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Abstract. Considering a transcendental meromorphic function f , a
positive integer k and polynomials Q0, Q1, . . . , Qk. In this paper, we will
prove that the frequency of distinct poles of f is governed by the fre-
quency of zeros of the differential polynomial formQ0(f)Q1(f ′) . . . Qk(f (k))
in f. We will also prove that the Nevanlinna defect of the differential
polynomial form Q0(f)Q1(f ′) . . . Qk(f (k)) in f satisfy∑

a∈C
δ(a,Q0(f)Q1(f ′) . . . Qk(f (k))) ≤ 1

with suitable conditions on k and the degree of the polynomials.
Thus, our works are generalizations of a Mues’s conjecture and Gold-

berg’s conjecture to more general differential polynomials.

1. Introduction and main results

Let f be a transcendental meromorphic function, the Gol’dberg conjec-

ture (see [3]) stated that the number of distinct poles of f is bounded by the

number of zeros of the k-derivative f (k), where k ≥ 2. In 1986, by a Wron-

skian method, Frank and Weissenborn [2] proved a part of the Gol’dberg

conjecture where f has poles of multiplicity at most k − 1. Another related

result was established by Langley [7], who proved that if f is meromorphic

function of finite order whose second derivative f ′′ has finite many zeros,

then f has finite many poles. In 2013, by using the upper and lower esti-

mates of the modification of the proximity function, Yamanoi [10] proved a

generalization of the Gol’dberg conjecture, which states that for a transcen-

dental meromorphic function f and k ≥ 2 is a integer and let ε > 0. Let

A ⊂ C be a finite subset of complex number. Then, we have

(k − 1)N(r, f) +
∑
a∈A

N1

(
r,

1

f − a
)
≤ N

(
r,

1

f (k)

)
+ εT (r, f) (1.1)
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as r →∞ possibly outside an exceptional set, where N(r, f), N1

(
r, 1

f−a

)
,...

will be defined in Section 2.

Let a ∈ C and let δ(a, f) be the Nevanlinna defect of function f . Then,

the defect δ(a, f) is bounded in [0, 1] and by the Nevanlinna Second Main

Theorem,
∑

a∈C δ(a, f) ≤ 2 for any meromorphic function f . For k is a

positive integer, Mues [8] conjectured that the Nevanlinna defects of the kth

derivative of f satisfy ∑
a∈C

δ(a, f (k)) ≤ 1. (1.2)

In the paper, Mues himself proved this conjecture for the case k ≥ 2 and re-

stricted to the class of meromorphic functions whose all of poles are simple.

In 1990, Yang [11] and Ishizaki [5] obtained the upper bound for the sum in

(1.2) is 2k+2
2k+1

. Then, Yang and Wang [12] proved that there exists a positive

integer K(f) such that the estimate (1.2) holds for k ≥ K(f). Wang [13]

proved (1.2) holds for all k ≥ 0 with at most four exceptions of k. Finally,

Yamanoi [10] confirmed Mues conjecture without any additional hypothe-

ses to meromorphic functions. It is known that the Gol’dberg’s conjecture

implies the Mues’s conjecture.

In 2016, Jiang and Huang [6, Theorem 3] considered for differential mono-

mials form f l(f (k))n where l, n, k are integers greater than 1. They obtained

the upper bound for the sum of deficiencies of f l(f (k))n is 1 + 1
nk+n+l

. How-

ever, this bound is not sharp.

Our aims in this paper are to give a generalization of the estimates (1.1)

and (1.2) for the more general differential polynomials.

From now, let k ≥ 1 be an integer and let Qi(z) be polynomials of degree

qi, (i = 0, 1, 2, . . . , k) in C[z]. We write

Qi(z) = ci

hi∏
j=1

(z − βij)qij

with ci ∈ C∗ and
∑hi

j=1 qij = qi, for i = 0, 1, 2, . . . , k.

Set

Φ := Q0(f)Q1(f
′) . . . Qk(f

(k)) (1.3)

and

q := q0 + q1 + · · ·+ qk.

Our result as following.
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Theorem 1. Let f be a transcendental meromorphic function in the complex

plane. Let k ≥ 2 be an integer, ε > 0. Let A ⊂ C be a finite set of complex

numbers. Then we have
k∑
i=0

(i− 1)qiN(r, f) + q
∑
a∈A

N1

(
r,

1

f − a

)
≤ N

(
r,

1

Φ

)
+ εT (r, f),

for all r > e outside a set E ⊂ (e,∞) of logarithmic density 0.

