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Abstract In this paper, a family of discrete optimal control problems that
depend on parameters is considered. The control problems are reformulated
as parametric optimization problems. By establishing/exploiting abstract re-
sults on subdifferentials of optimal value functions of parametric optimization
problems, we derive formulas for estimating/computing subdifferentials of op-
timal value functions of parametric discrete optimal control problems in both
nonconvex and convex cases. Namely, for control problems with nonconvex
costs, upper-evaluations on the regular subdifferential and the limiting (Mor-
dukhovich) subdifferential of the optimal value function are obtained without
using the (strict) differentiability of the costs. Meanwhile, for control problems
with convex costs, besides results on estimating/computing the subdifferential
(in the sense of convex analysis) of the optimal value function, it is worth point-
ing out that some properties of the optimal value function are first discussed
in this paper.
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1 Introduction

Discrete optimal control problems arise in investigations of controlled systems
where changes of the control and current state can take place only at strictly
defined, isolated instants of time. Problems of this type often appear in appli-
cations. For example, many control problems in economics (see, [7, Chap. 1], [8,
Chap. 1], [9, Chap. 1], [30], [38, Chap. 9]) can be stated in a natural way as
discrete optimal control problems.

A major part in the literature of discrete optimal control problems is on
characterizations of the solutions. The necessary condition for an extremum
in discrete optimal control problems, which is known as the discrete maxi-
mum principle, was discussed in the paper [28] and in the book [14, Chap. 6]
for general cases. The readers can find more discussions and counterexamples
about the discrete maximum principle and related necessary optimality con-
ditions for discrete control systems in [21, Section 6.4]. Besides, the dynamic
programming method, which, on the one hand, gives a convenient computa-
tional formalism for solving problems of this type, and, on the other hand,
contains a possible approach toward obtaining sufficient conditions in optimal
control theory, was studied in the books [6, Chap. 3], [14, Chap. 6] and papers
cited therein. It is well-known that optimal control problems for discrete-time
systems can be reduced to optimization problems, which are also called math-
ematical programming problems. Therefore, one can use tools and techniques
from mathematical programming to study necessary/sufficient optimality con-
ditions of optimal control problems. The interested reader is referred to the
papers [12,13,19,35,36] and the references therein where the mathematical
programming approach plays a key role in deriving optimality conditions for
discrete optimal control problems.

Investigations on stability and solution sensitivity of parametric optimiza-
tion problems are vital in optimization and variational analysis. They allow us
to understand behaviors of the optimal value function and of the solution map
when parameters appearing in the problem under investigation witness some
perturbation. Optimal value functions of parametric optimization problems
are usually nonsmooth, even when the problems are given by smooth data.
Thus, in order to study differential stability of optimal value functions, one
may need to use different types of subdifferential–generalized concepts of the
classical derivative. For nonconvex optimization problems, Mordukhovich and
his co-authors in [20, Chap. 1], [22, Chap. 4], [27], Penot in [29, Chap. 4] have
derived formulas for computing or estimating the regular subdifferential, the
limiting (Mordukhovich) subdifferential of optimal value functions. Meanwhile,
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by using different versions of the Moreau-Rockafellar theorem and appropri-
ate regularity conditions, the papers [3], [5] and the works [23, Chap. 2], [24],
[25, Chap. 4], [26] have provided formulas for computing the subdifferential in
the sense of convex analysis of optimal value functions in convex optimization
problems. Such results and related developments in optimization and varia-
tional analysis have severed as main tools for studying differential stability of
optimal value functions of parametric optimal control problems. This direction
has attracted attention of many researchers, see [2,4,11,15,16,17,18,31,33,34,
37] and the references therein.

Motivated by the work of Kien et al. [15], Chieu and Yao [11], Toan and
Yao [37], and An and Toan [2], this paper presents new results on differen-
tial stability of optimal value functions of parametric discrete optimal con-
trol problems with possibly nondifferentiable costs. Formulas for estimating
or computing the regular subdifferential, the limiting subdifferential, and the
subdifferential in the sense of convex analysis of the optimal value function via
corresponding subdifferentials of functions describing the cost and differential
information of the constraint system are obtained. Two regularity conditions
(see, conditions (A1) and (A2) in Section 5 below) are needed, among other
assumptions. To our best knowledge, the first one putting on data of the con-
straint is weaker than regularity conditions ever used in the literature for prob-
lems with linear and convex constraints. Meanwhile, the second one involving
an interaction between the cost and the constraint is introduced to work for
nonconvex optimal control problems with nondifferentiable costs, which none
of the previous works have investigated. Besides, some properties of optimal
value functions in convex optimal control problems are first examined in this
paper. To be able to achieve such results by considering the parametric op-
timal control problem as a parametric optimal problem, we have exploited
state-of-the-art tools in optimization and variational analysis (including [22]
and [24]) as well as our new abstract results built up for optimization problems
with nonsmooth objectives (Theorems 1, 2, 4, 5).

The remaining sections are as follows. Section 2 is for the problem formu-
lation and some auxiliary concepts in variational analysis from the books [20],
[22], and [23]. Results on differential stability of parametric optimization prob-
lems with convex constraint maps are established/represented in Section 3. In
Section 4, we specify the results in the previous section for the case where
the constraint map is defined by linear operators and convex sets. Section 5
is devoted to the study of differential stability of the parametric discrete opti-
mal control problem in both nonconvex and convex cases. Several illustration
examples are given in Section 6. The last section provides some concluding
remarks.

Throughout the paper, the considered spaces are finite-dimensional Eu-
clidean with the inner product and the norm being denoted by 〈·, ·〉 and by
|| · ||, respectively. For a set Ω in X, the interior, the closure, and the relative
interior of Ω are denoted by intΩ, clΩ, and riΩ, respectively. For a linear
operator A, ker A (resp., rge A) stands for the kernel (resp., the range) of A.
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2 Preliminaries

This section is divided into two subsections. In the first subsection, the para-
metric discrete optimal control problem, which we are interested in, is intro-
duced and then is transformed into a parametric optimization problem under
an inclusion constraint. In the second one, basic concepts from variational
analysis are recalled.

2.1 Problem Formulation

Let Xk, Uk, Wk, for k = 0, 1, . . . , N − 1, and XN be finite-dimensional spaces,
where N is a positive natural number. Let there be given
- nonempty, convex sets C ⊂ X0 and Ω0 ⊂ U0, . . . , ΩN−1 ⊂ UN−1;
- linear operators Ak : Xk → Xk+1, Bk : Uk → Xk+1, and Tk : Wk → Xk+1

for k = 0, 1, . . . , N − 1;
- functions hk : Wk×Xk×Uk → R for k = 0, 1, . . . , N − 1, and hN : XN → R.

In what follows, we will deal with a control system where the state variable
(resp., the control variable) at time k is xk ∈ Xk (resp., uk ∈ Uk). The control
system contains the parameter wk ∈Wk at each stage k. We call Xk, Uk, and
Wk the space of state variables, the space of control variables, and the space
of parameters at stage k, respectively.

Put X = X0 ×X1 × · · · ×XN , U = U0 ×U1 × · · · ×UN−1, and W = W0 ×
W1×· · ·×WN−1. For a given parameter w = (w0, w1, . . . , wN−1) ∈W , consider
the following parametric discrete optimal control problem: Find a pair (x, u) of
state x = (x0, x1, . . . , xN ) ∈ X and control u = (u0, u1, . . . , uN−1) ∈ U , which
minimizes the cost/objective function

N−1∑
k=0

hk(wk, xk, uk) + hN (xN ) (2.1)

among those pairs satisfying the linear state equations

xk+1 = Akxk +Bkuk + Tkwk, k = 0, 1, . . . , N − 1, (2.2)

the initial condition

x0 ∈ C, (2.3)

and the control constraints

uk ∈ Ωk ⊂ Uk, k = 0, 1, . . . , N − 1. (2.4)

Problems of this type have been considered in many papers (see [2,11,15,
30,34,35,36,37]). A classical example for the model (2.1)–(2.4) is the inventory
control problem in economics (see [9, pp. 2-6, 13-14, 162-168]).

We are interested in studying stability properties of the discrete control
problem (2.1)–(2.4) w.r.t. the change of parameter w; in particular, differ-
ential stability of the optimal value function V (·). In this paper we consider
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parametric discrete optimal control problem (2.1)–(2.4) as a mathematical pro-
gramming problems. Because then one can use effective tools and techniques
from mathematical programming to study differential stability of V (·). Let us
show how the parametric discrete optimal control problem (2.1)–(2.4) is trans-
formed into a parametric optimization problem under an inclusion constraint.

For each parameter w = (w0, w1, . . . , wN−1) ∈ W , denote by V (w) the
optimal value of problem (2.1)–(2.4) and S(w) the corresponding solution set.
Thus, we have an extended real-valued function V : W → R := [−∞,+∞]
depending on w ∈ W with the values V (w), which is called the optimal value
function of problem (2.1)–(2.4). Let

f(w, x, u) :=

N−1∑
k=0

hk(wk, xk, uk) + hN (xN ), (w, x, u) ∈W ×X × U, (2.5)

G(w) :={(x, u) ∈ X×U |xk+1 =Akxk+Bkuk+Tkwk, k = 0, 1, ..., N−1} (2.6)

for each w ∈W , and Ω := Ω0 ×Ω1 × · · · ×ΩN−1, X̃ := X1 ×X2 × · · · ×XN .
Then the function V : W → R can be rewritten as the optimal value function
of the following parametric optimization problem under an inclusion constraint

V (w) = inf
(x,u)∈G(w)∩(C×X̃×Ω)

f(w, x, u), w ∈W. (2.7)

Since the optimal value function V (·) is generally nondifferentiable, we
will focus on estimating/computing its subdifferentials which are generalized
concepts of derivatives. Those are the regular, limiting/Mordukhovich subd-
ifferentials when V (·) is not necessarily convex (the nonconvex case) and the
subdifferential in the sense of convex analysis when V (·) is convex (the convex
case).

2.2 Auxiliary Concepts

Let us recall some notions related to generalized differentiation from [20,22,
23]. Along with single-valued maps usually denoted by f : Rn → Rm, we
consider set-valued maps (or multifunctions) F : Rn ⇒ Rm with values F (x)
in the collection of all the subsets of Rm. The limiting construction

Lim sup
x→x̄

F (x) :=

{
y ∈ Rm | ∃xk → x̄, yk → y with yk ∈ F (xk),∀k = 1, 2, ....

}
is known as the Painlevé-Kuratowski outer/upper limit of F at x̄. All the maps
considered below are proper, i.e., F (x) 6= ∅ for some x ∈ Rn.

Let Ω be a nonempty subset of Rn and x̄ ∈ Ω. The regular normal cone
to Ω at x̄ is defined by

N̂(x̄, Ω) =
{
v ∈ Rn | lim sup

x
Ω−→x̄

〈v, x− x̄〉
‖x− x̄‖

≤ 0
}
,
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where x
Ω−→ x̄ means that x → x̄ and x ∈ Ω. The limiting (Mordukhovich)

normal cone to Ω at x̄ is given by

N(x̄, Ω) = Lim sup

x
Ω−→x̄

N̂(x,Ω).

