SOME NEW REGULARITY CRITERIA FOR THE NAVIER-STOKES EQUATIONS IN TERMS OF ONE DIRECTIONAL DERIVATIVE OF THE VELOCITY FIELD

N.V. GIANG AND D.Q. KHAI

Abstract

We establish some regularity criteria for the solutions to the Navier-Stokes equations in the full three-dimensional space in terms of one directional derivative of the velocity field. Revising the method used by Zujin Zhang (2018), we show that a weak solution u is regular on $(0, \mathrm{~T}]$ provided that $\frac{\partial u}{\partial x_{3}} \in L^{p}\left(0, T ; L^{q}\left(\mathbb{R}^{3}\right)\right)$ with $s=2$ for $3 \leq q \leq 6, \frac{19}{10} \leq s \leq 2$ for $6 \leq q \leq \frac{6}{6 s-11}$, and $\frac{11}{6} \leq s \leq \frac{19}{10}$ for $\frac{3}{2} \sqrt{\frac{s^{2}+2 s-3}{(2 s-3)^{2}}}-\frac{3(s-3)}{2(2 s-3)} \leq q \leq \frac{6}{6 s-11}$ where $s=\frac{2}{p}+\frac{3}{q}$. They improve the known results $\frac{2}{p}+\frac{3}{q}=2$ for $3 \leq q \leq \frac{19}{6}$ and $\frac{2}{p}+\frac{3}{q} \leq \frac{8}{5}+\frac{9}{11 q}$ for $\frac{5}{2} \leq q<\infty$.

1. INTRODUCTION AND MAIN RESULTS

We consider sufficient conditions for the regularity of solutions of the Cauchy problem for the NavierStokes equations in \mathbb{R}^{3}

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}-\Delta u+u \cdot \nabla u+\nabla p=0 & \text { in } \mathbb{R}^{3} \times(0, \infty) \\
\nabla \cdot u=0 & \text { in } \mathbb{R}^{3} \times(0, \infty) \\
\left.u\right|_{t=0}=u_{0} & \tag{1.3}
\end{array}
$$

where $u=\left(u_{1}, u_{2}, u_{3}\right): \mathbb{R}^{3} \times(0, T) \rightarrow \mathbb{R}^{3}$ is the velocity field, $p: \mathbb{R}^{3} \times(0, T) \rightarrow \mathbb{R}$ is a scalar pressure, and u_{0} is the initial velocity field. We recall some well-known function spaces, the definitions of weak and strong solutions to (1.1) and introduce some notations before describing the main results. Throughout the paper, we sometimes use the notation $A \lesssim B$ as an equivalent to $A \leq C B$ with a uniform constant C, for $1 \leq q \leq \infty$ we use the well-known Lebesgue spaces $L^{q}\left(\mathbb{R}^{3}\right)$, with norms $\|\cdot\|_{L^{q}\left(\mathbb{R}^{3}\right)}=\|\cdot\|_{q}$. Further, we use the Bochner spaces $\left.L^{s}(t, T ; X)\right), 1 \leq s \leq \infty$, where X is a Banach space, if $X=L^{q}\left(\mathbb{R}^{3}\right)$ then we denote

$$
\|\cdot\|_{L^{s}\left(t, T ; L^{q}\left(\mathbb{R}^{3}\right)\right)}:=\left(\int_{t}^{T}\|\cdot\|_{L^{q}\left(\mathbb{R}^{3}\right)}^{s} \mathrm{~d} \tau\right)^{1 / s}=\| \| \cdot\left\|_{q}\right\|_{s ; t, T}=\|\cdot\|_{q, s ; t, T}
$$

2010 Mathematics Subject Classification. Primary 35Q30; Secondary 76D05.
Key words and phrases. Navier-Stokes equations, regularity criterion, energy inequality, weak solution, one velocity component.

We use standard Sobolev space and do not differentiate between scalar and tensor function. We write $u=\left(u_{1}, u_{2}, u_{3}\right) \in X$ instead of $u=\left(u_{1}, u_{2}, u_{3}\right) \in X^{3}$. We denote

$$
u_{h}=\left(u_{1}, u_{2}\right), \nabla_{h}=\left(\partial_{1}, \partial_{2}\right), \Delta_{h}=\partial_{1} \partial_{1}+\partial_{2} \partial_{2} .
$$

To deal with solenoidal vector fields we introduce the space of divergence-free smooth compactly supported functions $\left.C_{0, \sigma}^{\infty}\left(\mathbb{R}^{3}\right)\right)=\left\{u \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)\right)$, $\left.\operatorname{div}(u)=0\right\}$, and the spaces $L_{\sigma}^{2}\left(\mathbb{R}^{3}\right)=\overline{C_{0, \sigma}^{\infty}\left(\mathbb{R}^{3}\right)}{ }^{\|\cdot\|_{2}}$. Let $u_{0} \in L_{\sigma}^{2}\left(\mathbb{R}^{3}\right)$, a weak solution of (1.1)-(1.3) on $[0, T]$ (or $[0, \infty)$ if $T=\infty)$ is a function $u:[0, T] \rightarrow L_{\sigma}^{2}\left(\mathbb{R}^{3}\right)$ in the class $u \in C_{w}\left([0, T] ; L_{\sigma}^{2}\left(\mathbb{R}^{3}\right)\right) \cap$ $L_{\text {loc }}^{2}\left(0, T ; H^{1}\left(\mathbb{R}^{3}\right)\right)$ satisfying

$$
(u(t), \varphi(t))+\int_{0}^{t}\left\{-\left(u, \partial_{t} \varphi\right)+(\nabla u, \nabla \varphi)+(u \cdot \nabla u, \varphi)\right\} d s=\left(u_{0}, \varphi(0)\right)
$$

for all $t \in[0, T]$ and all test functions $\varphi \in C_{0}^{\infty}\left([0, T) \times \mathbb{R}^{3}\right)$ with $\nabla \cdot \varphi=0$. Here (\cdot, \cdot) stands for L^{2}-inner product, and C_{w} signifies continuity in the weak topology. For every $u_{0} \in L^{2}\left(\mathbb{R}^{3}\right)$, there exists a weak solution of (1.1)-(1.3) on $[0, \infty)$ satisfying the following energy inequality (see Leray [5])

$$
\begin{equation*}
\|u(\cdot, t)\|_{L^{2}}^{2}+2 \nu \int_{t_{0}}^{t}\|\nabla u(\cdot, s)\|_{L^{2}}^{2} d s \leq\left\|u_{0}\right\|_{L^{2}}^{2} \tag{1.4}
\end{equation*}
$$

for almost all $t_{0} \in[0, \infty)$ including $t_{0}=0$ and all $t \in\left[t_{0}, \infty\right)$. A Leray-Hopf solution of (1.1)-(1.3) on $[0, T]$ is weak solution on $[0, T]$ satisfying the energy inequality (1.4) for almost all $t_{0} \in(0, T)$ and all $t \in\left[t_{0}, T\right]$. A weak solution of the Navier-Stokes equations that belongs to $u \in L^{\infty}\left([0, T] ; H^{1}\left(\mathbb{R}^{3}\right)\right) \cap L^{2}\left(0, T ; H^{2}\left(\mathbb{R}^{3}\right)\right)$ is called a strong solution. We say that a Leray weak solution is regular if $u \in C^{\infty}\left((0, T) \times \mathbb{R}^{3}\right)$. It is well-known that if the above Leray weak solution u satisfies

$$
u \in L^{\infty}\left(0, T ; H^{1}\left(\mathbb{R}^{3}\right)\right) \cap L^{2}\left(0, T ; H^{2}\left(\mathbb{R}^{3}\right)\right)
$$

then such solution is regular.
There are many known sufficient conditions on the velocity which guarantee that a solution is regular for all time. The first such criterion is usually referred to as the Prodi-Serrin condition $[10,17]$ saying that if

$$
u \in L^{p}\left(0, T ; L^{q}\left(\mathbb{R}^{3}\right)\right), \frac{2}{p}+\frac{3}{q}=1, q \in[3, \infty)
$$

then u is regular and is unique in the class of all weak solutions satisfying the energy inequality. Notice that the case $u \in L^{\infty}\left(0, T ; L^{3}\left(\mathbb{R}^{3}\right)\right)$ was covered by Escauriaza et al. [3]. A related well-known sufficient condition is due to Beiräo da Veiga [1]. Namely, if

$$
\nabla u \in L^{p}\left(0, T ; L^{q}\left(\mathbb{R}^{3}\right)\right), \frac{2}{p}+\frac{3}{q}=2, q \in\left[\frac{3}{2}, \infty\right)
$$

then u is regular. Note that the case $\nabla u \in L^{\infty}\left(0, T ; L^{\frac{3}{2}}\left(\mathbb{R}^{3}\right)\right)$ follows immediately from the Sobolev imbedding theorems and [3].