In the case that Q0(z) = Q1(z) = · · · = Qk−1(z) = 1 and Qk(z) = z, we

recover the result in [10] as a special case of our result.

Corollary 1. [10, Theorem 1.2] Let f be a transcendental meromorphic

function in the complex plane. Let k ≥ 2 be an integer, ε > 0. Let A ⊂ C
be a finite set of complex numbers. Then we have

(k − 1)N(r, f) +
∑
a∈A

N1

(
r,

1

f − a

)
≤ N

(
r,

1

f (k)

)
+ εT (r, f)

for all r > e outside a set E ⊂ (e,∞) of logarithmic density 0.

Remark 1. The original Gol’dberg conjecture corresponds to the case k =

2, Q0(z) = Q1(z) = · · · = Qk−1(z) = 1, Qk(z) = z and A = ∅.

Theorem 2. Let f be a meromorphic function, k be a positive integer. If

one of the following conditions holds

(a) k ≥ 2 and there exists ν ∈ {2, ..., k} such that Qν(z) has a zero of order

at least 2.

(b) k ≥ 1 and Φ = Qk(f
(k)).

Then we have ∑
a∈C

δ(a,Q0(f)Q1(f
′) . . . Qk(f

(k))) ≤ 1.

As a consequence, when we consider for Q0(z) = Q1(z) = · · · = Qk−1(z) =

1 and Qk(z) = z, we can receive Mues conjecture as follow:

Corollary 2 (Mue Conjecture). Let f be a meromorphic function in the

complex plane whose derivative f ′ is non-constant and k ≥ 1 be an integer.

Then we have ∑
a∈C

δ(a, f (k)) ≤ 1.
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When we consider for Q0(z) = zl, Q1(z) = · · · = Qk−1(z) = 1 and

Qk(z) = zn, where l, n, k are integers greater than 1, Theorem 2 implies [6,

Theorem 3]. Moreover, we can improve their upper bound for the sum of

deficiencies that 1 + 1
nk+n+l

to 1.

Corollary 3. Let f be a transcendental meromorphic function in the com-

plex plane, k, l, n be positive integers all at least 2. Then∑
a∈C

δ(a, f l(f (k))n) ≤ 1.

2. Preliminary on Nevanlinna’s Theory

2.1. Classical Nevanlinna Theory. Let f be a meromorphic function

on C. In this paper, we assume readers are familiar with fundamental of

some standard concepts in Nevanlinna Theory, in particular with the most

usual of symbol m(r, f), N(r, f), N(r, f), and T (r, f),... (see [4, 9] for more

detail). We define

N1

(
r,

1

f − a

)
= N

(
r,

1

f − a

)
−N

(
r,

1

f − a

)
.

We define the Nevanlinna deficiency by

δ(a, f) = lim inf
r→∞

m
(
r, 1

f−a

)
T (r, f)

= 1− lim sup
r→∞

N
(
r, 1

f−a

)
T (r, f)

.

The logarithmic derivative lemma can be stated as follows (see [9]).

Lemma 1 (Logarithmic Derivative Lemma). Let f be a non-constant mero-

morphic function on C. Then

m(r,
f ′

f
) = o(T (r, f))

as r →∞ outside a subset of finite measure.

We state the first and second fundamental theorem in Nevanlinna theory

(see e.g. [4], [9]):

Theorem 3 (The First Main Theorem). Let f(z) be a meromorphic func-

tion and c is a finite complex number. Then

T (r,
1

f − c
) = T (r, f) +O(1).
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Theorem 4 (Second fundamental theorem). Let a1, · · · , aq be a set of dis-

tinct complex numbers. Let f be a non-constant meromorphic function on

C. Then, the inequality

q∑
j=1

m(r,
1

f − aj
) ≤ T (r, f) +N(r, f)−N

(
r,

1

f ′

)
+ o(T (r, f)),

holds for all r outside a set E ⊂ (0,+∞) with finite Lebesgue measure.

2.2. Some results of Yamanoi. In [10], Yamanoi improved more gener-

alization of Nevanlinna theory. For convenient of readers, we would like to

recall here.

We define the chordal distance between two points z and w in the complex

plane by

[z, w] =
|z − w|√

1 + |z|2
√

1 + |w|2
,

and

[z,∞] =
1√

1 + |z|2
.

