ZEROS OF DIFFERENTIAL POLYNOMIALS OF MEROMORPHIC FUNCTIONS

VIET PHUONG NGUYEN AND THI HOAI AN TA

Abstract

Considering a transcendental meromorphic function f, a positive integer k and polynomials $Q_{0}, Q_{1}, \ldots, Q_{k}$. In this paper, we will prove that the frequency of distinct poles of f is governed by the frequency of zeros of the differential polynomial form $Q_{0}(f) Q_{1}\left(f^{\prime}\right) \ldots Q_{k}\left(f^{(k)}\right)$ in f. We will also prove that the Nevanlinna defect of the differential polynomial form $Q_{0}(f) Q_{1}\left(f^{\prime}\right) \ldots Q_{k}\left(f^{(k)}\right)$ in f satisfy $$
\sum_{a \in \mathbb{C}} \delta\left(a, Q_{0}(f) Q_{1}\left(f^{\prime}\right) \ldots Q_{k}\left(f^{(k)}\right)\right) \leq 1
$$ with suitable conditions on k and the degree of the polynomials. Thus, our works are generalizations of a Mues's conjecture and Goldberg's conjecture to more general differential polynomials.

1. Introduction and main results

Let f be a transcendental meromorphic function, the Gol'dberg conjecture (see [3]) stated that the number of distinct poles of f is bounded by the number of zeros of the k-derivative $f^{(k)}$, where $k \geq 2$. In 1986, by a Wronskian method, Frank and Weissenborn [2] proved a part of the Gol'dberg conjecture where f has poles of multiplicity at most $k-1$. Another related result was established by Langley [7], who proved that if f is meromorphic function of finite order whose second derivative $f^{\prime \prime}$ has finite many zeros, then f has finite many poles. In 2013, by using the upper and lower estimates of the modification of the proximity function, Yamanoi [10] proved a generalization of the Gol'dberg conjecture, which states that for a transcendental meromorphic function f and $k \geq 2$ is a integer and let $\epsilon>0$. Let $A \subset \mathbb{C}$ be a finite subset of complex number. Then, we have

$$
\begin{equation*}
(k-1) \bar{N}(r, f)+\sum_{a \in A} N_{1}\left(r, \frac{1}{f-a}\right) \leq N\left(r, \frac{1}{f^{(k)}}\right)+\epsilon T(r, f) \tag{1.1}
\end{equation*}
$$

Key words: Meromorphic functions, Nevanlinna theory, differential polynomial, Mues conjecture, Gol'dberg conjecture.

The authors are supported by Vietnam's National Foundation for Science and Technology Development (NAFOSTED), under grant number 101.04-2017.320.
as $r \rightarrow \infty$ possibly outside an exceptional set, where $N(r, f), N_{1}\left(r, \frac{1}{f-a}\right), \ldots$ will be defined in Section 2.

Let $a \in \mathbb{C}$ and let $\delta(a, f)$ be the Nevanlinna defect of function f. Then, the defect $\delta(a, f)$ is bounded in $[0,1]$ and by the Nevanlinna Second Main Theorem, $\sum_{a \in \mathbb{C}} \delta(a, f) \leq 2$ for any meromorphic function f. For k is a positive integer, Mues [8] conjectured that the Nevanlinna defects of the $k^{t h}$ derivative of f satisfy

$$
\begin{equation*}
\sum_{a \in \mathbb{C}} \delta\left(a, f^{(k)}\right) \leq 1 \tag{1.2}
\end{equation*}
$$

In the paper, Mues himself proved this conjecture for the case $k \geq 2$ and restricted to the class of meromorphic functions whose all of poles are simple. In 1990, Yang [11] and Ishizaki [5] obtained the upper bound for the sum in (1.2) is $\frac{2 k+2}{2 k+1}$. Then, Yang and Wang [12] proved that there exists a positive integer $K(f)$ such that the estimate (1.2) holds for $k \geq K(f)$. Wang [13] proved (1.2) holds for all $k \geq 0$ with at most four exceptions of k. Finally, Yamanoi [10] confirmed Mues conjecture without any additional hypotheses to meromorphic functions. It is known that the Gol'dberg's conjecture implies the Mues's conjecture.

