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Abstract

Consider the Sherrington-Kirkpatrick model on the complete graph with N vertices
with general disordered environments. In the Gaussian case, Chaterjee has shown in [7]
an interesting phenomena so-called superconcentration by proving that the variance of
the free energy grows sublinearly in N . In this paper, we aim at proving a partial uni-
versality of this phenomenon. More precisely, we prove that the variance is sublinear in
N when: (i) the disordered random variable, say y, has the first four moments matching
to those of the standard normal distribution and has finite fifth moment; or (ii) the law
y is symmetry and y is a smooth functional of the standard Gaussian random variable
satisfying some mild conditions. In addition, we also consider the universality of of first
and second moments of the free energy of the S-K models on general graphs.

1 Introduction

In this paper, we study the superconcentration in the Sherrington-Kirkpatrick (S-K) model.
More concretely, we aim to show that the free energy of this model has the sub-diffusive fluc-
tuation in the sense that its variance grows sublinearly in its expectation, and this phenomena
is universal as long as the disordered variable satisfies some moment conditions.

Let N ≥ 1 be an integer and consider the state space ΣN = {+1,−1}N . Let β > 0 be
the inverse temperature and let y be a random variable with mean 0 and variance 1 played
the role as the disordered distribution. Let {yij}1≤i<j≤N be i.i.d. copies of y and define the
Hamiltonian as

Hy(σ) =
β√
N

∑
1≤i<j≤N

yijσiσj , ∀σ ∈ ΣN

and the Gibbs measure as

Gy(σ) =
exp(Hy(σ))2−N

Zy
, ∀σ ∈ ΣN

where Zy is the partition function defined by

Zy =
∑
σ∈Σ

exp(Hy(σ))2−N .

The free energy of the model is defined as

Fy = log(Zy).
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Notice that in the general model the Gibbs measure is defined as Gy(σ) ∝ exp(Hy(σ))ν(σ)
with ν a probability measure on ΣN . Here, ν is the uniform measure, so ν(σ) = 2−N for all
σ ∈ ΣN . Though the factor 2−N does not effect to the variance of the free energy, we would
like to keep this form to state some results for the general S-K model in Section 2.1.

The S-K model has been extensively investigated in physics community for more than
fifty years. In particular, the limit of scaled free energy, say α∞ = limN→∞

1
N FN , is of

special interest. By interpolation and mean-field methods, Parisi gave in [15] a celebrated
variational formula for α∞ in the case of Gaussian disorder (i.e. y = g a standard normal
random variable) and this immediately became a hot topic studied by both physicists and
mathematicians in two decades. The rigorous proof of this formula is derived by Talagrand
in this famous paper [16]. Then the next question is that whether the limiting free energy
depend on the distribution of the disorder. Generally, the physicists believe that many limiting
properties of the spin glass model including the free energy are universal w.r.t. the change of
disorder.

The earlier result for disorder universality is obtained by Talagrand in [16] in which he
showed that there is no difference between the limiting free energies of models with Bernoulli
and Gaussian disorders. This result is then generalized by Guerra and Toninelli in [13] to the
disorder distributions having the first four moments matching with the standard Gaussian
random variable, and improved later on by Carmona and Hu to the two moments condition in
[5]. The universality for the Gibss measure and chaos phenomena is established by Auffinger
and Chen by assuming the first four moments condition in [1] and then is sharpened in [8] to
the two moments requirement.

Superconcentration, named by Chaterjee in his monograph [7], is the phenomenon that
the usual techniques via concentration measures give sub-optimal bounds on the fluctuation
of random objects. In fact, this phenomenon had been observed in probability theory in
different names and situations before. Particularly, Benjamini, Kalai, Scharm showed that
the first passage time in first passage percolation with Bernoulli edge-weight distribution has
the sublinear variance in [3]. The proof is based on the L1 − L2 inequality developed by
Talagrand and a regularization technique which is now called the BKS trick. This result is
then generalized to general distribution with 2 + log moment condition in [2, 12] by using
an entropy inequality. This powerful scheme is also used for other random growth models in
[4, 6, 10].

In [7, 8], Chatterjee give a new approach of proving the sublinearity of the variance in some
statistical physics models as S-K model, Gaussian fields, First passage percolation. Moreover,
he show a deep connection between the sublinear variance bound and the chaotic phenomena
in the model, and then he call this phenomena as superconcentration. For example, he show
that in the Gaussian S-K model, the overlap of two spin configurations sampled from the
original disorder and from a pertubated one is bounded by a function of the variance of the
free energy and the pertubation level. As a result, as long as the variance is sublinear the
overlap is concentrated at 0 with a small suitable level of pertubation (that means a small
change in disorder may lead nearly orthogonal samples of spins). The main idea behind the
approach of Chatterjee is built from a variance formula of Gaussian fields and the spectral
analysis of Orstein-Ulencbeck semigroup. Below, we recall the result on the sublinear bound
for the variance of free energy in S-K model.

Theorem 1.1. [9, Theorem 1.6] If y has the distribution as the standard normal random
variable g, then

Var[Fg] ≤
C(β)N

logN
. (1)

As mentioned above, since the approach of Theorem 1.1 is based on spectral analysis of
Orstein-Ulencbeck process, it could not be generalized directly to other classes of disordered
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distribution. Our first result aims to prove the same result for general disorder variables
whose the first fourth moments match those of the Gaussian one.

Theorem 1.2. Suppose that the disorder variable has the first four moments matching those
of Gaussian one and has the finite fifth moment, i.e. E[yi] = E[gi] for all i = 1, . . . , 4 and
E[|y|5] <∞. Then there exists a positive constant C depending on β and E[|y|5], such that

|Var[Fy]−Var[Fg]| ≤ CN
3
4 ,

and as a consequence

Var[Fy] ≤ 2CN

logN
.

To prove Theorem 1.2, we will use the interpolation technique to get the universality of
first and second moments of the free energy which results in the universality of the supercon-
centration. The interpolation scheme for the first moment of Fy has been proceed successfully
in [1, 5]. Moreover, we will work on the S-K model in general graph, say G = ([N ], E) with N
vertices and the set of edge E, see Section 2 for more details. Roughly speaking, in Theorem
2.1, we show that

|E[Fy]− E[Fg]| ≤ Cγk+1|E|,

|E[F 2
y ]− E[F 2

g ]| ≤ Cγk|E|
(
E[|y|k+1I(|y| ≥ K)]

B

K
+ γKB

)
∀K ≥ 1,

where γ is the coupling constant (γ = β√
n

in the standard case), B is a number depending on

γ, |E|,E[Fg] and the maximal degree dmax and νmin = minσ∈ΣN
ν(σ) with ν the probability

measure in the definition of Gibbs measure.

In the second result, we study the case that disorder variable is a Gaussian functional.
More concretely, we assume that y = h(g), where h : R→ R is a smooth function satisfying

h(g)
(d)
= −h(g), (H1)

and there exists a strictly increasing function ph : N→ R, such that ph(k)→∞ as k →∞,

k2k

[
1 + sup

1≤t≤k
sup

m∈Mt

sup
a∈Am

sup
q∈Qm

sup
ba,q∈Bm

E
[(
h(ba,q)(g)

)2]] ≤ ph(k), (H2)

where the indices a,q, ba,q,Mt,Am,Qm,Bm are defined in Lemma 3.3; for m ∈Mt, a ∈ Am

and ba,q = (ba1,q1,1, . . . ba1,q1,m1
, ba2,q2,1 . . . , ba2,q2,m2

, . . . , bat,qt,1, . . . , bat,qt,mt
) ∈ Bm,

E
[(
h(ba,q)(g)

)2]
=

t∏
s=1

E
[ ms∏
rs=1

(
h(bas,qs,rs )(g)

)2]
,

where h(b) is the b-th derivative of h with the convention that h(0) = 1.

Theorem 1.3. Assume that y = h(g) with h a smooth function satisfying (H1) and (H2).
Then there exists a positive constant C = C(β), such that

Var[Fy] ≤ CN

p−1
h

(
N

1
6
) ,

where p−1
h is the inverse function of ph. In particular, since p−1

h (k) → ∞ as k → ∞, the
superconcentration of the free energy holds.
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The condition (H1) holds when h is an odd function, i.e. h(x) = −h(x) for all x ∈ R. To
quantify the function ph(·), we consider the condition (H2’) below and obtain a clearer bound
for Var[Fy].