We put N̂(x̄, Ω) = N(x̄, Ω) = ∅ if x̄ 6∈ Ω.
Clearly, one always has

N̂(x̄, Ω) ⊂ N(x̄, Ω), ∀Ω ⊂ Rn,∀x̄ ∈ Ω. (2.8)

When the reverse inclusion holds, one says that the set Ω is normally regular
at x̄. It is well-known (see, e.g., [22, Prop. 1.7]) that when Ω is a convex subset
of Rn, the regular normal cone to Ω at x̄ coincides with the limiting normal
cone and both constructions reduce to the normal cone in the sense of convex
analysis, i.e.,

N̂(x̄, Ω) = N(x̄, Ω) =
{
v ∈ Rn | 〈v, x− x̄〉 ≤ 0, ∀x ∈ Ω

}
, ∀x̄ ∈ Ω. (2.9)

Thus, a convex set is normally regular at any point in it. However, the class
of normally regular sets is really bigger than the class of convex sets. Indeed,
it is easy to show that the nonconvex set

Ω := {x = (x1, x2) ∈ R2 | x2 ≥ 0} \ {x = (0, x2) ∈ R2 | x2 > 0}

is normally regular at x̄ := (0, 0) and one has

N̂(x̄, Ω) = N(x̄, Ω) = {v = (0, v2) ∈ R2 | v2 ≤ 0}.

Let F : Rn ⇒ Rm be a set-valued map with the domain

domF := {x ∈ Rn | F (x) 6= ∅}

and the graph
gphF := {(x, y) ∈ Rn × Rm | y ∈ F (x)}.

The set-valued map F is called closed (resp., convex ) if gphF is closed (resp.,
convex) in the product space Rn × Rm, which is endowed with the norm
‖(x, y)‖ = ‖x‖+ ‖y‖ for any (x, y) ∈ Rn × Rm.

The regular coderivative D̂∗F (x̄, ȳ) : Rm ⇒ Rn and the limiting (Mor-
dukhovich) coderivative D∗F (x̄, ȳ) : Rm ⇒ Rn of F at (x̄, ȳ) in gphF are
given respectively by

D̂∗F (x̄, ȳ)(v) :=
{
u ∈ Rn | (u,−v) ∈ N̂ ((x̄, ȳ), gph F )

}
, v ∈ Rm

and

D∗F (x̄, ȳ)(v) := {u ∈ Rn | (u,−v) ∈ N ((x̄, ȳ), gph F )} , v ∈ Rm.

If (x̄, ȳ) /∈ gphF , one puts D̂∗F (x̄, ȳ)(v) = D∗F (x̄, ȳ)(v) = ∅ for any v ∈ Rm.
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Note that, by the relation (2.8), one has D̂∗F (x̄, ȳ)(v) ⊂ D∗F (x̄, ȳ)(v), for
all v ∈ Rm. Meanwhile, it follows from (2.9) that the above inclusion becomes
equality when F is a convex set-valued map. Thus, in this case, the concepts
of the regular coderivative and limiting coderivative of the map F at (x̄, ȳ) ∈
gph F are coincided (and therefore will be referred shortly as coderivative) and
the normal cones appearing in their definitions are understood as the normal
cone in the sense of convex analysis.

Consider a function f : Rn → R with the effective domain

dom f := {x ∈ Rn | f(x) < +∞}

and the epigraph

epi f := {(x, α) ∈ Rn × R | α ≥ f(x)}.

Suppose that x̄ ∈ Rn and |f(x̄)| <∞. One calls the sets

∂̂f(x̄) :=
{
v ∈ Rn | (v,−1) ∈ N̂((x̄, f(x̄)), epi f)

}
,

∂f(x̄) := {v ∈ Rn | (v,−1) ∈ N((x̄, f(x̄)), epi f)} ,

and

∂∞f(x̄) := {v ∈ Rn | (v, 0) ∈ N((x̄, f(x̄)), epi f)}

the regular subdifferential, limiting (Mordukhovich) subdifferential, and singu-

lar subdifferential of f at x̄, respectively. If |f(x̄)| =∞, one lets ∂̂f(x̄), ∂f(x̄),
and ∂∞f(x̄) to be empty sets.

Notice that the singular subdifferential ∂∞f(x̄) reduces to {0} if f is locally
Lipschitzian around x̄ (see [22, Thm. 1.22]). Meanwhile, the regular subdiffer-
ential of f at x̄ can be express as (see [20, p. 90])

∂̂f(x̄) =

{
v ∈ Rn | lim inf

x→x̄

f(x)− f(x̄)− 〈v, x− x̄〉
||x− x̄||

≥ 0

}
.

From this, it is not difficult to prove that

∂̂f(x̄)⊂ ∂̂x1
f(x̄)× ∂̂x2

f(x̄)× ...× ∂̂xnf(x̄), ∀x̄=(x̄1, x̄2, . . . , x̄n) ∈ Rn (2.10)

with ∂̂x1
f(x̄), ∂̂x2

f(x̄), . . . , ∂̂xnf(x̄) respectively being the regular subdifferen-
tials of f(·, x̄2, . . . , x̄n) at x̄1, f(x̄1, ·, x̄3, . . . , x̄n) at x̄2, ..., f(x̄1, x̄2, . . . , x̄n−1, ·)
at x̄n.

Due to (2.8), it always holds that ∂̂f(x̄) ⊂ ∂f(x̄). When the reverse in-
clusion is valid, one says that the function f is lower regular at x̄. By (2.9),
if f is a convex function, i.e., epi f is convex, then f is lower regular at any
point x̄ with |f(x̄)| <∞. In this case, the regular subdifferential and limiting
subdifferential of f at x̄ coincide with the subdifferential in the sense of convex
analysis

∂̂f(x̄) = ∂f(x̄) = {v ∈ Rn | f(x)− f(x̄) ≥ 〈v, x− x̄〉, ∀x ∈ Rn}.
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In the case, where f is a C1 function around x̄ (i.e., f is continuously
Fréchet differentiable and the gradient map is continuous on a neighborhood
of x̄), the limiting subdifferential contains only the gradient {∇f(x̄)} (see [22,
Cor. 1.24]). Thus, a part from convex functions, C1 functions (in particular
strictly differentiable functions) are also lower regular. However, there do exist
functions which are lower regular but neither convex nor differentiable (see
Example 1).

We end this section by recalling the relationship between normal cones to
a convex set Ω ⊂ Rn and subdifferentials of its indicator function δ(·, Ω) :
Rn → R ∪ {+∞} defined by δ(x,Ω) = 0 if x ∈ Ω and δ(x,Ω) = +∞ if x /∈ Ω
as follows

N(x̄, Ω) = ∂δ(x̄, Ω) = ∂∞δ(x̄, Ω), ∀x̄ ∈ Rn.

3 Parametric Optimization Problems with Convex Constraint
Maps

Let ϕ : Rn × Rm → R be an extended-real-valued function, G : Rn ⇒ Rm be
a convex multifunction. Consider the parametric optimization problem under
an inclusion constraint

min{ϕ(x, y) | y ∈ G(x)} (3.1)

depending on the parameter x ∈ Rn. Define the optimal value function µ :
Rn → R of (3.1) by

µ(x) := inf {ϕ(x, y) | y ∈ G(x)} , x ∈ Rn, (3.2)

and the solution map M : Rn ⇒ Rm of (3.1) by

M(x) := {y ∈ G(x) | µ(x) = ϕ(x, y)}, x ∈ Rn. (3.3)

The following theorem is about an upper estimate for the regular subdiffer-
ential of the optimal value function µ(·) in (3.2) via the regular subdifferential
of the objective function ϕ and the coderivative of the constraint map G. This
result complements the one in [27, Thm. 1] where another upper estimate for
the regular subdifferential of the optimal value function µ(·) is provided under
the assumption on the nonemptiness of the so-called Fréchet upper subdiffer-
ential of the objective function ϕ.

Theorem 1 Suppose that the optimal value function µ(·) in (3.2) is finite at
x̄ and ȳ ∈ M(x̄). If ϕ is lower semicontinuous and lower regular at (x̄, ȳ), G
has a closed graph, and the qualification condition

∂∞ϕ(x̄, ȳ) ∩ [−N((x̄, ȳ), gphG)] = {(0Rn , 0Rm)} (3.4)

is satisfied, then we have

∂̂µ(x̄) ⊂
⋃

(x∗,y∗)∈∂̂ϕ(x̄,ȳ)

{
x∗ +D∗G(x̄, ȳ)(y∗)

}
. (3.5)
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Proof It is well-known that the constrained minimization problem (3.1) is
equivalent to the unconstrained one

min{f(x, y) := ϕ(x, y) + δ((x, y), gphG) | y ∈ Rm}.

Thus, for an arbitrarily given x∗ ∈ ∂̂µ(x̄), Theorem 4.47 in [29] yields

(x∗, 0) ∈ ∂̂f(x̄, ȳ). (3.6)

Since gphG is a closed and convex set, it follows that δ(·, gphG) is lower semi-
continuous and lower regular at (x̄, ȳ). Combining this with the lower semicon-
tinuity and the lower regularity of ϕ at (x̄, ȳ), the qualification condition (3.4)
and applying Theorem 2.19 in [22], we get

∂̂f(x̄, ȳ) = ∂̂ϕ(x̄, ȳ) + ∂̂δ((x̄, ȳ), gphG).

Thus, we have

∂̂f(x̄, ȳ) = ∂̂ϕ(x̄, ȳ) +N((x̄, ȳ), gphG) (3.7)

due to ∂̂δ((x̄, ȳ), gphG) = ∂δ((x̄, ȳ), gphG) = N((x̄, ȳ), gphG). It follows

from (3.6) and (3.7) that (x∗, 0) ∈ ∂̂ϕ(x̄, ȳ)+N((x̄, ȳ), gphG). Therefore, there

exist (x1, y1) ∈ ∂̂ϕ(x̄, ȳ) and (x2, y2) ∈ N((x̄, ȳ), gphG) satisfying (x∗, 0) =
(x1, y1) + (x2, y2). In other words, x∗ ∈ x1 + D∗G(x̄, ȳ)(y1), which completes
the proof. 2

The next theorem on an upper estimate for the limiting subdifferential of
the optimal value function (3.2) is obtained by slight modifications from [22,
Thm. 4.1 (i)]. Namely, by adding the requirement on the lower regularity
of the objective function ϕ to the assumptions of [22, Thm. 4.1 (i)], we can
obtain the inclusion (3.8) of which the union in the right-hand-side is taken via

(x∗, y∗) ∈ ∂̂ϕ(x̄, ȳ), instead of via (x∗, y∗) ∈ ∂ϕ(x̄, ȳ) as in [22, Thm. 4.1 (i)].
Thus, we will skip the proof of Theorem 2.

Recall that the solution map M(·) in (3.3) is said to be µ-inner semicon-

tinuous at (x̄, ȳ) ∈ gphM if for every sequence xk
µ−→ x̄ there exists a sequence

yk ∈ M(xk) that contains a subsequence converging to ȳ. This definition ex-
tends the corresponding notion in [20, Def. 1.63]. The difference is that the

condition xk → x̄ in [20] is replaced by the weaker condition xk
µ−→ x̄ and this

change does not affect the proof of [22, Thm. 4.1 (i)].