Recently, many authors became interested in the regularity criteria involving only one directional derivative of velocity field, namely $\frac{\partial u}{\partial x_{3}}$. In [7,9] Penel-Pokornýy showed that if

$$
\frac{\partial u}{\partial x_{3}} \in L^{p}\left(0, T ; L^{q}\left(\mathbb{R}^{3}\right)\right), \frac{2}{p}+\frac{3}{q}=\frac{3}{2}, 2 \leq q \leq \infty
$$

then u is regular on $(0, \mathrm{~T}]$. Later on, authors proved the regularity criterion in several papers, see $[2,4,6,19]$. Here, if

$$
\frac{\partial u}{\partial x_{3}} \in L^{p}\left(0, T ; L^{q}\left(\mathbb{R}^{3}\right)\right), \frac{2}{p}+\frac{3}{q}=2, \quad \frac{3}{2}<q \leq 3
$$

then u is regular on (0, T]. In 2019, Zhang, Yuan, Ganzhou, Zhou and Zhuhai [20] proved two regularity criteria

$$
\frac{\partial u}{\partial x_{3}} \in L^{p}\left(0, T ; L^{q}\left(\mathbb{R}^{3}\right)\right), \quad \frac{2}{p}+\frac{3}{q} \leq \frac{8}{5}+\frac{9}{11 q}, \quad \frac{5}{2} \leq q<\infty
$$

or

$$
\frac{\partial u}{\partial x_{3}} \in L^{p}\left(0, T ; L^{q}\left(\mathbb{R}^{3}\right)\right), \quad \frac{2}{p}+\frac{3}{q} \leq \frac{14}{11}+\frac{3}{5 q}, \quad 4 \leq q<\infty .
$$

Z. Skalak [12] proved the following regularity criterion

$$
\frac{\partial u}{\partial x_{3}} \in L^{p}\left(0, T ; L^{q}\left(\mathbb{R}^{3}\right)\right), \quad \frac{2}{p}+\frac{3}{q} \leq 1+\frac{3}{q}, 3<q \leq \frac{10}{3}
$$

Very recently, Skalak [16] showed that if

$$
\frac{\partial u}{\partial x_{3}} \in L^{p}\left(0, T ; L^{q}\left(\mathbb{R}^{3}\right)\right), \quad \frac{2}{p}+\frac{3}{q}=2, \quad 3 \leq q \leq \frac{19}{6}
$$

then u is regular on $(0, \mathrm{~T})$, crossing so for the first time the barrier $q=3$. In this paper we will focus on the method used in [19] to improve the results from [12, 16, 20]. The following theorems is the main results of our pager.

Theorem 1.1. Let $u_{0} \in H^{1}\left(\mathbb{R}^{3}\right)$ with $\nabla \cdot u=0, T>0$. Assume that u is a Leray weak solution of the problem (1.1)-(1.3) with the initial data u_{0}. Then u is regular on $(0, T)$ if

$$
\frac{\partial u}{\partial x_{3}} \in L^{p}\left(0, T ; L^{q}\left(\mathbb{R}^{3}\right)\right)
$$

with

$$
\begin{equation*}
\frac{2}{p}+\frac{3}{q}=2, \quad 3 \leq q \leq 6 \tag{1.5}
\end{equation*}
$$

Theorem 1.2. Let $u_{0} \in H^{1}\left(\mathbb{R}^{3}\right)$ with $\nabla \cdot u=0, T>0$. Assume that u is a Leray weak solution of the problem (1.1)-(1.3) with the initial data u_{0}. Then u is regular on $(0, T)$ if

$$
\frac{\partial u}{\partial x_{3}} \in L^{p}\left(0, T ; L^{q}\left(\mathbb{R}^{3}\right)\right)
$$

with

$$
\begin{equation*}
\frac{19}{10} \leq s \leq 2,6 \leq q \leq \frac{6}{6 s-11} \tag{1.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{11}{6} \leq s \leq \frac{19}{10}, \frac{3}{2} \sqrt{\frac{s^{2}+2 s-3}{(2 s-3)^{2}}}-\frac{3(s-3)}{2(2 s-3)} \leq q \leq \frac{6}{6 s-11} \tag{1.7}
\end{equation*}
$$

where

$$
s=\frac{2}{p}+\frac{3}{q}
$$

Remark 1.3. The result of Theorem 1.1 improves that of $[12,16]$. If $s=\frac{19}{10}$ then the condition (1.6) becomes $6 \leq q \leq 15$ and we have $\frac{19}{10}>\frac{191}{110} \geq \frac{8}{5}+\frac{9}{11 q}, \frac{19}{10}>\frac{151}{110} \geq \frac{14}{11}+\frac{3}{5 q}$; if $s=\frac{11}{6}$ then the condition (1.7) becomes $q>\frac{3 \sqrt{145}}{8}+\frac{21}{8} \approx 7.1406$ and we have $\frac{11}{6}>\frac{1}{220}(5 \sqrt{145}+317) \geq \frac{8}{5}+\frac{9}{11 q}, \frac{11}{6}>\frac{1}{660}(11 \sqrt{145}+763) \geq \frac{14}{11}+\frac{3}{5 q}$, therefore the result of Theorem 1.2 improves that of [20].

The following lemmas will be useful in several cases
Lemma 1.4. (Troisi Inequality). Suppose that $r, p_{1}, p_{2}, p_{3} \in(1, \infty)$ and

$$
1+\frac{3}{r}=\sum_{i=1}^{3} \frac{1}{p_{i}}
$$

Then there exists a constant $C>0$ such that for every $f \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$

$$
\|f\|_{r} \leq C \prod_{i=1}^{3}\left\|\partial_{i} f\right\|_{p_{i}}^{1 / 3}
$$

Lemma 1.5. For each $1 \leq s<\infty, 0<\lambda<\infty$, then exists some constant C such that for each $f \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$,

$$
\|f\|_{(2 \lambda+1) q} \leq C\left\|\partial_{i} f\right\|_{q}^{\frac{1}{2 \lambda+1}}\left\|\partial_{k}|f|^{\lambda}\right\|_{2}^{\frac{1}{2 \lambda+1}}\left\|\partial_{j}|f|^{\lambda}\right\|_{2}^{\frac{1}{2 \lambda+1}}
$$

where i, j, k is a permutation of 1, 2, 3.
For the proofs of Lemmas 1.4 and 1.5 see [18] and [19], respectively.
Lemma 1.6. (Hölder's inequality in mixed-norm Lebesgue space).
Let $1 \leq r, p, q, \bar{r}, \bar{p}, \bar{q} \leq \infty$ and $-\infty \leq t \leq T \leq \infty$ satisfy the relations

$$
\left(\frac{1}{r}, \frac{1}{\bar{r}}\right)=\left(\frac{1}{p}, \frac{1}{\bar{p}}\right)+\left(\frac{1}{q}, \frac{1}{\bar{q}}\right)
$$

Suppose that $f \in L^{\bar{p}}\left(t, T ; L^{p}\left(\mathbb{R}^{3}\right)\right)$ and $g \in L^{\bar{q}}\left(t, T ; L^{q}\left(\mathbb{R}^{3}\right)\right)$. Then $f g \in L^{\bar{r}}\left(t, T ; L^{r}\left(\mathbb{R}^{3}\right)\right)$ and we have the inequality

$$
\|f g\|_{r, \bar{r} ;, t, T} \leq\|f\|_{p, \bar{p} ; t, T}\|g\|_{q, \bar{q} ; t, T}
$$

Lemma 1.7. (Interpolation inequality in mixed-norm Lebesgue space). Let $1 \leq r, p, q, \bar{r}, \bar{p}, \bar{q} \leq \infty,-\infty \leq t \leq T \leq \infty$ and $0 \leq \theta \leq 1$ satisfy the relation

$$
\left(\frac{1}{r}, \frac{1}{\bar{r}}\right)=(1-\theta)\left(\frac{1}{p}, \frac{1}{\bar{p}}\right)+\theta\left(\frac{1}{q}, \frac{1}{\bar{q}}\right)
$$

Suppose that $f \in L^{\bar{p}}\left(t, T ; L^{p}\left(\mathbb{R}^{3}\right)\right) \cap L^{\bar{q}}\left(t, T ; L^{q}\left(\mathbb{R}^{3}\right)\right)$. Then $f \in L^{\bar{r}}\left(t, T ; L^{r}\left(\mathbb{R}^{3}\right)\right)$ and we have the inequality

$$
\|f\|_{r, \bar{r} ; t, T} \leq\|f\|_{p, \bar{p} ; t, T}^{1-\theta}\|f\|_{q, \bar{q} ; t, T}^{\theta} .
$$

The proofs of Lemmas 1.6 and 1.7 are elementary and may be omitted.

