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Abstract. We prove a sharp upper bound for the resurgence of sums of

ideals involving distinct sets of variables, strengthening work of Bisui–Hà–

Jayanthan–Thomas. Complete solutions are delivered for two conjectures pro-
posed by these authors. We employ partially work of DiPasquale et al. on the

interpretation of the asymptotic resurgence in terms of integral closure and
Rees valuations.

1. Introduction

Let k be a field, R = k[x1, . . . , xn] be a polynomial ring with variables of degree 1.
Let I be an ideal of R. Denote by I(n) the n-th symbolic power of I (defined in
terms of associated primes):

(1.1) I(n) =
⋂

p∈Ass(I)

InRp ∩R.

A classical problem in commutative algebra is the comparison between ordinary
and symbolic powers. One of the celebrated results in this area is

Theorem 1.1 (Hochster–Huneke, Ein–Lazarsfeld–Smith [8, 14]). Let I be a homo-
geneous ideal in a polynomial ring R = k[x1, . . . , xn]. Assume that n = dim(R) ≥ 2.
Denote by h the big height of I, namely the maximal height of an associated prime
of I. Then for all s ≥ 1, there is a containment

I(sh) ⊆ Is.

In particular, we always have I((n−1)s) ⊆ Is for all s ≥ 1.

Inspired by this result, the resurgence and asymptotic resurgence of I, denoted by
ρ(I) and ρa(I), were introduced in [2, 10] as follows:

ρ(I) = sup
{m

r
: I(m) ̸⊆ Ir,m ≥ 1, r ≥ 1

}
,

ρa(I) = sup
{m

r
: I(mt) ̸⊆ Irt for t ≫ 0

}
.

This is a measure of the difference between the ordinary and symbolic powers of
I. Recently, many authors have paid attention to the resurgence and asymptotic
resurgence of homogeneous ideals; see, for example [1, 2, 3, 6, 7, 9, 10, 15]. We refer
to [4] for a survey on various topics concerning symbolic powers.

It is clear that 1 ≤ ρa(I) ≤ ρ(I). Some additional bounds for ρ(I) and ρa(I) are
given in [2, 6, 10, 13, 15], for instance if I is a squarefree monomial ideal, then
ρ(I) ≤ d(I), the maximal generating degree of I by [13, Corollary 3.6]. As far as
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we know, there is still no algorithm to compute ρ(I) and ρa(I), even when I is a
monomial ideal. DiPasquale et al. [6, Theorem 2.23, Corollary 2.24] have obtained
an interesting recursive formula for the asymptotic resurgence of monomial ideals.
Apparently no analogous formula was established for the resurgence.

Let A,B be standard graded polynomial rings over k. Let I ⊆ A, J ⊆ B be non-
zero proper homogeneous ideals. In [1], the resurgence and asymptotic resurgence
of the ideal of R = A ⊗k B generated by I and J , simply written as I + J , was
studied. The construction of the ideal I + J is a classical construction and it is
relevant in commutative algebra and algebraic geometry since it corresponds to the
notions of tensor products of k-algebras and fiber products of schemes over Spec(k).
For various classical invariants, the value at I + J (or R/(I + J)) are determined
by the values at I and J (or the corresponding quotient rings). This is the case,
for example, for the Krull dimension, depth, graded Betti numbers, and hence
the Castelnuovo–Mumford regularity. It turns out that we can also determine the
asymptotic resurgence of I + J from those of I and J : It is proved in [1, Theorem
2.6] proved that there is an equality

(1.2) ρa(I + J) = max{ρa(I), ρa(J)}.
On the other hand, for the resurgence of I+J , the best known information is given
by the following inequalities [1, Theorem 2.7]:

(1.3) max{ρ(I), ρ(J)} ≤ ρ(I + J) ≤ ρ(I) + ρ(J).

It is also noted in [1, Remark 2.9] that the authors are not aware of any case where
the upper bound is attained. Some partial improvements of (1.3) was provided in
recent work by Jayanthan, Kumar, and Mukundan [15, Theorems 3.6, 3.9]. As our
first main result, we prove the following improved upper bound for the resurgence
of sums of ideals. Our result also confirms that the upper bound (1.3) is really
strict: As ρ(I), ρ(J) ≥ 1, the result below implies that ρ(I+J) ≤ ρ(I)+ρ(J)−2/3
always holds.

Theorem 1.2 (=Theorem 2.3). Let A,B be standard graded polynomial rings over
k. Let I ⊆ A, J ⊆ B be non-zero proper homogeneous ideals. Then there are
inequalities

max{ρ(I), ρ(J)} ≤ ρ(I + J) ≤ max

{
ρ(I), ρ(J),

2(ρ(I) + ρ(J))

3

}
,

and the upper bound is sharp. In particular, if the inequality max{ρ(I), ρ(J)} ≥
2min{ρ(I), ρ(J)} holds then there is an equality

ρ(I + J) = max{ρ(I), ρ(J)}.