Corollary 1.4. Assume that h is a smooth and odd function and there exists an increasing
function ϕ : R+ → R+, such that

|h(b)(x)| ≤ exp

(
x2

ϕ(|x|)

)
∀b ≥ 0, x ∈ R. (H2’)

Then there exist a positive constant C, such that

Var[Fy] ≤ CN

p−1
h

(
N

1
6
) , ph(k) = 2k2k sup

1≤t≤k
sup

m∈Mt

t∏
s=1

(
exp

(
(ϕ−1(8ms))

2
)

+ 2
)
,

where m ∈ Mt = {(m1, . . . ,mt) : m1 + . . . + mt = k}. In particular, if ϕ1(x) = cxα, or
ϕ2(x) = c log(x+ 1) with c, α > 0, then we have corresponding bounds

Var[Fϕ1 ] ≤ CN
( log logN

logN
+ (logN)

−α
2

)
, Var[Fϕ2 ] ≤ CN log log logN

log logN
.

The condition (H2’) holds for most of usual functions satisfying that all its derivatives
|h(b)(x)| grow like exp(o(x2)).

To obtain Theorem 1.3, we follow the proof of Theorem 1.1. Since y = h(g), we can con-
sider Fy as a smooth functional of Gaussian fields. Then in order to get an upper bound for
the variance of Fy, we need to estimate the expectation of all its derivatives. The derivative
formula of Fy for general h is more complicated than the simplest case h(x) = x. It leads a
quite messy expression of the bound of the variance, though the bound is still sublinear.

Organization of the paper. In Section 2, we consider the S-K model in general graphs and
give a comparison for the first and second moments of free energy in arbitrary disordered
distribution with the Gaussian case. Then we obtain Theorem 1.2 as a particular case. In
Section 3, we use an improved Poincaré inequality and computation of the derivative of the
free energy to get an upper bound for the variance and prove Theorem 1.3.

2 The superconcentration of free energy in general en-
vironments under the fourth moment conditions

In this section, we prove the universality for the first and second moments (and as consequence
the variance) of free energy of a general S-K model.

Let G = ([N ], E) be a simple graph with vertex set [N ] = {1, . . . , N} and the set of edge
E. We set ΣN = {+1,−1}N as the state space. Let ν be a probabilistic measure on ΣN , and
let f = (fe)e∈E family of measurable functions on ΣN satisfying

max
σ∈ΣN

max
e∈E
|fe(σ)| ≤ 1,

∑
σ∈ΣN

∑
e∈E

xefe(σ)ν(σ) ≥ 0, ∀(xe)e∈E ∈ RE . (Hf)

Let γ > 0 be the temperature parameter and let y be a random variable with mean 0 and
variance 1. Given the environment disorder formed by (ye)e∈E which are i.i.d copies of y, we
define the Hamiltonian on ΣN as

Hy(σ) = γ
∑
e∈E

yefe(σ), ∀σ ∈ ΣN (2)
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and the Gibbs measure as

Gy(σ) =
exp(Hy(σ))ν(σ)

Zy
, ∀σ ∈ ΣN (3)

where Zy is the partition function defined by

Zy =
∑
σ∈Σ

exp(Hy(σ))ν(σ). (4)

Denote by 〈·〉y the Gibbs expectation associated to Gy, i.e. for any measure function L :
ΣN → R,

〈L〉y =
∑
σ∈ΣN

L(σ)Gy(σ).

The free energy of the model is defined as

Fy = log(Zy).

Notice that in the standard S-K model, G is the complete graph and ν the uniform measure:

E = {ij, 1 ≤ i < j ≤ N}, ν(σ) = 2−N ∀σ ∈ ΣN , γ =
β√
N
, fe(σ) = σiσj for e = ij.

Theorem 2.1. Let k ≥ 2 and consider the general S-K model assuming that (Hf) holds.
Suppose that E[yi] = E[gi] for all i = 1, . . . , k and E[|y|k+1] <∞. Then there exists a positive
constant C depending on k and E[|y|k+1], such that the following assertions hold.

(i) We have
|E[Fy]− E[Fg]| ≤ Cγk+1|E|.

(ii) For any K ≥ 1,

|E[F 2
y ]− E[F 2

g ]| ≤ Cγk|E|
(
E[|ye|k+1I(|ye| ≥ K)]

B

K
+ γKB

)
,

where

B = E[Fg] + γk+1|E|+ γdmax − log νmin, dmax = max
1≤i≤n

deg(i), νmin = min
σ∈ΣN

ν(σ).

Proof of Theorem 1.2. We apply Theorem 2.1 to the standard S-K model, where

γ =
β√
N
, |E| = N(N − 1)

2
, dmax = N − 1, νmin = 2−N , E[Fg] = Oβ(N). (5)

By (i),

|E[Fy]− E[Fg]| ≤ Oβ(1)N−
k+1

2 +2 = Oβ(1)N
3−k

2 .

By (5), we have B = Oβ(N) and thus (ii) implies

|E[F 2
y ]− E[F 2

g ]| ≤ Cγk|E|
(
E[|ye|k+1I(|ye| ≥ K)]

N

K
+ γKN

)
= Oβ(1)

N3−k2

K
E
[
|y|k+1I(|y| ≥ K)

]
+N

5−k
2 K

 .

Let k = 4 and K = N
1
4 , we obtain that

|E[F 2
y ]− E[F 2

g ]| ≤ CN
3
4 , |E[Fy]− E[Fg]| ≤ CN

−1
2 ,
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for some constant C > 0. Therefore, since |E[Fy] + E[Fg]| = Oβ(N),

|Var[Fy]−Var[Fg]| ≤ |E[F 2
y ]− E[F 2

g ]|+ |E[Fy]− E[Fg]||E[Fy] + E[Fg]| ≤ CN
3
4 ,

for some positive constant C. The remaining bound for Var[Fy] follows from the above
estimate and Theorem 1.1.

The remaining of this section is devoted to prove Theorem 2.1. In the first part (subsection
2.1), we will present some preparatory results on the rate of approximation by interpolating
methods and on the estimate of some derivative formulas. In the second part (subsection
2.2), we give the proof of Theorem 2.1.

First, we introduce some notation used throughout this section. Let E be a finite set and
F be a function in Ck(RE). Then, for any x = (xe)e∈E we denote the kth partial derivative
of F with respect to xe by

∂keF (x) =
∂k

∂xke
F (x).

For k = 1, we simply write ∂eF for ∂1
eF .

2.1 Preliminaries

Our major ingredient for the proof of Theorem 2.1 is the following integration by part ap-
proximation which inspired by [1, Lemma 2.2].

Lemma 2.2. Let (ye)e∈E be a family of i.i.d random variables such that its first k ≥ 2
moments match those of the standard Gaussian random variable. Let F be in Ck+1(RE).
Then for any e ∈ E and K ≥ 1,∣∣E[yeF (ye, ȳe)]− E[∂eF (ye, ȳe)]

∣∣ ≤ I1 + I2, (6)

where ȳe = (ye′)e′∈E\e, and

I1 =
2

(k − 1)!
E
[ (

sup
|xe|≤|ye|

∣∣∂k−1
e F (xe, ȳe)

∣∣+ sup
|xe|≤|ye|

∣∣∂keF (xe, ȳe)
∣∣)|ye|kI(|ye| ≥ K)

]
,

and

I2 = KE
[

sup
|xe|≤|ye|

∣∣∂keF (xe, ȳe)
∣∣( |ye|k

k!
+
|ye|k−2

(k − 1)!

)
I(|ye| ≤ K)

]
.

Assume in addition that E[|ye|k+1] <∞. Then

∣∣E[yeF (ye, ȳe)]− E[∂eF (ye, ȳe)]
∣∣ ≤ E

[
sup

|xe|≤|ye|

∣∣∂keF (xe, ȳe)
∣∣( |ye|k+1

k!
+
|ye|k−1

(k − 1)!

)]
. (7)

Proof. Fix e ∈ E, define a function F̂ : R→ R by

F̂ (xe) = Eȳe [F (xe, ȳe)].

Here and below, we denote by Eȳe and Eye the expectation w.r.t. ȳe and ye correspondingly.

