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Abstract

In this paper, we investigate some aspects of the qualitative theory for multi-order fractional

differential equation systems. First, we obtain a fundamental result on the existence and unique-

ness for multi-order fractional differential equation systems. Next, a representation of solutions of

homogeneous linear multi-order fractional differential equation systems in series form is provided. Fi-

nally, we give characteristics regarding the asymptotic behavior of solutions to some classes of linear

multi-order fractional differential equation systems.
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1 Introduction

In recent years, fractional calculus has received increasing attention due to its applications in a variety of
disciplines such as mechanics, physics, chemistry, biology, electrical engineering, control theory, material
science, mathematical psychology. For more details, we refer the reader to the monographs [2, 7, 15, 19,
20].

A particularly interesting aspect in this connection that does not pertain to classical mathematical mod-
els using integer-order differential operators has recently been discussed in the context of a number of
applications in the life sciences [2, 8, 9]: It appears that certain real world problems can be described by
a system of fractional differential equations where each equation may have an order that differs from the
orders of the other equations of the system. We shall call such systems multi-order fractional differential
systems.
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Braunschweig, Germany, k.diethelm@tu-braunschweig.de
‡Center for Dynamics & Institute for Analysis, Department of Mathematics, Technische Universität Dresden, 01062

Dresden, Germany, stefan.siegmund@tu-dresden.de
§Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 10307 Ha Noi, Viet Nam,

httuan@math.ac.vn

1

http://arxiv.org/abs/1708.08131v1


Among the published papers, it seems that the authors mainly concentrated on approximating solutions
of multi-order fractional differential equations, see e.g. [1, 10, 11, 12, 14, 17, 18, 21, 22, 25, 26]. The
investigation of the analytical properties of such systems is often restricted to the case where the orders
of the differential operators are rational [5, 6, 7, 16]. For the general case, rigorous mathematical studies
of even the most fundamental questions in this context do not seem to be readily available.

Therefore, in this paper we consider d-dimensional linear multi-order fractional differential equation
systems

Dαi
∗ xi(t) =

d∑

j=1

aijxj(t) + gi(t), i = 1, 2, . . . , d, (1.1)

with orders αi ∈ (0, 1], coefficients aij ∈ C, gi : [0,∞) → C continuous, i, j = 1, . . . , d, and the Caputo
differential operator of order α > 0

Dα
∗ y(t) := J⌈α⌉−αD⌈α⌉y(t)

which is defined for C⌈α⌉ functions y : [0, T ] → Cd, T > 0, with the classical derivative D and the
Riemann-Liouville operator

Jβy(t) :=
1

Γ(β)

∫ t

0

(t− s)β−1y(s) ds

for β > 0 and J0y(t) := y(t) (see e.g. [7]). Note that Dα
∗ y can also be defined for not necessarily

differentiable functions, e.g. if α ∈ (0, 1), for continuous functions y for which limt→0 t
−α(v(t) − v(0))

exists, is finite, and limθ↑1 supt∈[0,T ] |
∫ t

θt(t− s)−(α+1)(v(t) − v(s)) ds| = 0, cf. [23, Theorem 5.2].

For convenience, we use the notation

D
(α1,...,αd)
∗ x(t) :=






Dα1
∗

. . .

Dαd
∗




 x(t) =






Dα1
∗ x1(t)

...
Dαd

∗ xd(t)




 . (1.2)

With A = (aij)i,j=1,...,d ∈ Cd×d, g = (g1, . . . , gd)
⊤, x(t) = (x1(t), . . . , xd(t))

⊤, (1.1) can then be rewritten
as 




Dα1
∗

. . .

Dαd
∗




x(t) = Ax(t) + g(t). (1.3)

Of central importance are the two-parameter Mittag-Leffler functions Eα,β : C → C, α > 0, β ≥ 0, with

Eα,β(z) :=

∞∑

j=0

zj

Γ(αj + β)
(1.4)

and the one-parameter Mittag-Leffler functions Eα : C → C, α > 0, defined by Eα := Eα,1 (see e.g. [13]).

The structure of the paper is as follows. In Section 2, we first introduce a result on the existence and
uniqueness of solutions to multi-order fractional differential equations. Then, we give a representation of
solutions to homogeneous linear multi-order fractional differential equations in series form. Section 3 is
devoted to the study of the asymptotic behavior of solutions of linear multi-order fractional differential
equations. More precisely, we obtain some criterion on the asymptotic behavior of solutions to these
equations. Some auxiliary results concerning the Mittag-Leffler functions and the asymptotic behavior
of solutions of scalar linear fractional differential equations are shown in Appendix A.
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2 Fundamental theory of multi-order fractional differential equa-

tions

In this section we provide some fundamental results regarding multi-order fractional differential equations.
Specifically, we shall prove a Picard-Lindelöf type existence and uniqueness result in Subsection 2.1, and
Subsection 2.2 will be devoted to a description of the structure of the associated solutions in the linear
case.

2.1 Existence and uniqueness of solutions to a class of multi-order fractional
differential equations

Let T > 0. In this subsection we consider the existence and uniqueness of solutions to the multi-order
fractional differential equation

Dα
∗ x(t) = f(t, x(t)), t ∈ (0, T ], (2.1)

where α := (α1, . . . , αd) ∈ (0, 1]d and f = (f1, . . . , fd)
⊤ : [0, T ] × Cd → Cd is continuous. With similar

arguments as in [7, Chapter 6] or [15, §3.5], one can show that for x0 = (x0
1, . . . , x

0
d)

⊤ ∈ Cd and a
continuous function x : [0, T ] → Cd for which Dα

∗ x is defined (cf. [23, Theorem 5.2]), the following two
statements are equivalent:

(i) x satisfies the d-dimensional differential equation system (2.1) together with the initial condition
x(0) = x0,

(ii) x satisfies the Volterra integral equation

x(t) = x0 + Jα
[
f(·, x(·))

]
(t) ∀t ∈ [0, T ] (2.2)

where Jα[f(·, x(·))](t) :=
(
Jα1

[
f1(·, x(·))

]
(t), . . . , Jαd

[
fd(·, x(·))

]
(t)
)⊤

.

Following the usual convention, we define solutions of (2.1) by considering (2.2) for continuous functions.

Definition 2.1. A continuous function x : [0, T ] → Cd is called a solution to the differential equation
(2.1) with initial condition x(0) = x0 if it satisfies the integral equation (2.2).

Remark 2.2. Because we assume the function f to be continuous, we can see that, for every solution x
of (2.1) in the sense of Definition 2.1, the function f(·, x(·)) is continuous, too. Therefore, in view of the
fact that the solution x satisfies the integral equation (2.2), it follows for i ∈ {1, 2, . . . , d} that the i-th
component of x can be written as the sum of a constant and the Riemann-Liouville integral of order αi

of a continuous function. Using the arguments of [7, proof of Theorem 3.7], we can then conclude that
xi fulfils the conditions of [23, Theorem 5.2] and thus that Dαi

∗ xi exists and is continuous. Therefore,
under the continuity assumption on f , a solution to (2.1) in the sense of Definition 2.1 is automatically
a strong solution to the differential equation in the classical sense.

Our basic assumption on the given function f will be that all its components fi : [0, T ] × Cd → C are
continuous and satisfy a Lipschitz condition with respect to the second variable, i.e.

|fi(t, y)− fi(t, z)| ≤ L‖y − z‖ ∀t ∈ [0, T ], y, z ∈ Cd (2.3)
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with some constant L > 0, where ‖ · ‖ is the max norm on Cd, i.e., ‖y‖ = max{|y1|, . . . , |yd|} for all
y = (y1, . . . , yd)

⊤ ∈ Cd.

We are now in a position to formulate a result on unique existence of solutions of initial value problems.

Theorem 2.3. Consider the equation (2.1). Assume that the function f is continuous and satisfies the
Lipschitz condition (2.3). Then, for any x0 = (x0

1, . . . , x
0
d)

⊤ ∈ Cd, the differential equation (2.1) has a
unique solution in C([0, T ];Cd) that satisfies the initial condition x(0) = x0.

Proof. Let λ > 0 be a constant such that

max
1≤i≤d

Lλ−αi < 1.

On the space C([0, T ];Cd) we define a new norm ‖ · ‖λ as

‖ϕ‖λ := sup
0≤t≤T

‖ϕ(t)‖ exp(−λt).