Theorem 2 Suppose that the optimal value function µ(·) in (3.2) is finite at
x̄ and ȳ ∈ M(x̄). Suppose in addition to the assumptions of Theorem 1 that
the solution map M in (3.3) is µ-inner semicontinuous at (x̄, ȳ) ∈ gphM .
Then, one has

∂µ(x̄) ⊂
⋃

(x∗,y∗)∈∂̂ϕ(x̄,ȳ)

{
x∗ +D∗G(x̄, ȳ)(y∗)

}
. (3.8)
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A nature question arises: “When do the estimates in Theorems 1 and 2
become equalities? There is one situation, that is when the objective function
is (strictly) differentiable and the solution map admits a local Lipschitzian
selection at the referencing point (see [27]). Another situation is when the
objective function ϕ is convex, a part from the convexity of the constraint
map G. Note that, in this case the optimal value function µ(·) is convex (see
[23, Prop. 1.50]). Let us now recall a result from [24, Thm. 9.1] where the
inclusions (3.5) in Theorem 1 and (3.8) in Theorem 2 become equalities in the
second situation. Interestingly, the lower semicontinuity of ϕ, the closeness
of G as well as the µ-inner semicontinuity of the solution map M(·) are not
required anymore herein.

Theorem 3 (See [23, Prop. 1.50], [24, Thm. 9.1] and [25, Thm. 4.56(c)].) If
the objective function ϕ of the problem (3.1) is convex, then the optimal value
function µ(·) in (3.2) is convex too. Suppose that the optimal value function
µ(·) is finite at x̄ and ȳ ∈M(x̄). In addition, if the qualification condition

ri (domϕ) ∩ ri (gphG) 6= ∅ (3.9)

is satisfied, then

∂µ(x̄) =
⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ)

{
x∗ +D∗G(x̄, ȳ)(y∗)

}
. (3.10)

Remark 1 In a convex setting, the authors in [5] obtained formulas for com-
puting the subdifferential of the optimal value function µ(·) in (3.2) under the
assumption on the continuity of ϕ. Recently, in [1, Sect. 5], the authors showed
the assumption on the continuity of ϕ is stronger than the following condition

N((x̄, ȳ),domϕ) ∩ [−N((x̄, ȳ), gphG)] = {(0Rn , 0Rn)}. (3.11)

Meanwhile, according to [24, Cor. 5.3], the condition (3.11) implies (3.9). Thus,
the qualification condition (3.9) is the weakest condition guaranteeing the
validity of (3.10) under the convex setting.

4 Parametric Optimization Problems with Linear–Convex
Constraint Maps

Let f : Rm ×Rp → R be an extended real-valued function, M : Rp → Rn and
T : Rm → Rn be linear operators, and Ω ⊂ Rp be a nonempty convex set.
For each w ∈ Rm, put H(w) =

{
z ∈ Rp |Mz = Tw

}
. Consider the parametric

optimization problem

min{f(w, z) | z ∈ H(w) ∩Ω} (4.1)

depending on parameter w ∈ Rm. The optimal value function h : Rm → R
and the solution map S̃ : Rm ⇒ Rm of (4.1) are given by

h(w) := inf {f(w, z) | z ∈ H(w) ∩Ω} (4.2)
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and S̃(w) := {z ∈ H(w) ∩Ω | h(w) = f(w, z)} for each w ∈ Rm.

Let H̃ : Rm ⇒ Rp with H̃(w) := H(w) ∩Ω for all w ∈ Rm. Clearly,

gph H̃ = (gphH) ∩ (Rm ×Ω). (4.3)

So, (4.1) is a special form of the parametric optimization problem with convex
constraint map (3.1). Since the graph of constraint map of the former can be
represented as an intersection of a linear subspace and a convex set, we name
it a parametric optimization problem with linear–convex constraint map.

This section aims at giving formulas for estimating/computing subdiffer-
entials of the optimal value function h(·) of the problem (4.1). The purpose is
twofold. Firstly, it concretizes abstract results in the previous section for the
subclass of parametric optimization problems with linear–convex constraint
maps. Secondly, it serves as a key tool in deriving results in the next section
on differential stability of the parametric discrete control problem (2.1)–(2.4),
the target of this paper. It is worthy to note that (4.1) generally is not a
convex parameter optimization problem, despising to the fact that the con-
straint map H̃(·) is convex. Thus, the regular subdifferential and the limiting
subdifferential of h(·) are needed to be involved when studying the differential
stability of the problem. However, if the objective function is convex, then so
is the optimal value function h(·). In this case, we consider the subdifferential
in the sense of convex analysis of h(·).

We need several auxiliary results to compute the coderivative of the con-
straint map. The first lemma is a finite-dimensional version of [2, Lem. 1].
Since every finite-dimensional linear subspace of Rn is closed (see, e.g. [10,
Prop. 2.18]), the linear operator Φ(z, w) := −Tw + Mz, (w, z) ∈ Rm × Rp,
has closed range. Thus, we skip that requirement on the formulation of the
lemma.

Lemma 1 For each (w̄, z̄) ∈ gphH, one has

N
(
(w̄, z̄), gphH

)
=
{

(−T ∗x∗,M∗x∗) |x∗ ∈ Rn
}
, (4.4)

where M∗ : Rn → Rp and T ∗ : Rn → Rm are adjoint operators of M : Rp →
Rn and T : Rm → Rn, respectively.

The next lemma plays a decisive role to obtain upcoming results. It allows
us to compute the normal cone to the intersection gphH ∩ (Rm ×Ω) under a
very mild regularity condition put on three elements describing the constraint
of the problem (4.1): the linear operators M and T , and the set Ω.

Lemma 2 If the regularity condition

M(riΩ) ∩ rgeT 6= ∅ (4.5)

holds, then one has

N
(
(w̄, z̄), gphH ∩ (Rm ×Ω)

)
= N

(
(w̄, z̄), gphH

)
+ {0Rm} ×N(z̄, Ω) (4.6)

for each (w̄, z̄) ∈ gphH ∩ (Rm ×Ω).
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Proof Observe that M(riΩ) = {x ∈ Rn | x = Mz, z ∈ riΩ} and

rgeT = {x ∈ Rn | x = Tw, w ∈ Rm}.

Let us show that the regularity condition (4.5) is equivalent to

(Rm × riΩ) ∩ gph H 6= ∅. (4.7)

Indeed, suppose that (4.5) holds, then there exists x ∈ M(riΩ) ∩ rgeT . So,
we can find (w, z) ∈ Rm × riΩ such that x = Mz and x = Tw. It means
that Mz = Tw, or, (w, z) ∈ gphH. Therefore, (w, z) ∈ (Rm × riΩ) ∩ gph H.
Conversely, suppose that (4.7) holds. Take (w, z) ∈ (Rm× riΩ)∩gph H. Then
z ∈ riΩ and Mz = Tw. Set x := Mz = Tw. Obviously, x ∈ rgeT and
x ∈M(riΩ). Thus, M(riΩ) ∩ rgeT 6= ∅.

Let A0 := gphH and A1 := Rm × Ω. Since gphH is a linear subspace of
Rm×Rp, we have ri (gphH) = gphH. Moreover, ri (Rm×Ω) = Rm×riΩ (see,
e.g., [32, p. 67]). So, from (4.7) one has ri (Rm × Ω) ∩ ri (gphH) 6= ∅. Hence,
applying Theorem 5.3 in [24] for the sets A0, A1 and the point (w̄, z̄) ∈ A0∩A1,
we have

N((w̄, z̄), A0 ∩A1) = N((w̄, z̄), A0) +N((w̄, z̄), A1). (4.8)

As N((w̄, z̄), A0) = N
(
(w̄, z̄), gphH

)
and N((w̄, z̄), A1) = {0Rm} × N(z̄, Ω),

the equality (4.6) follows from (4.8). 2

Remark 2 If riΩ ∩ kerM 6= ∅, in particular, 0 ∈ riΩ, then (4.5) is satisfied.
Indeed, if riΩ∩kerM 6= ∅, then there exists z̄ ∈ riΩ∩kerM . On the one hand,
since z̄ ∈ kerM , it follows that Mz̄ = 0. On the other hand, choose w̄ = 0, one
has H(w̄) = {z ∈ Rp | Mz = Tw̄ = 0}.Thus z̄ ∈ H(w̄), or, (w̄, z̄) ∈ gphH. In
addition, it is clear that (w̄, z̄) ∈ Rm × riΩ. So (w̄, z̄) ∈ (Rm × riΩ) ∩ gph H.
It means that (4.7) holds. Therefore (4.5) is also fulfilled.

Remark 3 In [15, Lem. 2], Kien et al. used the assumption rgeM ⊂ rgeT ,
which is true in particular if T is surjective, to obtain (4.6) in the case where
Ω can be nonconvex but normally regular at z̄. In our setting, this condi-
tion implies (4.5). Indeed, we first see that riΩ is always nonempty (see, [24,
Thm. 2.7 (i)]). Take z ∈ riΩ and put x := Mz. So, x ∈ M(riΩ); hence
x ∈ rgeM . Thus, if rgeM ⊂ rgeT , then x ∈ rgeT. We have shown that
x ∈M(riΩ) ∩ rgeT , i.e., (4.5) is valid under the condition rgeM ⊂ rgeT .

Remark 4 Chieu and Yao [11] also studied the problem (4.1) under the normal
regularity of Ω. In our notation, to get (4.6), the authors assumed further that

[−N(z̄, Ω)] ∩M∗(kerT ∗) = {0Rp}. (4.9)

In the proof of Theorem 2.1 (Step 2) in [11], the authors showed that (4.9) yields

N((w̄, z̄), gphH) ∩ [−N((w̄, z̄),Rm ×Ω)] = {(0Rm , 0Rp)}. (4.10)

Note that gphH is convex. When Ω is convex, the authors in [24, Cor. 5.5]
pointed out that condition (4.10) is stronger than ri (gphH)∩ri (Rm×Ω) 6= ∅.
Clearly, the latter coincides with (4.7). While, in the proof of Lemma 2, we have
shown that (4.7) is equivalent to (4.5). Thus, (4.9) implies our condition (4.5).
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Remark 5 Under a Banach space setting, the authors in [2, Lem. 1 and 2] em-
ployed the condition that the linear operator Φ(w, z) = −Tw+Mz has closed
range and kerT ∗ ⊂ kerM∗ in order to derive (4.6). In our current paper with
the finite dimensional setting, it is clear that Φ(·) has closed range. We will
show that the condition kerT ∗ ⊂ kerM∗ is also stronger than (4.5). First, ob-
serve that kerT ∗ ⊂ kerM∗ implies rgeM ⊂ rgeT . Indeed, by [10, Prop. 2.173
(iv)], one has (kerT ∗)⊥ = cl (rgeT ) and (kerM∗)⊥ = cl (rgeM), where A⊥ is
the orthogonal complement of A. Moreover, as rgeT ⊂ Rm and rgeM ⊂ Rp,
one gets cl (rgeT ) = rgeT and cl (rgeM) = rgeM . Thus (kerT ∗)⊥ = rgeT,
and (kerM∗)⊥ = rgeM. In addition, as kerT ∗ ⊂ kerM∗, it yields that
(kerM∗)⊥ ⊂ (kerT ∗)⊥. Consequently, we obtain rgeM ⊂ rgeT. Now by Re-
mark 3 the latter implies (4.5). Thus, (4.5) is weaker than kerT ∗ ⊂ kerM∗.