Then F̂ ∈ Ck+1(R), since F ∈ Ck+1(RE), and

E[yeF (ye, ȳe)]− E[∂eF (ye, ȳe)] = E[yeF̂ (ye)]− E[F̂ ′(ye)] (8)

By using similar arguments in [1, proof of Lemma 2.2] (see in particular (A.4) and (A.5)), we
can show that for any K ≥ 1,∣∣E[yeF̂ (ye)]− E[F̂ ′(ye)]

∣∣ ≤ Î1 + Î2, (9)
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where

Î1 =
2

(k − 1)!
E
[(

sup
|xe|≤|ye|

∣∣F̂ (k−1)(xe)
∣∣+ sup
|ξe|≤|ye|

∣∣F̂ (k)(xe)
∣∣)|ye|kI(|ye| ≥ K)

]
,

and

Î2 = KE
[

sup
|xe|≤|ye|

∣∣F̂ (k)(xe)
∣∣( |ye|k

k!
+
|ye|k−2

(k − 1)!

)
I(|ye| ≤ K)

]
,

with F̂ (k) the kth derivative of F̂ . In addition, observe that for any l ≤ k and any function g

E
[

sup
|xe|≤|ye|

∣∣F̂ (l)(xe)
∣∣|g(ye)|

]
= Eye

[
sup

|xe|≤|ye|

∣∣Eȳe [∂leF (xe, ȳe)]
∣∣|g(ye)|

]
≤ EyeEȳe

[
sup

|xe|≤|ye|

∣∣∂leF (xe, ȳe)
∣∣|g(ye)|

]
Therefore,

Î1 ≤ I1, Î2 ≤ I2. (10)

Combining (8), (9) and (10), we obtain (6). Moreover, if E[|ye|k+1] < ∞ then by the same
arguments in [1, Lemma 2.2], we also have∣∣E[yeF̂ (ye)]− E[F̂ ′(ye)]

∣∣ ≤ E
[

sup
|xe|≤|ye|

∣∣F̂ (k)(xe)
∣∣( |ye|k+1

k!
+
|ye|k−1

(k − 1)!

)]
.

Then the proof of (7) follows from similar arguments as above.

Remark 1. In [1, Lemma 2.2], the authors assume that supx |∂keF (x)| ≤ C < ∞. This
condition holds for Ft = 〈σiσj〉t but not for Ft = 〈σiσj〉t logZt (both of these functions will
appear in the interpolation of the variance of free energy, see more in the proof of Theorem
1.2). Therefore, in our lemma 2.2, we have to clarify the bounds on the derivatives of Ft as
in the formula of I1 and I2.

Lemma 2.3. Let n ≥ 1 and L be a measurable function on ΣnN with ‖L‖∞ ≤ 1 and consider
the free energy Zy defined in (4) as a smooth function of y = (ye)e∈E ∈ RE. Then for
any k ≥ 1, there exists a positive constant C depending on k and n, such that the following
assertions hold.

(i) ([1, Lemma 4.2]) For any e ∈ E and y = (ye)e∈E,∣∣∣∂ke (〈L〉y)
∣∣∣ ≤ Cγk. (11)

(ii) For any e ∈ E and y = (ye)e∈E,∣∣∣∂ke(〈L〉y logZy

)∣∣∣ ≤ Cγk(1 + log(Zy)
)
. (12)

Proof. The first part is exactly [1, Lemma 4.2]. For the second one, we define a function
F ∈ C∞(RE) by

F (y) = 〈L〉y logZy.

By the chain rule, for any l ≥ 1 and e ∈ E,

∂le[log(Zy)] =
∑

m∈Nl:|m|1=l

(
l

m

)
∂|m| log(Zy)

∂Z
|m|
y

l∏
j=1

(∂jeZy
j!

)mj

=
∑

m∈Nl:|m|1=l

(
l

m

)
(−1)|m|−1(|m| − 1)!

Z
|m|
y

l∏
j=1

(γjZy〈(fe(σ))j〉y
j!

)mj

,
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where m = (m1, . . . ,ml) and

|m| =
l∑
i=1

mi, |m|1 =

l∑
i=1

imi,

(
l

m

)
=

l!

m1!m2! . . .ml!
.

Since |fe(σ)| ≤ 1, it follows that∣∣∣∂le[log(Zy)]
∣∣∣ ≤ ∑

m∈Nl:|m|1=l

(
l

m

)
(|m| − 1)!

Z
|m|
y

l∏
j=1

(γjZy
j!

)mj

= γlCl,

for some positive constant Cl depending only on l. Combining this estimate with (11), we
get that for any y = (ye)e∈E ∈ RE ,∣∣∣∂keF (y)

∣∣∣ =
∣∣∣ k∑
l=0

(
k

l

)
∂k−le [〈L〉y]∂le[log(Zy)]

∣∣∣
=
∣∣∣ k∑
l=1

(
k

l

)
∂k−le [〈L〉y]∂le[log(Zy)] + ∂ke [〈L〉y] log(Zy)

∣∣∣
≤ Cγk

(
1 +

∣∣log(Zy)
∣∣) = Cγk

(
1 + log(Zy)

)
for some C = C(k, n). In the last equation, we have used log(Zy) ≥ 0, or Zy ≥ 1. Indeed, by
Jensen’s inequality,

Zy =
∑
σ∈ΣN

exp(Hy(σ))ν(σ) = Eν
[

exp(Hy)
]
≥ exp(Eν [Hy]) ≥ 1,

since
Eν [Hy] =

∑
e∈E

∑
σ∈ΣN

yefe(σ)ν(σ) ≥ 0,

by using the hypothesis (Hf).

2.2 Proof of Theorem 2.1

As we mentioned, the proof will be based on interpolation technique and integration by parts
formulas obtained in Lemma 2.2. Let us consider the interpolated Hamiltonian between Hg

and Hy defined as

Ht(σ) =
∑
e∈E

γ(
√
tye +

√
1− tge)fe(σ), t ∈ [0, 1],

and the corresponding partition function

Zt =
∑
σ∈ΣN

exp(Ht(σ))ν(σ).

The interpolated Gibbs measure (denoted by Gt) and its average (denoted by 〈·〉t) are defined
as usual

〈L〉t =
∑
σ∈ΣN

L(σ)Gt(σ), Gt(σ) =
exp(Ht(σ))ν(σ)

Zt
∀σ ∈ ΣN .

Consider the interpolated free energy

Q1(t) = E[logZt].

Then Q1(0) = E[Fg] and Q1(1) = E[Fy]. Thus

|E[Fy]− E[Fg]| ≤ sup
0≤t≤1

|Q′1(t)|. (13)
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By the direct computation, we have

Q′1(t) =
γ

2
√
t

∑
e∈E

E[ye〈fe(σ)〉t]−
γ

2
√

1− t
∑
e∈E

E[ge〈fe(σ)〉t]. (14)

Moreover,

∂

∂ye
〈fe(σ)〉t = γ

√
t
(
〈f2
e (σ)〉t − 〈fe(σ)〉2t

)
,

and by the Gaussian integration by parts formula,

E[ge〈fe(σ)〉t] = E
[ ∂
∂ge
〈fe(σ)〉t

]
= γ
√

1− tE[(〈f2
e (σ)〉t − 〈fe(σ)〉2t )].

By the above two identities, E[∂ye〈fe(σ)〉t] =
√

t
1−tE[ge〈fe(σ)〉t], and thus

∣∣∣E[ye〈fe(σ)〉t]
2
√
t

− E[ge〈fe(σ)〉t]
2
√

1− t

∣∣∣ =
1

2
√
t

∣∣∣E[ye〈fe(σ)〉t]− E
[∂〈fe(σ)〉t

∂ye

]∣∣∣. (15)

Using Lemma 2.3 (i), we get that

sup
x∈RE

∣∣∣ ∂k
∂ye
〈fe(σ)〉t

∣∣∣
y=x
≤ Cγk.

Plugging this into the approximation (7) yields that for all t ∈ [0, 1] and e ∈ E,

1

2
√
t

∣∣∣E[ye〈fe(σ)〉t]− E
[∂〈fe(σ)〉t

∂ye

]∣∣∣ ≤ Cγkt(k−1)/2E[|ye|k+1] ≤ CγkE[|ye|k+1],

where C is a positive constant depending only on k. Combining this bound with (14) and
(15), we obtain that

sup
0≤t≤1

|Q′1(t)| ≤ Cγk+1|E|. (16)

This estimate together with (13) yields the result (i).
To compare the second moment and prove (ii), we define

Q2(t) = E[log2(Zt)].

