (x, y) =
(
x2(k+1) + (k + 1)2y2

) 1
2(k+1) . Then we have Pp,k(E

∗) ≤ Pp,k(E).

Proof. Consider the transformation Ψ : R2
+ → R2

+ defined by

Ψ(x, y) =

(
xk+1

k + 1
, y

)
.

It is homeomorphism with the inverse Φ : R2
+ → R2

+ definied by

Φ(ξ, η) = (|(k + 1)ξ|
1

k+1 , η).

Let F = Ψ(E), F ∗ = Ψ(E∗). It is not difficult to see that F ∗ is semi-disk in R2
+

with center at the origin. By calculating we get

|E|p,k =
∫∫

F

|(k + 1)ξ|
(p−1)k
k+1 dξdη, |E∗|p,k =

∫∫
F ∗

|(k + 1)ξ|
(p−1)k
k+1 dξdη,

Pp,k(E) =

∫
∂F

|(k + 1)ξ|
(p−1)k
k+1 dH1, Pp,k(E

∗) =

∫
∂F ∗

|(k + 1)ξ|
(p−1)k
k+1 dH1.

Noting that |E|p,k = |E∗|p,k and using Theorem 1.4 (in [4]) for F , F ∗ the proof is
complete.

Remark 1. Let C0 = |Pp,k(Bk+)|/|Bk+|(m−1)/m
p,k , from Proposition 1 it is not

difficult to get
C0|E|(m−1)/m

p,k ≤ Pp,k(E) (3)

for all open, bounded subsets E of R̄2
+ with Lipschitz boundary ∂E. Because of

symmetry isoperimetric inequality (3) still holds for open, bounded subsets E of
R̄2

− = R2 \ R2
+ with Lipschitz boundary.
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Proof of Theorem 1. For E ⊂ R2 be open, bounded set with Lipschitz boundary,
we participate

E = E+ ∪ E− where E+ = E ∩ R̄2
+, E− = E ∩ R̄2

−.

Then E+, E− is open, bounded subset in R̄2
+, R̄2

− (respectively) and their boundary
are Lipschitz. Hence we have isoperimetric inequality (3) for E+, E−. Because of
(m− 1)/m ∈ (0, 1) we get

|E|(m−1)/m
p,k ≤ |E+|(m−1)/m

p,k + |E−|(m−1)/m
p,k .

Using the above inequality and isoperimetric inequality (3) for E+, E− the proof
is done.

3.2 Polya-Szego Inequality

For k > 0, p > 1, u ∈ C∞
0 (R̄2

c+,R+), let u∗ be the rearrangement of u as in
Definition 3. We need some technical lemmas as follows.

Lemma 1. Let M = maxR̄2
c+
u and R0 > 0 such that suppu ⊂ {(x, y) ∈ R̄2

c+ :

ρk(x, y) < R0}. Then the following statements hold.

(i) The map t 7→ |{t < u ≤ M} ∩ {∇u = 0}|p,k is nonincreasing.

(ii) For ρk > R0, φ(ρk) = 0. Moreover, φ : [0, R0] → [0,M ] is continuous,
nonincreasing and {t ∈ R : ∃s ∈ [0, R0], φ(s) = t, φ′(s) = 0} has Lebesgue
measure 0 in R.

(iii) The map h : [0,M ] → [0,∞) defined by

h(t) = |{t < u∗ ≤ M} ∩ {∇u∗ = 0}|p,k

is nonincreasing. Moreover h′(t) = 0 a.e. on [0,M ].

Proof. It is not difficult to prove (i)-(ii). For the proof of (iii) we refer to [5].