With the preparations in the above lemmas, we are now able to compute
the coderivative of the constraint map H̃(·) of (4.1).

Lemma 3 Suppose that the regularity condition (4.5) is fulfilled. Then one has

D∗H̃(w̄, z̄)(z∗) =
⋃

v∗∈N(z̄,Ω)

{
T ∗[(M∗)−1(z∗ + v∗)]

}
, ∀(w̄, z̄) ∈ gph H̃. (4.11)

Proof Using definition of coderivative and formula (4.3), we have

D∗H̃(w̄, z̄)(z∗) =
{
w̃∗ ∈ Rm | (w̃∗,−z∗) ∈ N((w̄, z̄), gph H̃)}

=
{
w̃∗ ∈ Rm | (w̃∗,−z∗) ∈ N((w̄, z̄), gphH ∩ (Rm ×Ω)

)
}.

Since the condition (4.5) is fulfilled, we can apply formula (4.6) in Lemma 2
to get

D∗H̃(w̄, z̄)(z∗) =
{
w̃∗ ∈ Rm | (w̃∗,−z∗) ∈ N((w̄, z̄), gphH) + {0} ×N(z̄, Ω)

}
=

⋃
v∗∈N(z̄,Ω)

{
w̃∗ ∈ Rm | (w̃∗,−z∗ − v∗) ∈ N((w̄, z̄), gphH)

}
.

Moreover, from (4.4), w̃∗ ∈ D∗H̃(w̄, z̄)(z∗) if and only if there exist v∗ ∈
N(z̄, Ω) and x∗ ∈ X∗ such that (w̃∗,−z∗ − v∗) = (−T ∗x∗,M∗x∗). Conse-

quently, x∗ ∈ (M∗)−1(−z∗− v∗) and w̃∗ = −T ∗x∗. So, w̃∗ ∈ D∗H̃(w̄, z̄)(z∗) if
and only if w̃∗ ∈ T ∗[(M∗)−1(z∗ + v∗)] for some z∗ ∈ N(z̄, Ω). In other words,
the equality (4.11) has been proved. 2

The regular subdifferential of the function h(·) can be estimated as follows.

Theorem 4 Let the optimal value function h(·) in (4.2) be finite at w̄ and

z̄ ∈ S̃(w̄). Suppose that the regularity condition (4.5) is satisfied. If f is lower
semicontinuous and lower regular at (w̄, z̄), Ω is closed, and the qualification
condition

∂∞f(w̄, z̄) ∩ [−N((w̄, z̄), gphH ∩ (Rm ×Ω))] = {(0Rm , 0Rp)} (4.12)
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is satisfied, then

∂̂h(w̄) ⊂
⋃

(w∗,z∗)∈∂̂f(w̄,z̄)

⋃
v∗∈N(z̄,Ω)

[
w∗ + T ∗

(
(M∗)−1(z∗ + v∗)

)]
. (4.13)

Proof We will apply Theorem 1 for the case where w, z, f(w, z), H̃(w) and
h(w) play the roles of x, y, ϕ(x, y), G(x) and µ(x), respectively. By (4.3), the

constraint map H̃(·) is closed if Ω is closed. Under the assumptions, applying
Theorem 1 yields

∂̂h(w̄) ⊂
⋃

(w∗,z∗)∈∂̂f(w̄,z̄)

{
w∗ +D∗H̃(w̄, z̄)(z∗)

}
. (4.14)

Combining (4.14) with (4.11), we obtain (4.13). The proof is completed. 2

The next theorem equips us an formula for estimating the limiting subdif-
ferential of the optimal value function h(·).

Theorem 5 Let the optimal value function h(·) in (4.2) be finite at w̄ ∈ dom S̃

and z̄ ∈ S̃(w̄). Assume that the condition (4.5) is satisfied. If, in addition to

the assumptions of Theorem 4, the map S̃(·) is h-inner semicontinuous at
(w̄, z̄), then

∂h(w̄) ⊂
⋃

(w∗,z∗)∈∂̂f(w̄,z̄)

⋃
v∗∈N(z̄,Ω)

[
w∗ + T ∗

(
(M∗)−1(z∗ + v∗)

)]
. (4.15)

Proof We will follow the scheme in the proof of Theorem 4. Under the as-
sumptions made, applying Theorem 2 with w, z, f(w, z), H(w)∩Ω, h(w), and

S̃(w) respectively playing the roles of x, y, ϕ(x, y), G(x), µ(x), and M(x), we
obtain

∂h(w̄) ⊂
⋃

(w∗,z∗)∈∂̂f(w̄,z̄)

{
w∗ +D∗H̃(w̄, z̄)(z∗)

}
. (4.16)

Combining (4.16) with (4.11) implies (4.15), which completes the proof. 2

Remark 6 If f is locally Lipschitzian around (w̄, z̄), then ∂∞f(w̄, z̄)={(0, 0)}.
In addition, N((w̄, z̄), gphH∩(Rm×Ω)) always contains the origin due to the
convexity of gphH ∩ (Rm×Ω). It follows immediately that (4.12) is satisfied.

We end this subsection by a result for the case when assuming further that
the objective function f of the problem (4.1) is convex. With this additional
assumption, the optimal value function h(·) is convex. Thus, its subdifferential
appearing in the next theorem is understood in the sense of convex analysis.
The most difference from Theorems 4 and 5 is that herein we have exact
formulas for computing subdifferentials of the optimal value function h(·),
instead of its upper estimates only.
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Theorem 6 Suppose that the objective function f is convex. Then so is the
optimal value function h(·) in (4.2). Let the optimal value function h(·) be

finite at a point w̄ and z̄ ∈ S̃(w̄). Suppose, in addition, that the regularity
condition (4.5) and the qualification condition

ri (dom f) ∩ [gphH ∩ (Rm × riΩ)] 6= ∅ (4.17)

are satisfied. Then,

∂h(w̄) =
⋃

(w∗,z∗)∈∂f(w̄,z̄)

⋃
v∗∈N(z̄,Ω)

[
w∗ + T ∗

(
(M∗)−1(z∗ + v∗)

)]
. (4.18)

Proof We will apply Theorem 3 to the case where w, z, f(w, z), H̃(w) and h(w)
play, respectively, the roles of x, y, ϕ(x, y), G(x) and µ(x). The fact that h(·)
is a convex function is obtained directly from the convexity of f and H̃(·) and
the first assertion of Theorem 3. By (4.3) and the regularity condition (4.5),

we have ri gph H̃ = gphH∩(Rm×riΩ). So if the qualification condition (4.17)
is satisfied, then (3.9) holds, and hence, we have

∂h(w̄) =
⋃

(w∗,z∗)∈∂f(w̄,z̄)

{
w∗ +D∗H̃(w̄, z̄)(z∗)

}
. (4.19)

Thus, the formula (4.18) follows from (4.19) and (4.11). This completes the
proof. 2

5 Differential Stability of Parametric Discrete Optimal Control
Problems

In the notation of Subsection 2.1, put Z = X × U and K = C × X̃ × Ω
and consider two linear operators M : Z → X̃ and T : W → X̃ defined
respectively by

Mz=


−A0 I 0 0 . . . 0 0−B0 0 0 . . . 0
0 −A1 I 0 . . . 0 0 0 −B1 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 . . .−AN−1 I 0 0 0 . . .−BN−1





x0

x1

...
xN
u0

u1

...
uN−1


and

Tw =


T0w0

T1w1

...
TN−1wN−1

 .
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Consider also functions h̃k : W × Z → R given by h̃k(w, z) = hk(wk, xk, uk)
with k = 0, 1, ..., N − 1, and function h̃N : W ×Z → R defined by h̃N (w, z) =
hN (xN ). Then the objective function f(·) in (2.5), the constraint map G(·)
in (2.6), and the optimal value function V (·) in (2.7) of problem (2.1)–(2.4)
can be expressed as

f(w, z) =

N∑
k=0

h̃k(w, z), (w, z) ∈W × Z, (5.1)

G(w) =
{
z = (x, u) ∈ Z |Mz = Tw

}
, w ∈W, (5.2)

and

V (w) = inf
z∈G(w)∩K

f(w, z), w ∈W. (5.3)

Due to (5.3), the optimal value function V (·) of the problem (2.1)–(2.4)
has the form of (4.2) (with the map G(w) in (5.2) playing the role of H(w) and
the set K the role of Ω). Based on theoretical tools built for the parametric
optimization problem with linear–convex constraint map (4.1) in the previous
section, we are now ready to give formulas for estimating/computing subdiffer-
entials of the optimal value function V (·). We will first investigate the regular,
limiting subdifferentials of V (·) in the nonconvex case where V (·) is not nec-
cessarily convex. Then, we will present formulas for estimating/computing the
subdifferential in the sense of convex analysis of V (·) when it is a convex
function, by which this is named the convex case.

Note that for every x̃∗ = (x̃∗1, x̃
∗
2, ..., x̃

∗
n) ∈ X̃, one has

M∗x̃∗ =



−A∗0 0 0 . . . 0
I −A∗1 0 . . . 0
0 I . . . 0
...

...
...

...
...

0 0 0 . . . −A∗N−1

0 0 0 . . . I
−B∗0 0 0 . . . 0
0 −B∗1 0 . . . 0
...

...
...

...
...

0 0 0 . . . −B∗N−1




x̃∗1
x̃∗2
...
x̃∗N

 ∈ Z (5.4)

and

T ∗x̃∗ =
(
T ∗0 x̃

∗
1, T

∗
1 x̃
∗
2, · · · , T ∗N−1x̃

∗
N

)
∈W (5.5)

with M∗, T ∗, A∗i , and B∗i being the adjoint operators of T , M , Ai, and Bi,
respectively.
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5.1 Nonconvex Case

The next theorem provides us an upper estimate for the regular subdifferential
of V (·). It is worthy to note that the Fréchet differentiability of the functions
hk, k = 0, 1, ..., N is not required herein.