2. The proof of the main result

The proofs of Theorem 1.1 and 1.2 are based on the method used in [19]. We define the quantities \mathcal{L} and \mathcal{J} (see [1,4]) and then prove that \mathcal{L} and \mathcal{J} are uniformly bounded in time. Let $T^{*}=\sup \{\tau>0 ; u$ is regular on $(0, \tau)\}$. Since $u_{0} \in H^{1}, u$ is regular on some positive time interval and T^{*} is either equal to infinity (in which case the proof is finished) or it is a positive number and u is regular on $\left(0, T^{*}\right)$, that is $\nabla u \in$ $L_{l o c}^{\infty}\left(\left[0, T^{*}\right) ; L^{2}\right)$. It is sufficient to prove that $T^{*}>T$. We proceed by contradiction and suppose that $T^{*} \leq T$. We take $\epsilon>0$ sufficiently small (it will be specified later) and fix $t_{1} \in\left(0, T^{*}\right)$ such that $\left\|\partial_{3} u\right\|_{L^{p}\left(t_{1}, T^{*} ; L^{q}\right)}<\epsilon$. Taking arbitrarily $t \in\left(t_{1}, T^{*}\right)$ the proof will be finished if we show that $\|\nabla u(t)\|_{2} \leq C<\infty$, where C is independent of t. Actually, the standard extension argument then shows that the regularity of u can be extended beyond T^{*} and it contradicts the definition of T^{*}. We define

$$
\begin{aligned}
\mathcal{J}^{2}(t) & =\max _{\tau \in\left[t_{1}, t\right]}\left(\left\|\nabla u_{h}(\tau)\right\|_{2}^{2}+\left\|\partial_{3} u(\tau)\right\|_{2}^{2}\right)+\int_{t_{1}}^{t}\left(\left\|\Delta u_{h}(\tau)\right\|_{2}^{2}+\left\|\nabla \partial_{3} u(\tau)\right\|_{2}^{2}\right) \mathrm{d} \tau \\
\mathcal{L}^{2}(t) & =\max _{\tau \in\left[t_{1}, t\right]}\left\|\left|u_{3}(\tau)\right|^{\lambda}\right\|_{2}^{2}+\int_{t_{1}}^{t}\left\|\nabla\left(\left|u_{3}(\tau)\right|^{\lambda}\right)\right\|_{2}^{2} \mathrm{~d} \tau, \quad \lambda>\frac{3}{2} .
\end{aligned}
$$

The proof will be finished if we show that $\mathcal{J}(t)+\mathcal{L}(t)$ is bounded on $\left(t_{1}, T^{*}\right)$.

Proof of Theorem 1.1

We will start with the estimate of \mathcal{J}. The NSE may be rewritten as

$$
\frac{\partial u_{k}}{\partial t}-\Delta u_{k}+\sum_{j=1}^{3} u_{j} \partial_{j} u_{k}+\partial_{k} p=0 \quad\left(N S E_{k}\right)
$$

where $k=1,2,3$. Now, we proceed as in [6]. For $k=1,2$, multiplying the equation $N S E_{k}$ by $-\Delta u_{k}$ and (1.1) by $\partial_{3} \partial_{3} u$ in $L^{2}\left(\mathbb{R}^{3}\right)$, respectively, and adding them together we obtain

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left[\left\|\nabla u_{h}\right\|_{2}^{2}+\left\|\partial_{3} u\right\|_{2}^{2}\right]+\left[\left\|\Delta u_{h}\right\|_{2}^{2}+\left\|\nabla \partial_{3} u\right\|_{2}^{2}\right] \\
\lesssim & \int_{\mathbb{R}^{3}}\left|\partial_{3} u \| \nabla u_{h}\right|^{2} \mathrm{~d} x+\int_{\mathbb{R}^{3}}\left|u_{3}\right|\left|\partial_{3} u\right|\left(\left|\Delta u_{h}\right|+\left|\nabla \partial_{3} u\right|\right) \mathrm{d} x \tag{2.1}\\
:= & J_{1}+J_{2},
\end{align*}
$$

where the first inequality was proved in [19], by the Hölder and Gagliardo-Nirenberg inequalities

$$
J_{1} \leq\left\|\partial_{3} u\right\|_{q}\left\|\nabla u_{h}\right\|_{\frac{2 q}{q-1}}^{2} \lesssim\left\|\partial_{3} u\right\|_{q}\left\|\nabla u_{h}\right\|_{2}^{\frac{2 q-3}{q}}\left\|\Delta u_{h}\right\|_{2}^{\frac{3}{q}}
$$

Integrating in time and using the Hölder inequality we obtain

$$
\begin{equation*}
\int_{t_{1}}^{t} J_{1} \mathrm{~d} \tau \leq C\left\|\partial_{3} u\right\|_{\frac{2 q}{2 q-3}, q ; t_{1}, t}\left\|\nabla u_{h}\right\|_{\infty_{, 2 ;} ; t_{1}, t}^{\frac{2 q-3}{q}}\left\|\Delta u_{h}\right\|_{2,2 ; t_{1}, t}^{\frac{3}{q}} \leq C \epsilon \mathcal{J}^{2}(t) \tag{2.2}
\end{equation*}
$$

Using the Hölder inequality to estimate the term J_{2}

$$
\begin{align*}
\int_{t_{1}}^{t} J_{2} \mathrm{~d} \tau & =\int_{t_{1}}^{t} \int_{\mathbb{R}^{3}}\left|u_{3}\right|\left|\partial_{3} u\right|\left(\left|\Delta u_{h}\right|+\left|\nabla \partial_{3} u\right|\right) \mathrm{d} x \mathrm{~d} \tau \\
& =\left\|\left|u_{3}\right|\left|\partial_{3} u\right|\left(\left|\Delta u_{h}\right|+\left|\nabla \partial_{3} u\right|\right)\right\|_{1,1 ; t_{1}, t} \tag{2.3}\\
& \lesssim\left\|u_{3}\right\|_{a, \bar{a} ; t_{1}, t} \mid \partial_{3} u\left\|_{b, \bar{b} ; t_{1}, t}\right\| \Delta u_{h}, \nabla \partial_{3} u \|_{2,2 ; t_{1}, t}
\end{align*}
$$

where

$$
\begin{equation*}
\left(\frac{1}{a}, \frac{1}{\bar{a}}\right)+\left(\frac{1}{b}, \frac{1}{\bar{b}}\right)=\left(\frac{1}{2}, \frac{1}{2}\right) \tag{2.4}
\end{equation*}
$$

Applying the interpolation inequality, Lemma 1.5 and the Hölder inequality in order to obtain

$$
\begin{aligned}
\left\|u_{3}\right\|_{a, \bar{a} ; t_{1}, t} & \leq\left\|u_{3}\right\|_{2 \lambda, \infty ; t_{1}, t}^{1-v_{1}}\left\|u_{3}\right\|_{(2 \lambda+1) q, \frac{2(2 \lambda+1) q}{4-3} ; t_{1}, t}^{v_{1}} \\
& \lesssim\left\|u_{3}\right\|_{2 \lambda, \infty ; t_{1}, t}^{1-v_{1}}\| \| \nabla_{h}\left|u_{3}\right|^{\lambda}\left\|_{2}^{\frac{2}{2 \lambda+1}}\right\| \partial_{3} u_{3}\left\|_{q}^{\frac{1}{2 \lambda+1}}\right\|_{\frac{2(2 \lambda+1) q}{4 q-3} ; t_{1}, t}^{v_{1}} \\
& \leq\left\|\left|u_{3}\right|^{\lambda}\right\|_{2, \infty ; t_{1}, t}^{\frac{1-v_{1}}{\lambda}}\left\|\nabla_{h}\left|u_{3}\right|^{\lambda}\right\|_{2,2 ; t_{1}, t}^{\frac{2 v_{1}}{2 \lambda+1}}\left\|\partial_{3} u\right\|_{q, \frac{2 q}{2 q-3} ; t_{1}, t}^{\frac{v_{1}}{2 \lambda+1}},
\end{aligned}
$$

where interpolation inequality with

$$
\begin{equation*}
\left(\frac{1}{a}, \frac{1}{\bar{a}}\right)=\left(1-v_{1}\right)\left(\frac{1}{2 \lambda}, 0\right)+v_{1}\left(\frac{1}{(2 \lambda+1) q}, \frac{4 q-3}{2(2 \lambda+1) q}\right), \quad 0 \leq v_{1} \leq 1 \tag{2.5}
\end{equation*}
$$

Using the interpolation inequality, we get

$$
\left\|\partial_{3} u\right\|_{b, \bar{b} ; t_{1}, t} \leq\left\|\partial_{3} u\right\|_{q, \frac{2 q}{2 q-3} ; t_{1}, t}^{1-v_{2}}\left\|\partial_{3} u\right\|_{2, \infty ; t_{1}, t}^{v_{2}}
$$

where

$$
\begin{equation*}
\left(\frac{1}{b}, \frac{1}{\bar{b}}\right)=\left(1-v_{2}\right)\left(\frac{1}{q}, \frac{2 q-3}{q}\right)+v_{2}\left(\frac{1}{2}, 0\right), \quad 0 \leq v_{2} \leq 1 . \tag{2.6}
\end{equation*}
$$

It follows from (2.4), (2.5), and (2.6) that

$$
\begin{equation*}
\frac{1-v_{1}}{2 \lambda}+\frac{v_{1}}{(2 \lambda+1) q}+\frac{1-v_{2}}{q}+\frac{v_{2}}{2}=\frac{1}{2} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{4 q-3}{2(2 \lambda+1) q} v_{1}+\frac{2 q-3}{2 q}\left(1-v_{2}\right)=\frac{1}{2} . \tag{2.8}
\end{equation*}
$$

