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Abstract An autonomous Caputo fractional differential equation of order α ∈
(0, 1) in a finite dimensional space whose vector field satisfies a global Lipschitz
condition is shown to generate a semi-dynamical system in the function space
C of continuous functions with the topology uniform convergence on compact
subsets. This contrasts with a recent result of Cong & Tuan [3], which showed
that such equations do not, in general, generate a dynamical system on the
state space.
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1 Introduction

The asymptotic behaviour of Caputo fractional differential equations in Rd
has attracted much attention in the literature in recent years. It has often
been asked if such equations generate an autonomous (or nonautonomous, if
appropriate) dynamical system, since that would allow the theory of attractors
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to applied to them. In 2017 Cong & Tuan [3] showed that such equations do
not generate a dynamical system on Rd, except in special cases.

In this note, we observe that an “autonomous” Caputo fractional differ-
ential equation (Caputo FDE), i.e., with a time independent vector field, is
formulated as an integral equation similar to a Volterra integral equation, but
with an integrably singular rather than continuous kernel. This opens the door
to Miller and Sell’s formulation of Volterra integral equations as autonomous
semi-dynamical systems, see Miller & Sell [10] and Sell [12, Chapter XI], and
enables us to determine an autonomous semi-dynamical system representation
of autonomous Caputo FDEs on the function space C of continuous functions
f : R+ → Rd with the topology uniform convergence on compact subsets.

Consider an autonomous Caputo fractional differential equation of order
α ∈ (0, 1) in Rd of the following form

CDα
0+x(t) = g(x(t)), for t ∈ [0, T ], (1)

where g : Rd → Rd is globally Lipschitz continuous. We represent the solution
of the Caputo FDE (1) with initial condition x(0) = x0 by the integral equation

x(t) = x0 +
1

Γ (α)

∫ t

0

(t− s)α−1g(x(s))ds, (2)

where Γ (α) :=
∫∞
0
tα−1 exp (−t)dt is the Gamma function.

Define

a(t, s) :=
1

Γ (α)
(t− s)α−1, 0 ≤ s < t.

Then the integral equation (2) is a special case of the (singular) Volterra
integral equation

x(t) = f(t) +

∫ t

0

a(t, s)g(x(s))ds (3)

where f : R+ → Rd is a continuous function. In the case of a Caputo FDE (1)
f(t) ≡ f(0) = x0.

As preparation, we first establish the existence and uniqueness of solutions
of the integral equation (2) on any bounded time interval 0, T ] for each f ∈ C,
where C is the space of continuous functions f : R+ → Rd equipped with
the topology uniform convergence on compact subsets, and then show their
continuity in the initial data and the fractional exponent. For this we use the
contraction mapping principle on the space C([0, T ],Rd) with a norm weighted
by an appropriate Mittag-Leffler function. The results assume that the vector
field g satisfies a global Lipschitz condition, but as in Sell [12] we establish the
semi-group property for a larger class of admissible vector fields, which are
assumed to satisfy these preparatory results globally in time.

The extension to “nonautonomous” Caputo fractional differential equa-
tions and skew-product flows is sketched in the final section.
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2 Preliminaries

The existence (local) and uniqueness and continuity in f ∈ C([0, T ],Rd) of
solutions of (3) are given in Miller [9] and Sell [12] provided that a(t, s) is
continuous at s = t. In our case a(t, s) is integrably singular, but we can adapt
the proof in Doan et al [5], which is for Itô stochastic versions of Caputo FDE
to give the global existence and uniqueness of solutions; see also [3].

2.1 Global existence and uniqueness solutions

The global existence and uniqueness solutions of (1) and of the more general
integral equation will be established when the vector field g satisfies the global
Lipschitz condition:

(H1) There exists L > 0 such that for all x, y ∈ Rd, t ∈ [0,∞)

‖g(x)− g(y)‖ ≤ L‖x− y‖.