Lemma 2. Assume that u ̸≡ 0. Denote M = maxR̄2
+
u. Then∫∫

{u∗=t}

|x|pk

|∇u∗|
dH1 ≥

∫∫
{u=t}

|x|pk

|∇u|
dH1 for a.e. t ∈ [0,M ]. (4)

Proof. For 0 < t < M, we have

|{u > t}|p,k = |{∇u = 0} ∩ {t < u ≤ M}|k +
∫ M

t

dτ

∫
{u=τ}∩{∇u̸=0}

|x|pkdH1

|∇u|
.
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By Sard’s Theorem, for u ∈ C∞
0 (R̄2

+),{
t ∈ [0,M ] : ∃(x, y) ∈ R̄2

+, u(x, y) = t,∇u(x, y) = 0
}

has Lebesgue measure 0 in R. Hence, using Lemma 1 (i) we have

− d

dt
|{u > t}|p,k ≥

∫
u−1{t}

|x|pkdH−1

|∇u|
for a.e. t ∈ [0,M ]. (5)

For u∗, using Lemma 1 (ii)-(iii) we get

− d

dt
|{u∗ > t}|p,k =

∫
u∗−1{t}

|x|pkdH−1

|∇u∗|
for a.e. t ∈ [0,M ]. (6)

Since |{u > t}|p,k = |{u∗ > t}|p,k, from (5)-(6) we get (4).

We are able to prove Theorem 2.

Proof of Theorem 2. It is easy when u ≡ 0. So we assume that u ̸≡ 0. Let M =
maxR2

c+
u. Since u ∈ C∞

0 (R̄2
c+) so by Sard’s Theorem,{

t ∈ [0,M ] : ∃(x, y) ∈ R̄2
c+, u(x, y) = t,∇u(x, y) = 0

}
has Lebesgue measure 0 in R. Using Lemma 1 (ii),{

t ∈ [0,M ] : ∃(x, y) ∈ R̄2
+, u

∗(x, y) = t,∇u∗(x, y) = 0
}

has Lebesgue measure 0 in R. Using co-area formula we have∫∫
R2
c+

|∇Gu|p dxdy =

∫ M

0

dt

∫
u−1{t}

|∇Gu|p−1 dµG,∫∫
R2
+

|∇Gu
∗|p dxdy =

∫ M

0

dt

∫
u∗−1{t}

|∇Gu|p−1 dµG,

where dµG = |∇Gu|
|∇u| dH

1. So in order to prove the Polya-Szego inequality we will

prove that for t ∈ [0,M ] such that t is not a critical value of u and u∗ then∫
u∗−1{t}

|∇Gu
∗|p−1 dµG ≤

∫
u−1{t}

|∇Gu|p−1 dµG. (7)

Using Cauchy inequality we get

(Pp,k ({u > t}))p =

(∫
u−1{t}

|x|(p−1)k dµG

)p

≤
(∫

u−1{t}
|∇Gu|p−1 dµG

)(∫
u−1{t}

|x|pk dµG

|∇Gu|

)p−1

. (8)
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Note that u∗(x, y) = φ(ρk) so

|∇Gu
∗| = |x|kρ−k

k |φ′| .

On the other hand |∇Gu|
|∇u| =

√
ν2
1 + x2kν2

2 doesn’t depend on u, hence

(Pp,k ({u∗ > t}))p =

(∫
u∗−1{t}

|x|(p−1)k dµG

)p

=

(∫
u∗−1{t}

|∇Gu
∗|p−1 dµG

)(∫
u∗−1{t}

|x|pk dµG

|∇Gu∗|

)p−1

. (9)

Recall that |{u > t}|p,k = |{u∗ > t}|p,k, using the isoperimetric inequality in The-
orem 1 we obtain

Pp,k ({u∗ > t}) ≤ Pp,k ({u > t}) . (10)

From dµG

|∇Gu| =
dH1

|∇u| and (4) in the proof of Lemma 2, (8) - (9) - (10) we get (7).
We complete the proof.

Remark 2. Using the symmetry we can get the above Polya - Szego type in-
equality for u ∈ C∞

0 (R̄2
c−;R+) and its rearrangement u∗ : R̄2

+ → R+ defined
by

u∗(x, y) = φ(ρk), |{u∗ > t}|p,k = |{u > t}|p,k ∀t > 0.