In 2016, Jiang and Huang [6, Theorem 3] considered for differential monomials form $f^{l}\left(f^{(k)}\right)^{n}$ where l, n, k are integers greater than 1 . They obtained the upper bound for the sum of deficiencies of $f^{l}\left(f^{(k)}\right)^{n}$ is $1+\frac{1}{n k+n+l}$. However, this bound is not sharp.

Our aims in this paper are to give a generalization of the estimates (1.1) and (1.2) for the more general differential polynomials.

From now, let $k \geq 1$ be an integer and let $Q_{i}(z)$ be polynomials of degree $q_{i},(i=0,1,2, \ldots, k)$ in $\mathbb{C}[z]$. We write

$$
Q_{i}(z)=c_{i} \prod_{j=1}^{h_{i}}\left(z-\beta_{i j}\right)^{q_{i j}}
$$

with $c_{i} \in \mathbb{C}^{*}$ and $\sum_{j=1}^{h_{i}} q_{i j}=q_{i}$, for $i=0,1,2, \ldots, k$.
Set

$$
\begin{equation*}
\Phi:=Q_{0}(f) Q_{1}\left(f^{\prime}\right) \ldots Q_{k}\left(f^{(k)}\right) \tag{1.3}
\end{equation*}
$$

and

$$
q:=q_{0}+q_{1}+\cdots+q_{k} .
$$

Our result as following.

Theorem 1. Let f be a transcendental meromorphic function in the complex plane. Let $k \geq 2$ be an integer, $\epsilon>0$. Let $A \subset \mathbb{C}$ be a finite set of complex numbers. Then we have

$$
\sum_{i=0}^{k}(i-1) q_{i} \bar{N}(r, f)+q \sum_{a \in A} N_{1}\left(r, \frac{1}{f-a}\right) \leq N\left(r, \frac{1}{\Phi}\right)+\epsilon T(r, f),
$$

for all $r>e$ outside a set $E \subset(e, \infty)$ of logarithmic density 0 .
In the case that $Q_{0}(z)=Q_{1}(z)=\cdots=Q_{k-1}(z)=1$ and $Q_{k}(z)=z$, we recover the result in [10] as a special case of our result.

Corollary 1. [10, Theorem 1.2] Let f be a transcendental meromorphic function in the complex plane. Let $k \geq 2$ be an integer, $\epsilon>0$. Let $A \subset \mathbb{C}$ be a finite set of complex numbers. Then we have

$$
(k-1) \bar{N}(r, f)+\sum_{a \in A} N_{1}\left(r, \frac{1}{f-a}\right) \leq N\left(r, \frac{1}{f^{(k)}}\right)+\epsilon T(r, f)
$$

for all $r>e$ outside a set $E \subset(e, \infty)$ of logarithmic density 0 .
Remark 1. The original Gol'dberg conjecture corresponds to the case $k=$ $2, Q_{0}(z)=Q_{1}(z)=\cdots=Q_{k-1}(z)=1, Q_{k}(z)=z$ and $A=\emptyset$.

Theorem 2. Let f be a meromorphic function, k be a positive integer. If one of the following conditions holds
(a) $k \geq 2$ and there exists $\nu \in\{2, \ldots, k\}$ such that $Q_{\nu}(z)$ has a zero of order at least 2.
(b) $k \geq 1$ and $\Phi=Q_{k}\left(f^{(k)}\right)$.

Then we have

$$
\sum_{a \in \mathbb{C}} \delta\left(a, Q_{0}(f) Q_{1}\left(f^{\prime}\right) \ldots Q_{k}\left(f^{(k)}\right)\right) \leq 1
$$

As a consequence, when we consider for $Q_{0}(z)=Q_{1}(z)=\cdots=Q_{k-1}(z)=$ 1 and $Q_{k}(z)=z$, we can receive Mues conjecture as follow:

Corollary 2 (Mue Conjecture). Let f be a meromorphic function in the complex plane whose derivative f^{\prime} is non-constant and $k \geq 1$ be an integer. Then we have

$$
\sum_{a \in \mathbb{C}} \delta\left(a, f^{(k)}\right) \leq 1
$$

When we consider for $Q_{0}(z)=z^{l}, Q_{1}(z)=\cdots=Q_{k-1}(z)=1$ and $Q_{k}(z)=z^{n}$, where l, n, k are integers greater than 1 , Theorem 2 implies [6, Theorem 3]. Moreover, we can improve their upper bound for the sum of deficiencies that $1+\frac{1}{n k+n+l}$ to 1 .