Let Rd be the set of all rational functions of degree less than or equal to

d including the constant function which is identically equal to∞. We define

the modification of proximity function by

m̄d,n(r, f) = sup
(a1,...,an)∈(Rd)n

∫ 2π

0

max
1≤j≤n

log
1

[f(reiθ), aj(reiθ)]

dθ

2π
.

A generalization of the first main theorem shows that m̄d,n(r, f) is finite (see

[10, Remark 2.3]).

For a meromorphic function f , we put

v(r, f, θ) = sup
τ∈[0,2π]

(
sup

t∈[τ,τ+θ]
log |f(reit)| − inf

t∈[τ,τ+θ]
log |f(reit)|

)
,

λ(r) = min
{

1,
(

log+ T (r, f)

log r

)−1}
.

Lemma 2. [10, Proposition 3.1] Let f be a transcendental meromorphic

function in the complex plane. Let ε > 0. Then we have

v(r, f, λ(r)20) ≤ εT (r)

for all r > e outside a set of logarithmic density zero.
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Lemma 3. [10, Lemma 3.6] Let f be a transcendental meromorphic function

in the complex plane, and let k be a positive integer. Put

uk = (k + 1) log+ |f |+ log
1

|f (k)|
.

Then given a positive integer n, we have∫ 2π

0

uk(re
iθ)
dθ

2π
≤m̄k−1,n(r, f) + (k − 1)m(r, f) + v

(
r, f,

2π

n

)
+ v
(
r, f (k),

2π

n

)
+ k log(2πr) + 2kn log 3

for all r > 1.

Lemma 4. [10, Theorem 1.4] Let f be a transcendental meromorphic func-

tion on the complex plane. Let d and n be positive integers. Let ε > 0.

Let B ⊂ C ∪ {∞} be a finite set of points in the Riemann sphere and set

p = #B. Then we have

m̄d,n(r, f) +
∑
a∈B

N1

(
r,

1

f − a

)
≤ (2 + ε)T (r, f) +

(p+ n)17

ε4
T (r)4/5(log r)1/5

for all r > 0 outside a set of finite linear measure Ef,d which only depends

on f and d.

3. Proof of Theorem 1

We first consider the following lemmas.

Lemma 5. Let f be a transcendental meromorphic function in the complex

plane. Let ε > 0 be an arbitrary small positive constant. Let σ : (e,∞) →
N>0 be a function such that

σ(r) ∼
(

log+ T (r)

log r

)20
.

Then, we have

v
(
r, f,

2π

σ(r)

)
+ v
(
r, f (k+1),

2π

σ(r)

)
+ (k + 1) log(2πr)

+ 2(k + 1)σ(r) log 3 + o(T (r, f)) < εT (r, f), (3.1)

for all r > e outside a set of logarithmic density zero.

Proof. Applying Lemma 2, we have

v(r, f, λ(r)20) <
ε

21
T (r, f)
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outside a set of logarithmic density zero. From the definition of function σ,

we have
2π

σ(r)
< 7λ(r)20

for all r sufficiently large. Hence, we have

v
(
r, f,

2π

σ(r)

)
<
ε

3
T (r, f) (3.2)

for all r > e outside a set E1 of logarithmic density zero.

From the Logarithmic Derivative Lemma, it is easy to see that

T (r, f (k+1)) ≤ (k + 2)T (r, f) + o(T (r, f)). (3.3)

Hence, by this estimate and again by Lemma 2, we have

v(r, f (k+1), λ̂(r)20) <
ε

42(k + 2)
T (r, f (k+1)) ≤ ε

42
T (r, f),

for all r > e outside a set of logarithmic density zero, where

λ̂(r) = min
{

1,
(

log+ T (r, f (k+1))

log r

)−1}
.

By the definition of λ(r), λ̂(r) and (3.3), we can see that λ(r)20 < 2λ̂(r)20

for r sufficiently large. Hence, we have

v(r, f (k+1), λ(r)20) <
ε

21
T (r, f)

for all r > e outside a set of logarithmic density zero. Therefore, we get

v
(
r, f (k+1),

2π

σ(r)

)
<
ε

3
T (r, f) (3.4)

for all r > e outside a set E2 of logarithmic density zero.

On the other hand, since f is a transcendental meromorphic function,

there exists a positive number r0 > e such that

(k + 1) log(2πr) + 2(k + 1)σ(r) log 3 + o(T (r, f)) <
ε

3
T (r, f) (3.5)

for all r > r0. Put

E = [e, r0] ∪ E1 ∪ E2.

