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Abstract. We establish some regularity criteria for the solutions to the Navier–Stokes
equations in the full three-dimensional space in terms of one directional derivative of
the velocity field. Revising the method used by Zujin Zhang (2018), we show that
a weak solution u is regular on (0, T] provided that ∂u

∂x3
∈ Lp(0, T ;Lq(R3)) with

s = 2 for 3 ≤ q ≤ 6, 19
10 ≤ s ≤ 2 for 6 ≤ q ≤ 6

6s−11 , and 11
6 ≤ s ≤ 19

10 for

3
2

√
s2+2s−3
(2s−3)2 −

3(s−3)
2(2s−3) ≤ q ≤ 6

6s−11 where s = 2
p + 3

q . They improve the known results
2
p + 3

q = 2 for 3 ≤ q ≤ 19
6 and 2

p + 3
q ≤

8
5 + 9

11q for 5
2 ≤ q <∞.

1. Introduction and main results

We consider sufficient conditions for the regularity of solutions of the Cauchy prob-

lem for the NavierStokes equations in R3

∂u

∂t
−∆u+ u · ∇u+∇p = 0 in R3 × (0,∞)(1.1)

∇ · u = 0 in R3 × (0,∞)(1.2)

u|t=0 = u0(1.3)

where u = (u1, u2, u3) : R3 × (0, T ) → R3 is the velocity field, p : R3 × (0, T ) → R
is a scalar pressure, and u0 is the initial velocity field. We recall some well-known

function spaces, the definitions of weak and strong solutions to (1.1) and introduce

some notations before describing the main results. Throughout the paper, we sometimes

use the notation A . B as an equivalent to A ≤ CB with a uniform constant C, for

1 ≤ q ≤ ∞ we use the well-known Lebesgue spaces Lq(R3), with norms
∥∥·∥∥

Lq(R3)
= ‖·‖q.

Further, we use the Bochner spaces Ls
(
t, T ;X)

)
, 1 ≤ s ≤ ∞, where X is a Banach

space, if X = Lq(R3) then we denote

∥∥ · ∥∥
Ls
(
t,T ;Lq(R3)

) :=

(∫ T

t

‖·‖sLq(R3) dτ

)1/s

=
∥∥ ‖·‖q ∥∥s;t,T =

∥∥ · ∥∥
q,s;t,T

.
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We use standard Sobolev space and do not differentiate between scalar and tensor

function. We write u = (u1, u2, u3) ∈ X instead of u = (u1, u2, u3) ∈ X3. We denote

uh = (u1, u2) ,∇h = (∂1, ∂2) ,∆h = ∂1∂1 + ∂2∂2.

To deal with solenoidal vector fields we introduce the space of divergence-free smooth

compactly supported functions C∞0,σ(R3)) = {u ∈ C∞0 (R3)), div(u) = 0}, and the spaces

L2
σ(R3) = C∞0,σ(R3)

‖·‖2 . Let u0 ∈ L2
σ(R3), a weak solution of (1.1)-(1.3) on [0, T ] (or

[0,∞) if T =∞) is a function u : [0, T ]→ L2
σ(R3) in the class u ∈ Cw ([0, T ];L2

σ(R3))∩
L2
loc (0, T ;H1 (R3)) satisfying

(u(t), ϕ(t)) +

∫ t

0

{− (u, ∂tϕ) + (∇u,∇ϕ) + (u · ∇u, ϕ)} ds = (u0, ϕ(0))

for all t ∈ [0, T ] and all test functions ϕ ∈ C∞0 ([0, T )× R3) with ∇ · ϕ = 0. Here

(·, ·) stands for L2-inner product, and Cw signifies continuity in the weak topology. For

every u0 ∈ L2 (R3), there exists a weak solution of (1.1)-(1.3) on [0,∞) satisfying the

following energy inequality (see Leray [5])

(1.4) ‖u(·, t)‖2
L2 + 2ν

∫ t

t0

‖∇u(·, s)‖2
L2ds ≤ ‖u0‖2

L2 ,

for almost all t0 ∈ [0,∞) including t0 = 0 and all t ∈ [t0,∞) . A Leray-Hopf solution of

(1.1)-(1.3) on [0, T ] is weak solution on [0, T ] satisfying the energy inequality (1.4) for

almost all t0 ∈ (0, T ) and all t ∈ [t0, T ]. A weak solution of the Navier-Stokes equations

that belongs to u ∈ L∞ ([0, T ];H1 (R3))∩L2 (0, T ;H2 (R3)) is called a strong solution.

We say that a Leray weak solution is regular if u ∈ C∞((0, T )× R3). It is well-known

that if the above Leray weak solution u satisfies

u ∈ L∞(0, T ;H1(R3)) ∩ L2(0, T ;H2(R3)),

then such solution is regular.