The proof follows by a contraction mapping argument, which gives only
local existence if the usual supremum norm on continuous functions is used.
Unlike ODES, these local solutions cannot be patched together to provide a
global solution for Caputo FDE. This problem can be seen from the fact that
two different trajectories of a Caputo FDE can intersect, see [3, Section 6]. To
overcome this difficulty, we introduce a suitable Bielecki weighted norm on the
space of continuous functions of the following form

‖x‖γ := sup
t∈[0,T ]

‖x(t)‖
Eα(γtα)

for all x ∈ C([0, T ],Rd),

where γ > 0 is a suitable constant and the weight function is the Mittag-Leffler
function Eα(·) defined as follows:

Eα(t) :=

∞∑
k=0

tk

Γ (αk + 1)
for all t ∈ R.

This approach is inherited from Doan et al [5] in which a weighted norm
was introduced to prove the existence of solutions for stochastic fractional
differential equations.

Theorem 1 Assume that the vector field g satisfies the global Lipschitz con-
dition in Assumption H1. Then for any T > 0 and for each f ∈ C([0, T ],Rd)
the integral equation (3) has a unique solution x(t, f) on the interval [0, T ].

Proof Since the proof is standard we just show the contraction property and
how the weighted norm is used. Let x, y, f ∈ C([0, T ],Rd) with

(Tx)(t) = f(t) +

∫ t

0

a(t, s)g(x(s)) ds, (Ty)(t) = f(t) +

∫ t

0

a(t, s)g(y(s))ds,
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for each t ∈ [0, T ]. Then

‖(Tx)(t)− (Ty)(t)‖ ≤
∫ t

0

a(t, s) ‖g(x(s))− g(y(s))‖ ds

≤ L

∫ t

0

a(t, s) ‖x(s)− y(s)‖ ds.

By definition of ‖ · ‖γ ,

‖(Tx)(t)− (Ty)(t)‖ ≤ L
∫ t

0

a(t, s)Eα(γsα) ds ‖x− y‖γ . (4)

Since Eα(γtα) is a solution of the linear fractional differential equationCDα
0+x(t) =

γx(t) it follows that

Eα(γtα) = 1 + γ

∫ t

0

a(t, s)Eα(γsα)ds,

which together with (4) implies that

‖(Tx)(t)− (Ty)(t)‖
Eα(γtα)

≤ L

γ
‖x− y‖γ .

Hence, by choosing γ > L the operator T is a contraction on (C([0, T ],Rd), ‖ ·
‖γ) and its unique fixed point gives the unique solution of (1). The proof is
complete.

2.2 Continuous dependence of the solution on the input function

We can also show the continuous dependence of solutions on the input function
f , but we do not need the weighted norm for this. Instead, we will use the
following version of Gronwall’s lemma from Diethelm [4, Lemma 6.19].

Lemma 1 Let α, µ, ν, T ∈ R+ and let ∆ : [0, T ]→ R be a continuous function
satisfying the inequality

|∆(t)| ≤ µ+
ν

Γ (α)

∫ t

0

(t− s)α−1|∆(s)| ds, t ∈ [0, T ].

Then

|∆(t)| ≤ µEα(νtα), t ∈ [0, T ].

Theorem 2 Assume that the vector field g satisfies the global Lipschitz con-
dition in Assumption H1. Then for any T > 0 and for each f ∈ C([0, T ],Rd)
the unique solution x(t, f) of the integral equation (3) depends continuously
on f in the supremum norm.
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Proof Let xf , yh ∈ ∈ C([0, T ],Rd) be the unique solutions of (3) corresponding
to the inputs f , h ∈ C([0, T ],Rd). Then,

xf (t)− yh(t) = f(t)− h(t) +

∫ t

0

a(t, s)(g(x(s))− g(y(s)))ds.

Thus,

‖xf (t)− yh(t)‖ ≤ ‖f(t)− h(t)‖+ L

∫ t

0

a(t, s)‖x(s)− y(s)‖ ds.

The fractional Gronwall Lemma 1 then gives

‖xf (t)− yh(t)‖ ≤ ‖f(t)− h(t)‖Eα(Ltα), 0 ≤ t ≤ T,

so, in the supremum norm on C([0, T ],Rd),

‖xf − yh‖∞ ≤ ‖f − h‖∞ sup
0≤t≤T

Eα(Ltα) ≤ ‖f − h‖∞Eα(LTα).

The proof is complete.