Corollary 3. Let f be a transcendental meromorphic function in the complex plane, k, l, n be positive integers all at least 2 . Then

$$
\sum_{a \in \mathbb{C}} \delta\left(a, f^{l}\left(f^{(k)}\right)^{n}\right) \leq 1
$$

2. Preliminary on Nevanlinna's Theory

2.1. Classical Nevanlinna Theory. Let f be a meromorphic function on \mathbb{C}. In this paper, we assume readers are familiar with fundamental of some standard concepts in Nevanlinna Theory, in particular with the most usual of symbol $m(r, f), N(r, f), \bar{N}(r, f)$, and $T(r, f), \ldots$ (see [4, 9] for more detail). We define

$$
N_{1}\left(r, \frac{1}{f-a}\right)=N\left(r, \frac{1}{f-a}\right)-\bar{N}\left(r, \frac{1}{f-a}\right) .
$$

We define the Nevanlinna deficiency by

$$
\delta(a, f)=\liminf _{r \rightarrow \infty} \frac{m\left(r, \frac{1}{f-a}\right)}{T(r, f)}=1-\limsup _{r \rightarrow \infty} \frac{N\left(r, \frac{1}{f-a}\right)}{T(r, f)} .
$$

The logarithmic derivative lemma can be stated as follows (see [9]).
Lemma 1 (Logarithmic Derivative Lemma). Let f be a non-constant meromorphic function on \mathbb{C}. Then

$$
m\left(r, \frac{f^{\prime}}{f}\right)=o(T(r, f))
$$

as $r \rightarrow \infty$ outside a subset of finite measure.
We state the first and second fundamental theorem in Nevanlinna theory (see e.g. [4], [9]):

Theorem 3 (The First Main Theorem). Let $f(z)$ be a meromorphic function and c is a finite complex number. Then

$$
T\left(r, \frac{1}{f-c}\right)=T(r, f)+O(1) .
$$

Theorem 4 (Second fundamental theorem). Let a_{1}, \cdots, a_{q} be a set of distinct complex numbers. Let f be a non-constant meromorphic function on \mathbb{C}. Then, the inequality

$$
\sum_{j=1}^{q} m\left(r, \frac{1}{f-a_{j}}\right) \leq T(r, f)+\bar{N}(r, f)-N\left(r, \frac{1}{f^{\prime}}\right)+o(T(r, f)),
$$

holds for all r outside a set $E \subset(0,+\infty)$ with finite Lebesgue measure.
2.2. Some results of Yamanoi. In [10], Yamanoi improved more generalization of Nevanlinna theory. For convenient of readers, we would like to recall here.

We define the chordal distance between two points z and w in the complex plane by

$$
[z, w]=\frac{|z-w|}{\sqrt{1+|z|^{2}} \sqrt{1+|w|^{2}}},
$$

and

$$
[z, \infty]=\frac{1}{\sqrt{1+|z|^{2}}}
$$

Let \mathcal{R}_{d} be the set of all rational functions of degree less than or equal to d including the constant function which is identically equal to ∞. We define the modification of proximity function by

$$
\bar{m}_{d, n}(r, f)=\sup _{\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathcal{R}_{d}\right)^{n}} \int_{0}^{2 \pi} \max _{1 \leq j \leq n} \log \frac{1}{\left[f\left(r e^{i \theta}\right), a_{j}\left(r e^{i \theta}\right)\right]} \frac{d \theta}{2 \pi} .
$$

A generalization of the first main theorem shows that $\bar{m}_{d, n}(r, f)$ is finite (see [10, Remark 2.3]).