There are many known sufficient conditions on the velocity which guarantee that

a solution is regular for all time. The first such criterion is usually referred to as the

Prodi-Serrin condition [10,17] saying that if

u ∈ Lp(0, T ;Lq(R3)),
2

p
+

3

q
= 1, q ∈ [3,∞),

then u is regular and is unique in the class of all weak solutions satisfying the energy

inequality. Notice that the case u ∈ L∞(0, T ;L3(R3)) was covered by Escauriaza et

al. [3]. A related well-known sufficient condition is due to Beiräo da Veiga [1]. Namely,

if

∇u ∈ Lp(0, T ;Lq(R3)),
2

p
+

3

q
= 2, q ∈

[3

2
,∞
)
,

then u is regular. Note that the case ∇u ∈ L∞(0, T ;L
3
2 (R3)) follows immediately from

the Sobolev imbedding theorems and [3].
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Recently, many authors became interested in the regularity criteria involving only

one directional derivative of velocity field, namely ∂u
∂x3

. In [7, 9] Penel-Pokorný showed

that if
∂u

∂x3

∈ Lp(0, T ;Lq(R3)),
2

p
+

3

q
=

3

2
, 2 ≤ q ≤ ∞

then u is regular on (0, T]. Later on, authors proved the regularity criterion in several

papers, see [2, 4, 6, 19]. Here, if

∂u

∂x3

∈ Lp(0, T ;Lq(R3)),
2

p
+

3

q
= 2,

3

2
< q ≤ 3

then u is regular on (0, T]. In 2019, Zhang, Yuan, Ganzhou, Zhou and Zhuhai [20]

proved two regularity criteria

∂u

∂x3

∈ Lp(0, T ;Lq(R3)),
2

p
+

3

q
≤ 8

5
+

9

11q
,

5

2
≤ q <∞

or
∂u

∂x3

∈ Lp(0, T ;Lq(R3)),
2

p
+

3

q
≤ 14

11
+

3

5q
, 4 ≤ q <∞.

Z. Skalak [12] proved the following regularity criterion

∂u

∂x3

∈ Lp(0, T ;Lq(R3)),
2

p
+

3

q
≤ 1 +

3

q
, 3 < q ≤ 10

3
.

Very recently, Skalak [16] showed that if

∂u

∂x3

∈ Lp(0, T ;Lq(R3)),
2

p
+

3

q
= 2, 3 ≤ q ≤ 19

6

then u is regular on (0, T), crossing so for the first time the barrier q = 3. In this paper

we will focus on the method used in [19] to improve the results from [12, 16, 20]. The

following theorems is the main results of our pager.

Theorem 1.1. Let u0 ∈ H1(R3) with ∇ · u = 0, T > 0. Assume that u is a Leray weak

solution of the problem (1.1)-(1.3) with the initial data u0. Then u is regular on (0, T )

if
∂u

∂x3

∈ Lp(0, T ;Lq(R3))

with

(1.5)
2

p
+

3

q
= 2, 3 ≤ q ≤ 6.

Theorem 1.2. Let u0 ∈ H1(R3) with ∇ · u = 0, T > 0. Assume that u is a Leray weak

solution of the problem (1.1)-(1.3) with the initial data u0. Then u is regular on (0, T )

if
∂u

∂x3

∈ Lp(0, T ;Lq(R3))

with

(1.6)
19

10
≤ s ≤ 2, 6 ≤ q ≤ 6

6s− 11
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or

(1.7)
11

6
≤ s ≤ 19

10
,

3

2

√
s2 + 2s− 3

(2s− 3)2
− 3(s− 3)

2(2s− 3)
≤ q ≤ 6

6s− 11

where

s =
2

p
+

3

q
.

Remark 1.3. The result of Theorem 1.1 improves that of [12, 16]. If s = 19
10

then the

condition (1.6) becomes 6 ≤ q ≤ 15 and we have 19
10
> 191

110
≥ 8

5
+ 9

11q
, 19

10
> 151

110
≥ 14

11
+ 3

5q
;

if s = 11
6

then the condition (1.7) becomes q > 3
√

145
8

+ 21
8
≈ 7.1406 and we have

11
6
> 1

220

(
5
√

145 + 317
)
≥ 8

5
+ 9

11q
, 11

6
> 1

660

(
11
√

145 + 763
)
≥ 14

11
+ 3

5q
, therefore the

result of Theorem 1.2 improves that of [20].

The following lemmas will be useful in several cases

Lemma 1.4. (Troisi Inequality). Suppose that r, p1, p2, p3 ∈ (1,∞) and

1 +
3

r
=

3∑
i=1

1

pi
.

Then there exists a constant C > 0 such that for every f ∈ C∞0 (R3)

‖f‖r ≤ C
3∏
i=1

‖∂if‖1/3
pi
.

Lemma 1.5. For each 1 ≤ s <∞, 0 < λ <∞, then exists some constant C such that

for each f ∈ C∞0 (R3),

‖f‖(2λ+1)q ≤ C
∥∥∂if∥∥ 1

2λ+1

q

∥∥∂k|f |λ∥∥ 1
2λ+1

2

∥∥∂j|f |λ∥∥ 1
2λ+1

2
,

where i, j, k is a permutation of 1, 2, 3.

For the proofs of Lemmas 1.4 and 1.5 see [18] and [19], respectively.

Lemma 1.6. (Hölder’s inequality in mixed-norm Lebesgue space).

Let 1 ≤ r, p, q, r̄, p̄, q̄ ≤ ∞ and −∞ ≤ t ≤ T ≤ ∞ satisfy the relations

(
1

r
,
1

r̄
) = (

1

p
,
1

p̄
) + (

1

q
,
1

q̄
).