The last assertion of this result seems to be rather unexpected. The proof of Theo-
rem 2.3 is somewhat similar to, but differs in a crucial way, from the proof method
of [1, Theorem 2.7], namely we employ more efficiently the binomial expansion
formula for “associated” symbolic powers of I + J . This formula was proved first
for “minimal” symbolic powers (defined in terms of minimal primes) in [12, Theo-
rem 3.4], and later for “associated” symbolic powers as well in [11, Theorem 4.1].
We stress that, in this paper, we focus solely on the “associated” symbolic pow-
ers defined by Formula (1.1). For related results on the behaviour of (asymptotic)
resurgence under taking sum, product, and intersection, we refer to [15].
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The next two main results answer completely two conjectures proposed by Bisui–
Hà–Jayanthan–Thomas in [1, Conjectures 3.8 and 3.9], one negatively and the other
positively. In [1, Conjecture 3.8], the following conjecture was raised.

Conjecture 1.3 (Bisui et al.). Let I be a nonzero proper homogeneous ideal in R =
k[x1, . . . , xn]. Let X = Proj(R/I) and for each m ≥ 1, let I [m] be the defining ideal
of the fiber product X ×k · · · ×k X︸ ︷︷ ︸

m times

, as a closed subscheme of Pn−1
k ×k · · · ×k Pn−1

k︸ ︷︷ ︸
m times

.

Then there exists a choice of I such that lim supm→∞ ρ(I [m]) = ∞.

Using the improved upper bound established in Theorem 2.3, we give a negative
answer to Conjecture 1.3. Interestingly, the strict inequality ρ(I [m]) < 2ρ(I) always
holds; see Corollary 2.8.

There are equalities 0 ≤ ρ(I) − ρa(I) ≤ dim(A) − 1 thanks to Theorem 1.1. But
so far it is not clear whether by varying the number of variables, ρ(I)− ρa(I) may
become arbitrarily large. This issue was raised in [1, Conjecture 3.9]. Using a
formula for asymptotic resurgence [6, Theorem 2.23], we give a positive answer to
this conjecture. We show that for certain sequence (Pm) of squarefree monomial
ideals, each of them generated in a single degree, the difference ρ(Pm)− ρa(Pm) is
unbounded.

Theorem 1.4 (Cf. Theorem 3.4). Let m ≥ 2 be an integer, R = k[x1,i, x2,i, x3,i :
1 ≤ i ≤ 2m − 1] and for each 1 ≤ j ≤ 3, let Ij be the ideal generated by all the
products of m distinct variables among the (2m− 1) variables xj,1, . . . , xj,2m−1:

Ij = (xj,i1xj,i2 · · ·xj,im : 1 ≤ i1 < i2 < · · · < im ≤ 2m− 1).

Denote Pm = I1+I2+I3. Then ρ(Pm) ≥ 3m

4
and ρa(Pm) =

m2

2m− 1
. In particular,

2m2 − 3m

4(2m− 1)
≤ ρ(Pm)− ρa(Pm), so lim

m→∞
(ρ(Pm)− ρa(Pm)) = ∞.

Organization. The new upper bound for the resurgence of sums of ideals is given
in Section 2. We construct for any given integer d ≥ 1, a monomial ideal I with three
generators in three variables, such that the equality between ordinary and symbolic
powers holds for the first d powers, but fails for the (d + 1) ones (Lemma 2.6).
This seemingly new construction is useful for showing that the upper bound of
Theorem 1.4 is sharp. As an application, we prove for every m ≥ 1 the strict
inequality ρ(I [m]) < 2ρ(I), where I [m] is as in Conjecture 1.3. That the difference
between the resurgence and asymptotic resurgence can be arbitrarily large is proved
in Section 3, employing work of DiPasquale, Francisco, Mermin, and Schweig.

2. Sharp upper bound for the resurgence of sums of ideals

Let A be a noetherian ring and I an ideal of A. In this paper, we only work with
the following notion of the n-th symbolic power of I:

I(n) =
⋂

p∈Ass(I)

(InAp ∩A).

Thus symbolic powers in our sense are defined in terms of associated primes, not
minimal primes. It is well-known that I(n) ⊆ I(1) = I always holds for every n ≥ 1.
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The following result is from recent work of Hà et al. [11, Theorem 4.1].

Theorem 2.1. Let A,B be standard graded polynomial rings over a field k and
I ⊆ A, J ⊆ B be nonzero proper homogeneous ideals. Then, for any s ∈ N, we have

(I + J)(s) =

s∑
i=0

I(i)J (s−i).(2.1)

Lemma 2.2. Let A1, . . . , Ap be standard graded polynomial rings over k, and Ii ⊆
Ai be a proper homogeneous ideal. Assume that for 1 ≤ i ≤ p, mi, ri ≥ 1 be integers

such that I
(mi)
i ̸⊆ Irii . Denote P = I1 + · · ·+ Ip ⊆ A1 ⊗k · · · ⊗k Ap. Then

P (m1+···+mp) ̸⊆ P r1+···+rp−p+1.