From the above estimates we have

$$
\begin{aligned}
\int_{t_{1}}^{t} J_{2} \mathrm{~d} \tau & \lesssim\left\|\partial_{3} u\right\|_{q, \frac{2}{2 q-3} ; t_{1}, t}^{\frac{v_{1}}{2 \lambda+1}+1-v_{2}}\left\|\left|u_{3}\right|^{\lambda}\right\|_{2, \infty ; t_{1}, t}^{\frac{1-v_{1}}{\lambda}}\left\|\nabla\left|u_{3}\right|^{\lambda}\right\|_{2,2 ; t_{1}, t}^{\frac{2 v_{1}}{2 \lambda+1}}\left\|\partial_{3} u\right\|_{2, \infty ; t_{1}, t}^{v_{2}}\left\|\Delta u_{h}, \nabla \partial_{3} u\right\|_{2,2 ; t_{1}, t} \\
& \lesssim \epsilon^{\frac{v_{1}}{2 \lambda+1}+1-v_{2}} \mathcal{J}^{1+v_{2}}(t) \mathcal{L}^{\frac{1-v_{1}}{\lambda}+\frac{2 v_{1}}{2 \lambda+1}}(t) .
\end{aligned}
$$

We deduce that

$$
\begin{align*}
\mathcal{J}^{2}(t) & \leq\left\|\nabla u_{h}\left(t_{1}\right)\right\|_{2}^{2}+\left\|\partial_{3} u\left(t_{1}\right)\right\|_{2}^{2}+C \epsilon \mathcal{J}^{2}(t) \\
& +C \epsilon^{\frac{v_{1}}{2 \lambda+1}+1-v_{2}} \mathcal{J}^{1+v_{2}}(t) \mathcal{L}^{\frac{1-v_{1}}{\lambda}+\frac{2 v_{1}}{2 \lambda+1}}(t) \tag{2.9}\\
& \leq C+C \epsilon \mathcal{J}^{2}(t)+C \epsilon^{\frac{v_{1}}{2 \lambda+1}+1-v_{2}} \mathcal{J}^{1+v_{2}}(t) \mathcal{L}^{\frac{1-v_{1}}{\lambda}+\frac{2 v_{1}}{2 \lambda+1}}(t)
\end{align*}
$$

We are now prepared to proceed with the estimate of \mathcal{L}. proceeding as in [13], multiplying the 3 rd equation from (1.1) by $\left|u_{3}\right|^{2 \lambda-2} u_{3}$ and integrating over the whole space we get

$$
\frac{d}{d t}\left\|\left|u_{3}\right|^{\lambda}\right\|_{2}^{2}+\left(\frac{4 \lambda-2}{\lambda}\right)\left\|\nabla\left|u_{3}\right|^{\lambda}\right\|_{2}^{2}=(-2 \lambda) \int \partial_{3} p\left|u_{3}\right|^{2 \lambda-2} u_{3} \equiv L
$$

By the standard procedure one gets

$$
-\Delta \partial_{3} p=2 \sum_{i, j=1}^{3} \partial_{i} \partial_{j}\left(u_{i} \partial_{3} u_{j}\right)=2 \sum_{i=1}^{2} \sum_{j=1}^{3} \partial_{i} \partial_{j}\left(u_{i} \partial_{3} u_{j}\right)+2 \sum_{j=1}^{3} \partial_{3} \partial_{j}\left(u_{3} \partial_{3} u_{j}\right)
$$

and so we have the decomposition of $\partial_{3} p$:

$$
\partial_{3} p=2 \sum_{i=1}^{2} \sum_{j=1}^{3} R_{i} R_{j}\left(u_{i} \partial_{3} u_{j}\right)+2 \sum_{j=1}^{3} R_{3} R_{j}\left(u_{3} \partial_{3} u_{j}\right)=p_{1}+p_{2}
$$

where $\mathcal{R}_{i}=\frac{\partial_{i}}{\sqrt{-\triangle}}$ is the Riesz transformation, which is bounded from $\left.L^{r}\left(\mathbb{R}^{3}\right)\right)$ to itself for $1<r<\infty$. We have

$$
\begin{equation*}
\int_{t_{1}}^{t} L \mathrm{~d} \tau \lesssim\left\|p_{1}\left|u_{3}\right|^{2 \lambda-2} u_{3}\right\|_{1,1 ; t_{1}, t}+\left\|p_{2}\left|u_{3}\right|^{2 \lambda-2} u_{3}\right\|_{1,1 ; t_{1}, t}:=L_{1}(t)+L_{2}(t) \tag{2.10}
\end{equation*}
$$

Using the Hölder inequality we obtain

$$
\begin{equation*}
L_{1}(t) \leq\left\|u_{h}\right\|_{c, \bar{c}, t_{1}, t}\left\|\partial_{3} u\right\|_{q, \frac{2 q}{2 q-3} ; t_{1}, t}\left\|u_{3}\right\|_{d, \bar{d} ; t_{1}, t}^{2 \lambda-1} \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\frac{1}{c}, \frac{1}{\bar{c}}\right)+\left(\frac{1}{q}, \frac{2 q-3}{2 q}\right)+(2 \lambda-1)\left(\frac{1}{d}, \frac{1}{\bar{d}}\right)=(1,1) . \tag{2.12}
\end{equation*}
$$

Using the interpolation inequality, Lemma 1.4, Sobolev and Hölder inequalities in order to obtain

$$
\begin{aligned}
\left\|u_{h}\right\|_{c, \bar{c}, t_{1}, t} & \leq\left\|u_{h}\right\|_{3 q, \frac{6 q}{2 q-3} ; t_{1}, t}^{1-v_{3}}\left\|u_{h}\right\|_{6, \infty ; t_{1}, t}^{v_{3}} \\
& \leq\| \| \partial_{3} u_{h}\left\|_{q}^{\frac{1}{3}}\right\| \nabla_{h} u_{h}\left\|_{2}^{\frac{2}{3}}\right\|_{\frac{6 q}{2 q-3} ; t_{1}, t}^{1-v_{3}}\left\|\nabla u_{h}\right\|_{2, \infty ; t_{1}, t}^{v_{3}} \\
& \leq\left\|\partial_{3} u_{h}\right\|_{q, \frac{2 q}{2 q-3} ; t_{1}, t}^{\frac{1-v_{3}}{3}}\left\|\nabla_{h} u_{h}\right\|_{2, \infty ; t_{1}, t}^{\frac{2\left(1-v_{3}\right)}{3}}\left\|\nabla u_{h}\right\|_{2, \infty ; t_{1}, t}^{v_{3}} \\
& \leq\left\|\partial_{3} u\right\|_{q, \frac{2 q}{2 q-3} ; t_{1}, t}^{\frac{1-v_{3}}{3}}\left\|\nabla u_{h}\right\|_{2, \infty ; t_{1}, t}^{\frac{2+v_{3}}{3}}
\end{aligned}
$$

where interpolation inequality with

$$
\begin{equation*}
\left(\frac{1}{c}, \frac{1}{\bar{c}}\right)=\left(1-v_{3}\right)\left(\frac{1}{3 q}, \frac{2 q-3}{6 q}\right)+v_{3}\left(\frac{1}{6}, 0\right), \quad 0 \leq v_{3} \leq 1 \tag{2.13}
\end{equation*}
$$

Applying the interpolation inequality, Lemma 1.5, and the Hölder inequality in order to obtain

$$
\begin{aligned}
\left\|u_{3}\right\|_{d, \bar{d} ; t_{1}, t} & \leq\left\|u_{3}\right\|_{2 \lambda, \infty ; t_{1}, t}^{1-v_{4}}\left\|u_{3}\right\|_{(2 \lambda+1) q, \frac{2(2 \lambda+1) q}{4 q-3} ; t_{1}, t}^{v_{4}} \\
& \leq\left\|\left|u_{3}\right|^{\lambda}\right\|_{2, \infty ; t_{1}, t}^{\frac{1-v_{4}}{\lambda}}\| \| \partial_{3} u_{3}\left\|_{q}^{\frac{1}{2 \lambda+1}}\right\| \nabla_{h}\left(|u|^{\lambda}\right)\left\|_{2}^{\frac{2}{2 \lambda+1}}\right\|_{\frac{2(2 \lambda+1) q}{4 q-3} ; t_{1}, t}^{v_{4}} \\
& \leq\left\|\left|u_{3}\right|^{\lambda}\right\|_{2, \infty ; t_{1}, t}^{\frac{1-v_{4}}{\lambda}}\left\|\partial_{3} u\right\|_{q, \frac{2 q}{2 q-3} ; t_{1}, t}^{\frac{v_{4}}{2 \lambda+1}}\left\|\nabla_{h}\left(\left|u_{3}\right|^{\lambda}\right)\right\|_{2,2 ; t_{1}, t}^{\frac{2 v_{4}}{2 \lambda+1}},
\end{aligned}
$$

where interpolation inequality with

$$
\begin{equation*}
\left(\frac{1}{d}, \frac{1}{\bar{d}}\right)=\left(1-v_{4}\right)\left(\frac{1}{2 \lambda, 0}\right)+v_{4}\left(\frac{1}{(2 \lambda+1) q}, \frac{4 q-3}{2(2 \lambda+1) q}\right), \quad 0 \leq v_{4} \leq 1 \tag{2.14}
\end{equation*}
$$