3.3 Sobolev Inequality

In order to prove Theorem 3 we need some calculation. Considering the case
u(x, y) = ϕ(r), r = ρk+1

k = (x2k+2 + (k + 1)2y2)1/2. Using the polar coordinates
(as in [11]):

x = (r sin θ)1/(k+1), y =
r cos θ

k + 1

we have dxdy = r1/(k+1

(k+1)2
(sin θ)−k/(k+1)drdθ. Then we get∫∫

R2
+

|∇Gu|p dxdy = (k + 1)p−2B

(
2k + 1

2(k + 1)
,
1

2

)∫ ∞

0

r
pk+1
k+1 |ϕ′(r)|pdr, (11)∫∫

R2
+

xpk |u|q dxdy = (k + 1)−2B

(
2k + 1

2(k + 1)
,
1

2

)∫ ∞

0

r
pk+1
k+1 |ϕ(r)|qdr. (12)

Then we need Lemma 2 (in [10]). For convinient, we recall it:

7



Lemma 3. Let 1 < p < m and q = mp/(m − p). Assume that ϕ : R+ → R+ is
Lipschitz and satisifies∫ ∞

0

rm−1|ϕ′(r)|p < ∞, ϕ(r) → 0 when r → ∞. (13)

Then
(
∫∞
0

rm−1|ϕ′(r)|p)1/p

(
∫∞
0

rm−1|ϕ(r)|qdr)1/q
≥ Dp,q,m

with the best constant obtained by

Dp,q,m = m
1
p

(
p− 1

m− 1

)− 1
p′
[
1

p′
B

(
m

p
,
m

p′

)] 1
m

where p′ = p/(p− 1). The equality sign holds in (13) if ϕ has the form

ϕ(r) =
(
a+ brp

′
)1−m/p

where a, b are positive constants.

We now prove Theorem 3.

Proof of Theorem 3. Note that C∞
0 (R̄2

+) is dense in W 1,p,q
0,k (R2), we prove (2) for

u ∈ C∞
0 (R2) \ {0}. Then we know that |∇G|u|| ≤ |∇Gu|. Besides for every

nonnegative function w ∈ W 1,p,q
0,k (R2) there is a sequence of nonnegative functions

wj ∈ C∞
0 (R2) such that

lim
j→∞

||wj − w||W 1,p,q
0,k

= 0.

So we can assume that u ∈ C∞
0 (R2) \ {0} and u ≥ 0. It is obvious that there is a

c ∈ R such that∫∫
R2
c+

|x|pk |u|q dxdy =

∫∫
R2
c−

|x|pk |u|q dxdy =
1

2

∫∫
R2

|x|pk |u|q dxdy. (14)

Put u+ = u
∣∣∣
R̄2
c+

, u− = u
∣∣∣
R̄2
c−

and u∗
+, u

∗
− are their rearrangement respectively.

Using the property of the rearrangement and (14) we have∫∫
R2
+

|x|pk
∣∣u∗

+

∣∣q dxdy =

∫∫
R2
−

|x|pk
∣∣u∗

−
∣∣q dxdy =

1

2

∫∫
R2

|x|pk |u|q dxdy. (15)
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Note that u ∈ C∞
0 (R2), u ≥ 0, using Theorem 2 and Remark 2 we get∫∫

R2
+

|∇Gu
∗
+|pdxdy ≤

∫∫
R2
c+

|∇Gu+|pdxdy, (16)∫∫
R2
+

|∇Gu
∗
−|pdxdy ≤

∫∫
R2
c−

|∇Gu−|pdxdy, (17)

On the other hand we have

u∗
+(x, y) = ϕ+(r), u

∗
−(x, y) = ϕ−(r), r = ρk+1

k ,

and ϕ+, ϕ− satisfy Lemma 3. Using (11)-(12) and Lemma 3 for 1 < p < k + 2,
m = (k + 2 + pk)/(k + 1), q = p(k + 2 + pk)/(k + 2− p) we obtain

Dp,q,k

(∫∫
R2
+

|x|pk
∣∣u∗

+

∣∣q dxdy)1/q

≤

(∫∫
R2
+

|∇Gu
∗
+|pdxdy

)1/p

, (18)

Dp,q,k

(∫∫
R2
+

|x|pk
∣∣u∗

−
∣∣q dxdy)1/q

≤

(∫∫
R2
+

|∇Gu
∗
−|pdxdy

)1/p

. (19)

where

Dp,q,k(u) = (k + 1)

(
1

(k + 1)2
B

(
2k + 1

2(k + 1)
,
1

2

))1/p−1/q

Dp,q,m. (20)

From (15)-(16)-(17)-(18)-(19) the proof is complete.
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