Suppose that f ∈ Lp̄
(
t, T ;Lp(R3)

)
and g ∈ Lq̄

(
t, T ;Lq(R3)

)
. Then fg ∈ Lr̄

(
t, T ;Lr(R3)

)
and we have the inequality ∥∥fg∥∥

r,r̄;t,T
≤
∥∥f∥∥

p,p̄;t,T

∥∥g∥∥
q,q̄;t,T

.

Lemma 1.7. ( Interpolation inequality in mixed-norm Lebesgue space).

Let 1 ≤ r, p, q, r̄, p̄, q̄ ≤ ∞,−∞ ≤ t ≤ T ≤ ∞ and 0 ≤ θ ≤ 1 satisfy the relation

(
1

r
,
1

r̄
) = (1− θ)(1

p
,
1

p̄
) + θ(

1

q
,
1

q̄
).
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Suppose that f ∈ Lp̄
(
t, T ;Lp(R3)

)
∩ Lq̄

(
t, T ;Lq(R3)

)
. Then f ∈ Lr̄

(
t, T ;Lr(R3)

)
and

we have the inequality ∥∥f∥∥
r,r̄;t,T

≤
∥∥f∥∥1−θ

p,p̄;t,T

∥∥f∥∥θ
q,q̄;t,T

.

The proofs of Lemmas 1.6 and 1.7 are elementary and may be omitted.

2. The proof of the main result

The proofs of Theorem 1.1 and 1.2 are based on the method used in [19]. We

define the quantities L and J (see [1, 4]) and then prove that L and J are uniformly

bounded in time. Let T ∗ = sup{τ > 0;u is regular on (0, τ)}. Since u0 ∈ H1, u is

regular on some positive time interval and T ∗ is either equal to infinity (in which case

the proof is finished) or it is a positive number and u is regular on (0, T ∗), that is ∇u ∈
L∞loc ([0, T ∗) ;L2) . It is sufficient to prove that T ∗ > T . We proceed by contradiction

and suppose that T ∗ ≤ T. We take ε > 0 sufficiently small (it will be specified later)

and fix t1 ∈ (0, T ∗) such that ‖∂3u‖Lp(t1,T ∗;Lq) < ε. Taking arbitrarily t ∈ (t1, T
∗) the

proof will be finished if we show that ‖∇u(t)‖2 ≤ C < ∞, where C is independent of

t. Actually, the standard extension argument then shows that the regularity of u can

be extended beyond T ∗ and it contradicts the definition of T ∗. We define

J 2(t) = max
τ∈[t1,t]

(∥∥∇uh(τ)
∥∥2

2
+
∥∥∂3u(τ)

∥∥2

2

)
+

∫ t

t1

(∥∥∆uh(τ)
∥∥2

2
+
∥∥∇∂3u(τ)

∥∥2

2

)
dτ

L2(t) = max
τ∈[t1,t]

∥∥ |u3(τ)|λ
∥∥2

2
+

∫ t

t1

∥∥∇(|u3(τ)|λ)
∥∥2

2
dτ, λ >

3

2
.

The proof will be finished if we show that J (t) + L(t) is bounded on (t1, T
∗).

Proof of Theorem 1.1

We will start with the estimate of J . The NSE may be rewritten as

∂uk
∂t
−∆uk +

3∑
j=1

uj∂juk + ∂kp = 0 (NSEk),

where k = 1, 2, 3. Now, we proceed as in [6]. For k = 1, 2, multiplying the equation

NSEk by −∆uk and (1.1) by ∂3∂3u in L2(R3), respectively, and adding them together

we obtain

d

dt

[
‖∇uh‖2

2 + ‖∂3u‖2
2

]
+
[
‖∆uh‖2

2 + ‖∇∂3u‖2
2

]
.
∫
R3

|∂3u||∇uh|2dx+

∫
R3

|u3||∂3u|(|∆uh|+ |∇∂3u|)dx(2.1)

:= J1 + J2,
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where the first inequality was proved in [19], by the Hölder and Gagliardo-Nirenberg

inequalities

J1 ≤ ‖∂3u‖q
∥∥∇uh∥∥2

2q
q−1

. ‖∂3u‖q
∥∥∇uh∥∥ 2q−3

q

2

∥∥∆uh
∥∥ 3
q

2
.

Integrating in time and using the Hölder inequality we obtain∫ t

t1

J1dτ ≤ C
∥∥∂3u

∥∥
2q

2q−3
,q;t1,t

∥∥∇uh∥∥ 2q−3
q

∞,2;t1,t

∥∥∆uh
∥∥ 3
q

2,2;t1,t
≤ CεJ 2(t).(2.2)

Using the Hölder inequality to estimate the term J2∫ t

t1

J2dτ =

∫ t

t1

∫
R3

|u3||∂3u|
(
|∆uh|+ |∇∂3u|

)
dxdτ

=
∥∥∥|u3||∂3u|

(
|∆uh|+ |∇∂3u|

)∥∥∥
1,1;t1,t

(2.3)

. ‖u3‖a,ā;t1,t‖∂3u‖b,b̄;t1,t
∥∥∆uh,∇∂3u

∥∥
2,2;t1,t

,

where (1

a
,

1

ā

)
+
(1

b
,
1

b̄

)
=
(1

2
,
1

2

)
.(2.4)