For a meromorphic function f, we put

$$
\begin{aligned}
& v(r, f, \theta)=\sup _{\tau \in[0,2 \pi]}\left(\sup _{t \in[\tau, \tau+\theta]} \log \left|f\left(r e^{i t}\right)\right|-\inf _{t \in[\tau, \tau+\theta]} \log \left|f\left(r e^{i t}\right)\right|\right), \\
& \lambda(r)=\min \left\{1,\left(\log ^{+} \frac{T(r, f)}{\log r}\right)^{-1}\right\} .
\end{aligned}
$$

Lemma 2. [10, Proposition 3.1] Let f be a transcendental meromorphic function in the complex plane. Let $\epsilon>0$. Then we have

$$
v\left(r, f, \lambda(r)^{20}\right) \leq \epsilon T(r)
$$

for all $r>e$ outside a set of logarithmic density zero.

Lemma 3. [10, Lemma 3.6] Let f be a transcendental meromorphic function in the complex plane, and let k be a positive integer. Put

$$
u_{k}=(k+1) \log ^{+}|f|+\log \frac{1}{\left|f^{(k)}\right|}
$$

Then given a positive integer n, we have

$$
\begin{aligned}
\int_{0}^{2 \pi} u_{k}\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi} \leq & \bar{m}_{k-1, n}(r, f)+(k-1) m(r, f)+v\left(r, f, \frac{2 \pi}{n}\right) \\
& +v\left(r, f^{(k)}, \frac{2 \pi}{n}\right)+k \log (2 \pi r)+2 k n \log 3
\end{aligned}
$$

for all $r>1$.
Lemma 4. [10, Theorem 1.4] Let f be a transcendental meromorphic function on the complex plane. Let d and n be positive integers. Let $\epsilon>0$. Let $B \subset \mathbb{C} \cup\{\infty\}$ be a finite set of points in the Riemann sphere and set $p=\# B$. Then we have

$$
\bar{m}_{d, n}(r, f)+\sum_{a \in B} N_{1}\left(r, \frac{1}{f-a}\right) \leq(2+\epsilon) T(r, f)+\frac{(p+n)^{17}}{\epsilon^{4}} T(r)^{4 / 5}(\log r)^{1 / 5}
$$

for all $r>0$ outside a set of finite linear measure $E_{f, d}$ which only depends on f and d.

3. Proof of Theorem 1

We first consider the following lemmas.
Lemma 5. Let f be a transcendental meromorphic function in the complex plane. Let $\epsilon>0$ be an arbitrary small positive constant. Let $\sigma:(e, \infty) \rightarrow$ $\mathbb{N}_{>0}$ be a function such that

$$
\sigma(r) \sim\left(\log ^{+} \frac{T(r)}{\log r}\right)^{20}
$$

Then, we have

$$
\begin{align*}
v\left(r, f, \frac{2 \pi}{\sigma(r)}\right) & +v\left(r, f^{(k+1)}, \frac{2 \pi}{\sigma(r)}\right)+(k+1) \log (2 \pi r) \\
& +2(k+1) \sigma(r) \log 3+o(T(r, f))<\epsilon T(r, f), \tag{3.1}
\end{align*}
$$

for all $r>e$ outside a set of logarithmic density zero.
Proof. Applying Lemma 2, we have

$$
v\left(r, f, \lambda(r)^{20}\right)<\frac{\epsilon}{21} T(r, f)
$$

outside a set of logarithmic density zero. From the definition of function σ, we have

$$
\frac{2 \pi}{\sigma(r)}<7 \lambda(r)^{20}
$$

for all r sufficiently large. Hence, we have

$$
\begin{equation*}
v\left(r, f, \frac{2 \pi}{\sigma(r)}\right)<\frac{\epsilon}{3} T(r, f) \tag{3.2}
\end{equation*}
$$

for all $r>e$ outside a set E_{1} of logarithmic density zero.
From the Logarithmic Derivative Lemma, it is easy to see that

$$
\begin{equation*}
T\left(r, f^{(k+1)}\right) \leq(k+2) T(r, f)+o(T(r, f)) \tag{3.3}
\end{equation*}
$$