From the above estimates we have

$$
\begin{aligned}
L_{1}(t) & \leq C\left\|\partial_{3} u\right\|_{q, \frac{2 q}{3 q-3} ; t_{1}, t}^{1+\frac{1-v_{3}}{2 \lambda+1}}\left\|\nabla u_{h}\right\|_{2, \infty ; t_{1}, t}^{\frac{2+v_{3}}{3}}\left\|\left|u_{3}\right|^{\lambda}\right\|_{2, \infty ; t_{1}, t}^{\frac{\left(1-v_{4}\right)(2 \lambda-1)}{2}}\left\|\nabla\left(\left|u_{3}\right|^{\lambda}\right)\right\|_{2,2 ; t_{1}, t}^{\frac{2 v_{4}(2 \lambda-1)}{2 \lambda+1}} \\
& \leq C \epsilon^{\frac{4-v_{3}}{3}+\frac{v_{4}(2 \lambda+1)}{2 \lambda+1}} \mathcal{J}^{\frac{2+v_{3}}{3}}(t) \mathcal{L}^{\frac{\left(1-v_{4}\right)(2 \lambda-1)}{\lambda}+\frac{2 v_{4}(2 \lambda-1)}{(2 \lambda+1)}}(t) .
\end{aligned}
$$

Applying the Hölder, interpolation, and Sobolev inequalities in order to obtain

$$
\begin{align*}
L_{2}(t) & \leq\left\|u_{3}\right\|_{\frac{2 \lambda q}{q-1}, \frac{4 \lambda q}{3} ; t_{1}, t}\left\|\partial_{3} u\right\|_{q, \frac{2 q}{2 q-3} ; t_{1}, t}\left\|u_{3}\right\|_{\frac{2 \lambda q}{q-1}, \frac{4 \lambda q}{3} ; t_{1}, t}^{2 \lambda-1} \\
& =\left\|\left|u_{3}\right|^{\lambda}\right\|_{\frac{2 q}{q-1}, \frac{4 q}{2} ; t_{1}, t}^{2}\left\|\partial_{3} u\right\|_{q, \frac{2 q}{2 q-3} ; t_{1}, t} \\
& \leq\left\|\left|u_{3}\right|^{\lambda}\right\|_{2, \infty ; t_{1}, t}^{\frac{2 q-3}{q}}\left\|\left|u_{3}\right|^{\lambda}\right\|_{6,2 ; t_{1}, t}^{\frac{3}{q}}\left\|\partial_{3} u\right\|_{q, \frac{2 q}{2 q-3} ; t_{1}, t} \tag{2.15}\\
& \lesssim\left\|\left|u_{3}\right|^{\lambda}\right\|_{2, \infty ; t_{1}, t}^{\frac{2 q-3}{q}}\left\|\nabla\left(\left|u_{3}\right|^{\lambda}\right)\right\|_{2,2 ; t_{1}, t}^{\frac{3}{q}}\left\|\partial_{3} u\right\|_{q, \frac{2 q}{2 q-3} ; t_{1}, t} \\
& \leq \epsilon \mathcal{L}^{2}(t) .
\end{align*}
$$

Thus

$$
\begin{align*}
\mathcal{L}^{2}(t) & \leq C+L_{1}(t)+L_{2}(t) \tag{2.16}\\
& \leq C+C \epsilon^{\frac{4-v_{3}}{3}+\frac{v_{4}(2 \lambda-1)}{2 \lambda+1}} \mathcal{J}^{\frac{2+v_{3}}{3}}(t) \mathcal{L}^{\frac{\left(1-v_{4}\right)(2 \lambda-1)}{\lambda}+\frac{2 v_{4}(2 \lambda-1)}{(2 \lambda+1)}}(t)+C \epsilon \mathcal{L}^{2}(t)
\end{align*}
$$

It follows from (2.12), (2.13), and (2.14) that

$$
\begin{equation*}
\frac{1-v_{3}}{3 q}+\frac{v_{3}}{6}+\left(\frac{1-v_{4}}{2 \lambda}+\frac{v_{4}}{q(2 \lambda+1)}\right)(2 \lambda-1)+\frac{1}{q}=1 \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2 q-3}{2 q}\left(1+\frac{1-v_{3}}{3}+\frac{v_{4}(2 \lambda-1)}{2 \lambda+1}\right)+\frac{v_{4}(2 \lambda-1)}{(2 \lambda+1)}=1 . \tag{2.18}
\end{equation*}
$$

Now, solve (2.7), (2.8), (2.17), and (2.18) we obtain

$$
\begin{array}{lr}
v_{1}=-\frac{(1+2 \lambda)(3-2 q-2 \lambda+q \lambda)}{-3+2 q+\lambda} ; & v_{2}=-\frac{6-5 q-3 \lambda+2 q \lambda}{-3+2 q+\lambda} ; \\
v_{3}=-\frac{3+10 q-4 \lambda-4 q \lambda}{-3+2 q+\lambda} ; & v_{4}=\frac{(1+2 \lambda)(9-6 q+2 q \lambda)}{3(-3+2 q+\lambda)(-1+2 \lambda)} \tag{2.20}
\end{array}
$$

Reducing $0 \leq v_{1} \leq 1,0 \leq v_{2}<1,0 \leq v_{3} \leq 1,0 \leq v_{4} \leq 1, \lambda>\frac{3}{2}, q \geq 3$, yields

$$
3 \leq q \leq \frac{3}{4}(\sqrt{5}+3), \frac{10 q+3}{4 q+4} \leq \lambda \leq \frac{12 q}{4 q+3}
$$

or

$$
\frac{3}{4}(\sqrt{5}+3)<q \leq 6, \frac{10 q+3}{4 q+4} \leq \lambda \leq \frac{2 q-3}{q-2} .
$$

Hence, the range of q is [3,6]. From the above estimates of \mathcal{J} and \mathcal{L} we have

$$
\begin{equation*}
\mathcal{J}^{2}(t) \leq C+C \varepsilon \mathcal{J}^{2}(t)+C \varepsilon^{\frac{v_{1}}{2 \lambda+1}+1-v_{2}} \mathcal{J}^{j_{1}}(t) \mathcal{L}^{l_{1}}(t) \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}^{2}(t) \leq C+C \varepsilon^{\frac{4-v_{3}}{3}+\frac{v_{4}(2 \lambda-1)}{2 \lambda+1}} \mathcal{J}^{j_{2}}(t) \mathcal{L}^{l_{2}}(t)+C \varepsilon \mathcal{L}^{2}(t) \tag{2.22}
\end{equation*}
$$

where

$$
\begin{array}{ll}
j_{1}=1+v_{2}, & l_{1}=\frac{1-\vartheta_{1}}{\lambda}+\frac{2 \vartheta_{1}}{2 \lambda+1} \\
j_{2}=\frac{2+\vartheta_{3}}{3}, & l_{2}=\frac{(2 \lambda-1)\left(1-\vartheta_{4}\right)}{\lambda}+\frac{2(2 \lambda-1) \vartheta_{4}}{2 \lambda+1} . \tag{2.23}
\end{array}
$$

Since $0 \leq v_{2}<1$, it is obvious that $1 \leq j_{1}<2$, and we may apply Hölder inequality to (2.21)

$$
\begin{aligned}
\mathcal{J}^{2}(t) & \leq C+C \varepsilon \mathcal{J}^{2}(t)+\frac{1}{2} \mathcal{J}^{2}(t)+C \mathcal{L}^{\frac{2 l_{1}}{2-j_{1}}}(t) \\
& \leq C+C \varepsilon \mathcal{J}^{2}(t)+\frac{1}{2} \mathcal{J}^{2}(t)+C \mathcal{L}^{\frac{2}{2 \lambda-3}}(t)
\end{aligned}
$$

Now choose $0<\varepsilon \ll 1$ sufficiently small such that

$$
C \varepsilon \leq \frac{1}{4}
$$

we have

$$
\begin{equation*}
\mathcal{J}(t) \leq C+C \mathcal{L}^{\frac{1}{2 \lambda-3}}(t) \tag{2.24}
\end{equation*}
$$

Plugging (2.24) into (2.22), and choosing ε such that

$$
C \varepsilon^{\frac{4-\vartheta_{3}}{3}+\frac{\vartheta_{4}(2 \lambda-1)}{2 \lambda+1}} \leq \frac{1}{4},
$$

we obtain

$$
\mathcal{L}^{2}(t) \leq C+\frac{1}{4} \mathcal{L}^{\frac{1}{2 \lambda-3} j_{2}+l_{2}}(t)+\frac{1}{2} \mathcal{L}^{2}(t)=C+\frac{3}{4} \mathcal{L}^{2}(t)
$$

Thus

$$
\begin{equation*}
\mathcal{L}^{2}(t) \leq C \tag{2.25}
\end{equation*}
$$

It follows from (2.24) and (2.25) that $\left\|\nabla u_{h}(t)\right\|_{2}$ is uniformly bounded on $t \in\left[t_{1}, t\right)$ as desired. The proof of Theorem 1.1 is completed.

Proof of Theorem 1.2

We use two different evaluation methods to prove Theorem 1.2.