Using standard arguments, it is easy to see that (C([0, T ];Cd), ‖ · ‖λ) is a Banach space. For any x0 =
(x0

1, . . . , x
0
d)

⊤ ∈ Cd, we define an operator Tx0
: C([0, T ];Cd) → C([0, T ];Cd) by

Tx0
ϕ(t) :=

(
(Tx0

ϕ)1(t), . . . , (Tx0
ϕ)d(t)

)⊤
,

where for 1 ≤ i ≤ d

(Tx0
ϕ)i(t) := x0

i +
1

Γ(αi)

∫ t

0

(t− τ)αi−1fi(τ, ϕ(τ)) dτ ∀t ∈ [0, T ], ϕ ∈ C([0, T ];Cd).

We see that for every ϕ, ϕ̂ ∈ C([0, T ];Cd), every t ∈ [0, T ] and all 1 ≤ i ≤ d,

|(Tx0
ϕ)i(t)− (Tx0

ϕ̂)i(t)|

exp (λt)
≤

L

Γ(αi) exp (λt)

∫ t

0

(t− τ)αi−1 exp (λτ)
‖ϕ(τ)− ϕ̂(τ)‖

exp (λτ)
dτ

≤
L

Γ(αi) exp (λt)

∫ t

0

(t− τ)αi−1 exp (λτ) dτ · sup
0≤θ≤T

‖ϕ(θ)− ϕ̂(θ)‖

exp (λθ)

≤
L

Γ(αi)

∫ t

0

uαi−1 exp (−λu) du · ‖ϕ− ϕ̂‖λ

=
L

Γ(αi)λαi

∫ λt

0

vαi−1 exp (−v) dv · ‖ϕ− ϕ̂‖λ

≤
L

Γ(αi)λαi

∫ ∞

0

vαi−1 exp (−v) dv · ‖ϕ− ϕ̂‖λ

=
L

λαi
‖ϕ− ϕ̂‖λ. (2.4)

It is clear that the operator Tx0
maps the space (C([0, T ];Cd), ‖ · ‖λ) to itself; moreover, from (2.4) we

obtain the estimate

‖Tx0
ϕ− Tx0

ϕ̂‖λ ≤
L

λαi
· ‖ϕ− ϕ̂‖λ ∀ϕ, ϕ̂ ∈ C([0, T ];Cd)

which, by definition of λ, shows that this operator is a contractive mapping on this space. Due to the fact
that (C([0, T ];Cd), ‖ · ‖λ) is a Banach space, by Banach’s fixed point theorem, there exists a unique fixed
point ϕ of Tx0

in this space. This fixed point is the unique solution of the Volterra equation (2.2) and
hence, as stated above, also the unique solution to the initial value problem consisting of the differential
equation (2.1) and the initial condition x(0) = x0 in C([0, T ];Cd). The proof is complete.
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In Section 3 we shall look at the behavior of solutions to multi-order systems as the independent variable
goes to infinity. For this purpose, it is important to have an existence and uniqueness result that is not
restricted to functions defined on bounded intervals. Fortunately, the following result immediately follows
from Theorem 2.3:

Corollary 2.4. Let f : [0,∞)×Cd → Cd be continuous and satisfy a Lipschitz condition with respect to
the second variable. Moreover, let α ∈ (0, 1]d and x0 ∈ Cd. Then, the initial value problem

Dα
∗ x(t) = f(t, x(t)) (t > 0), x(0) = x0,

has a unique solution in C([0,∞);Cd).

2.2 A representation of solutions to homogeneous linear multi-order frac-
tional differential equations

In this subsection we concentrate on a particularly important and fundamental special case of the class of
differential equations discussed in Subsection 2.1, namely we shall look at the solutions to homogeneous
linear equations with constant coefficients, i.e. to differential equations of the form






Dα1
∗

. . .

Dαd
∗




 x(t) = Ax(t) (2.5)

which is the special case of (1.3) where g(t) = 0 for all t.

Our basic result in this section, Theorem 2.6, provides some information about the structure of the
solutions to the system (2.5) in the case of an arbitrary matrix A ∈ Cd×d and an arbitrary vector
(α1, . . . , αd) ∈ (0, 1]d.

In order to motivate our results, we start with the case d = 2. In this case, the system (2.5) has the form

Dα1

∗ x1(t) = a11x1(t) + a12x2(t), (2.6a)

Dα2

∗ x2(t) = a21x1(t) + a22x2(t). (2.6b)

First of all, Corollary 2.4 asserts that, for any initial condition (x1(0), x2(0))
⊤ = (x0

1, x
0
2)

⊤ ∈ C2, this
system has a unique continuous solution x = (x1, x2)

⊤ on [0,∞). Moreover, for equations of this structure,
the fractional version of the variation-of-constants method [7, Theorem 7.2 and Remark 7.1] provides the
relations

x1(t) = x0
1Eα1

(a11t
α1) + a12

∫ t

0

(t− s)α1−1Eα1,α1
(a11(t− s)α1)x2(s) ds, (2.7a)

x2(t) = x0
2Eα2

(a22t
α2) + a21

∫ t

0

(t− s)α2−1Eα2,α2
(a22(t− s)α2)x1(s) ds, (2.7b)

for all t ≥ 0. This representation indicates that we should seek the solution components in the class of
generalized power series of the form

x1(t) = x0
1 +

∞∑

k=1

∞∑

ℓ=0

b1kℓt
kα1+ℓα2 , (2.8a)
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x2(t) = x0
2 +

∞∑

k=0

∞∑

ℓ=1

b2kℓt
kα1+ℓα2 . (2.8b)

Assuming a suitable convergence behavior of these series, we may differentiate in a termwise manner and
obtain

Dα1

∗ x1(t) =
∞∑

k=1

∞∑

ℓ=0

b1kℓ
Γ(kα1 + ℓα2 + 1)

Γ((k − 1)α1 + ℓα2 + 1)
t(k−1)α1+ℓα2

=

∞∑

k=0

∞∑

ℓ=0

b1,k+1,ℓ
Γ((k + 1)α1 + ℓα2 + 1)

Γ(kα1 + ℓα2 + 1)
tkα1+ℓα2 ,

Dα2

∗ x2(t) =
∞∑

k=0

∞∑

ℓ=1

b2kℓ
Γ(kα1 + ℓα2 + 1)

Γ(kα1 + (ℓ− 1)α2 + 1)
tkα1+(ℓ−1)α2

=

∞∑

k=0

∞∑

ℓ=0

b2,k,ℓ+1
Γ(kα1 + (ℓ+ 1)α2 + 1)

Γ(kα1 + ℓα2 + 1)
tkα1+ℓα2 .

Plugging these representations into the differential equation system (2.5), we find

a11x
0
1 + a11

∞∑

k=1

∞∑

ℓ=0

b1kℓt
kα1+ℓα2 + a12x

0
2 + a12

∞∑

k=0

∞∑

ℓ=1

b2kℓt
kα1+ℓα2

=

∞∑

k=0

∞∑

ℓ=0

b1,k+1,ℓ
Γ((k + 1)α1 + ℓα2 + 1)

Γ(kα1 + ℓα2 + 1)
tkα1+ℓα2 ,

a21x
0
1 + a21

∞∑

k=1

∞∑

ℓ=0

b1kℓt
kα1+ℓα2 + a22x

0
2 + a22

∞∑

k=0

∞∑

ℓ=1

b2kℓt
kα1+ℓα2

=

∞∑

k=0

∞∑

ℓ=0

b2,k,ℓ+1
Γ(kα1 + (ℓ+ 1)α2 + 1)

Γ(kα1 + ℓα2 + 1)
tkα1+ℓα2 .