In particular, if p = v + 1, m1 = · · · = mv+1 = m, and r1 = · · · = rv+1 = v for

some v ≥ 1, then P (m(v+1)) ̸⊆ P v2

.

Proof. For the first assertion, it suffices to consider the case p = 2, as the general
case follows by induction on p. In this case, denote A = A1, I = I1, B = A2, J = I2
for simplicity, so P = I + J ⊆ R = A⊗k B.

We have to show that P (m1+m2) ̸⊆ P r1+r2−1 given that I(m1) ̸⊆ Ir1 and J (m2) ̸⊆
Jr2 . From [1, Lemma 3.2], as soon as f ∈ A, g ∈ B, f ∈ I(m1) \ Ir1 , and g ∈
J (m2) \ Jr2 ,

fg /∈ P r1+r2−1.

Clearly fg ∈ I(m1)J (m2) ⊆ P (m1+m2), so P (m1+m2) ̸⊆ P r1+r2−1. The first assertion
follows. The remaining assertion is a simple accounting. □

The result [1, Theorem 2.7] has shown that the resurgence of I + J is bounded
above by the sum of the resurgences of I and J . The following proposition give a
sharp upper bound for the resurgence of I + J .

Theorem 2.3. Let A,B be standard graded polynomial rings over k. Let I ⊆ A,
J ⊆ B be non-zero proper homogeneous ideals. Then there are inequalities

max{ρ(I), ρ(J)} ≤ ρ(I + J) ≤ sup
m,n∈Z
m,n≥2

{
ρ(I), ρ(J),

mρ(I) + nρ(J)

m+ n− 1

}
.

More precisely, this is equivalent to

max{ρ(I), ρ(J)} ≤ ρ(I + J) ≤ max

{
ρ(I), ρ(J),

2(ρ(I) + ρ(J))

3

}
,

and the upper bound is sharp. Furthermore, if max{ρ(I), ρ(J)} ≥ 2min{ρ(I), ρ(J)}
then ρ(I + J) = max{ρ(I), ρ(J)}.

The inequality max{ρ(I), ρ(J)} ≤ ρ(I + J) was proved in [1, Theorem 2.7]. We
remark that the upper bound in Theorem 2.3 is better than that one in [1, Theorem
2.7]. In fact, as min{ρ(I), ρ(J)} ≥ 1,

max

{
ρ(I), ρ(J),

2

3
(ρ(I) + ρ(J))

}
≤ ρ(I) + ρ(J)− 2

3
min {ρ(I), ρ(J)}

≤ ρ(I) + ρ(J)− 2/3.

It therefore gives an explanation to [1, Remark 2.9].
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The proof of Theorem 2.3 employs the following lemma.

Lemma 2.4. Let a, b be non-negative real numbers. Then

sup
m,n∈Z
m,n≥2

{
a, b,

ma+ nb

m+ n− 1

}
= max

{
a, b,

2(a+ b)

3

}
.

Proof. Choosing m = n = 2, we see that the left-hand side is not smaller than the
right-hand side. Hence it remains to prove the reverse inequality.

It is harmless to assume that a ≥ b. Note that

max

{
a, b,

2(a+ b)

3

}
=

{
a, if a ≥ 2b,

2(a+ b)/3, if b ≤ a < 2b.

For integers m,n ≥ 2, since a− b, b ≥ 0,

ma+ nb

m+ n− 1
=

ma− (m− 1)b

m+ n− 1
+ b =

m(a− b) + b

m+ n− 1
+ b

≤ m(a− b) + b

m+ 1
+ b = a+

2b− a

m+ 1
.

If a ≥ 2b, then a+
2b− a

m+ 1
≤ a. If a < 2b, using m ≥ 2,

a+
2b− a

m+ 1
≤ a+

2b− a

3
=

2(a+ b)

3
.

This finishes the proof. □

Proof of Theorem 2.3. Take h, r ≥ 1 such that

h/r > D = sup
m,n∈Z
m,n≥2

{
ρ(I), ρ(J),

mρ(I) + nρ(J)

m+ n− 1

}
.

We show that (I + J)(h) ⊆ (I + J)r. Note that (I + J)(h) ⊆ (I + J)(1) = I + J ,
so it suffices to consider the case r ≥ 2. Without loss of generality, we assume
ρ(I) ≥ ρ(J).

By Theorem 2.1, there is an equality (I + J)(h) =
∑h

i=0 I
(i)J (h−i). Using this, we

want to show that I(i)J (h−i) ⊆ (I + J)r for all 0 ≤ i ≤ h. If i = 0, h/r > ρ(I), so
I(h) ⊆ Ir. Similarly, if i = h then J (h) ⊆ Jr. Hence it remains to consider the case
1 ≤ i ≤ h− 1.