Applying the interpolation inequality, Lemma 1.5 and the Hölder inequality in order

to obtain

‖u3‖a,ā;t1,t ≤ ‖u3‖1−v1
2λ,∞;t1,t

∥∥u3

∥∥v1
(2λ+1)q,

2(2λ+1)q
4q−3

;t1,t

.
∥∥u3

∥∥1−v1
2λ,∞;t1,t

∥∥∥∥∥∇h|u3|λ
∥∥ 2

2λ+1

2

∥∥∂3u3

∥∥ 1
2λ+1

q

∥∥∥v1
2(2λ+1)q

4q−3
;t1,t

≤
∥∥|u3|λ

∥∥ 1−v1
λ

2,∞;t1,t

∥∥∇h|u3|λ
∥∥ 2v1

2λ+1

2,2;t1,t

∥∥∂3u
∥∥ v1

2λ+1

q, 2q
2q−3

;t1,t
,

where interpolation inequality with

(2.5) (
1

a
,

1

ā
) = (1− v1)(

1

2λ
, 0) + v1(

1

(2λ+ 1)q
,

4q − 3

2(2λ+ 1)q
), 0 ≤ v1 ≤ 1.

Using the interpolation inequality, we get

‖∂3u‖b,b̄;t1,t ≤
∥∥∂3u

∥∥1−v2
q, 2q

2q−3
;t1,t
‖∂3u‖v22,∞;t1,t

where

(2.6) (
1

b
,
1

b̄
) = (1− v2)(

1

q
,
2q − 3

q
) + v2(

1

2
, 0), 0 ≤ v2 ≤ 1.

It follows from (2.4), (2.5), and (2.6) that

1− v1

2λ
+

v1

(2λ+ 1)q
+

1− v2

q
+
v2

2
=

1

2
(2.7)

and

4q − 3

2(2λ+ 1)q
v1 +

2q − 3

2q
(1− v2) =

1

2
.(2.8)
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From the above estimates we have∫ t

t1

J2dτ .
∥∥∂3u

∥∥ v1
2λ+1

+1−v2
q, 2q

2q−3
;t1,t

∥∥|u3|λ
∥∥ 1−v1

λ

2,∞;t1,t

∥∥∇|u3|λ
∥∥ 2v1

2λ+1

2,2;t1,t

∥∥∂3u
∥∥v2

2,∞;t1,t

∥∥∆uh,∇∂3u
∥∥

2,2;t1,t

. ε
v1

2λ+1
+1−v2J 1+v2(t)L

1−v1
λ

+
2v1
2λ+1 (t).

We deduce that

J 2(t) ≤ ‖∇uh(t1)‖2
2 + ‖∂3u(t1)‖2

2 + CεJ 2(t)

+ Cε
v1

2λ+1
+1−v2J 1+v2(t)L

1−v1
λ

+
2v1
2λ+1 (t)(2.9)

≤ C + CεJ 2(t) + Cε
v1

2λ+1
+1−v2J 1+v2(t)L

1−v1
λ

+
2v1
2λ+1 (t).

We are now prepared to proceed with the estimate of L. proceeding as in [13], multi-

plying the 3rd equation from (1.1) by |u3|2λ−2 u3 and integrating over the whole space

we get

d

dt

∥∥∥|u3|λ
∥∥∥2

2
+

(
4λ− 2

λ

)∥∥∥∇ |u3|λ
∥∥∥2

2
= (−2λ)

∫
∂3p |u3|2λ−2 u3 ≡ L.

By the standard procedure one gets

−∆∂3p = 2
3∑

i,j=1

∂i∂j (ui∂3uj) = 2
2∑
i=1

3∑
j=1

∂i∂j (ui∂3uj) + 2
3∑
j=1

∂3∂j (u3∂3uj)

and so we have the decomposition of ∂3p :

∂3p = 2
2∑
i=1

3∑
j=1

RiRj (ui∂3uj) + 2
3∑
j=1

R3Rj (u3∂3uj) = p1 + p2

where Ri = ∂i√
−4 is the Riesz transformation, which is bounded from Lr (R3)) to itself

for 1 < r <∞. We have

(2.10)

∫ t

t1

Ldτ .
∥∥p1 |u3|2λ−2 u3

∥∥
1,1;t1,t

+
∥∥p2 |u3|2λ−2 u3

∥∥
1,1;t1,t

:= L1(t) + L2(t).

Using the Hölder inequality we obtain

(2.11) L1(t) ≤ ‖uh‖c,c̄,t1,t
∥∥∂3u

∥∥
q, 2q

2q−3
;t1,t

∥∥u3

∥∥2λ−1

d,d̄;t1,t

where

(2.12)
(1

c
,
1

c̄

)
+
(1

q
,
2q − 3

2q

)
+ (2λ− 1)

(1

d
,

1

d̄

)
= (1, 1).
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Using the interpolation inequality, Lemma 1.4, Sobolev and Hölder inequalities in order

to obtain

‖uh‖c,c̄,t1,t ≤
∥∥uh∥∥1−v3

3q, 6q
2q−3

;t1,t
‖uh‖v36,∞;t1,t

≤
∥∥‖∂3uh‖

1
3
q ‖∇huh‖

2
3
2

∥∥1−v3
6q

2q−3
;t1,t
‖∇uh‖v32,∞;t1,t

≤
∥∥∂3uh

∥∥ 1−v3
3

q, 2q
2q−3

;t1,t

∥∥∇huh
∥∥ 2(1−v3)

3

2,∞;t1,t
‖∇uh‖v32,∞;t1,t

≤
∥∥∂3u

∥∥ 1−v3
3

q, 2q
2q−3

;t1,t

∥∥∇uh∥∥ 2+v3
3

2,∞;t1,t
,

where interpolation inequality with

(2.13) (
1

c
,
1

c̄
) = (1− v3)

( 1

3q
,
2q − 3

6q

)
+ v3

(1

6
, 0
)
, 0 ≤ v3 ≤ 1.