2.3 Continuous dependence of the solution on the fractional exponent

We can also show the continuous dependence of solutions on fractional expo-
nent α and the main ingredient is to use the suitable weighted norm as in
Theorem 1. To make the statement concretely, we need to write the kernel
function a(t, s) depending on the fractional exponent, i.e. for any α ∈ (0, 1)

aα(t, s) :=
1

Γ (α)
(t− s)α−1, 0 ≤ s < t.

Then, thanks to Theorem 1 for any T > 0 and any f ∈ C([0, T ],Rd) the
equation

x(t) = f(t) +

∫ t

0

aα(t, s)g(x(s))ds (5)

has a unique solution on [0, T ] denoted by xα(t, f).

Theorem 3 Assume that the vector field g satisfies the global Lipschitz con-
dition in Assumption H1. Then for any T > 0 and for each f ∈ C([0, T ],Rd)
the unique solution xα(t, f) of the integral equation (5) depends continuously
on α in the supremum norm.

Proof Choose and fix an arbitrary α ∈ (0, 1). Now, let β ∈ [α2 , 1] be arbitrary.
By definition of the solution of (5), we have

xα(t, f)− xβ(t, f) =

∫ t

0

aα(t, s)g(xα(s, f)) ds−
∫ t

0

aβ(t, s)g(xβ(s, f)) ds.
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Then, by (H1) we have

‖xα(t, f)− xβ(t, f)‖ ≤
∥∥∥∥∫ t

0

aα(t, s) (g(xα(s, f))− g(xβ(s, f))) ds

∥∥∥∥
+

∥∥∥∥∫ t

0

(aα(t, s)− aβ(t, s)) g(xβ(s, f)) ds

∥∥∥∥
≤ L

∫ t

0

aα(t, s)‖xα(s, f)− xβ(s, f)‖ ds

+Mβ

∫ t

0

|aα(t, s)− aβ(t, s)| ds,

where Mβ := max0≤s≤T ‖g(xβ(s, f))‖. Now, let γ > 0 be arbitrary and let
C([0, T ],Rd) be endowed with the weight norm ‖ · ‖γ defined as

‖x‖γ := sup
t∈[0,T ]

‖x(t)‖
Eα(γtα)

for all x ∈ C([0, T ],Rd).

Then,

‖xα(t, f)− xβ(t, f)‖
Eα(γtα)

≤ L

∫ t

0

aα(t, s)Eα(γsα)

Eα(γtα)
ds ‖xα(·, f)− xβ(·, f)‖γ

+Mβ

∫ t

0

|aα(t, s)− aβ(t, s)| ds

≤ L

γ
‖xα(·, f)− xβ(·, f)‖γ

+Mβ

∣∣∣∣∣
∫ T

0

1

(T − s)1−α
ds−

∫ T

0

1

(T − s)1−β
ds

∣∣∣∣∣ .
Consequently, for a fixed choice of γ satisfying that γ > L we arrive at

‖xα(·, f)− xβ(·, f)‖γ ≤
Mβ

1− L
γ

∣∣∣∣∣
∫ T

0

1

(T − s)1−α
ds−

∫ T

0

1

(T − s)1−β
ds

∣∣∣∣∣ .
Obviously,

lim
β→α

∣∣∣∣∣
∫ T

0

1

(T − s)1−α
ds−

∫ T

0

1

(T − s)1−β
ds

∣∣∣∣∣ = 0

and the norm ‖ · ‖γ is equivalent to the sup norm ‖ · ‖∞. Then, to conclude
the proof it is sufficient to show that supβ∈[α2 ,1]Mβ <∞. By definition of Mβ

and (H1) we have

Mβ ≤ ‖g(0)‖+ L sup
0≤t≤T

‖xβ(t, f)‖. (6)
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On the other hand, from the fact that

xβ(t, f) = f(t) +

∫ t

0

aβ(t, s)g(xβ(s, f)) ds

we derive that

‖xβ(t, f)‖ ≤ ‖f‖∞ + ‖g(0)‖
∫ t

0

aβ(t, s) ds+ L

∫ t

0

aβ(t, s)‖xβ(s, f)‖ ds.

A direct computation yields that
∫ t
0
aβ(t, s) ds = tβ

βΓ (β) . Hence,

‖xβ(t, f)‖ ≤ ‖f‖∞ +
‖g(0)‖T β

βΓ (β)
+ L

∫ t

0

aβ(t, s)‖xβ(s, f)‖ ds.