There exists a unique integer m ≥ 0 such that mρ(I) < i ≤ (m+1)ρ(I). Note that
I(i) ⊆ Im. If m ≥ r − 1, then using h− i ≥ 1,

I(i)J (h−i) ⊆ ImJ ⊆ Ir−1J ⊆ (I + J)r,

so we are done. Assume that m ≤ r − 2.

If m = 0, then i ≤ ρ(I). Since h/r > ρ(I), we get h− i ≥ h− ρ(I) > (r − 1)ρ(I) ≥
(r − 1)ρ(J). Therefore I(i)J (h−i) ⊆ IJr−1 ⊆ (I + J)r.
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Assume that 1 ≤ m ≤ r−2. Denote n = r−m, then n ≥ 2 and r = (m+1)+n−1.
Since

h/r > D ≥ (m+ 1)ρ(I) + nρ(J)

m+ n
=

(m+ 1)ρ(I) + nρ(J)

r
,

it follows that h > (m + 1)ρ(I) + nρ(J). Thus h − i ≥ h − (m + 1)ρ(I) > nρ(J).
This yields J (h−i) ⊆ Jn, consequently I(i)J (h−i) ⊆ ImJn ⊆ (I + J)r. Hence
ρ(I + J) ≤ D.

The second assertion holds since by Lemma 2.4,

D = max

{
ρ(I), ρ(J),

2(ρ(I) + ρ(J))

3

}
.

That the upper bound is sharp follows from part (2) of Lemma 2.5 below, where
we give an example with ρ(I) = ρ(J) = 1 and ρ(I + J) = 4/3.

When max{ρ(I), ρ(J)} ≥ 2min{ρ(I), ρ(J)}, we have

max

{
ρ(I), ρ(J),

2(ρ(I) + ρ(J))

3

}
= max{ρ(I), ρ(J)}.

Hence ρ(I + J) = max {ρ(I), ρ(J)} in this case. The proof is completed. □

Lemma 2.5. Let A = k[x, y, z], I = (x3, xy2, y3) ∩ (x, z) = (x3, xy2, y3z).

(1) For all n ≥ 2, there is a chain I(n) = In + x3y3In−2 ⊆ In−1. In particular,
ρ(I) = 1. Moreover x3y3 ∈ I(2) \ I2.

(2) Let B = k[u, v, w], and J = (u3, uv2, v3w) ⊆ B. Then ρ(J) = ρ(I) = 1 while
ρ(I + J) = 4/3.

Proof. (1): This follows from the more general Lemma 2.6 below.

(2): By part (1), x3y3 ∈ I(2) \ I2, u3v3 ∈ J (2) \ J2. This implies

x3y3u3v3 ∈ I(2)J (2) \ (I2 + J2) ⊆ (I + J)(4) \ (I + J)3.

Hence ρ(I + J) ≥ 4/3 and by Theorem 2.3, ρ(I + J) = 4/3. □

Lemma 2.6. Let d ≥ 1 be an integer, I = (x2d+1, x2d−1y2, y2d+1z) ⊆ A =
k[x, y, z]. Then the following statements hold.

(1) For each 1 ≤ n ≤ d, there is an equality I(n) = In.
(2) For each n ≥ d+ 1, there is a chain

I(n) = In + (xdy)2d+1In−d−1 ⊆ In−1.

In particular, ρ(I) = 1. Moreover (xdy)2d+1 ∈ I(d+1) \ Id+1.

Proof. The irredundant primary decomposition

I = (x2d+1, x2d−1y2, y2d+1) ∩ (x2d−1, z)

implies that for all n ≥ 1,

(2.2) I(n) = (x2d+1, x2d−1y2, y2d+1)n ∩ (x2d−1, z)n.
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Step 1: Let f = xaybzc be a monomial in I(n). Note that belonging to the
ideal (x2d+1, x2d−1y2, y2d+1)n, xayb has a divisor (x2d+1)g(x2d−1y2)h(y2d+1)i =
x(2d+1)g+(2d−1)hy2h+(2d+1)i, where

(2.3) g, h, i ≥ 0, g + h+ i = n.

We deduce

a ≥ (2d+ 1)g + (2d− 1)h,(2.4)

b ≥ 2h+ (2d+ 1)i,(2.5) ⌊
a

2d− 1

⌋
+ c ≥ n.(2.6)

The last inequality holds since f ∈ (x2d−1, z)n.

Adding (2.4) and (2.5), then using (2.3), it follows that

(2.7) a ≥ (2d+ 1)n− b.

Note that xaybzc ∈ In if and only if it has a divisor (x2d+1)p(x2d−1y2)q(y2d+1z)r

where p, q, r ≥ 0, p + q + r = n. Equivalently, f ∈ In if and only if the following
system has an integral solution

p, q, r ≥ 0, p+ q + r = n,

a ≥ (2d+ 1)p+ (2d− 1)q,

b ≥ 2q + (2d+ 1)r,

c ≥ r.