Applying the interpolation inequality, Lemma 1.5, and the Hölder inequality in order

to obtain

‖u3‖d,d̄;t1,t ≤
∥∥u3

∥∥1−v4
2λ,∞;t1,t

∥∥u3

∥∥v4
(2λ+1)q,

2(2λ+1)q
4q−3

;t1,t

≤
∥∥|u3|λ

∥∥ 1−v4
λ

2,∞;t1,t

∥∥‖∂3u3‖
1

2λ+1
q ‖∇h(|u|λ)‖

2
2λ+1

2

∥∥v4
2(2λ+1)q

4q−3
;t1,t

≤
∥∥|u3|λ

∥∥ 1−v4
λ

2,∞;t1,t

∥∥∂3u
∥∥ v4

2λ+1

q, 2q
2q−3

;t1,t

∥∥∇h(|u3|λ)
∥∥ 2v4

2λ+1

2,2;t1,t
,

where interpolation inequality with

(2.14)
(1

d
,

1

d̄

)
= (1− v4)

( 1

2λ, 0

)
+ v4

( 1

(2λ+ 1)q
,

4q − 3

2(2λ+ 1)q

)
, 0 ≤ v4 ≤ 1.

From the above estimates we have

L1(t) ≤ C
∥∥∂3u

∥∥1+
1−v3

3
+
v4(2λ−1)

2λ+1

q, 2q
2q−3

;t1,t

∥∥∇uh∥∥ 2+v3
3

2,∞;t1,t

∥∥|u3|λ
∥∥ (1−v4)(2λ−1)

λ

2,∞;t1,t

∥∥∇(|u3|λ)
∥∥ 2v4(2λ−1)

2λ+1

2,2;t1,t

≤ Cε
4−v3

3
+
v4(2λ−1)

2λ+1 J
2+v3

3 (t)L
(1−v4)(2λ−1)

λ
+

2v4(2λ−1)
(2λ+1) (t).

Applying the Hölder, interpolation, and Sobolev inequalities in order to obtain

L2(t) ≤
∥∥u3

∥∥
2λq
q−1

, 4λq
3

;t1,t

∥∥∂3u
∥∥
q, 2q

2q−3
;t1,t

∥∥u3

∥∥2λ−1
2λq
q−1

, 4λq
3

;t1,t

=
∥∥|u3|λ

∥∥2
2q
q−1

, 4q
3

;t1,t

∥∥∂3u
∥∥
q, 2q

2q−3
;t1,t

≤
∥∥|u3

∣∣λ‖ 2q−3
q

2,∞;t1,t

∥∥|u3|λ
∥∥ 3
q

6,2;t1,t

∥∥∂3u
∥∥
q, 2q

2q−3
;t1,t

(2.15)

.
∥∥|u3

∣∣λ‖ 2q−3
q

2,∞;t1,t

∥∥∇(|u3|λ)
∥∥ 3
q

2,2;t1,t

∥∥∂3u
∥∥
q, 2q

2q−3
;t1,t

≤ εL2(t).
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Thus

L2(t) ≤ C + L1(t) + L2(t)(2.16)

≤ C + Cε
4−v3

3
+
v4(2λ−1)

2λ+1 J
2+v3

3 (t)L
(1−v4)(2λ−1)

λ
+

2v4(2λ−1)
(2λ+1) (t) + CεL2(t).

It follows from (2.12), (2.13), and (2.14) that

1− v3

3q
+
v3

6
+
(1− v4

2λ
+

v4

q(2λ+ 1)

)
(2λ− 1) +

1

q
= 1(2.17)

and

2q − 3

2q

(
1 +

1− v3

3
+
v4(2λ− 1)

2λ+ 1

)
+
v4(2λ− 1)

(2λ+ 1)
= 1.(2.18)

Now, solve (2.7), (2.8), (2.17), and (2.18) we obtain

v1 = −(1 + 2λ)(3− 2q − 2λ+ qλ)

−3 + 2q + λ
; v2 = −6− 5q − 3λ+ 2qλ

−3 + 2q + λ
;(2.19)

v3 = −3 + 10q − 4λ− 4qλ

−3 + 2q + λ
; v4 =

(1 + 2λ)(9− 6q + 2qλ)

3(−3 + 2q + λ)(−1 + 2λ)
.(2.20)

Reducing 0 ≤ v1 ≤ 1, 0 ≤ v2 < 1, 0 ≤ v3 ≤ 1, 0 ≤ v4 ≤ 1, λ > 3
2
, q ≥ 3, yields

3 ≤ q ≤ 3

4
(
√

5 + 3),
10q + 3

4q + 4
≤ λ ≤ 12q

4q + 3
or

3

4
(
√

5 + 3) < q ≤ 6,
10q + 3

4q + 4
≤ λ ≤ 2q − 3

q − 2
.