Then Q2(1) = E[F 2
y ] and Q2(0) = E[F 2

g ], and hence

|E[F 2
y ]− E[F 2

g ]| ≤ sup
0≤t≤1

|Q′2(t)|. (17)

First, we have

Q′2(t) =
γ√
t

∑
e∈E

E[ye〈fe(σ)〉t logZt]−
γ√

1− t
∑
e∈E

E[ge〈fe(σ)〉t logZt]

=
γ√
t

∑
e∈E

E[yeFt,e]−
γ√

1− t
∑
e∈E

E[geFt,e], (18)

where
Ft,e = 〈fe(σ)〉t logZt.

For each e ∈ E, we compute

∂

∂ge
Gt(σ) =

∂

∂ge

(
exp(Ht(σ))ν(σ)

Zt

)
= Gt(σ)

∂

∂ge
Ht(σ)−Gt(σ)

∂geZt
Zt

= γ
√

1− tGt(σ)[fe(σ)− 〈fe(σ)〉t],

9



where σ̃ is an independent sample of σ given the environment (ye, ge)e∈E .
Therefore, using the Gaussian integration by parts,

E[geFt,e] = E
[∂Ft,e
∂ge

]
= E

[
logZt

∑
σ∈ΣN

fe(σ)∂geGt(σ) + 〈fe(σ)〉t∂ge(logZt)
]

= γ
√

1− tE
[

logZt(〈(fe(σ))2〉t − 〈fe(σ)〉2t ) + 〈fe(σ)〉2t
]
.

Similarly,

∂Ft,e
∂ye

= γ
√
t
[

logZt(〈(fe(σ))2〉t − 〈fe(σ)〉2t ) + 〈fe(σ)〉2t
]
.

It follows from the last two equations that

1√
t
E[yeFt,e]−

1√
1− t

E[geFt,e] =
1√
t

(
E[yeFt,e]− E

[∂Ft,e
∂ye

])
(19)

Moreover, by Lemma 2.2 (in particular (6)) and Lemma 2.3 (ii), for any K ≥ 1

1√
t

∣∣∣E[yeFt,e]− E
[∂Ft,e
∂ye

]∣∣∣
≤ 2√

t(k − 1)!
E
[(

sup
|xe|≤|ye|

∣∣∂k−1
e Ft,e(xe, ȳe)

∣∣+ sup
|xe|≤|ye|

∣∣∂keFt(xe, ȳe)∣∣)|ye|kI(|ye| ≥ K)
]

+
K√
t
E
[

sup
|xe|≤|ye|

∣∣∂keFt,e(xe, ȳe)∣∣( |ye|kk!
+
|ye|k−2

(k − 1)!

)
I(|ye| ≤ K)

]
≤ C(A1,e(t) +A2,e(t)), (20)

where C is a positive constant and,

A1,e(t) = γk−1t(k−2)/2E
[(

1 + sup
|xe|≤|ye|

logZt(xe, ȳe)
)
|ye|kI(|ye| ≥ K)

]
, (21)

and

A2,e(t) = γkt(k−1)/2KE
[(

1 + sup
|xe|≤|ye|

logZt(xe, ȳe)
)( |ye|k

k!
+
|ye|k−2

(k − 1)!

)
I(|ye| ≤ K)

]
. (22)

Combining (17)–(20), we get

|E[F 2
g ]− E[F 2

y ]| ≤ Cγ|E| sup
t∈[0,1]

max
e∈E

[A1,e(t) +A2,e(t)] (23)

Next, we estimate A1,e and A2,e. First, observe that

sup
|xe|≤|ye|

logZt(xe, ȳe) ≤ sup
|xe|≤|ye|

max
σ∈ΣN

Ht(σ) = max
σ∈ΣN

sup
|xe|≤|ye|

Ht(σ)

≤ max
σ∈ΣN

∑
e′ 6=e

γ(
√
tye′ +

√
1− tge′)fe′(σ) + γ(

√
t|ye|+

√
1− t|ge|)

≤ max
σ∈ΣN

Ht,e(σ) +
∑

e′∈E1,e

γ(
√
t|ye′ |+

√
1− t|ge′ |) + γ(

√
t|ye|+

√
1− t|ge|), (24)

where Ht,e(σ) is the Hamiltonian restricted to (N−2) vertices [n]\[e] with [e] the two extreme
points of e, and E1,e is the set of edges sharing with e an extreme point, that means

Ht,e(σ) =
∑

e′∈E2,e

γ(
√
tye′ +

√
1− tge′)fe′(σ),
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with
E1,e = {e′ : |[e′] ∩ [e]| = 1}, E2,e = {e′ : [e′] ∩ [e] = ∅}.

In (24), for the second line we have used the fact that Ht(σ) is a linear function of xe, so it
attains the maximum value at the boundary xe = |ye|.

The key point in the above decomposition is that Ht,e(σ) and {ye′ , ge′}e′∈E1,e
are inde-

pendent of ye and ge. Therefore, using E[|ye|],E[|ge|] = O(1) and |E1,e| ≤ 2dmax, we have

A1,e(t) ≤ Cγk−1t(k−2)/2
(
E[ max
σ∈ΣN

Ht,e(σ)] + dmaxγ + 1
)
E[|ye|kI(|ye| ≥ K)]

+Cγkt(k−2)/2E[|ye|k+1I(|ye| ≥ K)],

for some C > 0. In addition,

max
σ∈ΣN

Ht,e(σ) ≤ max
σ∈ΣN

Ht(σ) + γ
[ ∑
e′∈E1,e

(|ye′ |+ |ge′ |) + |ye|+ |ge|
]

≤ logZt − log νmin + γ
[ ∑
e′∈E1,e

(|ye′ |+ |ge′ |) + |ye|+ |ge|
]
.

Thus
E[ max
σ∈ΣN

Ht,e(σ)] ≤ E[logZt]− log νmin + Cdmaxγ,

for some C > 0, since |E1,e| ≤ 2dmax. In summary, for all t ∈ [0, 1],

A1,e(t) ≤ Cγk−1t(k−2)/2
(
E[logZt] + dmaxγ − log νmin

)
E[|ye|kI(|ye| ≥ K)]

+Cγkt(k−2)/2E[|ye|k+1I(|ye| ≥ K)]

= O(1)γk−1E[|ye|k+1I(|ye| ≥ K)]
(E[logZt] + dmaxγ − log νmin

K
+ γ
)
,

where O(1) depends only on k and E[|y|k+1]. Similarly,

A2,e(t) ≤ Cγkt(k−1)/2K
(
E[logZt] + dmaxγ − log νmin

)
E[|ye|k+1] + Cγk+1KE[|ye|k+1]

= O(1)γkK
(
E[logZt] + dmaxγ − log νmin

)
.

By (16), we have

E[logZt] = Q1(t) ≤ (Q1(0) + sup
0≤s≤t

|Q′1(s)|) ≤ E[Fg] + Cγk+1|E|.

Therefore,

sup
0≤t≤1

max
e∈E

A1,e(t) +A2,e(t) ≤ Cγk−1E[|ye|k+1I(|ye| ≥ K)]
(B
K

+ γ
)

+ CγkKB

≤ Cγk−1E[|ye|k+1I(|ye| ≥ K)]
B

K
+ 2CγkKB

where C is a large constant, and

B = E[Fg] + γk+1|E|+ γdmax − log νmin.

Combining this estimate with (23), we obtain (ii). �
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3 The superconcentration of free energy in Gaussian func-
tional environments

Suppose that the environment is formed by a sequence {yij}1≤i<j≤N of i.i.d. random variables
with the same distribution as y = h(g). Then the free energy defined by

Fy = log[Zy],

can be viewed as a function of i.i.d. Gaussian variables {gij}1≤i<j≤N by setting yij = h(gij).
Using the Ornstein-Uhlenbeck diffusion, Chatterjee gives in [7] an improved Poincaré inequal-
ity allowing him to get a sublinear bound for the variance of Fg (i.e. h(x) = x). In this section,
we aim at proving a similar result for general function h.

Proposition 2. [7, Theorem 6.2] Let γN be the product measure of N i.i.d. standard normal
distribution and let f be a smooth function which is in L2(γN ). Then for any m ≥ 1,

VarγN [f ] ≤
m−1∑
k=1

θk(f)

k!
+

EγN [|∇f |2]

m
,

where

θk(f) =
∑

1≤i1,...,ik≤N

(
EγN

[ ∂kf

∂xi1 . . . ∂xik

])2

.