Since (2d+ 1)p+ (2d− 1)q = (2d+ 1)n− (2q + (2d+ 1)r) and r = n− (p+ q), the
last system has an integral solution (p, q, r) if and only if the following system has
an integral solution (p, q):

p, q ≥ 0,(2.8)

n− c ≤ p+ q ≤ n,(2.9)

(2d+ 1)n− b ≤ (2d+ 1)p+ (2d− 1)q ≤ a.(2.10)

Step 2: We have a crucial observation.

Claim 1: For any n ≥ 1, if f /∈ In then the following conditions are simultaneously
satisfied

(2.11) i ≥ c+ 1, b ≤ 2n+ (2d− 1)c− 1 and b+ c is odd.

Proof of Claim 1 : If i ≤ c, then g+h = n− i ≥ n−c. Thus the system (2.8)–(2.10)
has a solution (p, q) = (g, h), thanks to the hypotheses (2.3), (2.4), (2.5). It remains
to consider the case i ≥ c+ 1.

Note that this yields c ≤ i− 1 ≤ n− 1 and (2.5) implies that

(2.12) b ≥ 2h+ (2d+ 1)i ≥ 2h+ (2d+ 1)(c+ 1) ≥ 2d+ 1.

Case 1: b ≥ 2n+(2d−1)c. The system (2.8)–(2.10) has a solution (p, q) = (0, n−c),
as per (2.6), (2d− 1)(n− c) ≤ a.
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nn− c

n

(
n− b−(2d−1)c

2 , b−(2d+1)c
2

)

p

q

n− c

(2d+ 1)p+ (2d− 1)q
= (2d+ 1)n− b

(2d+ 1)p+ (2d− 1)q
= a

Figure 1. The representation of the system (2.8)–(2.10) in the
coordinate plane.

Case 2: b ≤ 2n+ (2d− 1)c− 1 and b+ c is even. Solving for{
p+ q = n− c,

(2d+ 1)p+ (2d− 1)q = (2d+ 1)n− b,

we get

(p, q) =

(
n− b− (2d− 1)c

2
,
b− (2d+ 1)c

2

)
.

Since b + c is even, p, q ∈ Z. Since b ≤ 2n + (2d − 1)c − 1, p is non-negative,
and thanks to (2.12), it follows that q ≥ 0. Hence (2.8)–(2.10) admits an integral
solution.

Now we are left with the case i ≥ c + 1, b ≤ 2n + (2d − 1)c − 1 and b + c is odd,
namely Claim 1 is true.

Step 3: Assume that I(n) ̸= In for some n ≥ 1. There exists a monomial f =
xaybzc ∈ I(n) \ In. Choose the integers g, h, i as in Step 1. By Claim 1, we have
i ≥ c+ 1 and b ≤ 2n+ (2d− 1)c− 1.

Using (2.5),

2n+ (2d− 1)c− 1 ≥ b ≥ 2h+ (2d+ 1)i ≥ 2h+ (2d+ 1)(c+ 1).

Simplifying, this yields,

(2.13) n ≥ h+ c+ d+ 1 ≥ d+ 1.

In particular, this shows that I(n) = In for all 1 ≤ n ≤ d.
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Step 4: We prove for each n ≥ d+ 1 that

I(n) = In + (xdy)2d+1In−d−1.

The containment In + (xdy)2d+1In−d−1 ⊆ I(n) is elementary. Indeed, it suffices to

show that f0 = (xdy)2d+1 = x2d2+dy2d+1 ∈ I(d+1). In fact f0 = (x2d+1)dy2d+1 ∈
(x2d+1, x2d−1y2, y2d+1)d+1 and

f0 ∈ (x2d2+d−1) ⊆ (x2d−1, z)d+1.

Hence f0 ∈ I(d+1).

For the reverse containment, take any monomial f = xaybzc ∈ I(n). Define the
numbers g, h, i as in Step 1. Assuming f /∈ In, we claim that f ∈ (xdy)2d+1In−d−1.
By Claim 1, i ≥ c+ 1, b ≤ 2n+ (2d− 1)c− 1 and b+ c is odd.

Claim 2: We have inequalities b ≥ 2d+ 1, a ≥ 2d2 + d.

That b ≥ 2d+1 follows from (2.12). Assume that a ≤ 2d2+d−1 = (2d−1)(d+1),
then a/(2d − 1) ≤ d + 1. As in (2.13), we get n − c ≥ h + d + 1. Hence together
with (2.5),

h+ d+ 1 ≤ n− c ≤ a

2d− 1
≤ d+ 1.

This implies that h = 0 and d+ 1 = n− c =
a

2d− 1
. Again by (2.5),

(2d+1)i ≤ b ≤ 2n+ (2d− 1)c− 1 = 2n+ (2d− 1)(n− d− 1)− 1 = (2d+1)(n− d),

so i ≤ n− d. But then g = n− h− i ≥ d, and (2.4) yields

a ≥ (2d+ 1)g ≥ 2d2 + d,

a contradiction. Thus the above assumption is wrong, and a ≥ 2d2 + d.