Theorem 7 Let the optimal value function V (·) of the problem (2.1)–(2.4) be
finite at a point w̄ and let z̄ = (x̄, ū) ∈ S(w̄) with w̄ = (w̄0, w̄1, . . . , w̄N−1),
x̄ = (x̄0, x̄1, . . . , x̄N ) and ū = (ū0, ū1, . . . , ūN−1). Let further the functions
hk, k = 0, 1, . . . , N − 1 and hN be lower semicontinuous and lower regular
at (w̄k, x̄k, ūk) and x̄N , respectively. Suppose that the sets C and Ωi, i =
0, 1, . . . , N − 1, are closed and the assumptions

M(riK) ∩ rgeT 6= ∅ (A1)

and
v∗k ∈ ∂∞h̃k(w̄, z̄), k = 0, 1, .., N

ṽ∗ ∈ N((w̄, z̄), gphG ∩ (W ×K))

v∗0 + v∗1 + ...+ v∗N + ṽ∗ = 0

=⇒ v∗0 = v∗1 = ... = v∗N = ṽ∗ = 0

(A2)
are fulfilled. If w∗ = (w∗0 , w

∗
1 , . . . , w

∗
N−1) ∈ W is a regular subgradient of the

optimal value function V (·) at w̄, it is necessary that there exist x∗0 ∈ N(x̄0, C),

x̃∗ = (x̃∗1, x̃
∗
2, ..., x̃

∗
N ) ∈ X̃ and u∗ = (u∗0, u

∗
1, ..., u

∗
N−1) ∈ N(ū, Ω) such that

x̃∗N ∈ ∂̂hN (x̄N )

x̃∗k ∈ ∂̂xkhk(w̄k, x̄k, ūk) +A∗kx̃
∗
k+1, k = 1, 2, ..., N − 1

x∗0 ∈ −∂̂x0
h0(w̄0, x̄0, ū0)−A∗0x̃∗1

u∗k ∈ −∂̂ukhk(w̄k, x̄k, ūk)−B∗kx̃∗k+1, k = 0, 1, ..., N − 1

w∗k ∈ ∂̂wkhk(w̄k, x̄k, ūk) + T ∗k x̃
∗
k+1, k = 0, 1, ..., N − 1,

(5.6)

with ∂̂wkhk(w̄k, x̄k, ūk), ∂̂xkhk(w̄k, x̄k, ūk), ∂̂ukhk(w̄k, x̄k, ūk) being the regular
subdifferentials of hk(., x̄k, ūk) at w̄k, hk(w̄k, ., ūk) at x̄k, and hk(w̄k, x̄k, .) at
ūk, respectively.

Proof First, since the functions hk, k = 0, 1, . . . , N are lower semicontinuous
at (w̄k, x̄k, ūk), so are the functions h̃k(·), k = 0, 1, . . . , N at (w̄, z̄). This
implies that the objective function f(·) in (5.1) is lower semicontinuous at
(w̄, z̄). Next, h̃k(·), k = 0, 1, . . . , N are lower regular at (w̄, z̄) because of the
lower regularity of hk, k = 0, 1, . . . N and of [29, Prop. 4.36 and 6.17 (e)];
hence f(·) is lower regular at (w̄, z̄) due to [22, Cor. 2.21]. Furthermore, the
closedness of K follows from the closedness of Ωi, i = 0, 1, . . . , N − 1, and
C, while the condition (4.5) is satisfied due to the assumption (A1). Thus,
it remains to show the validity of the qualification condition (4.12) from the
assumption (A2).

Let v∗k ∈ ∂∞h̃k(w̄, z̄), k = 0, 1, .., N, be such that v∗0 + ... + v∗N = 0.
Then by considering ṽ∗ := 0 ∈ N((w̄, z̄), gphG ∩ (W × K)), we have that
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v∗0 + ... + v∗N + ṽ∗ = 0. Thus, it follows from the assumption (A2) that v∗0 =
... = v∗N = 0. Therefore, we can apply the sum rules in [22, Cor. 2.21] for the
function f(·) to get

∂̂f(w̄, z̄) = ∂̂

(
N∑
k=0

h̃k(w̄, z̄)

)
=

N∑
k=0

∂̂h̃k(w̄, z̄) (5.7)

and

∂∞f(w̄, z̄) = ∂∞

(
N∑
k=0

h̃k(w̄, z̄)

)
=

N∑
k=0

∂∞h̃k(w̄, z̄). (5.8)

Due to (5.8), the assumption (A2) becomes

∂∞f(w̄, z̄) ∩ [−N((w̄, z̄), gphG ∩ (W ×K))] = {(0W , 0Z)},

which means that condition (4.12) is satisfied.

Applying Theorem 4, we get

∂̂V (w̄) ⊂
⋃

(w∗,z∗)∈∂̂f(w̄,z̄)

⋃
v∗∈N(z̄,K)

[
w∗ + T ∗

(
(M∗)−1(z∗ + v∗)

)]
. (5.9)

Let w∗ ∈ ∂̂V (w̄). It follows from (5.9) that there exist (w∗1 , z
∗
1) ∈ ∂̂f(w̄, z̄) and

v∗1 ∈ N(z̄, K) satisfying w∗ ∈ w∗1 + T ∗((M∗)−1(z∗1 + v∗1)). The latter means

that there is x̃∗ = (x̃∗1, x̃
∗
2, ..., x̃

∗
N ) ∈ X̃∗ with

M∗x̃∗ = z∗1 + v∗1 (5.10)

and

w∗ ∈ w∗1 + T ∗x̃∗. (5.11)

Let us explore the inclusion (w∗1 , z
∗
1) ∈ ∂̂f(w̄, z̄). Using the product rule (2.10)

for the functions h̃k(·) at (w̄, z̄), we obtain

N∑
k=0

∂̂h̃k(w̄, z̄) ⊂
N∑
k=0

(
∂̂wh̃k(w̄, z̄)× ∂̂zh̃k(w̄, z̄)

)
=

N∑
k=0

∂̂wh̃k(w̄, z̄)×
N∑
k=0

∂̂zh̃k(w̄, z̄). (5.12)
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By the relationship between h̃k(·) and hk and by using again the product
rule (2.10) for the regular subdifferentials of functions hk at (w̄,x̄k, ūk), we get

N∑
k=0

∂̂wh̃k(w̄, z̄) = ∂̂wh̃0(w̄, z̄) + ∂̂wh̃1(w̄, z̄) + · · ·+ ∂̂wh̃N−1(w̄, z̄)

⊂
[
∂̂w0

h̃0(w̄, z̄)× ∂̂w1
h̃0(w̄, z̄)× · · · × ∂̂wN−1

h̃0(w̄, z̄)
]

+
[
∂̂w0

h̃1(w̄, z̄)× ∂̂w1
h̃1(w̄, z̄)× · · · × ∂̂wN−1

h̃1(w̄, z̄)
]

+ · · ·

+
[
∂̂w0

h̃N−1(w̄, z̄)× ∂̂w1
h̃N−1(w̄, z̄)× · · · × ∂̂wN−1

h̃N−1(w̄, z̄)
]

=
[
∂̂w0

h0(w̄0, x̄0, ū0)× {0} × · · · × {0}
]

+
[
{0} × ∂̂w1

h1(w̄1, x̄1, ū1)× {0} × · · · × {0}
]

+ · · ·

+
[
{0} × · · · × {0} × ∂̂wN−1

hN−1(w̄N−1, x̄N−1, ūN−1)
]
.

Consequently,

N∑
k=0

∂̂wh̃k(w̄, z̄)⊂∂̂w0
h0(w̄0, x̄0, ū0)×...×∂̂wN−1

hN−1(w̄N−1, x̄N−1, ūN−1). (5.13)

Similarly,

N∑
k=0

∂̂zh̃k(w̄, z̄) ⊂
N∑
k=0

∂̂xh̃k(w̄, z̄)×
N∑
k=0

∂̂uh̃k(w̄, z̄)

⊂ ∂̂x0
h0(w̄0, x̄0, ū0)×...×∂̂xN−1

hN−1(w̄N−1, x̄N−1, ūN−1) (5.14)

× ∂̂hN (̄xN)× ∂̂u0
h0(w̄0, x̄0, ū0)× ...

× ∂̂uN−1
hN−1(w̄N−1, x̄N−1, ūN−1).

Therefore, it follows from (5.7), (5.12), (5.13), and (5.14) that

∂̂f(w̄, z̄) ⊂ ∂̂w0
h0(w̄0, x̄0, ū0)× ...× ∂̂wN−1

hN−1(w̄N−1, x̄N−1, ūN−1)

×∂̂x0
h0(w̄0, x̄0, ū0)×...×∂̂xN−1

hN−1(w̄N−1, x̄N−1, ūN−1)×∂̂hN (̄xN)

×∂̂u0
h0(w̄0, x̄0, ū0)× ...× ∂̂uN−1

hN−1(w̄N−1, x̄N−1, ūN−1).

Thus, the inclusion (w∗1 , z
∗
1) ∈ ∂̂f(w̄, z̄) yields

w∗1 ∈ ∂̂w0
h0(w̄0, x̄0, ū0)× ...× ∂̂wN−1

hN−1(w̄N−1, x̄N−1, ūN−1) (5.15)
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and

z∗1 ∈ ∂̂x0
h0(w̄0, x̄0, ū0)×...×∂̂xN−1

hN−1(w̄N−1, x̄N−1, ūN−1)×∂̂hN (̄xN) (5.16)

× ∂̂u0
h0(w̄0, x̄0, ū0)× ...× ∂̂uN−1

hN−1(w̄N−1, x̄N−1, ūN−1).

Now we compute the normal cone N(z̄, K) by using the product formula

for normal cones. Because K = C × X̃ × Ω and Ω = Ω0 × Ω1 · · · × ΩN−1,
we have

N(z̄, K) = N(x̄0, C)× {0X̃∗} ×N(ū0, Ω0)× ...×N(ūN−1, ΩN−1). (5.17)

Because v∗1 ∈ N(z̄, K), it follows from (5.17) that there exist x∗0 ∈ N(x̄0, C)
and u∗ = (u∗0, u

∗
1, . . . , u

∗
N−1) with u∗k ∈ N(ūk, Ωk) for all k = 0, 1, . . . , N − 1

such that v∗1 = (x∗0, 0, u
∗). Therefore, using (5.4), (5.10) and (5.16), we get

−A∗0 0 0 . . . 0
I −A∗1 0 . . . 0
0 I 0 . . . 0
...

...
...

...
...

0 0 0 . . . −A∗N−1

0 0 0 . . . I




x̃∗1
x̃∗2
...
x̃∗N


∈
(
∂̂x0

h0(w̄0, x̄0, ū0) + x∗0
)
× ∂̂x1

h1(w̄1, x̄1, ū1)× ...×

∂̂xN−1
hN−1(w̄N−1, x̄N−1, ūN−1)× ∂̂hN (x̄N )

and
−B∗0 0 0 . . . 0
0 −B∗1 0 . . . 0
...

...
...

...
...

0 0 0 . . . −B∗N−1



x̃∗1
x̃∗2
...
x̃∗N


∈
(
∂̂u0

h0(w̄0, x̄0, ū0) + u∗0
)
× ...×

(
∂̂uN−1

hN−1(w̄N−1, x̄N−1, ūN−1) + u∗N−1

)
.