A comparison of coefficients of tkα1+ℓα2 then yields the equations

b110 =
1

Γ(α1 + 1)
(a11x

0
1 + a12x

0
2), (2.9a)

b201 =
1

Γ(α2 + 1)
(a21x

0
1 + a22x

0
2), (2.9b)

b1,k+1,0 =
Γ(kα1 + 1)

Γ((k + 1)α1 + 1)
a11b1k0 (k = 1, 2, . . .), (2.9c)

b1,1,ℓ =
Γ(ℓα2 + 1)

Γ(α1 + ℓα2 + 1)
a12b20ℓ (ℓ = 1, 2, . . .), (2.9d)

b1,k+1,ℓ =
Γ(kα1 + ℓα2 + 1)

Γ((k + 1)α1 + ℓα2 + 1)
(a11b1kℓ + a12b2kℓ) (k = 1, 2, . . . ; ℓ = 1, 2, . . .), (2.9e)

b2,0,ℓ+1 =
Γ(ℓα2 + 1)

Γ((ℓ + 1)α2 + 1)
a22b20ℓ (ℓ = 1, 2, . . .), (2.9f)

b2,k,1 =
Γ(kα1 + 1)

Γ(kα1 + α2 + 1)
a21b1k0 (k = 1, 2, . . .), (2.9g)

b2,k,ℓ+1 =
Γ(kα1 + ℓα2 + 1)

Γ(kα1 + (ℓ + 1)α2 + 1)
(a21b1kℓ + a22b2kℓ) (k = 1, 2, . . . ; ℓ = 1, 2, . . .). (2.9h)
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Formally introducing the quantities

b10ℓ = 0 for ℓ = 1, 2, . . . and b2k0 = 0 for k = 1, 2, . . . ,

b100 = x0
1 and b200 = x0

2,
(2.10a)

we see that the system (2.9) can be simplified to

b1,k+1,ℓ =
Γ(kα1 + ℓα2 + 1)

Γ((k + 1)α1 + ℓα2 + 1)
(a11b1kℓ + a12b2kℓ) (k, ℓ = 0, 1, 2, . . .), (2.10b)

b2,k,ℓ+1 =
Γ(kα1 + ℓα2 + 1)

Γ(kα1 + (ℓ+ 1)α2 + 1)
(a21b1kℓ + a22b2kℓ) (k, ℓ = 0, 1, 2, . . .). (2.10c)

A brief inspection of these formulas reveals that, given the initial values x0
1 and x0

2, they can indeed be
used to compute all coefficients that appear in the representation (2.8) in a recursive manner. Specifically,
the coefficients b1kℓ and b2kℓ for k + ℓ = µ can be computed via eqs. (2.10b) and (2.10c), respectively,
and this computation only requires the knowledge of b1kℓ and b2kℓ with k+ ℓ = µ− 1. Thus one can first
compute all b1kℓ and b2kℓ with k + ℓ = 1, then with k + ℓ = 2, etc.

A closer look at the recurrence relations (2.10) allows us to prove that the series from (2.8) converge for
all t ≥ 0. To this end we first state a preliminary result.

Lemma 2.5. Let the values b1kℓ and b2kℓ be defined as in (2.10) with arbitrary x0
1, x

0
2 ∈ C. Then, for

j ∈ {1, 2} the series

sj(z) :=

∞∑

k=0

∞∑

ℓ=0

|bjkℓ|z
k+ℓ

is convergent for all z ∈ C.

Actually it is immediately clear that the desired convergence property is a consequence of this lemma,
since the series

∞∑

k=0

∞∑

ℓ=0

|bjkℓ| · |t|
kα1+ℓα2

is, on the one hand, a majorant for xj(t) and is, on the other hand, convergent for all t > 0 according to

∞∑

k=0

∞∑

ℓ=0

|bjkℓ| · |t|
kα1+ℓα2 ≤







∞∑

k=0

∞∑

ℓ=0

|bjkℓ| · |t|
(k+ℓ)max{α1,α2} = sj(t

max{α1,α2}) for t ≥ 1,

∞∑

k=0

∞∑

ℓ=0

|bjkℓ| · |t|
(k+ℓ)min{α1,α2} = sj(t

min{α1,α2}) for t < 1.

Proof of Lemma 2.5. Since the series in question does not have any negative summands, we may rearrange
the terms according to powers of z; this yields

sj(z) =

∞∑

k=0

k∑

µ=0

|bj,µ,k−µ|z
k.

It is therefore evident that, in order to investigate the convergence radius of this series, we need to
estimate expressions of the form

βjk :=

k∑

µ=0

|bj,µ,k−µ|.

7



In fact, we shall demonstrate that for sufficiently large k

0 ≤ β1k + β2k ≤
c1c

k
2

Γ(kα∗ + 1)
, (2.11)

where c1 and c2 are certain positive constants and

α∗ := min{α1, α2}.

Equation (2.11) tells us that the classical power series for the Mittag-Leffler function Eα∗ — that is well
known to be convergent on the entire complex plane — evaluated at c2|z| is a majorant for the series s1
and s2 that we are interested in, and hence the series expansions for s1(z) and s2(z) also converge for all
z as required.

Thus, it only remains to prove (2.11). The left inequality is clear by definition. To prove the right inequal-
ity, we employ the relations (2.10a), (2.10b) and (2.10c) and see, using the notation ā := maxi,j∈{1,2} |aij |,
that we have for k ≥ 2 the following chain of inequalities:

k∑

µ=0

(|b1,µ,k−µ|+ |b2,µ,k−µ|) ≤
k∑

µ=1

|b1,µ,k−µ|+
k−1∑

µ=0

|b2,µ,k−µ|

≤ ā

k∑

µ=1

Γ((µ− 1)α1 + (k − µ)α2 + 1)

Γ(µα1 + (k − µ)α2 + 1)
(|b1,µ−1,k−µ|+ |b2,µ−1,k−µ|)

+ ā

k−1∑

µ=0

Γ(µα1 + (k − µ− 1)α2 + 1)

Γ(µα1 + (k − µ)α2 + 1)
(|b1,µ,k−µ−1|+ |b2,µ,k−µ−1|)

= ā

k∑

µ=1

Γ((µ− 1)α1 + (k − µ)α2 + 1)

Γ(µα1 + (k − µ)α2 + 1)
(|b1,µ−1,k−µ|+ |b2,µ−1,k−µ|)

+ ā

k∑

µ=1

Γ((µ− 1)α1 + (k − µ)α2 + 1)

Γ((µ− 1)α1 + (k − µ+ 1)α2 + 1)
(|b1,µ−1,k−µ|+ |b2,µ−1,k−µ|)

= ā
k∑

µ=1

wk,µ(α1, α2)(|b1,µ−1,k−µ|+ |b2,µ−1,k−µ|)

with

wk,µ(α1, α2) =
Γ((µ− 1)α1 + (k − µ)α2 + 1)

Γ(µα1 + (k − µ)α2 + 1)
+

Γ((µ− 1)α1 + (k − µ)α2 + 1)

Γ((µ− 1)α1 + (k − µ+ 1)α2 + 1)
.

Both fractions on the right-hand side have the same numerator but their denominators differ by α2 −α1;
the well known monotonicity of the Gamma function thus allows us to conclude that, for sufficiently large
k, we have

wk,µ(α1, α2) ≤ 2
Γ((µ− 1)α1 + (k − µ)α2 + 1)

Γ((µ− 1)α1 + (k − µ)α2 + α∗ + 1)
= 2

Γ(u+ µ(α1 − α2))

Γ(u+ µ(α1 − α2) + α∗)
(2.12)

with u := −α1 + kα2 + 1. For γ > 0 and z → ∞, Stirling’s formula yields the asymptotic relation
Γ(z)/Γ(z+ γ) = z−γ(1+ o(1)) which is monotonically decreasing in z. Hence, for sufficiently large k, the
quotient on the right-hand side of (2.12) is monotonically decreasing with respect to µ for α1 ≥ α2 and
monotonically increasing with respect to µ if α1 < α2. Therefore, the maximum of this expression over
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all admissible values of µ is attained at µ = 1 if α1 ≥ α2 and at µ = k if α1 < α2. These observations
may be summarized in the form

wk,µ(α1, α2) ≤ 2
Γ(k−1

2 (α1 + α2 − |α1 − α2|) + 1)

Γ(k−1
2 (α1 + α2 − |α1 − α2|) + α∗ + 1)

= 2
Γ((k − 1)α∗ + 1)

Γ(kα∗ + 1)
,

and this implies

β1k + β2k ≤ 2ā
Γ((k − 1)α∗ + 1)

Γ(kα∗ + 1)

k∑

µ=1

(|b1,µ−1,k−µ|+ |b2,µ−1,k−µ|)

= 2ā
Γ((k − 1)α∗ + 1)

Γ(kα∗ + 1)

k−1∑

µ=0

(|b1,µ,k−1−µ|+ |b2,µ,k−1−µ|)

= 2ā
Γ((k − 1)α∗ + 1)

Γ(kα∗ + 1)
(β1,k−1 + β2,k−1)

if k is large enough. Thus, for a sufficiently large and fixed constant N and arbitrary k, by induction, we
deduce the estimate

β1,N+k + β2,N+k ≤
(2ā)kΓ(Nα∗ + 1)

Γ((N + k)α∗ + 1)
(β1,N + β2,N),

which shows (2.11) and completes the proof of Lemma 2.5.