Now f = xaybzc = x2d2+dy2d+1xa′
yb

′
zc, where a′ = a− (2d2 + d), b′ = b− (2d+1).

Denote n′ = n − d − 1, then (2.13) implies that n′ ≥ c ≥ 0. We wish to show

that xa′
yb

′
zc ∈ In

′
. As in Step 1, this means the following system has an integral

solution 
p′, q′ ≥ 0,

n′ − c ≤ p′ + q′ ≤ n′,

(2d+ 1)n′ − b′ ≤ (2d+ 1)p′ + (2d− 1)q′ ≤ a′.

Solving for {
p′ + q′ = n′ − c,

(2d+ 1)p′ + (2d− 1)q′ = (2d+ 1)n′ − b′,

we get that

q′ =
b′ − (2d+ 1)c

2
=

b− (2d+ 1)(c+ 1)

2
, p′ = n′ − c− q′.

Since b + c is odd, p′, q′ ∈ Z. It remains to check that 0 ≤ q′ ≤ n′ − c. The first
inequality holds thanks to (2.12). The second inequality can be rewritten as

b− (2d+ 1)(c+ 1) ≤ 2(n− d− 1− c),
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equivalently b ≤ 2n + (2d − 1)c − 1, which is valid by (2.11). Hence the desired
containment f ∈ (xdy)2d+1In−d−1 holds, and we finish the proof that for every
n ≥ d+ 1,

I(n) = In + (xdy)2d+1In−d−1.

Step 5: To prove (2), it remains to show that for each n ≥ d+ 1,

In + (xdy)2d+1In−d−1 ⊆ In−1.

This is clear since (xdy)2d+1 ∈ ((x2d+1)d) ⊆ Id. Now ρ(I) = 1 follows since
I(n) ⊆ In−1 for all n ≥ 1. Finally, we check that (xdy)2d+1 ∈ I(d+1) \ Id+1.
The containment was established in Step 4. Assume that (xdy)2d+1 ∈ Id+1 =
(x2d+1, x2d−1y2, y2d+1z)d+1. Inspecting supports, we deduce

(xdy)2d+1 ∈ (x2d+1, x2d−1y2)d+1,

and after simplifying common factors,

xy2d+1 ∈ (x2, y2)d+1.

This is clearly a contradiction. The proof is completed. □

Remark 2.7. The two inequalities in Theorem 2.3 can be both strict. For example,
let I = (x3, xy2, y3z) ⊆ A = k[x, y, z] and

J = (t5, t3u2, u5v) ⊆ B = k[t, u, v].
By Lemma 2.6 for d = 2, ρ(J) = 1 and t10u5 ∈ J (3) \ J3.

We have two strict inequalities in the chain

max{ρ(I), ρ(J)} = 1 < ρ(I + J) =
5

4
< max

{
ρ(I), ρ(J),

2(ρ(I) + ρ(J))

3

}
=

4

3
.

Indeed, this can be seen using [15, Theorem 3.9], or by direct arguments as follows.
Denote P = I + J . We have x3y3 ∈ I(2) \ I2, t10u5 ∈ J (3) \ J3, hence

x3y3t10u5 ∈ I(2)J (3) \ (I2 + J3) ⊆ P (5) \ P 4.

Hence ρ(P ) ≥ 5/4. Using the fact that I(n+1) ⊆ In, J (n+1) ⊆ Jn for all n ≥ 1, we
get that P (n) ⊆ Pn−2 for all n ≥ 2. Moreover by direct inspection P (n) ⊆ Pn−1

for 1 ≤ n ≤ 4. Hence

ρ(P ) ≤ sup
2≤m≤4

n≥5

{
m

m
,

n

n− 1

}
=

5

4
.

The desired conclusion follows.

Now we give a complete answer to [1, Conjecture 3.8] about the resurgence numbers
of iterated sums of an ideal. For an ideal I in a polynomial ring A, the d-th iterated
sum I [d] of I is the defining ideal of the tensor product

(A/I)⊗k (A/I)⊗k · · · ⊗k (A/I)︸ ︷︷ ︸
d times

.

as a quotient ring of A⊗d. For example, for I = (x2, xy) ⊆ k[x, y], the first three
iterated sums of I are given by:

• I [1] = (x2
1, x1y1) ⊆ k[x1, y1],

• I [2] = (x2
1, x1y1, x

2
2, x2y2) ⊆ k[x1, y1, x2, y2],
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• I [3] = (x2
1, x1y1, x

2
2, x2y2, x

2
3, x3y3) ⊆ k[x1, y1, x2, y2, x3, y3].

From Theorem 2.3, [1, Conjecture 3.8] admits a negative answer.

Corollary 2.8. Let I be any nonzero proper homogeneous ideal in a polynomial
ring A. Then for all d ∈ N we have a strict inequality

ρ(I [d]) < 2ρ(I).