Hence, the range of q is [3, 6]. From the above estimates of J and L we have

(2.21) J 2(t) ≤ C + CεJ 2(t) + Cε
v1

2λ+1
+1−v2J j1(t)Ll1(t)

and

(2.22) L2(t) ≤ C + Cε
4−v3

3
+
v4(2λ−1)

2λ+1 J j2(t)Ll2(t) + CεL2(t)

where

(2.23)
j1 = 1 + v2, l1 = 1−ϑ1

λ
+ 2ϑ1

2λ+1

j2 = 2+ϑ3
3
, l2 = (2λ−1)(1−ϑ4)

λ
+ 2(2λ−1)ϑ4

2λ+1
.

Since 0 ≤ v2 < 1 , it is obvious that 1 ≤ j1 < 2, and we may apply Hölder inequality

to (2.21)

J 2(t) ≤ C + CεJ 2(t) +
1

2
J 2(t) + CL

2l1
2−j1 (t)

≤ C + CεJ 2(t) +
1

2
J 2(t) + CL

2
2λ−3 (t).

Now choose 0 < ε� 1 sufficiently small such that

Cε ≤ 1

4
,

we have

(2.24) J (t) ≤ C + CL
1

2λ−3 (t).
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Plugging (2.24) into (2.22), and choosing ε such that

Cε
4−ϑ3

3
+
ϑ4(2λ−1)

2λ+1 ≤ 1

4
,

we obtain

L2(t) ≤ C +
1

4
L

1
2λ−3

j2+l2(t) +
1

2
L2(t) = C +

3

4
L2(t).

Thus

(2.25) L2(t) ≤ C.

It follows from (2.24) and (2.25) that ‖∇uh(t)‖2 is uniformly bounded on t ∈ [t1, t) as

desired. The proof of Theorem 1.1 is completed. �

Proof of Theorem 1.2

We use two different evaluation methods to prove Theorem 1.2.

The first evaluation method

We will start with the estimate of J . To estimate J we need to evaluate J1 and J2

defined by (2.1). From the estimate (2.2) and using Hölder inequality we get∫ t

t1

J1dτ ≤ C
∥∥∂3u

∥∥
2q

2q−3
,q;t1,t
‖∇uh‖

2q−3
q

∞,2;t1,t
‖∆uh‖

3
q

2,2;t1,t

≤ C(t− t1)
s−2
2

∥∥∂3u
∥∥

2q
sq−3

,q;t1,t
‖∇uh‖

2q−3
q

∞,2;t1,t
‖∆uh‖

3
q

2,2;t1,t
≤ CεJ 2(t).

We use the estimate (2.3) to evaluate J2. Applying the interpolation inequality to

obtain

‖u3‖a,ā;t1,t ≤ ‖u3‖1−α1
2λ,∞;t1,t

‖u3‖α1
2,∞;t1,t

≤
∥∥|u3|λ

∥∥ 1−α1
λ

2,∞;t1,t
‖u3‖α1

2,∞;t1,t
(2.26)

≤
∥∥|u3|λ

∥∥ 1−α1
λ

2,∞;t1,t
‖u0‖α1

2 .
∥∥|u3|λ

∥∥ 1−α1
λ

2,∞;t1,t
,

‖∂3u‖b,b̄ ≤
∥∥∂3u

∥∥1−α2

q, 2q
sq−3

;t1,t
‖∂3u‖α2

2,∞(2.27)

with (1

a
,

1

ā

)
= (1− α1)

( 1

2λ
, 0
)

+ α1

(1

2
, 0
)
, 0 ≤ α1 ≤ 1(2.28)

and (1

b
,
1

b̄

)
= (1− α2)

(1

q
,
sq − 3

q

)
+ α2

(1

2
, 0
)
, 0 ≤ α2 ≤ 1.(2.29)

It follows from (2.4), (2.28), and (2.29) that

1− α1

2λ
+
α1

2
+

1− α2

q
+
α2

2
=

1

2
(2.30)

and

(1− α2)
sq − 3

2q
=

1

2
.(2.31)
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Using the estimates (2.3), (2.26), and (2.27) to obtain∫ t

t1

J2dτ ≤ C
∥∥|u3|λ

∥∥ 1−α1
λ

2,∞;t1,t

∥∥∂3u
∥∥1−α2

q, 2q
sq−3

;t1,t
‖∂3u‖α2

2,∞;t1,t
‖∆uh,∇∂3u‖2,2;t1,t.(2.32)

Thus

J 2(t) ≤ C + CεJ 2(t) + Cε1−α2J 1+α2(t)L
1−α1
λ (t).(2.33)

To estimate L we need to evaluate L1 and L2 defined by (2.10). Using the Hölder

inequality we obtain

(2.34) L1(t) ≤ ‖uh‖c,c̄,t1,t
∥∥∂3u

∥∥
q, 2q
sq−3

;t1,t
‖u3‖2λ−1

d,d̄;t1,t

where

(2.35) (
1

c
,
1

c̄
) + (

1

q
,
sq − 3

2q
) + (2λ− 1)(

1

d
,

1

d̄
) = (1, 1).