Then E is a set of logarithmic density zero. Combining (3.2), (3.4) and

(3.5), we deduce the inequality (3.1). �



8

Lemma 6. Let k be a positive integer. Let f be a transcendental mero-

morphic function and Qj be polynomials of one variable of degree qi for

j = 0, 1, 2, . . . , k. Let q =
∑k

j=0 qj, and

Rk = log
1

|Q0(f)Q1(f ′) . . . Qk(f (k))|
+ q(k + 2) log+ |f |.

Then we have∫ 2π

0

Rk(re
iθ)
dθ

2π
≤ q

∫ 2π

0

uk+1(re
iθ)
dθ

2π
+ o(T (r, f)).

Proof. Put Φ := Q0(f)Q1(f
′) . . . Qk(f

(k)). We have

log
1

|Φ|
= q log

1

|f (k+1)|
+ log

|f (k+1)|q

|Φ|

≤ q log
1

|f (k+1)|
+

k∑
i=0

hi∑
j=1

qij log
|f (k+1)|
|f (i) − βij|

+O(1)

≤ q log
1

|f (k+1)|
+

k∑
i=0

hi∑
j=1

qij log+ |f (k+1)|
|f (i) − βij|

+O(1).

From the Logarithmic Derivative Lemma

m
(
r,

f (k+1)

f (i) − βj

)
= o(T (r, f)),

for any i = 0, ..., k, we obtain∫ 2π

0

Rk(re
iθ)
dθ

2π
≤ q

∫ 2π

0

uk+1(re
iθ)
dθ

2π
+

k∑
i=0

hi∑
j=1

qijm
(
r,

f (k+1)

f (i) − βj

)
+O(1)

= q

∫ 2π

0

uk+1(re
iθ)
dθ

2π
+ o(T (r, f)).

�

Recall the Jensen formula as follows (see [9]):

Lemma 7 (Jensen’s Formula). Let f 6≡ 0 be meromorphic function on

D̄(r) = {|z| ≤ r}, (r < ∞). Let a1, . . . , aµ denote the zeros of f in D̄(r),

counting multiplicities, and let b1, . . . , bν denote the poles of f in D̄(r), also

counting multiplicities. Then if f(0) 6= 0,∞, we have

log |f(0)| =
∫ 2π

0

log |f(reiθ)|dθ
2π
−

µ∑
i=1

log
r

|ai|
+

ν∑
j=1

log
r

|bj|
.
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Proof of Theorem 1. Put Φ := Q0(f)Q1(f
′) . . . Qk(f

(k)), and

Rk := q(k + 2) log+ |f |+ log
1

|Φ|
.

Note that

N(r,Φ) =
k∑
i=0

N(r,Qi(f
(i))) =

k∑
i=0

qiN(r, f (i))

= qN(r, f) +
k∑
i=0

iqiN(r, f). (3.6)

Applying the Jensen’s Formula to the meromorphic functions f and Φ,

and using the First Main Theorem and the fact log x = log+ x− log+ 1
x
, and

together with (3.6), we have

∫ 2π

0

Rk(re
iθ)
dθ

2π
= q(k + 2)m

(
r,

1

f

)
+ q(k + 2)

(
N
(
r,

1

f

)
−N

(
r, f
))

+N
(
r,Φ
)
−N

(
r,

1

Φ

)
+O(1)

= q(k + 2)

(
m
(
r,

1

f

)
+N

(
r,

1

f

))
− q(k + 1)N(r, f)

+
k∑
i=0

iqiN(r, f)−N
(
r,

1

Φ

)
+O(1)

= q(k + 2)T (r, f)− q(k + 1)N(r, f) +
k∑
i=0

iqiN(r, f)

−N
(
r,

1

Φ

)
+O(1).

(3.7)
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On the other hand, by Lemma 3, Lemma 5 and Lemma 6, we have∫ 2π

0

Rk(re
iθ)
dθ

2π
≤ q

∫ 2π

0

uk+1(re
iθ)
dθ

2π
+ o(T (r, f))

≤ kq m(r, f) + q m̄k,σ(r)(r, f)

+ q

(
v
(
r, f,

2π

σ(r)

)
+ v
(
r, f (k+1),

2π

σ(r)

)
+ (k + 1) log(2πr) + 2(k + 1)σ(r) log 3

)
≤ kq m(r, f) + q m̄k,σ(r)(r, f) +

ε

3
T (r, f) (3.8)

for all r > e and σ : (e,∞)→ N>0 be a function as in Lemma 5.