Proof. We will prove the above inequality by induction. By definition of iterated
sums, we have

ρ(I [d+1]) = ρ(I + I [d]) ≤ max

{
ρ(I), ρ(I [d]),

2

3
(ρ(I) + ρ(I [d]))

}
for all d ∈ N, d ≥ 1. For d = 1,

ρ(I [2]) ≤ max{ρ(I [1]), ρ(I [1]), 4
3
ρ(I [1])} =

4

3
ρ(I [1]) < 2ρ(I).

Assume that the conclusion is true up to d, then

ρ(I [d+1]) ≤ max

{
ρ(I), ρ(I [d]),

2

3
(ρ(I) + ρ(I [d]))

}
.

On the other hand

ρ(I [d] < 2ρ(I),
2

3
(ρ(I) + ρ(I [d])) <

2

3
(ρ(I) + 2ρ(I)) = 2ρ(I).

Hence ρ(I [d+1]) < 2ρ(I). The proof is concluded. □

3. Large difference between the resurgence and asymptotic
resurgence

In the polynomial ring A = k[x1, . . . , xd], let I be a homogeneous ideal. Recall that
the Waldschmidt constant of I is defined to be

α̂(I) = lim
n→∞

α(I(n))

n
,

where α(I(n)) is the smallest degree of a nonzero element in I(n).

Assume furthermore that I is a squarefree monomial ideal of A with the irredundant
primary decomposition

I = Q1 ∩Q2 ∩ · · · ∩Qs.

The symbolic polyhedron SP(I) of I is the subset of Rd defined by

SP(I) =

(a1, . . . , ad) ∈ Rd :
∑

xi∈Qj

ai ≥ 1 for each 1 ≤ j ≤ s

 .

By [6, Lemma 2.14(3)-(4)] for the functional v(a1, . . . , ad) = a1 + · · ·+ ad, there is
an equality

(3.1) α̂(I) = min{a1 + · · ·+ ad : (a1, . . . , ad) ∈ SP(I)}.

For integers m, d such that 1 ≤ m ≤ d, let Im,d be the ideal generated by products
of d−m+ 1 different variables in the polynomial ring A = k[x1, . . . , xd]. The first
result of this section is
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Proposition 3.1. For all integers m, d such that 1 ≤ m ≤ d, we have a primary
decomposition

Im,d =
⋂

1≤i1<···<im≤d

(xi1 , . . . , xim).

Moreover, there is an equality

ρa(Im,d) =
m(d−m+ 1)

d
.

The proof of Proposition 3.1 requires the following recursive formula.

Lemma 3.2 (DiPasquale–Francisco–Mermin–Schweig [6, Corollary 2.24]). Let I ⊆
A = k[x1, . . . , xd] be a squarefree monomial ideal generated in a single degree α(I).
For each non-empty subset U of [d], let IU be the monomial ideal obtained from I
by setting xi = 1 for every i ∈ U . Let α̂(I) be the Waldschmidt constant of I. Let
L be the affine span of the exponent vectors of the minimal generators of I. Then
there is an inequality

ρa(I) ≤ max
U⊆[d],U ̸=∅

{
ρa(IU ),

α(I)

α̂(I)

}
.

The equality happens if dimL = d− 1.

Proof. This is immediate from Corollary 2.24 in [6], and the fact that if I is gen-
erated in a single degree, then the degree valuation v(a1, . . . , ad) = a1 + · · ·+ ad is
constant on L. □

Proof of Proposition 3.1. The primary decomposition is the algebraic translation
of the fact that: a subset U of [d] meets all the m-element subsets of [d] if and only
if |U | ≥ d−m+ 1.

If m = d, then Id,d = (x1, . . . , xd), which is a complete intersection. Hence its
asymptotic resurgence is 1. Similarly, if m = 1 then I1,d = (x1 · · ·xd) is also a
complete intersection. Thus we can assume 2 ≤ m ≤ d− 1.

Denote I = Im,d.

Step 1: We note that I(m(d−m+1)n) ̸⊆ Idn+1 for all n ≥ 1.

In fact, we show that f = (x1 · · ·xd)
(d−m+1)n ∈ I(m(d−m+1)n) \ Idn+1. Note that

I is generated in degree d −m + 1, so any generator of Idn+1 has degree at least
(dn+ 1)(d−m+ 1) > d(d−m+ 1)n = deg f . From the primary decomposition

I(m(d−m+1)n) =
⋂

1≤i1<···<im≤d

(xi1 , . . . , xim)m(d−m+1)n

we have f ∈ I(m(d−m+1)n).

Therefore I(m(d−m+1)n) ̸⊆ Idn+1 for every n ≥ 1. This also implies that for each
s ≥ 1,

I(m(d−m+1)sn) ̸⊆ I(ds+1)n for all n ≥ 1,

as I(ds+1)n ⊆ Idsn+1, which does not contain I(m(d−m+1)sn). By the definition of
asymptotic resurgence, for each s ≥ 1,

ρa(I) ≥
m(d−m+ 1)s

ds+ 1
.
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In particular, letting s → ∞,

ρa(I) ≥
m(d−m+ 1)

d
.