The same ideas and methods can be applied if the dimension of the fractional differential equation system
is greater than 2. We summarize the findings as follows.

Theorem 2.6. Let α = (α1, . . . , αd) ∈ (0, 1]d and A ∈ Cd×d. Then, for each x0 ∈ Cd, the initial value
problem

Dα
∗ x(t) = Ax(t), x(0) = x0, (2.13)

has a uniquely determined solution in C([0,∞);Cd). The components of this solution can be expressed in
the form

xj(t) =

∞∑

k=0

∞∑

ℓ1,ℓ2,...,ℓj−1,ℓj+1,...,ℓd=1

bk,ℓ1,ℓ2,...,ℓj−1,ℓj+1,...,ℓdt
kαj+

∑d
µ=1,µ6=j

ℓµαµ , (2.14)

and the series in eq. (2.14) converges for all t ≥ 0.

3 Asymptotic behavior of solutions of multi-order fractional dif-
ferential equations

Having established these foundations, we can now come to the core of this paper, namely the discussion
of the asymptotic behavior of solutions of linear multi-order fractional differential systems.

3.1 Systems with (block) triangular coefficient matrices

Assume that αk ∈ (0, 1] for 1 ≤ k ≤ d. In the case that the coefficient matrix A of the system (1.1) has
a triangular structure, we provide a detailed investigation of the asymptotic behaviour of the system’s

9



solutions. More precisely, we obtain a necessary and sufficient condition such that all solutions of the
homogeneous system associated to (1.1) tend to zero at infinity, and we derive sufficient conditions for all
solutions of the full inhomogeneous system (1.1) to have this property. In this context we stress that the
αk may be completely arbitrary numbers from the interval (0, 1]; in particular it is allowed that αk = αk′

for some k 6= k′.

Thus, let us now first consider the system

Dαi
∗ xi(t) =

d∑

j=i

aijxj(t), 1 ≤ i ≤ d, (3.1a)

i.e. the case of a homogeneous system with an upper triangular matrix A, together with the initial
condition

xi(0) = x0
i , 1 ≤ i ≤ d. (3.1b)

In order to exclude the pathological and practically irrelevant case where the right-hand sides of certain
equations from the system (3.1a) do not depend on their respective unknown functions, we shall explicitly
assume throughout this subsection that aii 6= 0 for all i = 1, 2, . . . , d. In other words, we assume the
matrix A to be not only upper triangular but also nonsingular.

The case where A is of lower triangular form can be handled in a completely analog manner; we shall not
treat this case explicitly. The associated inhomogeneous system will be discussed later; cf. Corollary 3.3.

In the simplest nontrivial case d = 2, the system (3.1a) has the form

Dα1

∗ x1(t) = a11x1(t) + a12x2(t),

Dα2

∗ x2(t) = a22x2(t),

and it is a relatively simple matter to explicitly compute its solution. Specifically, in view of the triangular
structure of the coefficient matrix, one can solve the second equation of the system directly and obtain
the well known result [7, Theorem 4.3]

x2(t) = x0
2Eα2

(a22t
α2). (3.2a)

This result can be plugged into the system’s first equation which then takes the form

Dα1

∗ x1(t) = a11x1(t) + a12x
0
2Eα2

(a22t
α2).

For equations of this structure, the fractional version of the variation-of-constants method [7, Theorem 7.2
and Remark 7.1] provides the solution

x1(t) = x0
1Eα1

(a11t
α1) + a12x

0
2

∫ t

0

(t− s)α1−1Eα1,α1
(a11(t− s)α1)Eα2

(a22s
α2) ds. (3.2b)

From the representation (3.2) it is evident that the solution vector (x1, x2)
⊤ is an element of the function

space C[0,∞). Moreover, the power series representations of the Mittag-Leffler functions imply that the
component x2(t) can be written as a power series in tα2 , and therefore its asymptotic behavior as t → 0+
is of the form

x2(t) = x0
2 +

c2a22
Γ(α2 + 1)

tα2 +O(t2α2 ),

whereas the behavior of x1(t) in this respect can be described by

x1(t) = x0
1 +

c1a11
Γ(α1 + 1)

tα1 + o(tα1)
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with some constant c1 ∈ C. The arguments employed in Subsection 2.2 can be used to derive more
details.

These considerations can directly be generalized to homogeneous upper triangular systems of arbitrary
dimension d. In this case we obtain the set of equations

xi(t) = x0
iEαi

(aiit
αi) +

d∑

j=i+1

aij

∫ t

0

(t− s)αi−1Eαi,αi
(aii(t− s)αi)xj(s) ds (3.3)

for i = d, d− 1, . . . , 1 which can be recursively evaluated to explicitly compute the solutions.

Some known results about the asymptotic behavior of the Mittag-Leffler functions admit to draw the
conclusions required in the asymptotic behavior analysis. The main result in this context is the following
theorem. The proof of its statements requires a number of auxiliary results that can be considered as
minor extensions of already known theorems and lemmas. Since these extensions may be of a certain
degree of independent interest, we have explicitly formulated and collected them, together with complete
proofs, in Appendix A.

Theorem 3.1. (i) Every solution of the system (3.1a) converges to zero at infinity if and only if

| arg (akk)| >
αkπ

2
∀k ∈ {1, . . . , d}. (3.4)

(ii) If there exists k ∈ {1, . . . , d} such that | arg (akk)| < αkπ/2 then there exists some x0 such that the
solution to the system (3.1a) that satisfies the initial condition x(0) = x0 is unbounded.

Proof. For the proof of part (i), we will first show that the condition (3.4) is sufficient to assert that every
solution of (3.1a) converges to zero at infinity. Indeed, for any initial value x0 = (x0

1, . . . , x
0
d)

⊤ ∈ Cd,
we denote the solution of (3.1a) starting from x0 by ϕ(·, x0) = (ϕ1(·, x0), . . . , ϕd(·, x0))

⊤. Our proof will
use mathematical induction over the index j of the components of the solution vector in a backward
direction. Thus, for our induction basis we consider j = d. Since the d-th equation of the system (3.1a)
reads

Dαd
∗ xd(t) = addxd(t),

it follows from Lemma A.4(i) that the condition | arg add| > αdπ/2 is sufficient to assert that ϕd(t, x0) → 0
as t → ∞ for all x0. For the induction step, we assume that we have already shown that the components
d, d− 1, . . . , j + 1 of the solution tend to 0 as t → ∞ for any choice of the initial values. Then we need
to prove that this is also true for the j-th component. To this end we recall that the j-th component of
the differential equation system (3.1a) reads

D
αj

∗ xj(t) = ajjxj(t) +

d∑

k=j+1

ajkϕk(t, x0).

All the terms in the sum are already known and, because of the induction hypothesis, they are continuous
and tend to zero as t → ∞. Thus we may apply Lemma A.4(i) and immediately deduce that xj has this
property as well.

To conclude the proof of part (i) we now have to demonstrate that (3.4) is also necessary for all solutions
of (3.1a) tend to zero as t → ∞. To this end we assume that (3.4) does not hold. Then there exists an
index k0 ∈ {1, 2, . . . , d} which satisfies

| arg (aii)| >
αiπ

2
for k0 + 1 ≤ i ≤ d and | arg (ak0,k0

)| ≤
αk0

π

2
,
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i.e. k0 is the largest index for which (3.4) is violated. Consider the equation

D
αk0
∗ xk0

(t) = ak0k0
xk0

(t) + f(t) with f(t) :=
d∑

i=k0+1

ak0ixi(t). (3.5)

Since (3.4) is true for all i > k0, the arguments used above imply that f is continuous and tends to zero
at infinity. As in the considerations above, we may use the fractional variation-of-constants method [7,
Theorem 7.2 and Remark 7.1] to see that the set of all solutions to (3.5) consists of the functions

ϕk0
(t, x0) = x0

k0
Eαk0

(ak0,k0
tαk0 ) + h(t) (3.6)

where x0
k0

runs through the entire complex plane and where

h(t) :=

∫ t

0

(t− τ)αk0
−1Eαk0

,αk0
(ak0,k0

(t− τ)αk0 )f(τ) dτ.