This means that

−x∗0 ∈ A∗0x̃∗1 + ∂̂x0
h0(w̄0, x̄0, ū0),

x̃∗1 ∈ A∗1x̃∗2 + ∂̂x1
h1(w̄1, x̄1, ū1),

...

x̃∗N−1 ∈ A∗N−1x̃
∗
N + ∂̂xN−1

hN−1(w̄N−1, x̄N−1, ūN−1),

x̃∗N ∈ ∂̂hN (x̄N ),

(5.18)

and

−B∗kx̃∗k+1 ∈ ∂̂ukhk(w̄k, x̄k, ūk) + u∗k, k = 0, 1, ..., N − 1. (5.19)

Similarly, the last formula of (5.6) can be derived from (5.5), (5.11), and (5.15)

w∗k ∈ ∂̂wkhk(w̄k, x̄k, ūk) + T ∗k x̃
∗
k+1, k = 0, 1, ..., N − 1. (5.20)

Finally, we obtain (5.6) from (5.18), (5.19), and (5.20). The proof is completed.
2
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The following theorem allows us to estimate the limiting subdifferential
of V (·).

Theorem 8 Under the assumptions of Theorem 7, suppose further that the
solution map S(·) is V - inner semicontinuous at (w̄, z̄). If w∗ ∈ W ∗ is a
limiting subgradient of the optimal value function V (·) of problem (2.1)–(2.4)

at w̄, then there exist x∗0 ∈ N(x̄0, C), x̃∗ = (x̃∗1, x̃
∗
2, ..., x̃

∗
N ) ∈ X̃ and u∗ =

(u∗0, u
∗
1, ..., u

∗
N−1) ∈ N(ū, Ω) such that (5.6) is satisfied.

Proof We will follow the scheme in the proof of Theorem 7. Under the addi-
tional assumption on the solution map S(·), we are able to apply Theorem 5,
instead of Theorem 4, to obtain

∂V (w̄) ⊂
⋃

(w∗,z∗)∈∂̂f(w̄,z̄)

⋃
v∗∈N(z̄,K)

[
w∗ + T ∗

(
(M∗)−1(z∗ + v∗)

)]
. (5.21)

We see that the right hand side of (5.21) is also the one in (5.9). Therefore,
by the same manner as in the proof of Theorem 7, we get (5.6). 2

Remark 7 In [15], Kien et al. obtained the upper estimate (5.6) for the regular
subdifferential of V (·) under the following assumptions:

(i) the functions hk, k = 0, ..., N − 1 and hN are Fréchet differentiable at
(w̄k,x̄k,ūk) and x̄N , respectively;

(ii) Tk, k = 0, 1, ..., N − 1 are surjective;
(iii) Ωk are normally regular at ūk for all k = 0, 1, ..., N − 1.
In this paper, since Ωk, k = 0, ..., N − 1 are convex, it follows that they

are normally regular. Besides, if Tk, k = 0, 1, ..., N − 1 are surjective, then T :
W → X̃ is surjective too and the latter implies condition (A1) by Remark 3.
Meanwhile, the functions hk, k = 0, ..., N − 1 and hN in Theorem 7 can be
nondifferentiable, provided that they are lower semicontinuous, lower regular
and satisfy the qualification condition (A2). Therefore, our result in Theorem 7
is quite different from the one in [15, Thm 1.1].

Remark 8 In the paper [11], Chieu and Yao studied the first-order behavior
of the optimal value function of the parametric discrete optimal control prob-
lem (2.1)–(2.4). More precisely, in our notation the authors derived the upper
estimate (5.6) for the regular subdifferential of V (·) under the conditions (i),
(iii) as in Remark 7 and the validity of the condition

[−N̂(z̄, K)] ∩M∗(kerT ∗) = {0}. (5.22)

In addition, the authors showed that the condition (ii) in Remark 7 implies
condition (5.22). Meanwhile, in Remark 4, we have asserted that (5.22) is
stronger than our assumption (A1).

Remark 9 An estimate for the limiting subdifferential of V (·) was shown in [37,
Thm. 2.1]. Namely, the authors employed the assumptions that: the functions
hk, k = 0, 1, ..., N are strictly differentiable (hence lower regular), Ωk are
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normally regular with intΩk 6= ∅, for k = 0, 1, ..., N − 1 and an assumption
which implies (5.22). Here, in our setting, Ωk, k = 0, 1, ..., N − 1 are convex.
It means that Ωk are normally regular. However, we do not need the assump-
tion intΩk 6= ∅. In addition, if hk, k = 0, 1, ..., N are strictly differentiable,
then h̃k(·), k = 0, 1, ..., N are also strictly differentiable. Note that every map-
ping strictly differentiable is locally Lipschitzian around the point in question
(see [20, p. 19]). Consequently, h̃k(·), k = 0, 1, ..., N are locally Lipschitzian
around (w̄, z̄) and our qualification condition (A2) is satisfied. Meanwhile, as
mentioned in Remark 8, our assumption (A1) is weaker than (5.22).

Remark 10 To obtain sufficient conditions for w∗ ∈ ∂̂V (w̄) (resp., w∗ ∈ ∂V (w̄)),
the authors in [15] and [11] (resp., in [37]) assumed furthermore that the so-
lution map S(·) has a local upper Lipschitzian selection at (w̄, z̄). In general,
this condition is quite difficult to check. In the forthcoming section, we will
discuss in detail another type of sufficient condition without using any special
requirement on the solution map.

5.2 Convex Case

When the data of the problem (2.1)–(2.4) are all convex, there are more to
tell about properties of the optimal value function V (·).

Theorem 9 Let hk, k = 0, 1, . . . , N be convex functions and C, Ωi, i =
0, 1, . . . , N − 1 be nonempty convex sets. Then the optimal value function
V : W → R of the problem (2.1)–(2.4) is convex and possesses the follow-
ing properties.

(i) V (·) ≡ −∞ or V (·) takes finite value on the whole space W .
(ii) V (·) is locally Lipschitzian on W .
(iii) ∂∞V (w) = {0} for every w ∈W .
(iv) ∂V (w) is a nonempty compact set for every w ∈W .
(v ) If V (·) is finite on the whole space W , then V (·) is Gâteaux differen-

tiable at some w ∈W if and only if ∂V (w) is a singleton.

Proof The fact that V (·) is convex is due to the assumptions on the convexity
of input data, the representation (5.3), and the first assertion of Theorem 6.

(i) We will first show that domV = W . Indeed, since hk, k = 0, 1, . . . , N
are finite-valued functions, it follows that f(·) is finite. Moreover, for each
w ∈W ,

V (w) = inf
(x,u)∈G(w)∩(C×X̃×Ω)

f(w, x, u) ≤ f(w̄, x̄, ū) < +∞

with (w̄, x̄, ū) being in the nonempty set W × (C × X̃)×Ω. So, domV = W.
Besides, according to [39, Prop. 2.1.4], if there exists w̄ ∈W with V (w̄) = −∞,
then the convex function V (·) will take the value −∞ on domV . Therefore,
we obtain (i).
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(ii) Since V (·) is a convex function defined on the finite-dimensional space
W , it follows from Corollary 2.27 in [23] that V (·) is locally Lipschitzian on
int (domV ). Combining this with the fact that domV = W , we get (ii).

(iii) This property is a consequence of (ii).
(iv) This property follows directly from Proposition 2.47 in [23] and the

fact that V (·) is a convex function on the finite-dimensional space W .
(v) This property is obtained by using Corollary 2.4.10 in [39]. 2

The main results on differential stability of the problem (2.1)–(2.4) in
the convex case are presented in the following theorem. Especially, when the
Fréchet differentiability of the functions hk, k = 0, 1, . . . , N, describing the
objective of the problem (2.1)–(2.4) is available, the theorem provide us a
procedure for finding elements in the subdifferential of V (·) at the reference
paramater.

Theorem 10 Suppose that hk, k = 0, 1, . . . , N are convex functions and C,
Ωi, i = 0, 1, . . . , N−1 are nonempty convex sets. Let the optimal value function
V (·) of the problem (2.1)–(2.4) be finite at w̄ and let z̄ = (x̄, ū) ∈ S(w̄) with
w̄ = (w̄0, w̄1, . . . , w̄N−1), x̄ = (x̄0, x̄1, . . . , x̄N ) and ū = (ū0, ū1, . . . , ūN−1).
Assume further that the condition (A1) holds. If w∗ = (w∗0 , w

∗
1 , . . . , w

∗
N−1)∈W

is a subgradient (in the sense of convex analysis) of the optimal value function

V (·) at w̄, then there exist x∗0 ∈ N(x̄0, C), x̃∗ = (x̃∗1, x̃
∗
2, ..., x̃

∗
N ) ∈ X̃ and

u∗ = (u∗0, u
∗
1, ..., u

∗
N−1) ∈ N(ū, Ω) such that

x̃∗N ∈ ∂hN (x̄N ),

x̃∗k ∈ ∂xkhk(w̄k, x̄k, ūk) +A∗kx̃
∗
k+1, k = 1, 2, ..., N − 1,

x∗0 ∈ −∂x0
h0(w̄0, x̄0, ū0)−A∗0x̃∗1,

u∗k ∈ −∂ukhk(w̄k, x̄k, ūk)−B∗kx̃∗k+1, k = 0, 1, ..., N − 1,

w∗k ∈ ∂wkhk(w̄k, x̄k, ūk) + T ∗k x̃
∗
k+1, k = 0, 1, ..., N − 1,

(5.23)

where ∂wkhk(w̄k, x̄k, ūk), ∂ukhk(w̄k, x̄k, ūk), ∂xkhk(w̄k, x̄k, ūk) are the subdif-
ferentials (in the sense of convex analysis) of hk(., x̄k, ūk) at w̄k, hk(w̄k, ., ūk)
at x̄k, and hk(w̄k, x̄k, .) at ūk respectively.

In particular, if for every k = 0, 1, . . . , N − 1, hk are Fréchet differentiable
at (w̄k, x̄k, ūk) and hN is Fréchet differentiable at x̄N , then w∗ ∈ W ∗ is a
subgradient (in the sense of convex analysis) of V (·) at w̄ if and only if there

exist x∗0 ∈ N(x̄0, C), x̃∗ = (x̃∗1, x̃
∗
2, ..., x̃

∗
N ) ∈ X̃ and u∗ = (u∗0, u

∗
1, ..., u

∗
N−1) ∈

N(ū, Ω) such that
x̃∗N = ∇hN (x̄N ),
x̃∗k = ∇xkhk(w̄k, x̄k, ūk) +A∗kx̃

∗
k+1, k = 1, 2, . . . , N − 1,

x∗0 = −∇x0
h0(w̄0, x̄0, ū0)−A∗0x̃∗1,

u∗k = −∇ukhk(w̄k, x̄k, ūk)−B∗kx̃∗k+1, k = 0, 1, . . . , N − 1,
w∗k = ∇wkhk(w̄k, x̄k, ūk) + T ∗k x̃

∗
k+1, k = 0, 1, . . . , N − 1,

(5.24)

where ∇wkhk(w̄k, x̄k, ūk), ∇xkhk(w̄k, x̄k, ūk), ∇ukhk(w̄k, x̄k, ūk) stand for the
Fréchet derivatives of the functions hk(., x̄k, ūk), hk(w̄k, ., ūk), hk(w̄k, x̄k, .) at
w̄k, x̄k, and ūk, respectively.
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Proof Since hk are convex functions taking finite values, so are h̃k(·), k =

0, 1, . . . , N . It follows that f(·) is convex with dom f =
N⋂
k=0

dom h̃k = W × Z

(see, e.g., [39, Thm. 2.1.3]). Hence, ri (dom f) = W × Z. Besides, the condi-
tion (A1) guarantees gphG∩ (W × riK) 6= ∅ (see the proof of Lemma 2). This
implies that

ri (dom f) ∩ [gphG ∩ (W × riK)] = [W × Z] ∩ [gphG ∩ (W × riK)]

= gphG ∩ (W × riK) 6= ∅,

which shows the validity of (4.17). On account of Theorem 6, one has

∂V (w̄) =
⋃

(w∗,z∗)∈∂f(w̄,z̄)

⋃
v∗∈N(z̄,K)

[
w∗ + T ∗

(
(M∗)−1(z∗ + v∗)

)]
. (5.25)

Let w∗ = (w∗0 , w
∗
1 , . . . , w

∗
N−1) belong to ∂V (w̄). Due to (5.25), there exist

(w∗1 , z
∗
1) ∈ ∂f(w̄, z̄) and v∗1 ∈ N(z̄, K) with w∗ ∈ w∗1 + T ∗((M∗)−1)(z∗1 + v∗1).