Proposition 3. Consider the S-K model whose the disordered variable is y = h(g) with h
satisfying (H1) and (H2). For any k ≥ 1, we have

θk(Fy) =
∑

1≤i1<j1,...,ik<jk≤N

(
E
[ ∂kFy
∂gi1j1 . . . ∂gikjk

])2

≤ (1 + β2k)k8k+1ph(k),

where ph(k) is given in (H2).

Proof of Theorem 1.3. First, notice that

E[|∇Fy|2] =
β2

N
E
[ ∑

1≤i<j≤N

(h′(gij))
2〈σiσj〉2y

]
≤ β2

N

∑
1≤i<j≤N

E[(h′(gij))
2] ≤ CN,

where C is positive constant depending on β and E[(h′(g))2]. Combining this estimate with
Propositions 2 and 3, we have for any m ≥ 1

Var[Fy] ≤
m−1∑
k=1

(1 + β2k)k8k+1ph(k)

k!
+
CN

m
≤ (1 + β2m)m8m+2ph(m) +

CN

m

≤ C
(

(ph(m))6

m
+
N

m

)
,

since ph(m) ≥ m2m. Taking m = [p−1
h

(
N

1
6
)
], we have

Var[Fy] ≤ 2CN

p−1
h

(
N

1
6
) ,

and Theorem 1.3 follows.

Proof of Corollary 1.4. Assume that there exists an increasing function ϕ : R+ → R+, such
that

|h(b)(x)| ≤ exp

(
x2

ϕ(|x|)

)
∀b ≥ 0, x ∈ R. (H2’)
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Then, we have

E
[ ms∏
rs=1

(h(bas,qs,rs )(g)
)2] ≤ E

[
exp

(2msg
2

ϕ(|g|)

)]
=

√
2

π

∫ ∞
0

exp
(
− x2

2

(
1− 4ms

ϕ(x)

))
dx =

√
2

π

(∫ ϕ−1(8ms)

0

+

∫ ∞
ϕ−1(8ms)

)

≤
√

2

π

(
ϕ−1(8ms) exp

(
(ϕ−1(8ms))

2/4)
)

+

∫ ∞
0

e−
x2

4 dx

)
≤ exp

(
(ϕ−1(8ms))

2
)

+ 2.

Therefore,

sup
1≤t≤k

sup
m∈Mt

sup
a∈Am

sup
q∈Qm

sup
ba,q∈Bm

E
[(
h(ba,q)(g)

)2] ≤ sup
1≤t≤k

sup
m∈Mt

t∏
s=1

(
exp

(
(ϕ−1(8ms))

2
)

+ 2
)
,

where m ∈Mt = {(m1, . . . ,mt) : m1 + . . .+mt = k}, and we can choose

ph(k) = 2k2k sup
1≤t≤k

sup
m∈Mt

t∏
s=1

(
exp

(
(ϕ−1(8ms))

2
)

+ 2
)
.

Consider ϕ1(x) = cxα then ϕ−1
1 (m) = 1

cm
1
α and, we can choose

pϕ1
(k) = exp(C(k log k + k

2
α )),

for some large constant C. Therefore

Var[Fϕ1
] ≤ CN

p−1
h

(
N

1
6
) ≤ CN( log logN

logN
+ (logN)

−α
2

)
.

The case ϕ2(x) = c log(x+ 1) can be treated similarly, and here

pϕ2
(k) ≤ exp(exp(Ck)),

and thus

Var[Fϕ2
] ≤ C ′N log log logN

log logN
,

for some large constants C and C ′.

The rest of this section is devoted to the proof of Proposition 3. In the subsection 3.1, we
prove some high order derivative formulas of the free energy function. In the subsection 3.2,
using the formulas derived, we prove Proposition 3.

3.1 Preliminaries

Fix β and let Fy = Fy(β) = log[Zy]. Then Fy is a smooth function of (gij)1≤i<j≤N . Below,
we are going to compute the derivatives of Fy.

Let σ1, σ2, . . . , σn denote n i.i.d. configurations drawn from the Gibbs measure Gy. Note
that σ1, σ2, . . . , σn are conditionally independent given the disorder g, but unconditionally
dependent. The following key lemma to constitute the general kth derivative of free energy
of S-K model. We define the set of edge of the complete graph as

E = {ij : 1 ≤ i < j ≤ N}. (25)

Lemma 3.1. For any ij ∈ E and k ≥ 1, there exist a collection of real constants {{γa,q, {ba,q,r}r≤k}q≤k!, {ca(l)}l∈La}a≤k
satisfying the following.

13



(a) γa,q ∈ {0, 1} and if γa,q = 1 then
∑k
r=1 ba,q,r = k for all a ≤ k and q ≤ k!.

(b) |ca(l)| ≤ (a− 1)! for all 1 ≤ a ≤ k and l ∈ La, where

La = {(l1, . . . , la) ∈ Na : 1 ≤ ls ≤ s ∀ 1 ≤ s ≤ a}.

(c) We have

∂kFy
∂kgij

=

k∑
a=1

( β√
N

)a k!∑
q=1

γa,q

k∏
r=1

h(ba,q,r)(gij)
∑
l∈La

ca(l)〈σl1i σ
l1
j . . . σ

la
i σ

la
j 〉y, (26)

where h(b) is the bth derivative of h with the convention that h(0) = 1.

Lemma 3.2. Let n ≥ 1 and L be a measurable function on ΣnN . For any ij ∈ E and k ≥ 1,
there exists a collection of constants {{γa,q, {ba,q,r}r≤k}q≤k!, {ca(l)}l∈Ln,a}a≤k satisfying the
conditions (a) Lemma 3.1 and the following.

(b’) |ca(l)| ≤ (n+ a− 1)!

(n− 1)!
for all 1 ≤ a ≤ k and l ∈ Ln,a, where

Ln,a = {(l1, . . . , la) ∈ Na : 1 ≤ ls ≤ n+ s}.

(c’) We have

∂k〈L〉y
∂gij

=

k∑
a=1

( β√
N

)a k!∑
q=1

γa,q

k∏
r=1

h(ba,q,r)(gij)
∑

l∈Ln,a

ca(l)〈Lσl1i σ
l1
j . . . σ

la
i σ

la
j 〉y.

Remark 4. We notice that the coefficients γ, b, ca may differ when L, i, j, k change. However,
for the simplicity, we use the same notation in the both lemmas 3.1 and 3.2. These coefficients
are in fact so complicated that we do not have explicit expressions. Fortunately, the bounds
in conditions (a) and (b), or (b’) are enough for our purpose.

Proof of Lemmas 3.1 and 3.2. We prove Lemma 3.1 by induction arguments in k. First, the
formula (26) is true for k = 1 since

∂

∂gij
Fy =

β√
N
h(1)(gij)〈σiσj〉y. (27)

Next, suppose that the claim holds up to k ≥ 1. Given ij ∈ E, we need to compute the
(k + 1)st derivative of Fy w.r.t. gij . By the hypothesis induction,

∂k+1Fy
∂k+1gij

=

k∑
a=1

( β√
N

)a ∂(T1,a × T2,a)

∂gij
, (28)

where for any 1 ≤ a ≤ k

T1,a =

k!∑
q=1

γa,q

k∏
r=1

h(ba,q,r)(gij),

T2,a =
∑
l∈La

ca(l)〈σl1i σ
l1
j . . . σ

la
i σ

la
j 〉y.
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We have

∂T1,a

∂gij
=

k!∑
q=1

γa,q

k∑
r=1

∏
s6=r

h(ba,q,s)(gij)h
(ba,q,r+1)(girjr )I(ba,q,r 6= 0)

=
∑

q′=(q,r)
q≤k!, r≤k

γ′a,q′

k∏
s=1

h(b′
a,q′,s)(gisjs),

where for q′ = (q, r) and 0 ≤ s, r ≤ k,

γ′a,q′ = γa,qI(ba,q,r 6= 0), b′a,q′,s =

{
ba,q,s if s 6= r

ba,q,s + 1 if s = r.
(29)

Since 1 ≤ q ≤ k! and 1 ≤ r ≤ k, we enumerate the q′ as ranging from 1 to k!k, and obtain
that

∂T1,a

∂gij
=

k!k∑
q′=1

γ′a,q′

k+1∏
s=1

h(b′
a,q′,s)(gij), (30)

by defining
b′a,q′,k+1 = 0, (31)

and noting that h(0) = 1. Next, we compute the derivative of T2,a. Given a tuple (l1, . . . , la)
with li ≤ i for all i = 1, . . . , a, by the standard computation of Gibbs measure we have