The well known asymptotic behavior of the Mittag-Leffler functions [13, Proposition 3.6 and Theorem 4.3]
then implies that Eαk0

(ak0,k0
tαk0 ) does not converge to 0 as t → ∞ because of our assumption on the

relation of αk0
and | arg ak0,k0

|. Now assume that there exists some x0
k0

∈ C such that ϕk0
(t, x0) → 0 as

t → ∞. Then, it follows that for every x̃0 ∈ Cd with x0
k = x̃0

k for k = k0 + 1, . . . , d and x0
k0

6= x̃0
k0
, we

have

ϕk0
(t, x̃0) = x̃0

k0
Eαk0

(ak0,k0
tαk0 ) + h(t)

= (x̃0
k0

− x0
k0
)Eαk0

(ak0,k0
tαk0 ) + ϕk0

(t, x0).

For t → ∞, the last summand on the right-hand side of this equality tends to zero but the other summand
does not, and hence we conclude that ϕ(t, x̃0) does not tend to zero as t → ∞ which yields our required
contradiction.

For the proof of part (ii), we — much as above — know that there exists an index k0 ∈ {1, 2, . . . , d}
which satisfies

| arg (aii)| ≥
αiπ

2
for k0 + 1 ≤ i ≤ d and | arg (ak0k0

)| <
αk0

π

2
.

We may then proceed in the same way as in the second part of the proof of (i). However, now we know
that |Eαk0

(ak0k0
tαk0 )| → ∞ as t → ∞, and therefore we may even conclude that there exists some

x0
k0

∈ C such that ϕk0
(t, x0) is unbounded.

Remark 3.2. The same arguments can be used if the coefficient matrix A of the system has a block-
upper triangular structure and the differentiation matrix on the left-hand side of the differential equation
has a block structure with identical block sizes where each block consists of differential operators of the
same order, i.e. if the differential equation has the form






D1

. . .

Dn




 x(t) =








A11 A12 · · · A1n

A22 A2n

. . .
...

Ann








x(t) (3.7)

where, using the notation Iµ for the µ-dimensional unit matrix,

Dj = D
αj

∗ Idj
,

Ajk ∈ Cdj×dk and x = (x1, . . . , xd)
⊤ with d =

∑n
j=1 dj : In this case,
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• all solutions of the system (3.7) converge to zero as t → ∞ if and only if, for all j = 1, 2, . . . , n, all
eigenvalues λjk, k = 1, 2, . . . , dj , of the matrix Ajj satisfy | argλjk | > αjπ/2, and

• whenever there exist some j ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . , dj} with | argλjk| < αjπ/2, there
exists an initial value whose corresponding solution is unbounded.

A close inspection of the proof of Theorem 3.1 reveals that the statement of its part (i) can easily be
extended to cover a class of inhomogeneous problems:

Corollary 3.3. Consider the differential equation system

Dαi
∗ xi(t) =

d∑

j=i

aijxj(t) + gi(t), 1 ≤ i ≤ d, (3.8)

where, for all i = 1, 2, . . . , d, the functions gi : [0,∞) → C are continuous and satisfy

lim
t→∞

gi(t) = 0.

Every solution of the inhomogeneous system (3.8) converges to zero at infinity if and only if all solutions
of the associated homogeneous system (3.1a) tend to zero as t → ∞, i.e. if and only if condition (3.4) is
satisfied.

Proof. Assume first that every solution of (3.8) tends to zero as t → ∞. In order to prove that every
solution of the corresponding homogeneous system (3.1a) converges to zero, we choose an arbitrary
x0 ∈ Cd. It is then sufficient to show that the solution of (3.1a) that starts at x0 converges to zero
as t → ∞. To this end, we take the solutions ϕ(·, x0) and ϕ(·, 0) of (3.8) that start at x0 and at 0,
respectively. By assumption, both these functions tend to 0 as t → ∞. Thus, ϕ(t, x0)− ϕ(t, 0) tends to
0 as t → ∞ as well. But clearly, this difference is identical to the solution of the homogeneous system
(3.1a) that starts at x0.

Regarding the proof of the other direction of the equivalence, we assume that the condition (3.4) is
satisfied. Under this hypothesis, we may proceed as in the first part of the proof of Theorem 3.1(i).
Using the argumentation via Lemma A.4(i) employed in the induction step there, we can derive that
ϕd(t, x0) → 0 as t → ∞ for any x0 ∈ Cd. Then we can proceed inductively as in the first part of the
proof of Theorem 3.1(i) and demonstrate that the other components of ϕ(·, x0) vanish near infinity as
well. The proof is complete.

Remark 3.4. Clearly, the same arguments can be used to extend the statement of Remark 3.2 regarding
block triangular systems to the inhomogeneous case as well.

3.2 Systems with general coefficient matrices

With respect to the stability theory for such systems of equations with general (not necessarily trian-
gular or block triangular) coefficient matrices, we are not yet in a position to provide a comprehensive
theory. We can, however, develop an approach that works under certain restrictions on the orders of the
differential operators involved. Specifically we shall assume that αj ∈ (0, 1] for all j and that there exists
some α∗ ∈ (0, 1] and some ρj ∈ Q such that αj = ρjα

∗.

In this case, there exist positive integers pj and qj (j = 1, 2, . . . , d) such that, for all j, gcd(pj , qj) = 1 and
ρj = pj/qj . Then we define q to be the least common multiple of the qj . This allows us to deduce that
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for every j there exists some positive integer rj such that αj = α∗rj/q (clearly, rj = pjq/qj). According
to [7, Theorem 8.1], we can then rewrite the j-th equation of the original system (1.1) as an equivalent
system of rj differential equations of order α∗/q. Thus, the entire system (1.1) can be expressed as a

system of d∗ =
∑d

j=1 rj equations of order α∗/q. This new system has the form

D
α∗/q
∗ x∗(t) = A∗x∗(t) + g∗(t) (3.9a)

where the matrix A∗ has the block structure

A∗ =








A11 A12 · · · A1d

A21 A22 · · · A2d

...
. . .

...
Ad1 Ad2 · · · Add








(3.9b)

with matrices Ajk ∈ Crj×rk given by

Ajj =











0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . . 0

0 0 · · · 0 1
ajj 0 · · · 0 0











for j = 1, 2, . . . , d (3.9c)

and

Ajk =








0 0 · · · 0
...

...
. . . 0

0 0 · · · 0
ajk 0 · · · 0








for j, k = 1, 2, . . . , d and j 6= k (3.9d)

and with the vector g∗ being defined by

g∗(t) = ( 0, . . . , 0
︸ ︷︷ ︸

r1−1 times

, g1(t), 0, . . . , 0
︸ ︷︷ ︸

r2−1 times

, g2(t), . . . 0, . . . , 0
︸ ︷︷ ︸

rd−1 times

, gd(t))
⊤. (3.9e)

While the dimension d∗ of this new system is potentially very much larger than the dimension d of the
original system, thus substantially increasing the complexity, we obtain a significant advantage because
all equations of the system now have the same order, so that we may invoke the well known classical
theory to investigate the asymptotic behavior of solutions of the system. Specifically, in view of this
construction, we can immediately deduce from [7, Theorem 8.1]:

Theorem 3.5. Let the function g : [0,∞) → Cd be continuous and satisfy g(t) → 0 for t → ∞. Moreover,
assume that αj ∈ (0, 1] for all j and that there exist some α∗ ∈ (0, 1] and some ρj ∈ Q such that αj = ρjα

∗

for all j. Then, all solutions of the original differential equation system (1.1) converge to zero at infinity
if the eigenvalues λ∗

j of the associated system’s coefficient matrix A∗ defined in eqs. (3.9b), (3.9c) and
(3.9d) satisfy | argλ∗

j | > πα∗/(2q) for all j, where q is the least common multiple of the denominators of
the ρj.