Then, by virtue of Lemma 1 we have

‖xβ(t, f)‖ ≤
(
‖f‖∞ +

‖g(0)‖T β

βΓ (β)

)
Eβ(LT β),

which together with (6) implies that

sup
β∈[α2 ,1]

Mβ ≤ ‖g(0)‖+ L

(
‖f‖∞ +

‖g(0)‖2T
αminβ∈[α2 ,1] Γ (β)

)
max
β∈[α2 ,1]

Eβ(LT β) <∞.

The proof is complete.

3 Semi-group formulation

Let C be the Banach space of continuous functions f : R+ → Rd with the
topology uniform convergence on compact subsets. This topology is induced
by the metric

ρ(f, h) :=

∞∑
n=1

1

2n
ρn(f, h),

where

ρn(f, h) :=
supt∈[0,n] ‖f(t)− h(t)‖

1 + supt∈[0,n] ‖f(t)− h(t)‖
.

We follow Chapter XI, pages 178-179, in Sell [12] closely, simplifying it to this
“autonomous” case, and show that the singular Volterra integral equation (3)
generates an autonomous semi-dynamical system on the space C.

Given f ∈ C define the operator Tτ : C → C for each τ ∈ R+ by

(Tτf)(θ) = f(τ + θ) +

∫ τ

0

a(τ + θ, s)g(xf (s)) ds, θ ∈ R+, (7)

where xf is a solution of the singular Volterra integral equation (3) for this f ,
i.e.,

xf (t) = f(t) +

∫ t

0

a(t, s)g(xf (s)) ds.
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Theorem 4 Suppose that the vector field g is globally Lipschitz continuous.
The integral equation (3) generalisation of the autonomous Caputo fractional
differential equation (1) generates a semi-group of continuous operators {Tτ , τ ∈
R+} on the space C.

Proof We first show that Tτ : C → C is continuous. Let f, h ∈ C. Then, by (7)

‖Tτf(θ)− Tτg(θ)‖ ≤ ‖f(τ + θ)− h(τ + θ)‖

+L sup
s∈[0,τ ]

‖xf (s)− xh(s)‖
∫ τ

0

a(τ + θ, s) ds,

where L is the Lipschitz constant of g. A direct computation yields that∫ τ

0

a(τ + θ, s) ds =
1

Γ (α)

∫ τ

0

(τ + θ − s)α−1 ds =
1

αΓ (α)
((τ + θ)α − θα) .

Now, choose and fix k ∈ N with k ≥ τ . Then,

sup
θ∈[0,n]

‖Tτf(θ)−Tτg(θ)‖ ≤ sup
t∈[0,k+n]

‖f(t)−g(t)‖+L(k + n)α

αΓ (α)
sup
s∈[0,τ ]

‖xf (s)−xh(s)‖.

Using inequality x
1+x ≤

y
1+y + z provided that x, y, z are non-negative and

x ≤ y + z yields that

ρn(Tτf, Tτg) ≤ ρn+k(f, g) +
L(k + n)α

αΓ (α)
sup
s∈[0,τ ]

‖xf (s)− xh(s)‖.

Thus,

ρ(Tτf, Tτg) ≤ 2kρ(f, g) +
Lc

αΓ (α)
sup
s∈[0,τ ]

‖xf (s)− xh(s)‖,

where c :=
∑∞
n=1

(k+n)α

2n . By virtue of Theorem 2, sups∈[0,τ ] ‖xf (s)−xh(s)‖ →
0 as ρ(f, g)→ 0. Consequently, Tτ is continuous.

To complete the proof, we show that {Tτ : τ ∈ R+} forms a semi-group.
Note that

xf (t) = f(t) +

∫ t

0

a(t, s)g(xf (s)) ds.

Then

xf (t+ τ) = f(t+ τ) +

∫ t+τ

0

a(t+ τ, s)g(xf (s)) ds

= f(t+ τ) +

(∫ τ

0

+

∫ t+τ

τ

)
a(t+ τ, s)g(xf (s)) ds

= (Tτf)(t) +

∫ t+τ

τ

a(t+ τ, s)g(xf (s)) ds

= (Tτf)(t) +

∫ t

0

a(t+ τ, r + τ)g(xf (r + τ)) dr, (r = s− τ),

= (Tτf)(t) +

∫ t

0

a(t, r)g(xf (r + τ)) dr.
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Hence by the existence and uniqueness of solutions xf (t + τ) = ψ(t), where
ψ(t) is a solution of

ψ(t) = (Tτf)(t) +

∫ t

0

a(t, s)g(ψ(s)) ds.