∂

∂gij
〈σl1i σ

l1
j . . . σ

la
i σ

la
j 〉y

=
∂

∂gij

∑
σ1,...,σa∈ΣN

σl1i σ
l1
j . . . σ

la
i σ

la
j Gy(σ1) . . . Gy(σa)

=
∑

σ1,...,σa∈ΣN

σl1i σ
l1
j . . . σ

la
i σ

la
j

( a∑
s=1

1

Gy(σs)

∂Gy(σs)

∂gij

)
Gy(σ1) . . . Gy(σa)

=
β√
N
h(1)(gij)

∑
σ1,...,σa∈ΣN

σl1i σ
l1
j . . . σ

la
i σ

la
j

( a∑
s=1

(σsi σ
s
j − 〈σa+1

j σa+1
j 〉y

)
Gy(σ1) . . . Gy(σa)

=
β√
N
h(1)(gij)

a∑
l=1

〈σl1i σ
l1
j . . . σ

la
i σ

la
j (σliσ

l
j − σa+1

i σa+1
j )〉y

=
β√
N
h(1)(gij)

a+1∑
la+1=1

da+1((ls)s≤a+1)〈σl1i σ
l1
j . . . σ

la
i σ

la
j σ

la+1

i σ
la+1

j 〉y, (32)

where da+1((ls)s≤a+1) = 1 if 1 ≤ la+1 ≤ a and da+1((ls)s≤a+1) = −a, otherwise. Using this
identity, we compute the derivative of T2,a as below

∂T2,a

∂gij
=

∂

∂gij

∑
l∈La

ca(l)〈σl1i σ
l1
j . . . σ

la
i σ

la
j 〉y

=
β√
N
h(1)(gij)

∑
l∈La+1

c′a+1(l)〈σl1i σ
l1
j . . . σ

la+1

i σ
la+1

j 〉y,

where for l = (l1, . . . , la+1),

c′a(l) = c′a+1((ls)s≤a+1) = ca((ls)s≤a)da+1((ls)s≤a+1). (33)
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Therefore,

T1,a
∂T2,a

∂gij
=

β√
N

k!∑
q=1

γa,q

k+1∏
r=1

h(ba,q,r)(gij)
∑

l∈La+1

c′a+1(l)〈σl1i σ
l1
j . . . σ

la+1

i σ
la+1

j 〉y, (34)

where we defined
ba,q,k+1 = 1. (35)

Using (28), (30) and (34), we derive

∂k+1Fy
∂k+1gij

=

k∑
a=1

( β√
N

)a k!k∑
q′=1

γ′a,q′

k+1∏
s=1

h(b′
a,q′,s)(gij)

∑
l∈La

ca(l)〈σl1i σ
l1
j . . . σ

la
i σ

la
j 〉y

+

k∑
a=1

( β√
N

)a+1 k!∑
q=1

γa,q

k+1∏
l=r

h(ba,q,r)(gij)
∑

l∈La+1

c′a+1(l)〈σl1i σ
l1
j . . . σ

la+1

i σ
la+1

j 〉y

=

k+1∑
a=1

( β√
N

)a (k+1)!∑
q=1

γ∗a,q

k+1∏
r=1

h(b∗a,q,r)(gij)
∑

l∈La+1

c∗a(l)〈σl1i σ
l1
j . . . σ

la
i σ

la
j 〉y,

where

γ∗1,q =

{
γ′1,q if 1 ≤ q ≤ k!k,

0 if k!k + 1 ≤ q ≤ (k + 1)!
, γ∗k+1,q =

{
0 if 1 ≤ q ≤ k!k,

γk,q−k!k if k!k + 1 ≤ q ≤ (k + 1)!,

and for each 2 ≤ a ≤ k,

γ∗a,q =

{
γ′a,q if 1 ≤ q ≤ k!k,

γa,q−k!k if k!k + 1 ≤ q ≤ (k + 1)!,

The constants b∗a,q,r and c∗(l) are determined correspondingly to γ∗a,q. Furthermore, we notice
that by (33) for all a = 0, . . . , k and l = (l1, . . . , la+1) ∈ La+1,

|c∗a+1(l)| ≤ |ca((ls)s≤a)da+1((ls)s≤a+1)| ≤ (a− 1)!a = a!.

In addition, γ∗a,q ∈ {0, 1}, and if γ∗a,q = 1 then γ′a,q = 1 or γa,r = 1 or γk,r = 1 (when
a = k + 1), with r = q − k!k. In all cases, by using (29), (31), (35) we always have

k+1∑
s=1

b∗a,q,s = 1 +

k∑
s=1

ba′,q,s = k + 1, a′ = min{a, k}.

The proof of Lemma 3.1 is finished.
Now, we prove Lemma 3.2. For any measurable function L = L(σ1, . . . , σn), we have

∂〈L〉y
∂gij

=
∂

∂gij

∑
σ1,...,σn

L(σ1, . . . , σn)Gy(σ1) . . . Gy(σn)

=
∑

σ1,...,σn

L(σ1, . . . , σn)

(
n∑
s=1

1

Gy(σs)

∂Gy(σs)

∂gij

)
Gy(σ1) . . . Gy(σn)

=
β√
N
h(1)(gij)

∑
σ1,...,σn

L(σ1, . . . , σn)

(
n∑
s=1

[
σsi σ

s
j − 〈σn+1

i σn+1
j 〉y

])
Gy(σ1) . . . Gy(σn)

=
β√
N
h(1)(gij)

∑
1≤l1≤n+1

c1(l1)〈Lσl1i σ
l1
j 〉y, (36)
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where c1(l1) = 1 for 1 ≤ l1 ≤ n and c1(n + 1) = −n. This formula is similar to the first
derivative of Fy in (27). Then the proof of Lemma 3.2 can be conducted essentially the same
as we have done for Lemma 3.1, so we omit it. The only difference is that here we need to
compute the derivative of 〈Lσl1 . . . σla〉y instead of 〈σl1 . . . σla〉y. Using the same arguments
for (32), we have for any l ∈ Ln,a = {(l1, . . . , la) : 1 ≤ ls ≤ n+ s ∀1 ≤ s ≤ a},

∂

∂gij
〈Lσl1i σ

l1
j . . . σ

la
i σ

la
j 〉y

=
β√
N
h(1)(gij)

a+1∑
la+1=1

da+1((ls)s≤a+1)〈Lσl1i σ
l1
j . . . σ

la
i σ

la
j σ

la+1

i σ
la+1

j 〉y,

where da+1((ls)s≤a+1) = 1 if 1 ≤ la+1 ≤ n + a and da+1((ls)s≤a+1) = −(n + a), otherwise.
This explains the fact that the new tuple (l1, . . . , la+1) ∈ Ln,a+1 instead of La+1 as in Lemma
3.1. Moreover, the bound for ca((ls)s≤a+1) is changed as

|ca((ls)s≤a+1)| ≤ |ca((ls)s≤a)||da+1((ls)s≤a+1)| ≤ (n+ a− 1)!

(n− 1)!
(n+ a) =

(n+ a)!

(n− 1)!
,

by the hypothesis induction that |ca((ls)s≤a)| ≤ (n+a−1)!
(n−1)! .