The first evaluation method

We will start with the estimate of \mathcal{J}. To estimate \mathcal{J} we need to evaluate J_{1} and J_{2} defined by (2.1). From the estimate (2.2) and using Hölder inequality we get

$$
\begin{aligned}
\int_{t_{1}}^{t} J_{1} \mathrm{~d} \tau & \leq C\left\|\partial_{3} u\right\|_{\frac{2 q}{2 q-3}, q ; t_{1}, t}\left\|\nabla u_{h}\right\|_{\infty, 2 ; t_{1}, t}^{\frac{2 q-3}{q}}\left\|\Delta u_{h}\right\|_{2,2 ; t_{1}, t}^{\frac{3}{q}} \\
& \leq C\left(t-t_{1}\right)^{\frac{s-2}{2}}\left\|\partial_{3} u\right\|_{\frac{2 q}{s q-3}, q ; t_{1}, t}\left\|\nabla u_{h}\right\|_{\infty, 2 ; t_{1}, t}^{\frac{2 q-3}{q}}\left\|\Delta u_{h}\right\|_{2,2 ; t_{1}, t}^{\frac{3}{q}} \leq C \epsilon \mathcal{J}^{2}(t)
\end{aligned}
$$

We use the estimate (2.3) to evaluate J_{2}. Applying the interpolation inequality to obtain

$$
\begin{align*}
\left\|u_{3}\right\|_{a, \bar{a} ; t_{1}, t} & \leq\left\|u_{3}\right\|_{2 \lambda, \infty ; t_{1}, t}^{1-\alpha_{1}}\left\|u_{3}\right\|_{2, \infty ; t_{1}, t}^{\alpha_{1}} \leq\left\|\left|u_{3}\right|^{\lambda}\right\|_{2, \infty ; t_{1}, t}^{\frac{1-\alpha_{1}}{\lambda}}\left\|u_{3}\right\|_{2, \infty ; t_{1}, t}^{\alpha_{1}} \tag{2.26}\\
& \leq\left\|\left|u_{3}\right|^{\lambda}\right\|_{2, \infty ; t_{1}, t}^{\frac{1-\alpha_{1}}{\lambda}}\left\|u_{0}\right\|_{2}^{\alpha_{1}} \lesssim\left\|\left|u_{3}\right|^{\lambda}\right\|_{2, \infty ; t_{1}, t}^{\frac{1-\alpha_{1}}{\lambda}}, \\
\left\|\partial_{3} u\right\|_{b, \bar{b}} & \leq\left\|\partial_{3} u\right\|_{q, \frac{2 q}{s q-3} ; t_{1}, t}^{1-\alpha_{2}}\left\|\partial_{3} u\right\|_{2, \infty}^{\alpha_{2}} \tag{2.27}
\end{align*}
$$

with

$$
\begin{equation*}
\left(\frac{1}{a}, \frac{1}{\bar{a}}\right)=\left(1-\alpha_{1}\right)\left(\frac{1}{2 \lambda}, 0\right)+\alpha_{1}\left(\frac{1}{2}, 0\right), \quad 0 \leq \alpha_{1} \leq 1 \tag{2.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{1}{b}, \frac{1}{\bar{b}}\right)=\left(1-\alpha_{2}\right)\left(\frac{1}{q}, \frac{s q-3}{q}\right)+\alpha_{2}\left(\frac{1}{2}, 0\right), \quad 0 \leq \alpha_{2} \leq 1 . \tag{2.29}
\end{equation*}
$$

It follows from (2.4), (2.28), and (2.29) that

$$
\begin{equation*}
\frac{1-\alpha_{1}}{2 \lambda}+\frac{\alpha_{1}}{2}+\frac{1-\alpha_{2}}{q}+\frac{\alpha_{2}}{2}=\frac{1}{2} \tag{2.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-\alpha_{2}\right) \frac{s q-3}{2 q}=\frac{1}{2} \tag{2.31}
\end{equation*}
$$

Using the estimates (2.3), (2.26), and (2.27) to obtain

$$
\begin{equation*}
\int_{t_{1}}^{t} J_{2} \mathrm{~d} \tau \leq C\left\|\left|u_{3}\right|^{\lambda}\right\|_{2, \infty ; t_{1}, t}^{\frac{1-\alpha_{1}}{\lambda}}\left\|\partial_{3} u\right\|_{q, \frac{2 q}{s q-3} ; t_{1}, t}^{1-\alpha_{2}}\left\|\partial_{3} u\right\|_{2, \infty ; t_{1}, t}^{\alpha_{2}}\left\|\Delta u_{h}, \nabla \partial_{3} u\right\|_{2,2 ; t_{1}, t} . \tag{2.32}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\mathcal{J}^{2}(t) \leq C+C \epsilon \mathcal{J}^{2}(t)+C \epsilon^{1-\alpha_{2}} \mathcal{J}^{1+\alpha_{2}}(t) \mathcal{L}^{\frac{1-\alpha_{1}}{\lambda}}(t) \tag{2.33}
\end{equation*}
$$

To estimate \mathcal{L} we need to evaluate L_{1} and L_{2} defined by (2.10). Using the Hölder inequality we obtain

$$
\begin{equation*}
L_{1}(t) \leq\left\|u_{h}\right\|_{c, \bar{c}, t_{1}, t}\left\|\partial_{3} u\right\|_{q, \frac{2 q}{s q-3} ; t_{1}, t}\left\|u_{3}\right\|_{d, \bar{d} ; t_{1}, t}^{2 \lambda-1} \tag{2.34}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\frac{1}{c}, \frac{1}{\bar{c}}\right)+\left(\frac{1}{q}, \frac{s q-3}{2 q}\right)+(2 \lambda-1)\left(\frac{1}{d}, \frac{1}{\bar{d}}\right)=(1,1) \tag{2.35}
\end{equation*}
$$

Invoke the Gagliardo-Nirenberg, Hölder inequalities, and Lemma 1.4 to bound as

$$
\begin{align*}
\left\|u_{h}\right\|_{c, \bar{c} ; t_{1}, t} & \leq\left\|u_{h}\right\|_{3 q, \frac{6 q}{q s-3} ; t_{1}, t}^{1-\alpha_{3}}\left\|\Delta u_{h}\right\|_{2,2 ; t_{1}, t}^{\alpha_{3}} \\
& \leq\| \| \partial_{3} u_{h}\left\|_{q}^{\frac{1}{3}}\right\| \nabla_{h} u_{h}\left\|_{2}^{\frac{2}{3}}\right\|_{\frac{6 q}{q s-3} ; t_{1}, t}^{1-\alpha_{3}}\left\|\Delta u_{h}\right\|_{2,2 ; t_{1}, t}^{\alpha_{3}} \tag{2.36}\\
& \leq\left\|\partial_{3} u\right\|_{q, \frac{2 q}{s q-3} ; t_{1}, t}^{\frac{1-\alpha_{3}}{3}}\left\|\nabla u_{h}\right\|_{2, \infty ; \infty_{1}, t}^{2 \frac{1-t_{3}}{3}}\left\|\Delta u_{h}\right\|_{2,2 ; t_{1}, t}^{\alpha_{3}} \tag{2.37}
\end{align*}
$$

where interpolation inequality with

$$
\begin{equation*}
\left(\frac{1}{c}, \frac{1}{\bar{c}}\right)=\left(1-\alpha_{3}\right)\left(\frac{1}{3 q}, \frac{s q-3}{6 q}\right)+v_{3}\left(\frac{1}{2}-\frac{2}{3}, \frac{1}{2}\right) \tag{2.38}
\end{equation*}
$$

and

$$
0 \leq v_{3} \leq 1, c>0
$$

Applying the interpolation inequality to obtain

$$
\begin{equation*}
\left\|u_{3}\right\|_{d, \bar{d} ; t_{1}, t} \leq\left\|u_{3}\right\|_{2 \lambda, \infty ; t_{1}, t}^{\left(1-\alpha_{4}\right)}\left\|u_{3}\right\|_{2, \infty ; t_{1}, t}^{\alpha_{4}} \leq\left\|\left|u_{3}\right|^{\lambda}\right\|_{2, \infty ; t_{1}, t}^{\frac{\left(1-\alpha_{4}\right)}{\lambda}}\left\|u_{0}\right\|_{2}^{\alpha_{4}} \lesssim\left\|\left|u_{3}\right|^{\lambda}\right\|_{2, \infty ; t_{1}, t}^{\frac{\left(1-\alpha_{4}\right)}{\lambda}} \tag{2.39}
\end{equation*}
$$

with

$$
\begin{equation*}
\left(\frac{1}{d}, \frac{1}{\bar{d}}\right)=\left(1-v_{4}\right)\left(\frac{1}{2 \lambda}, 0\right)+v_{4}\left(\frac{1}{2}, 0\right), \quad 0 \leq v_{4} \leq 1 \tag{2.40}
\end{equation*}
$$

Using the estimates (2.34), (2.37), and (2.39) to obtain

$$
L_{1}(t) \leq C\left\|\partial_{3} u\right\|_{q, \frac{2 q}{s q-3} ; t_{1}, t}^{\frac{4-\alpha_{3}}{3}}\left\|\nabla u_{h}\right\|_{2, \infty ; t_{1}, t}^{2 \frac{1-\alpha_{3}}{3}}\left\|\Delta u_{h}\right\|_{2,2 ; t_{1}, t}^{\alpha_{3}}\left\|\left|u_{3}\right|^{\lambda}\right\|_{2, \infty ; t_{1}, t}^{\frac{\left(1-\alpha_{4}\right)(2 \lambda-1)}{\lambda}} .
$$