Proof. From [7, Theorem 8.1], we see that the systems (1.1) and (3.9a) are equivalent. Hence, we only
concentrate on the system (3.9a). By changing variable x∗ = Ty, where T is the non-singular matrix
which transforms A∗ into a Jordan normal form B, the system (3.9a) becomes

D
α∗/q
∗ y(t) = By(t) + ĝ(t), (3.10)
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where B = T−1AT = diag(B1, . . . , Bj, . . . , Bs) where Bj is the Jordan block corresponding the eigenvalue
λ∗
j of the matrix A∗ and ĝ = T−1g∗. Note that limt→∞ ĝ(t) = 0. Now, using the same arguments as in

the proof of Theorem 3.1 and Corollary 3.3, we see that every solution of the system (3.9a) tends to zero if
and only if the eigenvalues λ∗

j of the associated system’s coefficient matrix A∗ satisfy | argλ∗
j | > πα∗/(2q)

for all j. The proof is complete.

Unfortunately, this criterion is based on the new system’s coefficient matrix A∗, and thus it only indirectly
makes use of the coefficients of the original matrix A. It would be useful to have a formulation that allows
to directly draw such a conclusion from the original matrix without having to explicitly form the much
larger new matrix and to compute its eigenvalues. However, the following example indicates that we can
probably not expect to find a simple criterion that permits to immediately decide the question for the
solution asymptotics for a given differential equation system.

Example 3.6. Consider the system

(

D
1/2
∗ x1(t)

D
1/4
∗ x2(t)

)

= Ax(t) where A =

(
a11 a12
a21 a22

)

=

(
0.00001 1

−0.0022 0.1

)

. (3.11)

Following the development above, we may choose α∗ = 1 and q = 4 in this example, and thus this
two-dimensional system can be rewritten as a three-dimensional system of order α∗/q = 1/4 in the form

D1/4x∗(t) = A∗x∗(t) with A∗ =





0 1 0
0.00001 0 1

−0.0022 0 0.1



 . (3.12)

The components x∗
1 and x∗

3 of the solution to this new system are then identical to the two components
x1 and x2, respectively, of the original system’s solution. The eigenvalues of A∗ are λ∗

1 = −0.103917 and
λ∗
2/3 = 0.101958 ± 0.10385i so that argλ∗

1 = π and | argλ∗
2| = | argλ∗

3| = 0.79459 > π/8 = πα∗/(2q).

Therefore, Theorem 3.5 asserts that all solutions of the system given in eq. (3.11) tend to zero at infinity.

However, this observation does not appear to be immediately deducible from the original matrix A. By
a simple calculation, we see that the eigenvalues of this matrix are λ1 = 0.0673111 and λ2 = 0.0326989
and thus argλ1 = argλ2 = 0 — a property that one would normally associate with a system for which,
in particular, unbounded solutions must be expected.

Similarly, the diagonal entries of A are real and positive as well, so their arguments are zero too. Thus,
an argumentation based on the diagonal entries and not the eigenvalues like the one that we had shown
to be valid for triangular systems in Subsection 3.1 is not directly applicable to the case of a general
(non-triangular) coefficient matrix either.

This seemingly negative observation is not the final word though. Using different techniques we may
actually derive a strategy that allows to investigate the stability question in a satisfactory manner at
least for the case of a homogeneous system. Specifically, from the proof of Theorem 2.6 we see that
all solutions of the homogeneous multi-order system (2.5) are exponentially bounded. (This essentially
follows from the generalized power series representation of the solution components and the estimate
(2.11) for the coefficients of these series.) Hence, we may take the Laplace transform on both sides of
this system. This leads to

sαiXi(s)− sαi−1xi(0) =

d∑

j=1

aijXj(s), i = 1, . . . , d, (3.13)
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where Xi(s) is the Laplace transform of the i-th component xi(t) of the solution x(t). The system (3.13)
can be rewritten in the form

∆(s) ·








X1(s)
X2(s)

...
Xd(s)








=








b1(s)
b2(s)
...

bd(s)








(3.14a)

where
bi(s) = sαi−1xi(0), i = 1, . . . , d,

and

∆(s) =








sα1 − a11 −a12 · · · −a1d
−a21 sα2 − a22 · · · −a2d
...

. . .
. . .

...
−ad1 · · · −add−1 sαd − add








= diag(sα1 , . . . , sαd)−A. (3.14b)

Using a standard result from the Laplace transform based stability theory [4, Theorem 1], we immediately
obtain the following criterion on the asymptotic behavior of the system (2.5):

Theorem 3.7. Consider the homogeneous multi-order system (2.5) and let the function ∆ be defined as
in (3.14b). If all the roots of the characteristic equation det∆(s) = 0 have negative real parts, then all
solutions of the system (2.5) converge to zero at infinity.

Remark 3.8. In the triangular case considered in Subsection 3.1, we were able to extend our results
derived for homogeneous equations also to the inhomgeneous case, cf. Corollary 3.3. This was possible
mainly because the triangular structure allowed us to handle the individual equations of the given system
in a step-by-step manner one at a time which made it possible to employ the variation-of-constants
formula that is available for scalar equations or single-order systems. In the general case considered here,
a suitable generalization of the variation-of-constants formula to the setting of multi-order systems is not
readily available and does not appear to be straightforward to derive. The authors plan to address this
question in a future work.

A Auxiliary results

In this appendix we collect some auxiliary results that we used in the proofs of our theorems above. For
the formulation of these auxiliary results we shall use the notation

Λs
α :=

{

λ ∈ C \ {0} : | arg (λ)| >
απ

2

}

and
Λu
α :=

{

λ ∈ C \ {0} : | arg (λ)| <
απ

2

}

where the superscripts “s” and “u” can be interpreted as “stable region” and “unstable region”, respec-
tively. We note that the lemmas below can be interpreted as generalizations of some results provided in
[3] where similar statements have been derived under more restrictive assumptions on the parameter λ.

Lemma A.1. Let λ be an arbitrary complex number and α ∈ (0, 1]. There exists a positive real number
m(α, λ) such that for every t > 0 the following estimates hold:
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(i) If λ ∈ Λu
α then

∣
∣
∣
∣
Eα(λt

α)−
1

α
exp (λ1/αt)

∣
∣
∣
∣
≤ m(α, λ)min{t−α, 1},

∣
∣
∣
∣
tα−1Eα,α(λt

α)−
1

α
λ1/α−1 exp (λ1/αt)

∣
∣
∣
∣
≤ m(α, λ)min{t−1−α, t−1+α}.

(ii) If λ ∈ Λs
α then

∣
∣tα−1Eα,α(λt

α)
∣
∣ ≤ m(α, λ)min{t−1−α, t−1+α}.

Proof. In the case α = 1 the results are trivially true because then Eα(z) = Eα,α(z) = exp(z). We
therefore only have to deal with the case 0 < α < 1 explicitly.

Let us start with the case 0 < t ≤ 1. In this case, the minimum in the first claim of (i) has the value 1.
Thus, this claim is an immediate consequence of the fact that the expression on its left-hand side is a
continuous function of t ∈ [0, 1]. Similarly, we can see — in view of the continuity of the Mittag-Leffler
functions and the exponentials on [0, 1] — that the expressions on the left-hand sides of the two other
claims can be bounded by O(t−1+α) = O(min{t−1−α, t−1+α}).

The statements for t > 1 (where the minima are always attained by the first expression in the braces)
immediately follow from well-known results about the asymptotic behavior of Mittag-Leffler functions;
specifically, we have (cf., e.g., [13, Proposition 3.6 and Theorem 4.3] or [20, Theorems 1.3 and 1.4]) that

Eα,β(z) =
1

α
z(1−β)/α exp(z1/α)−

p
∑

k=1

z−k

Γ(β − αk)
+O(|z|−p−1) for z ∈ Λu

α (A.1)

and

Eα,β(z) = −

p
∑

k=1

z−k

Γ(β − αk)
+O(|z|−p−1) for z ∈ Λs

α (A.2)

hold for arbitrary p ∈ N and |z| → ∞. Upon choosing t > 0 and z := λtα, we then observe that the
relation z ∈ Λs

α holds if and only if λ ∈ Λs
α, and an analog equivalence exists for Λu

α. Using this approach,
the first statement of (i) follows from eq. (A.1) with p = 1. Similarly, the second statement of (i) and the
statement of (ii) follow from eqs. (A.1) and (A.2), respectively, upon setting p = 2 and noticing that the
summands for k = 1 vanish because they contain a factor 1/Γ(α− α) = 1/Γ(0) = 0.