To apply Proposition 2, we have to estimate all the derivatives of Fy. Let k ≥ 1 and
T = {i1j1, . . . , ikjk} ∈ Ek. We are going to compute the derivative of Fy w.r.t. the variable
indexed by T . First, we reorder T as

T = {i′1j′1, . . . , i′1j′1︸ ︷︷ ︸
m1 times

, . . . , i′tj
′
t, . . . , i

′
tj
′
t︸ ︷︷ ︸

mt times

}, 1 ≤ mi ≤ k ∀1 ≤ i ≤ t,
t∑
i=1

mi = k, 1 ≤ t ≤ k,

(37)

where i′pj
′
p 6= i′qj

′
q for all 1 ≤ p 6= q ≤ t. For the later convenience, we introduce some notation:

Et6= = {i′j′ = {i′1j′1, . . . , i′tj′t} ∈ Et : i′pj
′
p 6= i′qj

′
q ∀ 1 ≤ p 6= q ≤ t},

Mt =
{
m = (m1, . . . ,mt) : 1 ≤ ms ≤ k ∀ 1 ≤ s ≤ t,

t∑
s=1

ms = k
}
,

Am = {a = (a1, . . . , at) : 1 ≤ ai ≤ mi ∀ i = 1, . . . , t}, |a| = a1 + . . .+ at,

Qm = {q = (q1, . . . , qt) : 1 ≤ qi ≤ mi!∀ i = 1, . . . , t},
L|a| = {l = (l1, . . . , l|a|) : 1 ≤ li ≤ i∀ i = 1, . . . , |a|},

Bm =
{
ba,q = (b1a,q,1, . . . , b

1
a,q,m1

, . . . , bta,q,1, . . . , b
t
a,q,mt

) ∈ Nk :

m1∑
r1=1

b1a,q,r1 = m1, . . . ,

mt∑
rt=1

bta,q,rt = mt

}
,

h(ba,q)(gi′j′) =

m1∏
r1=1

h(b1a1,q1,r1
)(gi′1j′1) . . .

mt∏
rt=1

h(btat,qt,rt
)(gi′tj′t),

σl
i′j′ = σl1i′1

σl1j′1
. . . σ

la1

i′1
σ
la1

j′1
σ
la1+1

i′2
σ
la1+1

j′2
. . . σ

la1+a2

i′2
σ
la1+a2

j′2
. . . σ

l|a|
i′t
σ
l|a|
j′t
.

We obtain the general derivative of Fy by the following lemma.

Lemma 3.3. Let T be the tuple as in (37). There exists a collection of constants
{{γa,q, ba,q}q∈Qm , {c|a|(l)}l∈L|a|}a∈Am satisfying the following.

(a) γa,q ∈ {0, 1} and if γa,q=1 then ba,q ∈ Bm for all a ∈ Am and q ∈ Qm,
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(b) |c|a|(l)| ≤ (|a| − 1)! for all l ∈ L|a| and a ∈ Am,

(c) We have

∂kFy
∂m1gi′1j′1 . . . ∂

mtgi′tj′t
=
∑
a∈Am

( β√
N

)|a| ∑
q∈Qm

γa,qh
(ba,q)(gi′j′)

∑
l∈L|a|

c|a|(l)〈σl
i′j′〉y, (38)

Proof. We first use Lemma 3.1, then sequentially apply Lemma 3.2 to the function Fy to
obtain that

∂kFy
∂m1gi′1j′1 . . . ∂

mtgi′tj′t
=

∂k−m1

∂m2gi′2j′2 . . . ∂
mtgi′tj′t

( ∂m1Fy
∂m1gi′1j′1

)
=

m1∑
a1=1

( β√
N

)a1 m1!∑
q1=1

γ1
a1,q1

m1∏
r1=1

h(b1a1,q1,r1
)(gi′1j′1)

× ∂k−m1−m2

∂m3gi′3j′3 . . . ∂
mtgi′tj′t

( ∂m2

∂m2gi′2j′2

∑
l1∈La1

c1a1(l1)〈σl1

i′1j
′
1
〉y
)

=

m1∑
a1=1

m2∑
a2=1

( β√
N

)a1+a2
m1!∑
q1=1

m2!∑
q2=1

γ1
a1,q1γ

2
a2,q2

m1∏
r1=1

h(b1a1,q1,r1
)(gi′1j′1)

m2∏
r2=1

h(b2a2,q2,r2
)(gi′2j′2)

× ∂k−m1−m2

∂m3gi′3j′3 . . . ∂
mtgi′tj′t

( ∑
l1∈La1

∑
l2∈La1,a2

c1a1(l1)c2a2(l2)〈σl1

i′1j
′
1
σl2

i′2j
′
2
〉y
)

=

m1∑
a1=1

. . .

mt∑
at=1

( β√
N

)|a| m1!∑
q1=1

. . .

mt!∑
qt=1

γ1
a1,q1 . . . γ

t
at,qt

m1∏
r1=1

h(b1a1,q1,r1
)(gi′1j′1) . . .

mt∏
rt=1

h(btat,qt,rt
)(gi′tj′t)

×
∑

l1∈La1

. . .
∑

lt∈L|a|−at,at

c1a1(l1) . . . ctat(l
t)〈σl1

i′1j
′
1
. . . σlt

i′tj
′
t
〉y

=
∑

a∈Am

( β√
N

)|a| ∑
q∈Qm

γa,qh
(ba,q)(gi′j′)

∑
l∈L|a|

c|a|(l)〈σl
i′j′〉y,

where a = (a1, . . . , at),q = (q1, . . . , qt), l = (l1, . . . , lt), γa,q =
∏t
s=1 γ

s
as,qs , the sets La,Ln,a

are defined in Lemmas 3.1 and 3.2, and for ls = (ls1, . . . , l
s
as) ∈ L|a|s,as with |a|s = a1 + . . .+

as−1 (|a|1 = 0), we denoted σls

i′sj
′
s

= σ
ls1
i′s
σ
ls1
j′s
. . . σ

lsas

i′s
σ
lsas

j′s
. Notice that l = (l1, . . . , lt) ∈ L|a|,

since ls ∈ L|a|s,as for all 1 ≤ s ≤ t.

Here for the second line we used Lemma 3.1, and for the third line we applied Lemma

3.2 to L = σ
l11
i′1
σ
l11
j′1
. . . σ

l1a1

i′1
σ
l1a1

j′1
, which is a function of a1 configurations. The next equation is

obtained by applying sequentially Lemma 3.2.

Since
∑ms

rs=1 b
s
as,qs,rs = ms if γsas,qs = 1 for all 1 ≤ s ≤ t, we have ba,q ∈ Bm. Moreover,

we note that |c1a1(l1)| ≤ (a1 − 1)! and for any 2 ≤ s ≤ t and ls ∈ L|a|s,as ,

csas(ls) ≤ (|a|s + as − 1)!

(|a|s − 1)!
=

(|a|s+1 − 1)!

(|a|s − 1)!
.

Hence, for all tuples a ∈ A and l ∈ L|a|,

c|a|(l) =

t∏
s=1

csas(ls) ≤ (|a|t+1 − 1)! = (|a| − 1)!.

The proof of the lemma is completed.
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3.2 Proof of Proposition 3

First, we recall the replica trick which will be useful in computing the derivative of the free
energy. Let {g̃ij}1≤i<j≤N be an independent copy of {gij}1≤i<j≤N , and consider the Gibbs
measure, denoted by Gỹ, corresponding to the disordered environment ỹ = (h(g̃ij))1≤i<j≤N .
Let σ̃l1 , σ̃l2 , . . . , σ̃l|a| be i.i.d. configurations drawn according to the Gibbs measure induced
by the disorders h(g̃). Then for any a ∈ Am with m ∈Mt and 1 ≤ t ≤ k,

E
[
〈σl1i′1σ

l1
j′1
. . . σ

l|a|
i′t
σ
l|a|
j′t
〉2y
]

= E
[
〈σl1i′1 σ̃

l1
i′1
σl1j′1

σ̃l1j′1
. . . σ

l|a|
i′t
σ̃
l|a|
i′t
σ
l|a|
j′t
σ̃
l|a|
j′t
〉y,ỹ
]
, (39)

where 〈·〉y,ỹ is Gibbs average respect to Gibbs product measure (Gy × Gỹ)
⊗
|a|. (Here, for

simplicity the superscript |a| is omitted in 〈·〉y,ỹ).

Let us consider the tuple as in (37):

T = {i1j1, . . . , ikjk} = {i′1j′1, . . . , i′1j′1︸ ︷︷ ︸
m1 times

, . . . , i′tj
′
t, . . . , i

′
tj
′
t︸ ︷︷ ︸

mt times

}, {i′1j′1, . . . , i′tj′t} ∈ Et6=.

Using Lemma 3.3 and the Cauchy-Bunyakovsky-Schwarz inequality, we have(
E
[ ∂Fy
∂gi1j1 . . . ∂gikjk

])2

=
(
E
[ ∑
a∈Am

( β√
N

)|a| ∑
q∈Qm

γa,qh
(ba,q)(gi′j′)

∑
l∈L|a|

c|a|(l)〈σl
i′j′〉y

])2

≤ |Am|
∑

a∈Am

( β√
N

)2|a|(
E
[ ∑
q∈Qm

γa,qh
(ba,q)(gi′j′)

∑
l∈L|a|

c|a|(l)〈σl
i′j′〉y

])2

≤ |Am|
∑

a∈Am

( β√
N

)2|a|
E
[( ∑

q∈Qm

γa,qh
(ba,q)(gi′j′)

)2]
E
[( ∑

l∈L|a|

c|a|(l)〈σl
i′j′〉y

)2]
. (40)

Moreover,

sup
ba,q∈Bm

sup
γa,q

E
[( ∑

q∈Qm

γa,qh
(ba,q)(gi′j′)

)2]
≤ |Qm|2 sup

q∈Qm

sup
ba,q∈Bm

E
[(
h(ba,q)(gi′j′)

)2]

= |Qm|2 sup
q∈Qm

sup
ba,q∈Bm

t∏
s=1

E
[ ms∏
rs=1

(h(bas,qs,rs )(g)
)2]

= |Qm|2 sup
q∈Qm

sup
ba,q∈Bm

E
[(
h(ba,q)(g)

)2]
.