Invoke the Gagliardo-Nirenberg, Hölder inequalities, and Lemma 1.4 to bound as

‖uh‖c,c̄;t1,t ≤ ‖uh‖1−α3

3q, 6q
qs−3

;t1,t
‖∆uh‖α3

2,2;t1,t

≤
∥∥‖∂3uh‖

1
3
q ‖∇huh‖

2
3
2

∥∥1−α3
6q
qs−3

;t1,t
‖∆uh‖α3

2,2;t1,t
(2.36)

≤ ‖∂3u‖
1−α3

3

q, 2q
sq−3

;t1,t
‖∇uh‖

2
1−α3

3
2,∞;t1,t

‖∆uh‖α3
2,2;t1,t

(2.37)

where interpolation inequality with

(2.38) (
1

c
,
1

c̄
) = (1− α3)(

1

3q
,
sq − 3

6q
) + v3(

1

2
− 2

3
,
1

2
)

and

0 ≤ v3 ≤ 1, c > 0.

Applying the interpolation inequality to obtain

‖u3‖d,d̄;t1,t ≤ ‖u3‖(1−α4)
2λ,∞;t1,t

‖u3‖α4
2,∞;t1,t

≤
∥∥|u3|λ

∥∥ (1−α4)
λ

2,∞;t1,t
‖u0‖α4

2 .
∥∥|u3|λ

∥∥ (1−α4)
λ

2,∞;t1,t
(2.39)

with

(2.40)
(1

d
,

1

d̄

)
= (1− v4)

( 1

2λ
, 0
)

+ v4

(1

2
, 0
)
, 0 ≤ v4 ≤ 1.

Using the estimates (2.34), (2.37), and (2.39) to obtain

L1(t) ≤ C
∥∥∂3u

∥∥ 4−α3
3

q, 2q
sq−3

;t1,t

∥∥∇uh∥∥2
1−α3

3

2,∞;t1,t
‖∆uh‖α3

2,2;t1,t

∥∥|u3|λ
∥∥ (1−α4)(2λ−1)

λ

2,∞;t1,t
.

From the estimate (2.15), it follows that

L2(t) .
∥∥|u3

∣∣λ‖ 2q−3
q

2,∞;t1,t

∥∥∇(|u3|λ)
∥∥ 3
q

2,2;t1,t

∥∥∂3u
∥∥
q, 2q

2q−3
;t1,t

≤
∥∥|u3

∣∣λ‖ 2q−3
q

2,∞;t1,t

∥∥∇(|u3|λ)
∥∥ 3
q

2,2;t1,t
(t− t1)

s−2
2

∥∥∂3u
∥∥
q, 2q
sq−3

;t1,t
(2.41)

. εL2(t).
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Thus

L2(t) ≤ C + L1(t) + L2(t)(2.42)

≤ C + Cε
4−α3

3 J
2+α3

3 (t)L
(1−α4)(2λ−1)

λ (t) + CεL2(t).

It follows from (2.35), (2.38), and (2.40) that

sq − 3

2q
(1 +

1− α3

3
) +

α3

2
= 1(2.43)

and
1− α3

3q
− α3

6
+ (

1− α4

2λ
+
α4

2
)(2λ− 1) +

1

q
= 1.(2.44)

From (2.30), (2.31), we can solve

α1 =
3− qs− 2λ+ qλ

(−3 + qs)(−1 + λ)
, α2 =

−3− q + qs

qs− 3
(2.45)

and from (2.43), (2.44), we have

α3 =
2(−6− 3q + 2qs)

−3− 3q + qs
, α4 =

9 + 9q − 3qs+ 6qλ− 4qsλ

3(3 + 3q − qs)(−1 + λ)(−1 + 2λ)
(2.46)

and

(2.47) c = − 3q(qs− 3q − 3)

2q2s− 3q2 + 3qs− 9q − 9
.

From the above estimates of J and L we have

(2.48) J 2(t) ≤ C + CεJ 2(t) + Cε1−α2J j1(t)Ll1(t)

and

(2.49) L2(t) ≤ C + Cε
4−α3

3 J j2(t)Ll2(t) + CεL2(t)

where

(2.50)
j1 = 1 + α2, l1 = 1−α1

λ

j2 = 2+α3

3
, l2 = (1−α4)(2λ−1)

λ
.

If α2 < 1 then 1 ≤ j1 < 2, and we may apply Hölder inequality to (2.48)

J 2(t) ≤ C + CεJ 2(t) +
1

2
J 2(t) + CL

2l1
2−j1 (t).

Now choose 0 < ε� 1 sufficiently small such that

Cε ≤ 1

4
,

we have

(2.51) J (t) ≤ C + CL
2l1

2−j1 (t).

Plugging (2.51) into (2.49), and choosing ε such that

Cε
4−α3

3 ≤ 1

4
,
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we obtain

(2.52) L2(t) ≤ C +
1

4
L

2l1
2−j1

j2+l2(t) +
1

2
L2(t) = C +

1

4
Lγ(t) +

1

2
L2(t)

where

(2.53) γ =
l − α1

λ(1− α2)

2 + α3

3
+

(1− α4)(2λ− 1)

λ
.

Plugging (2.45) and (2.46) into (2.53) to obtain

(2.54) γ =
q2 (−18λ+ 6s2 + (6λ− 31)s+ 45)− 3q(6λ+ 8s− 19) + 18

3(λ− 1)q(q(s− 3)− 3)
.

If γ ≤ 2 then from (2.52) we deduce that

(2.55) L2(t) ≤ C.