Lemma A.2. Let λ ∈ C \ {0} and α ∈ (0, 1]. There exists a positive constant K(α, λ) such that for all
t ≥ 1 the following estimates hold:

(i) If λ ∈ Λu
α then

∫ ∞

t

∣
∣
∣λ1/α−1Eα(λt

α) exp(−λ1/ατ)
∣
∣
∣ dτ ≤ K(α, λ),

∫ t

0

∣
∣
∣

(

(t− τ)α−1Eα,α(λ(t− τ)α)− λ1/α−1Eα(λt
α) exp(−λ1/ατ)

)∣
∣
∣ dτ ≤ K(α, λ).

(ii) If λ ∈ Λs
α then

∫ t

0

∣
∣(t− τ)α−1Eα,α(λ(t− τ)α)

∣
∣ dτ ≤ K(α, λ).
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Proof. Once again the statements are trivially true for α = 1. The proof of the remaining cases is very
similar to the proof of [3, Lemma 5].

For the first claim of part (i), the first statement of Lemma A.1(i) allows us to proceed as follows:

∫ ∞

t

∣
∣
∣λ1/α−1Eα(λt

α) exp(−λ1/ατ)
∣
∣
∣ dτ ≤ |λ|1/α−1

∫ ∞

t

(∣
∣
∣
∣

1

α
exp(λ1/αt)

∣
∣
∣
∣
+

m(α, λ)

tα

)∣
∣
∣exp(−λ1/ατ)

∣
∣
∣ dτ

= |λ|1/α−1 1

α

∫ ∞

t

∣
∣
∣exp(λ1/α(t− τ))

∣
∣
∣ dτ

+ |λ|1/α−1m(α, λ)

tα

∫ ∞

t

∣
∣
∣exp(−λ1/ατ)

∣
∣
∣ dτ.

For the evaluation of these integrals we recall that λ ∈ Λu
α, and hence | argλ1/α| < π/2 which implies that

ℜλ1/α > 0. Making use of this inequality in combination with the identity | exp(λ1/αz)| = exp(ℜλ1/αz)
for z ∈ R, we conclude

∫ ∞

t

∣
∣
∣exp(λ1/α(t− τ))

∣
∣
∣ dτ =

∫ 0

−∞

exp(ℜλ1/αu) du =
1

ℜλ1/α

and ∫ ∞

t

∣
∣
∣exp(−λ1/ατ)

∣
∣
∣ dτ =

∫ ∞

t

exp(−ℜλ1/ατ) dτ <

∫ ∞

0

exp(−ℜλ1/ατ) dτ =
1

ℜλ1/α
.

These estimates conclude this part of the proof.

The proof of the second claim of part (i) uses the second statement of Lemma A.1(i). Specifically, that
result allows us to write

∫ t

0

∣
∣
∣(t− τ)α−1Eα,α(λ(t− τ)α)− λ1/α−1Eα(λt

α) exp(−λ1/ατ)
∣
∣
∣ dτ

≤

∫ t

0

∣
∣
∣
∣

1

α
λ1/α−1 exp(λ1/α(t− τ)) − λ1/α−1Eα(λt

α) exp(−λ1/ατ)

∣
∣
∣
∣
dτ (A.3)

+m(α, λ)

∫ t

0

min{(t− τ)−1−α, (t− τ)−1+α} dτ

Since we have assumed that t ≥ 1, we may bound the last integral as follows:

∫ t

0

min{(t− τ)−1−α, (t− τ)−1+α} dτ =

∫ t

0

min{τ−1−α, τ−1+α} dτ

=

∫ 1

0

τ−1+α dτ +

∫ t

1

τ−1−α dτ

=
1

α
+

1

−α

(
t−α − 1

)

=
2

α
−

1

α
t−α <

2

α
. (A.4)

Moreover, for the first integral on the right-hand side of eq. (A.3) we may invoke the first statement of
Lemma A.1(i) and conclude that

∫ t

0

∣
∣
∣
∣

1

α
λ1/α−1 exp(λ1/α(t− τ)) − λ1/α−1Eα(λt

α) exp(−λ1/ατ)

∣
∣
∣
∣
dτ
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= |λ|1/α−1

∣
∣
∣
∣

1

α
exp(λ1/αt)− Eα(λt

α)

∣
∣
∣
∣

∫ t

0

| exp(−λ1/ατ)| dτ

≤ |λ|1/α−1m(α, λ)t−α

∫ t

0

| exp(−λ1/ατ)| dτ

= |λ|1/α−1m(α, λ)t−α

∫ t

0

exp(−ℜλ1/ατ) dτ

= |λ|1/α−1m(α, λ)t−α 1

ℜλ1/α

(

1− exp(−ℜλ1/αt)
)

.

As above, our assumption that λ ∈ Λu
α implies that ℜλ1/α > 0, and hence this last expression is uniformly

bounded for all t ≥ 1. This completes the proof of the second statement of part (i).

Finally, for part (ii), Lemma A.1(ii) and the fact that t ≥ 1 allow us to estimate as follows:

∫ t

0

∣
∣(t− τ)α−1Eα,α(λ(t− τ)α)

∣
∣ dτ =

∫ t

0

∣
∣τα−1Eα,α(λτ

α)
∣
∣ dτ

≤ m(α, λ)

∫ t

0

min{τ−1−α, τ−1+α} dτ

< m(α, λ)
2

α

where the last estimate uses the result (A.4). Thus the desired result follows.

Lemma A.3. For any continuous and bounded function f : [0,∞) → C, α ∈ (0, 1] and λ ∈ Λu
α, we have

lim
t→∞

∫ t

0

(t− τ)α−1Eα,α(λ(t − τ)α)

Eα(λtα)
f(τ) dτ = λ1/α−1

∫ ∞

0

exp(−λ1/ατ)f(τ) dτ. (A.5)

Proof. Again, the case α = 1 is trivial.

For 0 < α < 1, we first remark that the expression on the left-hand side of eq. (A.5) is well defined: The
denominator is non-zero because, as shown by Wiman [24, pp. 225–226], the Mittag-Leffler function Eα

does not have any zeros in Λu
α. Thus, since λ ∈ Λu

α implies that tλ ∈ Λu
α for all t > 0, we conclude that

Eα(λt
α) 6= 0 for all t > 0.

Next we note that the integral on the right-hand side of eq. (A.5) exists because f is assumed to be
continuous (which asserts the existence of the integral over any compact subinterval [0, T ] with arbitrary
T > 0) and bounded which admits us to bound the absolute value of the integrand by

| exp(−λ1/ατ)f(τ)| ≤ exp(−ℜλ1/ατ) · sup
t≥0

|f(t)|.

As we already noted in earlier proofs, ℜλ1/α > 0, and hence this bound provides a convergent majorant
for the integral over [0,∞), thus asserting the existence and finiteness of the improper integral on the
right-hand side of eq. (A.5).

Then, the first statement of Lemma A.1(i) implies that |Eα(λt
α)| exhibits an unbounded growth as t → ∞

and hence that

lim
t→∞

1
α exp(λ1/αt)

Eα(λtα)
= 1.
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It thus follows that

lim
t→∞

∫ t

0

(t− τ)α−1Eα,α(λ(t− τ)α)

Eα(λtα)
f(τ) dτ = lim

t→∞
α

∫ t

0

(t− τ)α−1Eα,α(λ(t − τ)α)

exp(λ1/αt)
f(τ) dτ

if one of the limits exists (which immediately implies the existence of the other one).

For t > 1 we see that
∣
∣
∣
∣
α

∫ t

t−1

(t− τ)α−1Eα,α(λ(t− τ)α)f(τ) dτ

∣
∣
∣
∣
≤ sup

u≥0
|f(u)| · sup

0≤u≤1
|Eα,α(λu

α)| · α

∫ 1

0

uα−1 du

= sup
u≥0

|f(u)| · sup
0≤u≤1

|Eα,α(λu
α)|.

Evidently, the upper bound depends on f , α and λ but not on t. It therefore follows, once again using
the unbounded growth of | exp(λ1/αt)| for t → ∞, that

lim
t→∞

α

∫ t

t−1

(t− τ)α−1Eα,α(λ(t− τ)α)

exp(λ1/αt)
f(τ) dτ = 0.