From the estimate (2.15), it follows that

$$
\begin{align*}
L_{2}(t) & \lesssim\left\|\left|u_{3}\right|^{\lambda}\right\|_{2, \infty ; t_{1}, t}^{\frac{2 q-3}{q}}\left\|\nabla\left(\left|u_{3}\right|^{\lambda}\right)\right\|_{2,2 ; t_{1}, t}^{\frac{3}{q}}\left\|\partial_{3} u\right\|_{q, \frac{2 q}{2 q-3} ; t_{1}, t} \\
& \leq\left\|\left|u_{3}\right|^{\lambda}\right\|_{2, \infty ; t_{1}, t}^{\frac{2 q-3}{q}}\left\|\nabla\left(\left|u_{3}\right|^{\lambda}\right)\right\|_{2,2 ; t_{1}, t}^{\frac{3}{q}}\left(t-t_{1}\right)^{\frac{s-2}{2}}\left\|\partial_{3} u\right\|_{q, \frac{2 q}{s q-3} ; t_{1}, t} \tag{2.41}\\
& \lesssim \epsilon \mathcal{L}^{2}(t) .
\end{align*}
$$

Thus

$$
\begin{align*}
\mathcal{L}^{2}(t) & \leq C+L_{1}(t)+L_{2}(t) \tag{2.42}\\
& \leq C+C \epsilon^{\frac{4-\alpha_{3}}{3}} \mathcal{J}^{\frac{2+\alpha_{3}}{3}}(t) \mathcal{L}^{\frac{\left(1-\alpha_{4}\right)(2 \lambda-1)}{\lambda}}(t)+C \epsilon \mathcal{L}^{2}(t) .
\end{align*}
$$

It follows from (2.35), (2.38), and (2.40) that

$$
\begin{equation*}
\frac{s q-3}{2 q}\left(1+\frac{1-\alpha_{3}}{3}\right)+\frac{\alpha_{3}}{2}=1 \tag{2.43}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1-\alpha_{3}}{3 q}-\frac{\alpha_{3}}{6}+\left(\frac{1-\alpha_{4}}{2 \lambda}+\frac{\alpha_{4}}{2}\right)(2 \lambda-1)+\frac{1}{q}=1 \tag{2.44}
\end{equation*}
$$

From (2.30), (2.31), we can solve

$$
\begin{equation*}
\alpha_{1}=\frac{3-q s-2 \lambda+q \lambda}{(-3+q s)(-1+\lambda)}, \quad \alpha_{2}=\frac{-3-q+q s}{q s-3} \tag{2.45}
\end{equation*}
$$

and from (2.43), (2.44), we have

$$
\begin{equation*}
\alpha_{3}=\frac{2(-6-3 q+2 q s)}{-3-3 q+q s}, \quad \alpha_{4}=\frac{9+9 q-3 q s+6 q \lambda-4 q s \lambda}{3(3+3 q-q s)(-1+\lambda)(-1+2 \lambda)} \tag{2.46}
\end{equation*}
$$

and

$$
\begin{equation*}
c=-\frac{3 q(q s-3 q-3)}{2 q^{2} s-3 q^{2}+3 q s-9 q-9} . \tag{2.47}
\end{equation*}
$$

From the above estimates of \mathcal{J} and \mathcal{L} we have

$$
\begin{equation*}
\mathcal{J}^{2}(t) \leq C+C \varepsilon \mathcal{J}^{2}(t)+C \varepsilon^{1-\alpha_{2}} \mathcal{J}^{j_{1}}(t) \mathcal{L}^{l_{1}}(t) \tag{2.48}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}^{2}(t) \leq C+C \varepsilon^{\frac{4-\alpha_{3}}{3}} \mathcal{J}^{j_{2}}(t) \mathcal{L}^{l_{2}}(t)+C \varepsilon \mathcal{L}^{2}(t) \tag{2.49}
\end{equation*}
$$

where

$$
\begin{array}{ll}
j_{1}=1+\alpha_{2}, & l_{1}=\frac{1-\alpha_{1}}{\lambda} \\
j_{2}=\frac{2+\alpha_{3}}{3}, & l_{2}=\frac{\left(1-\alpha_{4}\right)(2 \lambda-1)}{\lambda} . \tag{2.50}
\end{array}
$$

If $\alpha_{2}<1$ then $1 \leq j_{1}<2$, and we may apply Hölder inequality to (2.48)

$$
\mathcal{J}^{2}(t) \leq C+C \varepsilon \mathcal{J}^{2}(t)+\frac{1}{2} \mathcal{J}^{2}(t)+C \mathcal{L}^{\frac{2 l_{1}}{2-j_{1}}}(t)
$$

Now choose $0<\varepsilon \ll 1$ sufficiently small such that

$$
C \varepsilon \leq \frac{1}{4}
$$

we have

$$
\begin{equation*}
\mathcal{J}(t) \leq C+C \mathcal{L}^{\frac{2 l_{1}}{2-j_{1}}}(t) \tag{2.51}
\end{equation*}
$$

Plugging (2.51) into (2.49), and choosing ε such that

$$
C \varepsilon^{\frac{4-\alpha_{3}}{3}} \leq \frac{1}{4}
$$

we obtain

$$
\begin{equation*}
\mathcal{L}^{2}(t) \leq C+\frac{1}{4} \mathcal{L}^{\frac{2 l_{1}}{2-j_{1}} j_{2}+l_{2}}(t)+\frac{1}{2} \mathcal{L}^{2}(t)=C+\frac{1}{4} \mathcal{L}^{\gamma}(t)+\frac{1}{2} \mathcal{L}^{2}(t) \tag{2.52}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=\frac{l-\alpha_{1}}{\lambda\left(1-\alpha_{2}\right)} \frac{2+\alpha_{3}}{3}+\frac{\left(1-\alpha_{4}\right)(2 \lambda-1)}{\lambda} . \tag{2.53}
\end{equation*}
$$

Plugging (2.45) and (2.46) into (2.53) to obtain

$$
\begin{equation*}
\gamma=\frac{q^{2}\left(-18 \lambda+6 s^{2}+(6 \lambda-31) s+45\right)-3 q(6 \lambda+8 s-19)+18}{3(\lambda-1) q(q(s-3)-3)} . \tag{2.54}
\end{equation*}
$$

If $\gamma \leq 2$ then from (2.52) we deduce that

$$
\begin{equation*}
\mathcal{L}^{2}(t) \leq C \tag{2.55}
\end{equation*}
$$

It follows from (2.51) and (2.55) that $\left\|\nabla u_{h}(t)\right\|_{2}$ is uniformly bounded on $t \in\left[t_{1}, t\right)$ as desired. To finish the proof we need to discuss the range of s, q, and λ for which our proof works. Reducing $0 \leq \alpha_{1} \leq 1,0 \leq \alpha_{2}<1,0 \leq \alpha_{3} \leq 1,0 \leq \alpha_{4} \leq 1, c>0$, $\frac{11}{6}<s \leq 2, q \geq 6, \lambda>\frac{3}{2}, \gamma \leq 2$ yields

$$
\frac{11}{6}<s \leq \frac{19}{10}, \frac{3}{2} \sqrt{\frac{s^{2}+2 s-3}{(2 s-3)^{2}}}-\frac{3(s-3)}{2(2 s-3)}<q \leq \frac{6}{2 s-3}, \frac{q s-3}{q-2} \leq \lambda \leq \frac{-3 q s+9 q+9}{4 q s-6 q}
$$

or

$$
\frac{19}{10}<s \leq 2,6 \leq q \leq \frac{6}{2 s-3}, \frac{q s-3}{q-2} \leq \lambda \leq \frac{-3 q s+9 q+9}{4 q s-6 q}
$$

Therefore the range of s and q for which our proof works is

$$
\begin{equation*}
\frac{11}{6}<s<\frac{19}{10}, \frac{3}{2} \sqrt{\frac{s^{2}+2 s-3}{(2 s-3)^{2}}}-\frac{3(s-3)}{2(2 s-3)}<q<\frac{6}{2 s-3} \tag{2.56}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{19}{10} \leq s \leq 2,6 \leq q \leq \frac{6}{2 s-3} \tag{2.57}
\end{equation*}
$$