We also have

(Tσ (Tτf))) (θ) = (Tτf)(σ + θ) +

∫ σ

0

a(σ + θ, s)g(ψ(s)) ds

= f(τ + σ + θ) +

∫ τ

0

a(τ + σ + θ, s)g(xf (s)) ds

+

∫ σ

0

a(σ + θ, s)g(ψ(s)) ds

= f(τ + σ + θ) +

∫ τ

0

a(τ + σ + θ, s)g(xf (s)) ds

+

∫ τ+σ

τ

a(σ + θ, r − τ)g(ψ(r − τ)) dr, (r = s+ τ).

Since a(σ + θ, r − τ) = a(τ + σ + θ, r) and ψ(r − τ) = xf (r) it follows that

(Tσ (Tτf))) (θ) = f(τ + σ + θ) +

∫ τ

0

a(τ + σ + θ, s)g(xf (s)) ds

+

∫ τ+σ

τ

a(τ + σ + θ, r)g(xf (r)) dr.

This gives

(Tσ (Tτf)) (θ) = f(τ + σ + θ) +

∫ τ+σ

0

a(τ + σ + θ, s)g(xf (s)) ds

On the other hand from the definition of the operator as in (7)

(Tσ+τf) (θ) = f(τ + σ + θ) +

∫ τ+σ

0

a(τ + σ + θ, s)g(xf (s)) ds

This means that

(Tσ+τf) (θ) = (Tσ (Tτf)) (θ), ∀τ, θ, σ ≥ 0, f ∈ C,

that is

Tσ+τf = Tσ (Tτ ) f, ∀τ, σ ≥ 0, f ∈ C.
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Remark 1 As in [12], we say that a vector field g in the integral equation (3)
is admissible if it has a globally defined unique solution for each f ∈ C with
continuity in initial data. This holds if g is globally Lipschitz continuous as
above, but weaker assumptions are also possible. The theorem above also holds
for such admissible vector fields.

Remark 2 The above results also hold for autonomous Caputo fractional dif-
ferential equations with a substantial time derivative, i.e., of the form

x(t) = x0 +
1

Γ (α)

∫ t

0

(t− s)α−1e−β(t−s)g(x(s)) ds,

where β > 0. This can be seen by replacing a(t, s) by

ã(t, s) :=
1

Γ (α)
(t− s)α−1e−β(t−s), 0 ≤ s < t.

Note that 0 < ã(t, s) ≤ a(t, s).

Remark 3 (i) The theory of autonomous semi-dynamical systems [7] can be
applied to the Caputo semi-group defined above. The solution x(t, x0) of the
autonomous Caputo FDE (1) corresponds to a constant function f0(t) ≡ x0
and

x(t, x0) ≡ (Ttf0)(0).

Thus, when the semi-group {Tτ , τ ∈ R+} has an attractor A ⊂ C, then an
omega limit point x ∈ Rd of trajectories of the Caputo FDE satisfies x = f(0)
for some function f ∈ A.

(ii) In particular, if g(x∗) = 0, then f∗ ∈ A for the constant function
f∗(t) ≡ x∗, i.e., x∗ is a steady state solution of the system. But there may be
functions f∗ ∈ A that are not constant functions, so the strict inclusion, Ω (
A(0) usually holds, where Ω is the union of all the above omega limits points.

(iii) It is important to note that the discussion in (ii) cannot be extended
to periodic functions due to the non-existence of non-trivial periodic solutions
of (1), see e.g. [2,6].

(iv) It is also interesting to consider the structure of the attractor A when
the fractional system is stable and attractive. We refer the readers to [1,8]
for further discussion on the theory of stability and attractivity for fractional
differential equations.