Hence, by the definition of ph(k) and the fact that |Qm| ≤ kk for all m,

sup
1≤t≤k

sup
m∈Mt

sup
a∈Am

sup
ba,q∈Bm

sup
γa,q

E
[( ∑

q∈Qm

γa,qh
(ba,q)(gi′j′)

)2]
≤ k2k sup

1≤t≤k
sup

m∈Mt

sup
a∈Am

sup
q∈Qm

sup
ba,q∈Bm

E
[(
h(ba,q)(g)

)2] ≤ ph(k). (41)

By Cauchy-Bunyakovsky-Schwarz inequality again, we have

E
[( ∑

l∈L|a|

ca(l)〈σl
i′j′〉y

)2]
≤ |L|a|| max

l∈L|a|
c|a|(l)

2E
[ ∑
l∈L|a|

〈σl
i′j′〉2y

]
≤ (|a|!)3E

[ ∑
l∈L|a|

〈σl
i′j′〉2y

]
, (42)

since |L|a|| ≤ |a|! and |ca(l)| ≤ (|a| − 1)!, by Lemma 3.3. Combining (40), (41) and (42),(
E
[ ∂Fy
∂gi1j1 . . . ∂gikjk

])2

≤ ph(k)|Am|
∑

a∈Am

β2|a|(|a|!)3

N |a|
E
[ ∑
l∈L|a|

〈σl
i′j′〉2y

]
. (43)
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Therefore, ∑
{i1j1,...,ikjk}∈Ek

(
E
[ ∂

∂gi1j1 . . . ∂gikjk
Fy

])2

≤ ph(k)

k∑
t=1

∑
m∈Mt

∑
i′j′∈Et

6=

|Am|
∑

a∈Am

β2|a|(|a|!)3

N |a|

∑
l∈L|a|

E
[
〈σl

i′j′〉2y
]

≤ ph(k)

k∑
t=1

∑
m∈Mt

|Am|
∑

a∈Am

β2|a|(|a|!)3

N |a|

∑
l∈L|a|

∑
i′j′∈Et

E
[
〈σl

i′j′〉2y
]
. (44)

Using the replicas trick (39),∑
i′j′∈Et

E
[
〈σl

i′j′〉2y
]

=
∑

i′j′∈Et

E
[
〈σl

i′j′σ̃
l
i′j′〉y,ỹ

]
. (45)

For any l = (l1, . . . , l|a|) ∈ L|a|,∑
i′j′∈Et

σl
i′j′σ̃

l
i′j′ =

∑
1≤i′1,j′1,...,i′t,j′t≤N

σl1i′1
σ̃l1i′1
σl1j′1

σ̃l1j′1
. . . σ

la1

i′1
σ̃
la1

i′1
σ
la1

j′1
σ̃
la1

j′1
σ
la1+1

i′2
σ̃
la1+1

i′2
σ
la1+1

j′2
σ̃
la1+1

j′2

× . . . σla1+a2

i′2
σ̃
la1+a2

i′2
σ
la1+a2

j′2
σ̃
la1+a2

j′2
. . . σ

l|a|
i′t
σ̃
l|a|
i′t
σ
l|a|
j′t
σ̃
l|a|
j′t

= (σl1 · σ̃l1)2(σl2 · σ̃l2)2 . . . (σl|a| · σ̃l|a|)2, (46)

where

σls · σ̃ls =

N∑
i=1

σlsi σ̃
ls
i .

By Hölder’s inequality,

〈(σl1 · σ̃l1)2(σl2 · σ̃l2)2 . . . (σl|a| · σ̃l|a|)2〉y,ỹ (47)

≤ 〈(σl1 · σ̃l1)2|a|〉1/|a|y,ỹ 〈(σ
l2 · σ̃l2)2|a|〉1/|a|y,ỹ . . . 〈(σl|a| · σ̃l|a|)2|a|〉1/|a|y,ỹ = 〈(σ · σ̃)2|a|〉y,ỹ,

since {(σls , σ̃ls)}1≤s≤l|a| are independent copies of (σ, σ̃) given the environment variables y, ỹ.
In summary, using (44)–(47), we obtain that

θk(Fy) =
∑

{i1j1,...,ikjk}∈Ek

(
E
[ ∂

∂gi1j1 . . . ∂gikjk
Fy

])2

≤ ph(k)

k∑
t=1

∑
m∈Mt

|Am|
∑

a∈Am

β2|a|(|a|!)4

N |a|
E[〈(σ · σ̃)2|a|〉y,ỹ], (48)

since |L|a|| = |a|!.

Lemma 3.4. If y = h(g)
(d)
= −h(g) then for any measurable function L on Σ2

N ,

E[〈L〉y,ỹ] = EU×Ũ [L], (49)

where U, Ũ are the uniform distributions on ΣN and EU×Ũ is the expectation w.r.t. the

product measure of U and Ũ .

Proof. Since

E[〈L〉y,ỹ] =
∑
σ,σ̃∈Σ

L(σ, σ̃)E[Gy(σ)]E[Gỹ(σ̃)],
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to assert (49), it is enough to show that for any σ, τ in ΣN ,

E[Gy(σ)] = E[Gy(τ)]. (50)

Fix σ, τ ∈ ΣN , we set xij :=
yijτiτj
σiσj

and observe that

E[Gy(τ)] = E

 exp
(∑

ij∈E(yijτiτj)
)

∑
ω∈ΣN

exp
(∑

ij∈E yijωiωj

)


= E

 exp
(∑

ij∈E(xijσiσj

)
∑
ω∈ΣN

exp
(∑

ij∈E
xijσiσj
τiτj

ωiωj

)
 .

We now define ω′ ∈ ΣN by setting ω′i = σi

τi
ωi for 1 ≤ i ≤ N . Then the above equation can be

rewritten as

E[Gy(τ)] = E

 exp
(∑

ij∈E(xijσiσj

)
∑
ω′∈ΣN

exp
(∑

ij∈E xijω
′
iω
′
j

)
 = E[Gy(σ)],

since yij
(d)
= xij (as yij = ±xij and h(gij)

(d)
= −h(gij)). Hence, (50) is proved and the result

of this lemma follows.

By Lemma 3.4,

E
[
〈(σ · σ̃)2|a|〉y,ỹ

]
= EU×Ũ

[
(σ · σ̃)2|a|

]
.

Under U×Ũ , the variable σ ·σ̃ is simply the sum of N i.i.d. symmetric {−1, 1}-valued random
variables. Hence, using Hoeffding’s inequality,

EU×Ũ
[
(σ · σ̃)2|a|

]
≤ |a||a|N |a|.

Combining the last two equations with (48), we yield that for all k ≥ 1

θk(Fy) ≤ ph(k)

k∑
t=1

∑
m∈Mt

|Am|
∑

a∈Am

β2|a|(|a|!)4|a||a| ≤ (1 + β2k)k8k+1ph(k),

since |Am| ≤ kk, |Mt| ≤ kk and |a| ≤ k. This completes the proof of Proposition 3. �

Acknowledgement. The work of V. H. Can is supported by the Singapore Ministry of
Education Academic Research Fund Tier 2 Grant MOE2018-T2-2-076. V. Q. Nguyen and
H. S. Vu are supported by International Center for Research and Postgraduate Training in
Mathematics, Institute of Mathematics, Vietnam Academy of Science and Technology under
grant number ICRTM03-2020.02.

References

[1] Auffinger A. and W. -K. Chen. Universality of chaos and ultrametricity in mixed p-spin
models. Commun. Pure. Appl. Math. 69, 2107-2130 (2016).

[2] Benaim, M. and Rossignol, R. Exponential concentration for first passage percolation
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