Hence, by this estimate and again by Lemma 2, we have

$$
v\left(r, f^{(k+1)}, \widehat{\lambda}(r)^{20}\right)<\frac{\epsilon}{42(k+2)} T\left(r, f^{(k+1)}\right) \leq \frac{\epsilon}{42} T(r, f),
$$

for all $r>e$ outside a set of logarithmic density zero, where

$$
\widehat{\lambda}(r)=\min \left\{1,\left(\log ^{+} \frac{T\left(r, f^{(k+1)}\right)}{\log r}\right)^{-1}\right\} .
$$

By the definition of $\lambda(r), \widehat{\lambda}(r)$ and (3.3), we can see that $\lambda(r)^{20}<2 \widehat{\lambda}(r)^{20}$ for r sufficiently large. Hence, we have

$$
v\left(r, f^{(k+1)}, \lambda(r)^{20}\right)<\frac{\epsilon}{21} T(r, f)
$$

for all $r>e$ outside a set of logarithmic density zero. Therefore, we get

$$
\begin{equation*}
v\left(r, f^{(k+1)}, \frac{2 \pi}{\sigma(r)}\right)<\frac{\epsilon}{3} T(r, f) \tag{3.4}
\end{equation*}
$$

for all $r>e$ outside a set E_{2} of logarithmic density zero.
On the other hand, since f is a transcendental meromorphic function, there exists a positive number $r_{0}>e$ such that

$$
\begin{equation*}
(k+1) \log (2 \pi r)+2(k+1) \sigma(r) \log 3+o(T(r, f))<\frac{\epsilon}{3} T(r, f) \tag{3.5}
\end{equation*}
$$

for all $r>r_{0}$. Put

$$
E=\left[e, r_{0}\right] \cup E_{1} \cup E_{2} .
$$

Then E is a set of logarithmic density zero. Combining (3.2), (3.4) and (3.5), we deduce the inequality (3.1).

Lemma 6. Let k be a positive integer. Let f be a transcendental meromorphic function and Q_{j} be polynomials of one variable of degree q_{i} for $j=0,1,2, \ldots, k$. Let $q=\sum_{j=0}^{k} q_{j}$, and

$$
R_{k}=\log \frac{1}{\left|Q_{0}(f) Q_{1}\left(f^{\prime}\right) \ldots Q_{k}\left(f^{(k)}\right)\right|}+q(k+2) \log ^{+}|f| .
$$

Then we have

$$
\int_{0}^{2 \pi} R_{k}\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi} \leq q \int_{0}^{2 \pi} u_{k+1}\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi}+o(T(r, f)) .
$$

Proof. Put $\Phi:=Q_{0}(f) Q_{1}\left(f^{\prime}\right) \ldots Q_{k}\left(f^{(k)}\right)$. We have

$$
\begin{aligned}
\log \frac{1}{|\Phi|} & =q \log \frac{1}{\left|f^{(k+1)}\right|}+\log \frac{\left|f^{(k+1)}\right|^{q}}{|\Phi|} \\
& \leq q \log \frac{1}{\left|f^{(k+1)}\right|}+\sum_{i=0}^{k} \sum_{j=1}^{h_{i}} q_{i j} \log \frac{\left|f^{(k+1)}\right|}{\left|f^{(i)}-\beta_{i j}\right|}+O(1) \\
& \leq q \log \frac{1}{\left|f^{(k+1)}\right|}+\sum_{i=0}^{k} \sum_{j=1}^{h_{i}} q_{i j} \log ^{+} \frac{\left|f^{(k+1)}\right|}{\left|f^{(i)}-\beta_{i j}\right|}+O(1) .
\end{aligned}
$$

From the Logarithmic Derivative Lemma

$$
m\left(r, \frac{f^{(k+1)}}{f^{(i)}-\beta_{j}}\right)=o(T(r, f))
$$

for any $i=0, \ldots, k$, we obtain

$$
\begin{aligned}
\int_{0}^{2 \pi} R_{k}\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi} & \leq q \int_{0}^{2 \pi} u_{k+1}\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi}+\sum_{i=0}^{k} \sum_{j=1}^{h_{i}} q_{i j} m\left(r, \frac{f^{(k+1)}}{f^{(i)}-\beta_{j}}\right)+O(1) \\
& =q \int_{0}^{2 \pi} u_{k+1}\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi}+o(T(r, f))
\end{aligned}
$$