4 Non-autonomous Caputo FDE: skew-product flow

The above result can be extended to the nonautonomous case with a time
dependent vector field g(t, x). Then, again following Sell [12], we can show
that a non-autonomous Caputo fractional differential equation generates a
skew-product flow. We just sketch the details here.
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In particular, we now use the integral equation

x(t) = x0 +
1

Γ (α)

∫ t

0

(t− s)α−1g(s, x(s)) ds. (8)

We define the shift mappings

gτ (·, x) = g(τ + ·, x)

and (to match Sell’s notation in [12])

aτ (·, ·) = a(τ + ·, τ + ·),

Then, following Sell [12], we define

(Tτ (f, g))(θ) = f(τ + θ) +

∫ τ

0

aτ (t+ θ, s)gτ (ϕ(s)) ds,

so in our case we have in fact

(Tτ (f, g))(θ) = f(τ + θ) +

∫ τ

0

a(t+ θ, s)gτ (ϕ(s)) ds, θ ∈ R+.

(Since aτ (t, s) = a(t, s) is our case, it need not be considered as an independent
variable here).

In the autonomous case a and g were fixed functions, so they appeared just
parameters in the operators Tτ . Now, both f and g can vary in time, so they
are the independent variables that determine the operators Tτ .

Let G be an appropriate space of admissible functions g : R+ ×Rd → Rd,
see Sell [12] for some examples of such spaces. We can introduce a semi-group
θτ : G → G defined by the shift θτg := gτ as our “driving system”. Then we
obtain a skew-product flow

Π : R+ × C×G→ C×G

defined by

Π(τ, f, g) := (Tτ (f, g), gτ ) .

The proof is similar to that above with a bit more complicated notation. It
is exactly as in Sell [12], pages 178-179. Essentially, here the operator Tτ (f, g)
: C×G → C for each τ ∈ R+ satisfies a cocycle property with respect to the
driving system θ, [7].

Acknowledgements

The authors would like to thank anonymous reviewers for several constructive
comments that lead to an improvement of the paper.



12 Thai Son Doan, Peter E. Kloeden

References

1. R. Agarwal, S. Hristova and D. O’Regan, Lyapunov functions and stability of Caputo
fractional differential equations with delays, To appear in Differential Equations and
Dynamical Systems, https://doi.org/10.1007/s12591-018-0434-6.

2. I. Area, J. Losada and J.J. Nieto, On quasi-periodicity properties of fractional inte-
grals and fractional derivatives of periodic functions, Integral Transforms Spec. Funct. 27
(2016), no. 1, 1–16.

3. N.D. Cong and H.T. Tuan, Generation of nonlocal fractional dynamical systems by frac-
tional differential equations, Journal of Integral Equations and Applications 29 (2017),
585–608.

4. K. Diethelm, The Analysis of Fractional Differential Equations, Springer Lecture Notes
in Mathematics, vol. 2004, Springer, Heidelberg, 2010.

5. Doan Thai Son, Thi Huong Phan, Peter E. Kloeden and The Tuan Hoang, Asymp-
totic separation between solutions of Caputo fractional stochastic differential equations,
Stochastic Analysis and Applications 39 (2018), 654–664.

6. E. Kaslik, S. Sivasundaram, Non-existence of periodic solutions in fractional-order dy-
namical systems and a remarkable difference between integer and fractional-order deriva-
tives of periodic functions. Nonlinear Anal. Real World Appl. 13 (2012), no. 3, 1489–1497.

7. P. E. Kloeden and M. Rasmussen, Nonautonomous dynamical systems, American Math-
ematical Society, Providence (2011).

8. J. Losada, J.J. Nieto and E. Pourhadi, On the attractivity of solutions for a class
of multi-term fractional functional differential equations J. Comput. Appl. Math. 312
(2017), 2–12.

9. R.K. Miller, Nonlinear Volterra Integral Equations, W.A. Benjamin, Menlo Park, 1971.
10. R.K. Miller and G.R. Sell, Volterra Integral Equations and Topological Dynamics,

Memoir Amer. Math. Soc. vol. 102, 1970.
11. R.K. Miller and G.R. Sell, Existence, uniqueness and continuity of solutions of integral

equations. An Addendum, Annali di Matematica Pura ed Applicata, 87 (1970), 281–286.
12. G.R. Sell. Topological Dynamics and Ordinary Differential Equations, Van Nostrand

Reinhold Mathematical Studies, London, 1971.