Since f is a transcendental meromorphic function and by the definition

of function σ, we have

lim
r→∞

(p+ σ(r))17T (r)4/5(log r)1/5

T (r)
= 0.

Hence, there exists a positive number r1 such that

(p+ σ(r))17T (r)4/5(log r)1/5 <
ε5

3
T (r, f) (3.9)

for a given positive integer n and all r > r1.

Now, let A ⊂ C be a finite set of complex numbers. Applying Lemma 4

to the case B = A ∪ {∞}, d = k, p = #A+ 1 and n = σ(r), we obtain

m̄k,σ(r)(r, f) +N1(r, f) +
∑
a∈A

N1

(
r,

1

f − a

)
≤
(
2 +

ε

3q

)
T (r, f) +

(p+ σ(r))17

qε4
T (r)4/5(log r)1/5

≤
(
2 +

2ε

3q

)
T (r, f), (3.10)

for all r > 0 outside a set of finite linear measure.

Combining (3.7), (3.8), and (3.10), we obtain

k∑
i=0

(i− 1)qiN(r, f) + q
∑
a∈A

N1

(
r,

1

f − a

)
≤ N

(
r,

1

Φ

)
+ εT (r, f),

for all r > e outside a set E of logarithmic density zero. This completes the

proof of Theorem 1. �
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4. Proof of Theorem 2

To prove the results, we need to prove the following lemmas.

Lemma 8. Let f be a meromorphic function in the complex plane, k be a

positive integer, Φ be defined as (1.3). We have

T (r,Φ) = O(T (r, f)), and o(T (r,Φ)) = o(T (r, f)).

Proof. By characteristic function’s properties, we have

T (r,Φ) ≤
k∑
i=0

T (r,Qi(f
(i))) +O(1)

≤
k∑
i=0

qiT (r, f (i)) + o(T (r, f))

≤
k∑
i=0

qi(i+ 1)T (r, f) + o(T (r, f)).

Hence, we get

T (r,Φ) = O(T (r, f)), and o(T (r,Φ)) = o(T (r, f)).

The proof of Lemma 8 is completed. �

Proof of Theorem 2. We first consider the case that f is a rational function.

Then Φ is a non-constant rational function. We have δ(a,Φ) = 0 for all

a 6= Φ(∞). Therefore, Theorem 2 holds when f is a rational function.

In the following, we assume that f is a transcendental meromorphic func-

tion. Let a1, a2, . . . , as be distinct complex numbers. Applying Theorem 4

for Φ and the complex numbers a1, a2, . . . , as, we have
s∑
i=1

m
(
r,

1

Φ− ai

)
≤ T (r,Φ) +N(r,Φ)−N

(
r,

1

Φ′

)
+ o(T (r,Φ))

= T (r,Φ) +N(r, f)−N
(
r,

1

Φ′

)
+ o(T (r, f)) (4.1)

for all r outside a set E of finite linear measure, where the second equality

follows from Lemma 8 and the fact that N(r,Φ) = N(r, f).

If (a) holds, then there exists ν ∈ {2, ..., k} such that Qν(z) has at least

one zero, for example z = βνη, of order bigger than 1. Therefore, Φ′ is

divisible by f (ν) − βνη.
If (b) holds, then Φ′ is divisible by f (k+1).
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In both cases, Φ′ is divisible by Q(f (i)), where i ≥ 2 and

Q(f (i)) :=

{
f (ν) − βνη if (a) holds,

f (k+1) if (b) holds.

We have

N
(
r,

1

Φ′

)
≥ N

(
r,

1

Q(f (i))

)
. (4.2)

Applying Theorem 1 to differential polynomial Q(f (i)) and the set A = ∅,
we have

(i− 1)N(r, f) ≤ N
(
r,

1

Q(f (i))

)
+ εT (r, f),

for all ε > 0 is an arbitrary small positive constant and for all r > e outside

a set E ′ of logarithmic density zero. Combining this inequality with (4.1),

(4.2) and note that i ≥ 2, we obtain, for all r > e outside a set E ∪ E ′,
s∑
i=1

m
(
r,

1

Φ− ai

)
≤ T (r,Φ) + εT (r, f) + o(T (r, f)).

Because ε > 0 is arbitrary small constant, we get
s∑
i=1

δ(ai,Φ) ≤ 1.

�
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