The last inclusion means that there exists x̃∗ = (x̃∗1, x̃
∗
2, ..., x̃

∗
N ) ∈ X̃∗ satisfying

M∗x̃∗ = z∗1 + v∗1 and w̃∗ ∈ w∗1 + T ∗x̃∗. (5.26)

Similarly as in the proof of Theorem 7, it remains to expand the two inclusions
(w∗1 , z

∗
1) ∈ ∂f(w̄, z̄) and v∗1 ∈ N(z̄, K). As shown in the proof of Theorem 7,

the latter means there exist x∗0 ∈ N(x̄0, C) and u∗ = (u∗0, u
∗
1, . . . , u

∗
N−1) with

u∗k ∈ N(ūk, Ωk) for all k = 0, 1, . . . , N − 1 such that v∗1 = (x∗0, 0, u
∗). The

former will be explored in the same way as follows.

Since h̃k(·), k = 0, 1, . . . , N are convex functions taking finite values, ap-
plying the Moreau-Rockafellar theorem [23, Cor. 2.46], we obtain

∂f(w̄, z̄) = ∂

(
N∑
k=0

h̃k(w̄, z̄)

)
=

N∑
k=0

∂h̃k(w̄, z̄). (5.27)

Besides, using the product rule (2.10) for subdifferentials of convex functions
h̃k(·) at (w̄, z̄), we get

N∑
k=0

∂h̃k(w̄, z̄) ⊂
N∑
k=0

∂wh̃k(w̄, z̄)×
N∑
k=0

∂zh̃k(w̄, z̄) (5.28)

with ∂wh̃k(w̄, z̄), ∂zh̃k(w̄, z̄) being the subdifferentials of h̃k(., z̄) at w̄ and
h̃k(w̄, .) at z̄, respectively. Now, using the relationship between h̃k(·) and hk
and applying again the product rule (2.10) for convex functions hk at (w̄, x̄, ū),
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we have

N∑
k=0

∂wh̃k(w̄, z̄) = ∂wh̃0(w̄, z̄) + ∂wh̃1(w̄, z̄) + · · ·+ ∂wh̃N−1(w̄, z̄)

⊂
[
∂w0

h̃0(w̄, z̄)× ∂w1
h̃0(w̄, z̄)× · · · × ∂wN−1

h̃0(w̄, z̄)
]

+
[
∂w0

h̃1(w̄, z̄)× ∂w1
h̃1(w̄, z̄)× · · · × ∂wN−1

h̃1(w̄, z̄)
]

+ · · ·

+
[
∂w0

h̃N−1(w̄, z̄)× ∂w1
h̃N−1(w̄, z̄)× · · · × ∂wN−1

h̃N−1(w̄, z̄)
]

= [∂w0h0(w̄0, x̄0, ū0)× {0} × · · · × {0}]
+ [{0} × ∂w1h1(w̄1, x̄1, ū1)× {0} × · · · × {0}]
+ · · ·
+
[
{0} × · · · × {0} × ∂wN−1

hN−1(w̄N−1, x̄N−1, ūN−1)
]
.

As a result, we get

N∑
k=0

∂wh̃k(w̄, z̄)⊂∂w0
h0(w̄0, x̄0, ū0)×...×∂wN−1

hN−1(w̄N−1, x̄N−1, ūN−1). (5.29)

In a same manner, we have

N∑
k=0

∂zh̃k(w̄, z̄) ⊂
N∑
k=0

∂xh̃k(w̄, z̄)×
N∑
k=0

∂uh̃k(w̄, z̄)

⊂ ∂x0h0(w̄0, x̄0, ū0)× ...× ∂xN−1
hN−1(w̄N−1, x̄N−1, ūN−1)

× ∂hN (̄xN)× ∂u0h0(w̄0, x̄0, ū0)× ... (5.30)

× ∂uN−1
hN−1(w̄N−1, x̄N−1, ūN−1).

So, it follows from (5.27), (5.28), (5.29), and (5.30) that

∂f(w̄, z̄) ⊂ ∂w0
h0(w̄0, x̄0, ū0)× ...× ∂wN−1

hN−1(w̄N−1, x̄N−1, ūN−1)

× ∂x0
h0(w̄0, x̄0, ū0)×...×∂xN−1

hN−1(w̄N−1, x̄N−1, ūN−1)×∂hN (x̄N )

× ∂u0
h0(w̄0, x̄0, ū0)× ...× ∂uN−1

hN−1(w̄N−1, x̄N−1, ūN−1).

Thus, the inclusion (w∗1 , z
∗
1) ∈ ∂f(w̄, z̄) implies

w∗1 ∈ ∂w0
h0(w̄0, x̄0, ū0)× ...× ∂wN−1

hN−1(w̄N−1, x̄N−1, ūN−1)

and

z∗1 ∈ ∂x0
h0(w̄0, x̄0, ū0)×...×∂xN−1

hN−1(w̄N−1, x̄N−1, ūN−1)×∂hN (̄xN)

× ∂u0h0(w̄0, x̄0, ū0)× ...× ∂uN−1
hN−1(w̄N−1, x̄N−1, ūN−1).

Combining the last inclusions with (5.26) yields

M∗x̃∗∈ ∂w0
h0(w̄0, x̄0, ū0)×...×∂wN−1

hN−1(w̄N−1, x̄N−1, ūN−1) + v∗1 , (5.31)
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and

w∗ ∈
[
∂x0h0(w̄0, x̄0, ū0)×...×∂xN−1

hN−1(w̄N−1, x̄N−1, ūN−1)

× ∂hN (x̄N )×∂u0h0(w̄0, x̄0, ū0)×... (5.32)

× ∂uN−1
hN−1(w̄N−1, x̄N−1, ūN−1)

]
+T ∗x̃∗.

By same arguments as the last part of the proof in Theorem 7, we obtain (5.23).
It is well-known that if φ : Rn → R is convex and Fréchet differentiable at

x̄ ∈ int (domφ), then ∂φ(x̄) = {∇φ(x̄)} (see, e.g. [23, Prop. 2.36]). So, as hk,
k = 0, 1, ..., N, are Fréchet differentiable by our assumptions, it follows that
the inclusions in (5.31)–(5.32) become equalities, i.e.,

M∗x̃∗ = ∇w0
h0(w̄0, x̄0, ū0)× ...×∇wN−1

hN−1(w̄N−1, x̄N−1, ūN−1) + v∗1 ,

w∗ =
[
∇x0

h0(w̄0, x̄0, ū0)× ...×∇xN−1
hN−1(w̄N−1, x̄N−1, ūN−1)×∇hN (x̄N )

×∇u0
h0(w̄0, x̄0, ū0)× ...×∇uN−1

hN−1(w̄N−1, x̄N−1, ūN−1)
]

+ T ∗x̃∗.

Therefore, w̃∗ ∈ ∂V (w̄) if and only if we can find x∗0 ∈ N(x̄0, C), x̃∗ ∈ X̃∗ and
u∗ ∈ N(ū, Ω) such that (5.24) is satisfied. The proof is complete. 2

6 Illustrative Examples

This section presents some illustrative examples for the obtained results. The
first one is designed to show how Theorems 7 and 8 work for parametric
optimal control problems with neither convex nor differentiable costs.

Example 1 Let X0 = X1 = X2 := R, U0 = U1 = R, W0 = W1 := R,
C := [−2, 0], Ω0 := [1,+∞), and Ω1 := R. Let A0 : X0 → X1, B0 : U0 → X1,
T0 : W0 → X1, A1 : X1 → X2, B1 : U1 → X2 and T1 : W1 → X2 be linear
operators given by A0x0 = 0, B0u0 = 0, T0w0 = w0, A1x1 = 0, B1u1 = −u1,
and T1w1 = 0, respectively. Furthermore, let h0 : W0 × X0 × U0 → R, h1 :
W1 ×X1 × U1 → R and h2 : X2 → R be functions defined by

h0(w0, x0, u0) = (x0 + u0)3 + (x0 + u0)2,

h1(w1, x1, u1) = |x1 − w1|,
h2(x2) = 0.

Then, for each w = (w0, w1) ∈ R2, the optimal control problem (2.1)–(2.4) is
as follow 

(x0 + u0)3 + (x0 + u0)2 + |x1 − w1| → inf,
x2 = −u1,
x1 = w0,
x0 ∈ [−2, 0],
u0 ∈ [1,+∞),
u1 ∈ R.

(6.1)
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Let w̄ = (w̄0, w̄1) = (0, 0). It is not hard to show that z = (−u0, 0, x2, u0,−x2)
and z = (−2, 0, x2, 1,−x2) for some u0 ∈ [1, 2] and x2 ∈ R belong to S(w̄).

Choose z̄ = (x̄, ū) with x̄ = (x̄0, x̄1, x̄2) = (−1, 0, 0) and ū = (ū0, ū1) =
(1, 0). Then z̄ ∈ S(w̄). We are going to show that the assumptions in Theorem 7
are satisfied. Indeed, it is clear that the functions h0(·), h1(·), and h2(·) are
respectively continuous and lower regular at (w̄0, x̄0, ū0), (w̄1, x̄1, ū1), and x̄2.
Also, the sets C,Ω0, and Ω1 are closed. It remains to verify conditions (A1)
and (A2).

Invoking notations at the beginning of Section 5 and input data of (6.1),
we have K = [−2, 0]×R×R× [1,+∞)×R, the linear operators M : R5 → R2

and T : R2 → R2 are defined by

Mz =

(
0 1 0 0 0
0 0 1 0 1

)
x0

x1

x2

u0

u1

 and Tw =

(
1 0
0 0

)(
w0

w1

)
.

Clearly, x̃ = (0, 0) ∈ rgeT and x̃ = Mẑ with ẑ = (1, 0, 0, 2, 0) ∈ ri K.
So, x̃ ∈ M(riK) ∩ rgeT , which means condition (A1) is satisfied. To ver-
ify (A2), we note that functions h̃0, h̃1, h̃2 : R2 × R5 → R mapping (w, z) =
(w0, w1, x0, x1, x2, u0, u1) to h̃0(w, z) = h0(w0, x0, u0), h̃1(w, z) = h1(w1, x1, u1)
and h̃2(w, z) = h2(x2) are locally Lipschitz around (w̄, z̄). So, for each k =
0, 1, 2, ∂∞h̃k(w̄, z̄) contains only the zero vector. This implies that condi-
tion (A2) is fulfilled as well.