The second evaluation method
We still use (2.48) for the estimate of \mathcal{J}, where α_{1} and α_{2} are given by (2.45) but we use another way for estimate of \mathcal{L}. To estimate \mathcal{L} we need to evaluate L_{1} and L_{2} defined by (2.10). We use the estimate (2.34) to evaluate L_{1}. Invoke the Gagliardo-Nirenberg, Hölder inequalities, and Lemma 1.4 to bound as

$$
\left\|u_{h}\right\|_{c, \bar{c} ; t_{1}, t} \leq\left\|u_{h}\right\|_{3 q, \frac{6 q}{q s-3} ; t_{1}, t}^{1-\alpha_{3}}\left\|\nabla u_{h}\right\|_{2, \infty ; t_{1}, t}^{\alpha_{3}}
$$

$$
\begin{align*}
& \leq\| \| \partial_{3} u_{h}\left\|_{q}^{\frac{1}{3}}\right\| \nabla_{h} u_{h}\left\|_{2}^{\frac{2}{3}}\right\|_{\frac{69}{q s-3} ; t_{1}, t}^{1-\alpha_{3}}\left\|\nabla u_{h}\right\|_{2, \infty ; t_{1}, t}^{\alpha_{3}} \tag{2.58}\\
& \leq\left\|\partial_{3} u\right\|_{q, \frac{2 q}{s q-3} ; t_{1}, t}^{\frac{1-\alpha_{3}}{3}}\left\|\nabla u_{h}\right\|_{2, \infty ; t_{1}, t}^{2 \frac{1-\alpha_{3}}{3}}\left\|\nabla u_{h}\right\|_{2, \infty ; t_{1}, t}^{\alpha_{3}}=\left\|\partial_{3} u\right\|_{q, \frac{2 q}{s q-3} ; t_{1}, t}^{\frac{1-\alpha_{3}}{3}}\left\|\nabla u_{h}\right\|_{2, \infty ; t_{1}, t}^{\frac{2+\alpha_{3}}{3}} \tag{2.59}
\end{align*}
$$

where interpolation inequality with

$$
\begin{equation*}
\left(\frac{1}{c}, \frac{1}{\bar{c}}\right)=\left(1-\alpha_{3}\right)\left(\frac{1}{3 q}, \frac{s q-3}{6 q}\right)+v_{3}\left(\frac{1}{2}-\frac{1}{3}, 0\right), \quad 0 \leq v_{3} \leq 1 . \tag{2.60}
\end{equation*}
$$

From the estimates (2.34), (2.39) and (2.59) estimates we have

$$
L_{1}(t) \leq C\left\|\partial_{3} u\right\|_{q, \frac{2 q}{s q-3} ; t_{1}, t}^{\frac{4-\alpha_{3}}{3}}\left\|\nabla u_{h}\right\|_{2, \infty ; t_{1}, t}^{\frac{2+\alpha_{3}}{3}}\left\|\left|u_{3}\right|^{\lambda}\right\|_{2, \infty ; t_{1}, t}^{\frac{\left(1-\alpha_{4}\right)(2 \lambda-1)}{\lambda}} .
$$

Using the above estimate and (2.41)

$$
\begin{align*}
\mathcal{L}^{2}(t) & \leq C+L_{1}(t)+L_{2}(t) \tag{2.61}\\
& \leq C+C \epsilon^{\frac{4-\alpha_{3}}{3}} \mathcal{J}^{\frac{2+\alpha_{3}}{3}}(t) \mathcal{L}^{\frac{\left(1-\alpha_{4}\right)(2 \lambda-1)}{\lambda}}(t)+C \epsilon \mathcal{L}^{2}(t) .
\end{align*}
$$

It follows from (2.35), (2.40), and (2.60) that

$$
\begin{equation*}
\frac{1-\alpha_{3}}{3 q}+\alpha_{3}\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1-\alpha_{4}}{2 \lambda}+\frac{\alpha_{4}}{2}\right)(2 \lambda-1)+\frac{1}{q}=1 \tag{2.62}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{s q-3}{2 q}\left(1+\frac{1-\alpha_{3}}{3}\right)=1 . \tag{2.63}
\end{equation*}
$$

Solving (2.62) and (2.63) to obtain

$$
\begin{equation*}
\alpha_{3}=\frac{2(-6-3 q+2 q s)}{-3+q s}, \quad \alpha_{4}=\frac{-9+3 q s+6 q \lambda-4 q s \lambda}{3(-3+q s)(-1+\lambda)(-1+2 \lambda)} . \tag{2.64}
\end{equation*}
$$

Proceeding \mathcal{J} and \mathcal{L} as the first evaluation method, if $\alpha_{2}<1$ and choose $0<\varepsilon \ll 1$ sufficiently small then

$$
\mathcal{L}^{2}(t) \leq C+\frac{1}{4} \mathcal{L}^{\gamma}(t)+\frac{1}{2} \mathcal{L}^{2}(t)
$$

where γ is given by (2.53), plugging (2.45) and (2.64) into (2.53) to obtain

$$
\gamma=\frac{-6 \lambda q-6 q s+17 q+6}{3 q-3 \lambda q}
$$

If $\gamma \leq 2$ then we deduce that $\mathcal{L}^{2}(t) \leq C$ and $\left\|\nabla u_{h}(t)\right\|_{2}$ is uniformly bounded on $t \in\left[t_{1}, t\right)$ as desired. Reducing $0 \leq \alpha_{1} \leq 1,0 \leq \alpha_{2}<1,0 \leq \alpha_{3} \leq 1,0 \leq \alpha_{4} \leq 1$, $\frac{11}{6}<s \leq 2, q \geq 6, \lambda>\frac{3}{2}, \gamma \leq 2$ yields

$$
\frac{11}{6} \leq s \leq 2, \frac{6}{2 s-3} \leq q \leq \frac{6}{6 s-11}, \frac{q s-3}{q-2} \leq \lambda \leq \frac{3 q s-9}{4 q s-6 q} .
$$

Therefore the range of s and q for which our proof works is

$$
\begin{equation*}
\frac{11}{6} \leq s \leq 2, \frac{6}{2 s-3} \leq q \leq \frac{6}{6 s-11} \tag{2.65}
\end{equation*}
$$

We get from (2.56), (2.57), and (2.65) the conditions (1.6) and (1.7) for which u is regular on $(0, T)$. The proof of Theorem 1.2 is completed.

Acknowledgements. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2020.13.

References

[1] H. Beiräo da Veiga, A new regularity class for the Navier-Stokes equations in \mathbb{R}^{n}. Chin. Ann. Math., Ser. B 16 (1995), no. 4, 407-412.
[2] C. Cao, Sufficient conditions for the regularity to the 3D Navier-Stokes equations, Discrete Contin. Dyn. Syst. 26 (2010) 1141-1151.
[3] L. Escauriaza, G. A. Serëgin, V. Šverák, $L_{3, \infty}$ solution of Navier-Stokes equations and backward uniqueness. Russian Math. Surveys 58 (2003), 211-250.
[4] I. Kucavica, M. Ziane, Navier-Stokes equations with regularity in one direction. J. Math. Phys. 48 (2007), no. 6, 10 pp.
[5] J. Leray, Sur le mouvement dun liquide visqueux emplissant lespace. Acta Math. 63 (1934) 193248.
[6] Y. Namlyeyeva, Z. Skalak The optimal regularity criterion for the Navier-Stokes equations in terms of one directional derivative of the velocity. ZAMM 100 (2019) 17.
[7] J. Neustupa, A. Novotný, P. Pene, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity. Topics in mathematical fluid mechanics, 163-183, Quad. Mat., 10, Dept. Math., Seconda Univ. Napoli, Caserta, 2002.
[8] P. Penel, M. Pokorny, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity, Appl. Math. 49 (2004) 483-493.
[9] M. Pokorný, On the result of He concerning the smoothness of solutions to the Navier-Stokes equations. Electron. J. Differential Equations 2003, no. 11, 1-8.
[10] J. Serrin, The initial value problem for the Navier-Stokes equations. Nonlinear Problem, Proc. Symposium, Madison, Wisconsin, University of Wisconsin Press, Madison, Wisconsin (1963), pp. 69-98.
[11] Z. Skalak, On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component. Nonlinear Anal. 104 (2014), 84 -89.
[12] Z. Skalak, A note on a regularity criterion for the Navier-Stokes equations, Ann. Polon. Math. 122 (2019) 193-199.
[13] Z. Skalak, The end-point regularity criterion for the Navier-Stokes equations in terms of $\partial_{3} u$, Nonlinear Analysis RWA 55(2020), 103120.
[14] Z. Skalak, A note on the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component. J. Math. Phys. 55 (2014), no. 12, 121506, 6 pp.
[15] Z. Skalak, A note on a regularity criterion for the Navier-Stokes equations, Ann. Polon. Math. 122 (2019) 193-199.
[16] Z. Skalak, An optimal regularity criterion for the Navier-Stokes equations proved by a blow-up argument. Nonlinear Anal. 58 (2021), 103207
[17] H. Sohr, The Navier-Stokes Equations. An elementary function analytic Approach, Birkhäuser Verlag, Basel, Boston, Berlin, (2001).
[18] M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotrosi. Ric. Mat. 18 (1969), 3-24.
[19] Z. Zhang, An improved regularity criterion for the Navier-Stokes equations in terms of one directional derivative of the velocity field. Bull. Math. Sci. 8 (2018), no. 1, 33-47.
[20] Z. Zhang, W. Yuan, Ganzhou, Y. Zhou, Zhuhai Some remarks on the Navier-Stokes with regularity in one direction. Applications of Mathematics. 64 (2019), no. 3, 301-308.

Faculty of Basic Sciences, Thai Nguyen University of Technology, 666, $3 / 2$ street, Tich Luong, Thai Nguyen, Viet Nam.

Email address: Ngogiangtcn@gmail.com
Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 10307 Cau Giay, Hanoi, Vietnam.

Email address: khaitoantin@gmail.com