Recall the Jensen formula as follows (see [9]):
Lemma 7 (Jensen's Formula). Let $f \not \equiv 0$ be meromorphic function on $\bar{D}(r)=\{|z| \leq r\},(r<\infty)$. Let a_{1}, \ldots, a_{μ} denote the zeros of f in $\bar{D}(r)$, counting multiplicities, and let b_{1}, \ldots, b_{ν} denote the poles of f in $\bar{D}(r)$, also counting multiplicities. Then if $f(0) \neq 0, \infty$, we have

$$
\log |f(0)|=\int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| \frac{d \theta}{2 \pi}-\sum_{i=1}^{\mu} \log \frac{r}{\left|a_{i}\right|}+\sum_{j=1}^{\nu} \log \frac{r}{\left|b_{j}\right|} .
$$

Proof of Theorem 1. Put $\Phi:=Q_{0}(f) Q_{1}\left(f^{\prime}\right) \ldots Q_{k}\left(f^{(k)}\right)$, and

$$
R_{k}:=q(k+2) \log ^{+}|f|+\log \frac{1}{|\Phi|}
$$

Note that

$$
\begin{align*}
N(r, \Phi)=\sum_{i=0}^{k} N\left(r, Q_{i}\left(f^{(i)}\right)\right) & =\sum_{i=0}^{k} q_{i} N\left(r, f^{(i)}\right) \\
& =q N(r, f)+\sum_{i=0}^{k} i q_{i} \bar{N}(r, f) . \tag{3.6}
\end{align*}
$$

Applying the Jensen's Formula to the meromorphic functions f and Φ, and using the First Main Theorem and the fact $\log x=\log ^{+} x-\log ^{+} \frac{1}{x}$, and together with (3.6), we have

$$
\begin{align*}
\int_{0}^{2 \pi} R_{k}\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi}= & q(k+2) m\left(r, \frac{1}{f}\right)+q(k+2)\left(N\left(r, \frac{1}{f}\right)-N(r, f)\right) \\
& +N(r, \Phi)-N\left(r, \frac{1}{\Phi}\right)+O(1) \\
= & q(k+2)\left(m\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f}\right)\right)-q(k+1) N(r, f) \\
& \quad+\sum_{i=0}^{k} i q_{i} \bar{N}(r, f)-N\left(r, \frac{1}{\Phi}\right)+O(1) \\
= & q(k+2) T(r, f)-q(k+1) N(r, f)+\sum_{i=0}^{k} i q_{i} \bar{N}(r, f) \\
& \quad-N\left(r, \frac{1}{\Phi}\right)+O(1) \tag{3.7}
\end{align*}
$$

On the other hand, by Lemma 3, Lemma 5 and Lemma 6, we have

$$
\begin{align*}
\int_{0}^{2 \pi} R_{k}\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi} \leq & q \int_{0}^{2 \pi} u_{k+1}\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi}+o(T(r, f)) \\
\leq & k q m(r, f)+q \bar{m}_{k, \sigma(r)}(r, f) \\
& +q\left(v\left(r, f, \frac{2 \pi}{\sigma(r)}\right)+v\left(r, f^{(k+1)}, \frac{2 \pi}{\sigma(r)}\right)\right. \\
& +(k+1) \log (2 \pi r)+2(k+1) \sigma(r) \log 3) \\
\leq & k q m(r, f)+q \bar{m}_{k, \sigma(r)}(r, f)+\frac{\epsilon}{3} T(r, f) \tag{3.8}
\end{align*}
$$

for all $r>e$ and $\sigma:(e, \infty) \rightarrow \mathbb{N}_{>0}$ be a function as in Lemma 5 .
Since f is a transcendental meromorphic function and by the definition of function σ, we have

$$
\lim _{r \rightarrow \infty} \frac{(p+\sigma(r))^{17} T(r)^{4 / 5}(\log r)^{1 / 5}}{T(r)}=0 .
$$