It follows from (2.51) and (2.55) that ‖∇uh(t)‖2 is uniformly bounded on t ∈ [t1, t)

as desired. To finish the proof we need to discuss the range of s, q, and λ for which

our proof works. Reducing 0 ≤ α1 ≤ 1, 0 ≤ α2 < 1, 0 ≤ α3 ≤ 1, 0 ≤ α4 ≤ 1, c > 0,
11
6
< s ≤ 2, q ≥ 6, λ > 3

2
, γ ≤ 2 yields

11

6
< s ≤ 19

10
,
3

2

√
s2 + 2s− 3

(2s− 3)2
− 3(s− 3)

2(2s− 3)
< q ≤ 6

2s− 3
,
qs− 3

q − 2
≤ λ ≤ −3qs+ 9q + 9

4qs− 6q

or
19

10
< s ≤ 2, 6 ≤ q ≤ 6

2s− 3
,
qs− 3

q − 2
≤ λ ≤ −3qs+ 9q + 9

4qs− 6q
.

Therefore the range of s and q for which our proof works is

(2.56)
11

6
< s <

19

10
,

3

2

√
s2 + 2s− 3

(2s− 3)2
− 3(s− 3)

2(2s− 3)
< q <

6

2s− 3

or

(2.57)
19

10
≤ s ≤ 2, 6 ≤ q ≤ 6

2s− 3
.

The second evaluation method

We still use (2.48) for the estimate of J , where α1 and α2 are given by (2.45) but we use

another way for estimate of L . To estimate L we need to evaluate L1 and L2 defined

by (2.10). We use the estimate (2.34) to evaluate L1. Invoke the Gagliardo-Nirenberg,

Hölder inequalities, and Lemma 1.4 to bound as

‖uh‖c,c̄;t1,t ≤
∥∥uh∥∥1−α3

3q, 6q
qs−3

;t1,t
‖∇uh‖α3

2,∞;t1,t

≤
∥∥‖∂3uh‖

1
3
q ‖∇huh‖

2
3
2

∥∥1−α3
6q
qs−3

;t1,t
‖∇uh‖α3

2,∞;t1,t
(2.58)

≤
∥∥∂3u

∥∥ 1−α3
3

q, 2q
sq−3

;t1,t

∥∥∇uh∥∥2
1−α3

3

2,∞;t1,t
‖∇uh‖α3

2,∞;t1,t
=
∥∥∂3u

∥∥ 1−α3
3

q, 2q
sq−3

;t1,t
‖∇uh‖

2+α3
3

2,∞;t1,t
(2.59)

where interpolation inequality with

(2.60) (
1

c
,
1

c̄
) = (1− α3)(

1

3q
,
sq − 3

6q
) + v3(

1

2
− 1

3
, 0), 0 ≤ v3 ≤ 1.
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From the estimates (2.34), (2.39) and (2.59) estimates we have

L1(t) ≤ C
∥∥∂3u

∥∥ 4−α3
3

q, 2q
sq−3

;t1,t

∥∥∇uh∥∥ 2+α3
3

2,∞;t1,t

∥∥|u3|λ
∥∥ (1−α4)(2λ−1)

λ

2,∞;t1,t
.

Using the above estimate and (2.41)

L2(t) ≤ C + L1(t) + L2(t)(2.61)

≤ C + Cε
4−α3

3 J
2+α3

3 (t)L
(1−α4)(2λ−1)

λ (t) + CεL2(t).

It follows from (2.35), (2.40), and (2.60) that

1− α3

3q
+ α3(

1

2
− 1

3
) + (

1− α4

2λ
+
α4

2
)(2λ− 1) +

1

q
= 1(2.62)

and

sq − 3

2q
(1 +

1− α3

3
) = 1.(2.63)

Solving (2.62) and (2.63) to obtain

α3 =
2(−6− 3q + 2qs)

−3 + qs
, α4 =

−9 + 3qs+ 6qλ− 4qsλ

3(−3 + qs)(−1 + λ)(−1 + 2λ)
.(2.64)

Proceeding J and L as the first evaluation method, if α2 < 1 and choose 0 < ε � 1

sufficiently small then

L2(t) ≤ C +
1

4
Lγ(t) +

1

2
L2(t)

where γ is given by (2.53), plugging (2.45) and (2.64) into (2.53) to obtain

γ =
−6λq − 6qs+ 17q + 6

3q − 3λq
.

If γ ≤ 2 then we deduce that L2(t) ≤ C and ‖∇uh(t)‖2 is uniformly bounded on

t ∈ [t1, t) as desired. Reducing 0 ≤ α1 ≤ 1, 0 ≤ α2 < 1, 0 ≤ α3 ≤ 1, 0 ≤ α4 ≤ 1,
11
6
< s ≤ 2, q ≥ 6, λ > 3

2
, γ ≤ 2 yields

11

6
≤ s ≤ 2,

6

2s− 3
≤ q ≤ 6

6s− 11
,
qs− 3

q − 2
≤ λ ≤ 3qs− 9

4qs− 6q
.

Therefore the range of s and q for which our proof works is

(2.65)
11

6
≤ s ≤ 2,

6

2s− 3
≤ q ≤ 6

6s− 11
.

We get from (2.56), (2.57), and (2.65) the conditions (1.6) and (1.7) for which u is

regular on (0, T ). The proof of Theorem 1.2 is completed. �
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