Step 2: We prove by induction on d ≥ 1 that

ρa(Im,d) ≤
m(d−m+ 1)

d
.

This is true if d = 1, since d = m = 1 in that case. Assume that d ≥ 2. As noted
above, there is nothing to do if m = d, so we can assume m ≤ d− 1.

By Lemma 3.2 and the fact that I is generated in degree d−m+ 1,

ρa(I) ≤ max
U⊆[d],U ̸=∅

{
ρa(IU ),

d−m+ 1

α̂(I)

}
.

For U ⊆ [d], U ̸= ∅, let r = |U |. Then IU is generated by products of d− r−m+ 1
distinct variables among d− r variables. Hence IU = (1) if r ≥ d−m+1, in which
case ρa(IU ) = 1.

Assume that r ≤ d−m. Then IU ∼= Im,d−r, so by the induction hypothesis on d,

ρa(IU ) = ρa(Im,d−r) ≤
m(d− r −m+ 1)

d− r
.

The symbolic polyhedron of I is given by

SP(I) =
{
(a1, . . . , ad) ∈ Rd : ai1 + · · ·+ aim ≥ 1 for all 1 ≤ i1 < · · · < im ≤ d

}
.

By (3.1),

α̂(I) = min{a1 + · · ·+ ad : (a1, . . . , ad) ∈ SP(I)}.

Claim: The minimum value is attained by (1/m, . . . , 1/m︸ ︷︷ ︸
d times

), giving α̂(I) = d/m.

Proof of the claim: Consider the d×m matrix where for 1 ≤ i ≤ d, 1 ≤ j ≤ m, at
the (i, j)-position we write ai+j , with (i+j) taken modulo d. Consider the sum s of
all the entries in the matrix. In each column, we have a permutation of {1, 2, . . . , d},
so s = m(a1 + · · · + ad). In each row, for fixed 1 ≤ i ≤ d, as m ≤ d, the numbers
i+1, . . . , i+m are pairwise distinct modulo d. Hence by the assumption the sum in
each row is at least 1, and so m(a1 + · · ·+ ad) = s ≥ d. Hence a1 + · · ·+ ad ≥ d/m,
as claimed.

From the claim,

d−m+ 1

α̂(I)
=

m(d−m+ 1)

d
.

Putting everything together,

ρa(Im,d) ≤ max
1≤r≤d−m

{
1,

m(d− r −m+ 1)

d− r
,
m(d−m+ 1)

d

}
=

m(d−m+ 1)

d
.

The induction step is completed.

From Steps 1 and 2, we finish the proof that ρa(I) = (m(d−m+ 1))/d. □
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Corollary 3.3. Let m ≥ 2 be an integer, A = k[x1, . . . , x2m−1] and I be the ideal
generated by all the products of m distinct variables:

I = (xi1xi2 · · ·xim : 1 ≤ i1 < i2 < · · · < im ≤ 2m− 1).

Then x1 · · ·x2m−1 ∈ I(m) \ I2 and ρa(I) =
m2

2m− 1
.

Proof. It is clear that x1 · · ·x2m−1 /∈ I2. One has

I(m) =
⋂

1≤i1<i2<···<im≤2m−1

(xi1 , xi2 , . . . , xim)m.

Because x1 · · ·x2m−1 ∈ (xi1 , xi2 , . . . , xim)m for all 1 ≤ i1 < i2 < · · · < im ≤ 2m−1,
we obtain the first assertion.

That ρa(I) = m2/(2m− 1) follows from Proposition 3.1 with d = 2m− 1. □

The following result answers in the positive [1, Conjecture 3.9].

Theorem 3.4. There exists a sequence of polynomial rings Rn and squarefree
monomial ideal Pn ⊆ Rn generated by forms of the same degree, such that ρ(Pn)−
ρa(Pn) → ∞ when n → ∞.

Proof. For each integer m ≥ 2, choose I as in Corollary 3.3. Using Lemma 2.2 for
r = 2,m1 = m2 = m3 = m, we get a squarefree monomial ideal Pm with

ρ(Pm) ≥ 3m

4
, ρa(Pm) =

m2

2m− 1
.

The equality follows from Equation (1.2). Hence 2m2−3m
4(2m−1) ≤ ρ(Pm)− ρa(Pm) → ∞

when m → ∞. Since I is generated by forms of the same degree m, so is Pm. □

The rationality of resurgence and asymptotic resurgence is an interesting topic con-
sidered in [6, 5, 15]. We do not know whether if ρ(I) and ρ(J) are rational numbers,
then so is ρ(I + J). This has a positive answer if ρ(I) = ρ(J) = 1 [15, Theorem
3.9] or if I and J are both monomial ideals [5, Theorem 3.7], as the symbolic Rees
algebras of monomial ideals are known to be noetherian. By Theorem 2.3, we also
have a positive answer in the case max{ρ(I), ρ(J)} ≥ 2min{ρ(I), ρ(J)}.
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