Hence, there exists a positive number r_{1} such that

$$
\begin{equation*}
(p+\sigma(r))^{17} T(r)^{4 / 5}(\log r)^{1 / 5}<\frac{\epsilon^{5}}{3} T(r, f) \tag{3.9}
\end{equation*}
$$

for a given positive integer n and all $r>r_{1}$.
Now, let $A \subset \mathbb{C}$ be a finite set of complex numbers. Applying Lemma 4 to the case $B=A \cup\{\infty\}, d=k, p=\# A+1$ and $n=\sigma(r)$, we obtain

$$
\begin{align*}
& \bar{m}_{k, \sigma(r)}(r, f)+N_{1}(r, f)+\sum_{a \in A} N_{1}\left(r, \frac{1}{f-a}\right) \\
& \leq\left(2+\frac{\epsilon}{3 q}\right) T(r, f)+\frac{(p+\sigma(r))^{17}}{q \epsilon^{4}} T(r)^{4 / 5}(\log r)^{1 / 5} \\
& \leq\left(2+\frac{2 \epsilon}{3 q}\right) T(r, f), \tag{3.10}
\end{align*}
$$

for all $r>0$ outside a set of finite linear measure.
Combining (3.7), (3.8), and (3.10), we obtain

$$
\sum_{i=0}^{k}(i-1) q_{i} \bar{N}(r, f)+q \sum_{a \in A} N_{1}\left(r, \frac{1}{f-a}\right) \leq N\left(r, \frac{1}{\Phi}\right)+\epsilon T(r, f)
$$

for all $r>e$ outside a set E of logarithmic density zero. This completes the proof of Theorem 1.

4. Proof of Theorem 2

To prove the results, we need to prove the following lemmas.
Lemma 8. Let f be a meromorphic function in the complex plane, k be a positive integer, Φ be defined as (1.3). We have

$$
T(r, \Phi)=O(T(r, f)), \quad \text { and } \quad o(T(r, \Phi))=o(T(r, f)) .
$$

Proof. By characteristic function's properties, we have

$$
\begin{aligned}
T(r, \Phi) & \leq \sum_{i=0}^{k} T\left(r, Q_{i}\left(f^{(i)}\right)\right)+O(1) \\
& \leq \sum_{i=0}^{k} q_{i} T\left(r, f^{(i)}\right)+o(T(r, f)) \\
& \leq \sum_{i=0}^{k} q_{i}(i+1) T(r, f)+o(T(r, f)) .
\end{aligned}
$$

Hence, we get

$$
T(r, \Phi)=O(T(r, f)), \quad \text { and } \quad o(T(r, \Phi))=o(T(r, f)) .
$$

The proof of Lemma 8 is completed.
Proof of Theorem 2. We first consider the case that f is a rational function. Then Φ is a non-constant rational function. We have $\delta(a, \Phi)=0$ for all $a \neq \Phi(\infty)$. Therefore, Theorem 2 holds when f is a rational function.

In the following, we assume that f is a transcendental meromorphic function. Let $a_{1}, a_{2}, \ldots, a_{s}$ be distinct complex numbers. Applying Theorem 4 for Φ and the complex numbers $a_{1}, a_{2}, \ldots, a_{s}$, we have

$$
\begin{align*}
\sum_{i=1}^{s} m\left(r, \frac{1}{\Phi-a_{i}}\right) & \leq T(r, \Phi)+\bar{N}(r, \Phi)-N\left(r, \frac{1}{\Phi^{\prime}}\right)+o(T(r, \Phi)) \\
& =T(r, \Phi)+\bar{N}(r, f)-N\left(r, \frac{1}{\Phi^{\prime}}\right)+o(T(r, f)) \tag{4.1}
\end{align*}
$$

for all r outside a set E of finite linear measure, where the second equality follows from Lemma 8 and the fact that $\bar{N}(r, \Phi)=\bar{N}(r, f)$.