Let w∗ = (w∗0 , w
∗
1) be an arbitrary element of the regular subdifferential

∂̂V (w̄). Then, Theorem 7 tells us that there exist x∗0 ∈ N(x̄0, C), (x̃∗1, x̃
∗
2) ∈ R2,

and (u∗0, u
∗
1) ∈ N(ū, Ω1 ×Ω2) satisfying

x̃∗2 ∈ ∂̂h2(x̄2)

x̃∗1 ∈ ∂̂x1
h1(w̄1, x̄1, ū1) +A∗1x̃

∗
2

x∗0 ∈ −∂̂x0
h0(w̄0, x̄0, ū0)−A∗0x̃∗1

u∗1 ∈ −∂̂u1
h1(w̄1, x̄1, ū1)−B∗1 x̃∗2

u∗0 ∈ −∂̂u0h0(w̄0, x̄0, ū0)−B∗0 x̃∗1
w∗1 ∈ ∂̂w1h1(w̄1, x̄1, ū1) + T ∗1 x̃

∗
2

w∗0 ∈ ∂̂w0
h0(w̄0, x̄0, ū0) + T ∗0 x̃

∗
1.

(6.2)

From the given data, we can obtain A∗0 = 0, B∗0 = 0,T ∗0 = 1,A∗1 = 0,B∗1 = −1,

T ∗1 = 0, ∂̂x0h0(w̄0, x̄0, ū0) = {0}, ∂̂x1h1(w̄1, x̄1, ū1)=[−1, 1], ∂̂h2(x̄2) = {0},
∂̂u0

h0(w̄0, x̄0, ū0) = {0}, ∂̂u1
h1(w̄1, x̄1, ū1) = {0}, ∂̂w0

h0(w̄0, x̄0, ū0) = {0},
∂̂w1

h1(w̄1, x̄1, ū1)=[−1, 1]. Therefore, (6.2) yields x̃∗2 = 0, x̃∗1 ∈ [−1, 1], x∗0 = 0,
u∗1 = 0, u∗0 = 0, w∗1 ∈ [−1, 1] and w∗0 ∈ [−1, 1]. Since N(x̄0, C) = {0} and
N(ū, Ω1 × Ω2) = (−∞, 0] × {0}, inclusions x∗0 ∈ N(x̄0, C) and (u∗0, u

∗
1) ∈

N(ū, Ω1 × Ω2) are valid also. Because w∗ = (w∗0 , w
∗
1) is taken arbitrarily in

∂̂V (w̄), we conclude that

∂̂V (w̄) ⊂ [−1, 1]× [−1, 1].
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Due to the nondifferentiability of the function h1(·) at (w̄1, x̄1, ū1) = (0, 0, 0)
let us notice that results in [15, Thm. 1.1], [11, Thm. 1.1], and [37, Thm. 2.1]

are not applicable to get an upper estimation for ∂̂V (w̄).

Next, to estimate the limiting subdifferential ∂V (w̄) by Theorem 8, we
need to prove that the solution map S(·) of (6.1) is V -inner semicontinuous
at (w̄, z̄). Indeed, by direct computations, we obtain

S(w)=
{

(−u0, w0, x2, u0,−x2), x2 ∈ R, u0∈ [1, 2]
}
∪
{

(−2, w0, x2, 1,−x2), x2∈R
}
,

for every w = (w0, w1) ∈ R2. Let {wn = (wn0 , w
n
1 )}n=1,2,... be an arbitrary

sequence converging to w̄. Then by choosing {zn := (−1, wn0 , 0, 1, 0)}∞n=1, we
get zn ∈ S(wn) for all n = 1, 2, ... and zn → z̄. Thus the solution map S(·)
of (6.1) is inner semicontinuous at (w̄, z̄). Therefore, by Theorem 8, we obtain

∂V (w̄) ⊂ [−1, 1]× [−1, 1].

We now give an example to illustrate the results of Theorems 9 and 10.

Example 2 Let X0 =X1 =X2 :=R, U0 =U1 :=R, W0 =W1 :=R, C := (−∞, 1],
Ω0 := [1,+∞), and Ω1 := R. Besides, let A0 : X0 → X1, B0 : U0 → X1,
T0 : W0 → X1, A1 : X1 → X2, B1 : U1 → X2 and T1 : W1 → X2 be
linear operators defined by A0x0 = 0, B0u0 = 0, T0w0 = −w0, A1x1 = 0,
B1u1 = −u1, and T1w1 = 0. Furthermore, let h0 : W0 × X0 × U0 → R,
h1 : W1 ×X1 × U1 → R, and h2 : X2 → R be given by

h0(w0, x0, u0) = (x0 + u0)2 +
1

2
w2

0,

h1(w1, x1, u1) = |w1|+ |x1|,
h2(x2) = 0.

Hence, the problem (2.1)–(2.4) depending on w = (w0, w1) ∈ R2 becomes

(x0 + u0)2 +
1

2
w2

0 + |w1|+ |x1| → inf,

x2 = −u1,
x1 = −w0,
x0 ∈ (−∞, 1],
u0 ∈ [1,+∞),
u1 ∈ R.

(6.3)

Since the functions h0(·), h1(·), and h2(·) are all convex, the optimal value
function w 7→ V (w) of (6.3) is convex (see, Theorem 9). Thus, Theorem 10 can
be used to estimate the subdifferential in the sense of convex analysis of V (·),
provided that condition (A1) is satisfied. To show the latter, we use notations
at the beginning of Section 5 and compute from input data of (6.3) to get that
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K = [−∞, 1] × R × R × [1,+∞) × R and the linear operators M : R5 → R2

and T : R2 → R2 are

Mz =

(
0 1 0 0 0
0 0 1 0 1

)
x0

x1

x2

u0

u1

 and Tw =

(
−1 0

0 0

)(
w0

w1

)
.

Take x̃ = (0, 0) ∈ rgeT and ẑ = (0, 0, 0, 2, 0) ∈ ri K. Then x̃ = Mẑ and
x̃ ∈M(riK) ∩ rgeT . So, condition (A1) holds.

Let w̄ = (w̄0, w̄1) = (−1, 1) and z̄ = (x̄, ū) with x̄ = (x̄0, x̄1, x̄2) = (−1, 1, 0)
and ū = (ū0, ū1) = (1, 0). It is easy to check that z̄ ∈ S(w̄) and the functions
h0(·), h1(·), and h2(·) are Fréchet differentiable respectively at (w̄0, x̄0, ū0),
(w̄1, x̄1, ū1), and x̄2. So, if w∗ = (w∗0 , w

∗
1) ∈ ∂V (w̄), by Theorem 10 there exist

x∗0 ∈ N(x̄0, C), (x̃∗1, x̃
∗
2) ∈ R2, and (u∗0, u

∗
1) ∈ N(ū, Ω1 ×Ω2) satisfying



x̃∗2 = ∇h2(x̄2)

x̃∗1 = ∇x1h1(w̄1, x̄1, ū1) +A∗1x̃
∗
2

x∗0 = −∇x0h0(w̄0, x̄0, ū0)−A∗0x̃∗1
u∗1 = −∇u1

h1(w̄1, x̄1, ū1)−B∗1 x̃∗2
u∗0 = −∇u0

h0(w̄0, x̄0, ū0)−B∗0 x̃∗1
w∗1 = ∇w1

h1(w̄1, x̄1, ū1) + T ∗1 x̃
∗
2

w∗0 = ∇w0
h0(w̄0, x̄0, ū0) + T ∗0 x̃

∗
1.

(6.4)

From the given data, we get A∗0 = 0, B∗0 = 0, T ∗0 = −1, A∗1 = 0, B∗1 =
−1, T ∗1 = 0, ∇x0

h0(w̄0, x̄0, ū0) = 0, ∇x1
h1(w̄1, x̄1, ū1) = 1, ∇h2(x̄2) = 0,

∇u0
h0(w̄0, x̄0, ū0) = 0, ∇u1

h1(w̄1, x̄1, ū1) = 0, ∇w0
h0(w̄0, x̄0, ū0) = −1, and

∇w1h1(w̄1, x̄1, ū1) = 1. So, (6.4) implies x∗0 = 0, x̃∗1 = 1, x̃∗2 = 0, u∗1 = 0,
u∗0 = 0, w∗1 = 1 and w∗0 = −2. As N(x̄0, C) = {0} and N(ū, Ω1 × Ω2) =
(−∞, 0]× {0}, requirements x∗0 ∈ N(x̄0, C) and (u∗0, u

∗
1) ∈ N(ū, Ω1 ×Ω2) are

satisfied as well. In other words

∂V (w̄) = {(−2, 1)}.

The latter means that V (·) is Gâteaux differentiable at w̄, due to assertion (v)
in Theorem 9. We note that Theorem 3 in [2] and Theorem 1 in [15] on
estimating the subdifferential of V (·) do not work here, because neither the
condition kerT ∗ ⊂ kerM∗ in [2, Thm. 3] nor the requirement that T be
surjective in [15, Thm. 1] is valid for problem (6.3). Moreover, due to the
nondifferentiability of the function h1(·) at (w̄1, x̄1, ū1) = (0, 0, 0), we find
that neither [11, Thm. 1.1] nor [37, Thm. 2.1] is applicable to get an upper

estimation for ∂̂V (w̄).
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7 Concluding Remarks

In this paper, we have obtained various results on differential stability of para-
metric discrete optimal control problems with possibly nondifferential costs.
In the case where the functions describing the cost of the control problem are
nonconvex, we have established upper estimates for the regular, the limiting
subdifferentials of the optimal value function V (·) under regularity conditions
(A1) and (A2), among other assumptions. To our best knowledge, the first
condition is the weakest one ever used in the literature for control problems
with linear and convex constraints. Meanwhile, the second one is introduced
to overcome for the first time the tricky challenge arising from control prob-
lems with nonsmooth costs. In the other case where the functions describing
the cost of the control problem are convex, besides giving formulas for esti-
mating/computing the subdifferential in the sense of convex analysis of V (·),
we have also shown several fundamental properties of V (·) that have not been
mentioned in the literature. Last but not least, we have designed some exam-
ples showing that our results are applicable while existing results are not.

For further investigation, we are interested in the problem of estimat-
ing/computing subdifferentials of the optimal value function V (·) with hk,
k = 0, ..., N being lower regular and the sets C and Ωi, i = 0, 1, ..., N − 1
normally regular. As mentioned in this paper, the class of normally regular
sets is really bigger than the class of convex sets. To study this problem we
can exploit advanced tools and techniques from variational analysis to com-
pute the regular coderivative and limiting coderivative of the constraint map
G(w) ∩ K. Abstract results built up for parametric optimization problems
with lower regular objective functions in this paper allow us to hope that new
results for this more complicated but interesting problem can be achievable.
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