In order to complete the proof of Lemma A.3, it therefore suffices to show that

lim
t→∞

α

∫ t−1

0

(t− τ)α−1Eα,α(λ(t − τ)α)

exp(λ1/αt)
f(τ) dτ = λ1/α−1

∫ ∞

0

exp(−λ1/ατ)f(τ) dτ. (A.6)

To this end, we recall that the second statement of Lemma A.1(i) implies

∣
∣
∣
∣

∫ t−1

0

α(t− τ)α−1Eα,α(λ(t− τ)α)− λ1/α−1 exp(λ1/α(t− τ))

exp(λ1/αt)
f(τ) dτ

∣
∣
∣
∣

≤ sup
u≥0

|f(u)| ·

∣
∣
∣
∣

∫ t−1

0

αm(α, λ)(t − τ)−1−α

exp(λ1/αt)
dτ

∣
∣
∣
∣

≤ sup
u≥0

|f(u)|
αm(α, λ)

| exp(λ1/αt)|

∫ t

1

τ−1−α dτ ≤ sup
u≥0

|f(u)|
m(α, λ)

| exp(λ1/αt)|

for t > 1; in particular we once again see that the upper bound converges to zero as t → ∞, and therefore
(A.6) follows as desired.

Using Lemma A.1, Lemma A.2 and Lemma A.3, we obtain the asymptotic behavior of solutions to scalar
linear fractional differential equations as follows.

Lemma A.4. Let α ∈ (0, 1], and let f : [0,∞) → C be a continuous function with the property
limt→∞ |f(t)| = 0. Consider the differential equation

Dα
∗ x(t) = λx(t) + f(t), t > 0. (A.7)

The following statements hold:

(i) If | arg (λ)| > απ/2 then all solutions of (A.7) tend to zero as t → ∞.

(ii) If | arg (λ)| < απ/2 then eq. (A.7) has a unique bounded solution. Moreover, this solution tends to
zero as t → ∞.
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Proof. In either case, we start from the variation of constants formula [7, Theorem 7.2 and Remark 7.1]
which tells us that the solution ϕ(·, x0) of (A.7) that satisfies the condition ϕ(0, x0) = x0 is given by

ϕ(t, x0) = x0Eα(λt
α) +

∫ t

0

(t− τ)α−1Eα,α(λ(t− τ)α)f(τ) dτ. (A.8)

In order to prove part (i), let ε > 0 be arbitrarily small. We can find a constant T > 0 such that |f(t)| < ε
for all t ≥ T . For t > T + 1 and x0 ∈ C, we split up the integral on the right-hand side of eq. (A.8)
according to

ϕ(t, x0) = x0Eα(λt
α) +

∫ T

0

(t− τ)α−1Eα,α(λ(t − τ)α)f(τ) dτ +

∫ t−1

T

(t− τ)α−1Eα,α(λ(t − τ)α)f(τ) dτ

+

∫ t

t−1

(t− τ)α−1Eα,α(λ(t − τ)α)f(τ) dτ.

By virtue of Lemma A.1(ii), we have
lim
t→∞

x0Eα(λt
α) = 0. (A.9)

On the other hand, by a simple computation, we obtain

∣
∣
∣
∣

∫ t−1

T

(t− τ)α−1Eα,α(λ(t − τ)α)f(τ) dτ

∣
∣
∣
∣
≤ ε

∫ t−T

1

|τα−1Eα,α(λτ
α)| dτ ≤

εm(α, λ)

α
(A.10)

due to Lemma A.1(ii) and

∣
∣
∣
∣

∫ t

t−1

(t− τ)α−1Eα,α(λ(t− τ)α)f(τ) dτ

∣
∣
∣
∣
≤ ε

∫ 1

0

|τα−1Eα,α(λτ
α)| dτ ≤ εEα,α+1(|λ|) (A.11)

(see [20, eq. (1.99)]). Furthermore,

∣
∣
∣
∣
∣

∫ T

0

(t− τ)α−1Eα,α(λ(t− τ)α)f(τ)dτ

∣
∣
∣
∣
∣
≤ sup

t≥0
|f(t)|

∫ t

t−T

|τα−1Eα,α(λτ
α)| dτ ≤

m(α, λ) supt≥0 |f(t)|

α(t − T )α

(A.12)
due to Lemma A.1(ii). Since ǫ is arbitrarily small, from eqs. (A.9), (A.10), (A.11) and (A.12), we get

lim
t→∞

|ϕ(t, x0)| = 0,

and the proof of part (i) is complete.

For the proof of (ii), we note that Lemma A.3 admits us to precisely describe the asympotic behavior of
the integral on the right-hand side of eq. (A.8), namely

∫ t

0

(t− τ)α−1Eα,α(λ(t− τ)α)f(τ) dτ = Eα(λt
α)λ1/α−1

∫ ∞

0

exp(−λ1/ατ)f(τ) dτ · (1 + o(1)).

Thus, by (A.8), any solution to the differential equation behaves as

ϕ(t, x0) = Eα(λt
α)

[

x0 + λ1/α−1

∫ ∞

0

exp(−λ1/ατ)f(τ) dτ · (1 + o(1))

]

(A.13)
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for t → ∞. Since | argλ| < απ/2, we know that Eα(λt
α) is unbounded as t → ∞. Thus, a necessary

condition for the entire expression on the right-hand side of (A.13) to be bounded is that the term in
brackets converges to zero as t → ∞. Clearly, this is the case if and only if

x0 = x0 := −λ1/α−1

∫ ∞

0

exp(−λ1/ατ)f(τ) dτ.

Thus, the differential equation (A.7) has at most one bounded solution, and it remains to prove that
this solution has the property ϕ(t, x0) → 0 as t → ∞ (which, in particular, implies that the solution is
bounded and hence that a bounded solution exists).

To this end, let ε > 0 be an arbitrary positive real number. Then there exists a positive constant T > 0
such that

|f(t)| ≤ ε for all t ≥ T. (A.14)

For any t ≥ T + 1, we put

H1(t) = −Eα(λt
α)λ1/α−1

∫ ∞

t

exp (−λ1/ατ)f(τ) dτ,

H2(t) =

∫ T

0

[

(t− τ)α−1Eα,α(λ(t− τ)α)− λ1/α−1 exp (−λ1/ατ)Eα(λt
α)
]

f(τ) dτ,

H3(t) =

∫ t

T

[

(t− τ)α−1Eα,α(λ(t− τ)α)− λ1/α−1 exp (−λ1/ατ)Eα(λt
α)
]

f(τ) dτ.

It is then clear from eq. (A.8) and the definition of x0 that

ϕ(t, x0) = H1(t) +H2(t) +H3(t).

By virtue of (A.14) and the first statement of Lemma A.2(i), we have

|H1(t)| ≤ εK(α, λ). (A.15)

Using both statements of Lemma A.1(i), we obtain, since t− T ≥ 1,

|H2(t)| ≤ sup
t≥0

|f(t)|

∫ T

0

[

|λ|1/α−1

∣
∣
∣
∣

1

α
exp(λ1/α(t− τ)) − exp(−λ1/ατ)Eα(λt

α)

∣
∣
∣
∣
+

m(α, λ)

(t− τ)1+α

]

dτ

≤ sup
t≥0

|f(t)|

[

|λ|1/α−1

∫ T

0

| exp(−λ1/ατ)| ·

∣
∣
∣
∣

1

α
exp(λ1/αt)− Eα(λt

α)

∣
∣
∣
∣
dτ

+m(α, λ)

∫ T

0

dτ

(t− τ)1+α

]

≤m(α, λ) sup
t≥0

|f(t)|

[

|λ|1/α−1t−α

∫ T

0

| exp(−λ1/ατ)| dτ +
(t− T )−α − t−α

α

]

. (A.16)

Since λ ∈ Λu
α, we conclude once again that

∫ T

0

| exp(−λ1/ατ)| dτ =

∫ T

0

exp(−ℜλ1/ατ) dτ =
1

ℜλ1/α

[

1− exp(−ℜλ1/αT )
]

≤
1

ℜλ1/α

and thus we see from eq. (A.16) that

H2(t) → 0 as t → ∞. (A.17)
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Furthermore, by (A.14) and the second statement of Lemma A.2(i), we have

|H3(t)| ≤ εK(α, λ). (A.18)

From (A.15), (A.17), (A.18) and the fact that ε > 0 can be made arbitrarily small, we conclude

lim
t→∞

ϕ(t, x0) = 0.

The proof is complete.
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