If (a) holds, then there exists $\nu \in\{2, \ldots, k\}$ such that $Q_{\nu}(z)$ has at least one zero, for example $z=\beta_{\nu \eta}$, of order bigger than 1 . Therefore, Φ^{\prime} is divisible by $f^{(\nu)}-\beta_{\nu \eta}$.

If (b) holds, then Φ^{\prime} is divisible by $f^{(k+1)}$.

In both cases, Φ^{\prime} is divisible by $Q\left(f^{(i)}\right)$, where $i \geq 2$ and

$$
Q\left(f^{(i)}\right):= \begin{cases}f^{(\nu)}-\beta_{\nu \eta} & \text { if (a) holds } \\ f^{(k+1)} & \text { if (b) holds. }\end{cases}
$$

We have

$$
\begin{equation*}
N\left(r, \frac{1}{\Phi^{\prime}}\right) \geq N\left(r, \frac{1}{Q\left(f^{(i)}\right)}\right) . \tag{4.2}
\end{equation*}
$$

Applying Theorem 1 to differential polynomial $Q\left(f^{(i)}\right)$ and the set $A=\emptyset$, we have

$$
(i-1) \bar{N}(r, f) \leq N\left(r, \frac{1}{Q\left(f^{(i)}\right)}\right)+\epsilon T(r, f)
$$

for all $\epsilon>0$ is an arbitrary small positive constant and for all $r>e$ outside a set E^{\prime} of logarithmic density zero. Combining this inequality with (4.1), (4.2) and note that $i \geq 2$, we obtain, for all $r>e$ outside a set $E \cup E^{\prime}$,

$$
\sum_{i=1}^{s} m\left(r, \frac{1}{\Phi-a_{i}}\right) \leq T(r, \Phi)+\epsilon T(r, f)+o(T(r, f))
$$

Because $\epsilon>0$ is arbitrary small constant, we get

$$
\sum_{i=1}^{s} \delta\left(a_{i}, \Phi\right) \leq 1
$$

References

[1] W. Doeringer, Exceptional values of differential polynomials, Pacific Journal of Mathematics, 98 (1982), no. 1, 55-62.
[2] G. Frank and G. Weissenborn, Rational deficient functions of meromorphic functions, Bull. London Math. Soc. 18 (1986), no. 1, 29 - 33.
[3] A. Goldberg and I. Ostrovskii, Value Distribution of Meromorphic Functions, Translations of Mathematical Monographs. American Mathematical Society, Providence (2008)
[4] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[5] K. Ishizaki, Some remarks on results of Mues about deficiency sums of derivatives, Arch. Math. (Basel) 55 (1990), 374-379.
[6] Y. Jiang and B. Huang,textitA note on the value distribution of $f^{1}\left(f^{(k)}\right)^{n}$, Hiroshima Mathematical Journal 46.2 (2016), 135-147.
[7] J. K. Langley, The second derivative of a meromorphic function of finite order, Bulletin London Math. Soc. 35 (2003), 97-108.
[8] E. Mues, Über eine Defekt und Verzweigungs relation für die Ableitung meromorpher Funktionen, Manuscripta Math. 5 (1971), 275297.
[9] M. Ru, Nevanlinna theory and its relation to Diophantine approximation, World Scientific, 2001.
[10] K. Yamanoi, Zeros of higher derivatives of meromorphic functions in the complex plane, Proc. London Math. Soc. (3) 106 (2013) 703-780.
[11] L. Yang, Precise estimate of total deficiency of meromorphic derivatives, J. dAnalyse Math. 55 (1990), 287 - 296.
[12] L. Yang and Y. F. Wang, Drasins problems and Muess conjecture, Sci. China Ser. A 35, 1180-1190 (1992).
[13] Y. F. Wang, On Mues conjecture and Picard values, Sci. China Ser. A 36, $28-35$ (1993).

Thai Nguyen University of Economics and Business Administration, VietNAM

E-mail address: nvphuongt@gmail.com
Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, 10307 Hanoi, Vietnam
and: Institute of Mathematics and Applied Sciences (TiMAS), Thang Long University, Hanoi, Vietnam

E-mail address: tthan@math.ac.vn

