
An equality on the complex Monge-Ampère measures

Le Mau Hai
Department of Mathematics,

Hanoi National University of Education, Ha Noi, Viet Nam
E-mail: mauhai@fpt.vn

Pham Hoang Hiep
Institute of Mathematics

Vietnam Academy of Science and Technology
E-mail: phhiep@math.ac.vn

Abstract

In this paper we extend an equality on the complex Monge-Ampère mea-
sures of Bedford-Taylor which holds in the class of locally bounded plurisub-
harmonic functions to the class E(Ω) introduced and investigated by Cegrell
in [5] and the class of plurisubharmonic functions which are bounded near
the boundary.

1 Introduction

Let Ω be an open set in Cn and u, v be locally bounded plurisubharmonic
functions on Ω. As in [3], Bedford-Taylor have shown that if O ⊂ Ω is a
plurifinely open set and if u = v on O then

(ddcu)n|O = (ddcv)n|O,

(see Corollary 4.3 in [3]). Here the plurifine topology on an open set Ω in
Cn is the coarsest topology on Ω that makes all plurisubharmonic functions
on Ω are continuous. The plurifine topology has been investigated by some
authors, for example, Wiegerinck, El Marzguioui, El Kadiri, Fuglede v. v.
v. In order to look for essential results concerning to the plurifine topology
and plurifinely plurisubharmonic functions, plurifine holomorphic functions
we refer readers to the papers [13], [10], [9]. Next, in the case Ω is a bounded
hyperconvex domain in Cn and u ∈ E(Ω), v ∈ PSH−(Ω) and the set O =
{u > v}, in [14], Khue-Hiep have proved that

(ddc max(u, v))n|{u>v} = (ddcu)n|{u>v},
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(see Theorem 4.1 in [14]) where E(Ω) is the class of negative plurisubhar-
monic functions introduced and investigated by Cegrell in [5] and [6] which
we will recall in the next section and PSH−(Ω) denotes the set of neg-
ative plurisubharmonic functions on Ω. Very recent, in [9] when to study
plurifinely plurisubharmonic functions and to construct the Monge-Ampère
operator in this class, Kadiri and Wiegerinck extended the above result of
Bedford-Taylor to the class of finite plurifinely plurisubharmonic functions.
They proved that if u and v are finite plurifinely plurisubharmonic func-
tions on a plurifinely open subset U ⊂ Ω, Ω is open in Cn and if u = v on
a plurifinely open subset O ⊂ U then

(ddcu)n|O = (ddcv)n|O,

(see Theorem 4.8 in [9]). To continue the direction of the above investi-
gations in the note we establish these equalities for the class E(Ω) on the
sets of the form O = {ϕ1 > ψ1} ∩ {ϕ2 > ψ2} ∩ · · · ∩ {ϕm > ψm} where
ϕ1, . . . , ϕm, ψ1, . . . , ψm are plurisubharmonic functions on Ω and u, v are
plurisubharmonic functions in the class E(Ω). Namely, the first result of
this note is the following

Theorem 1.1. Let Ω be a bounded hyperconvex domain in Cn and ϕ1, . . . , ϕm,
ψ1, . . . , ψm are plurisubharmonic functions on Ω. Let O = {ϕ1 > ψ1} ∩
{ϕ2 > ψ2}∩ · · ·∩{ϕm > ψm}. Assume that u, v ∈ E(Ω). If u = v on O then

(ddcu)n|O = (ddcv)n|O.

Next, we extend this result for the class of plurisubharmonic functions which
are bounded near the boundary of Ω. We have the following.

Theorem 1.2. Let Ω be a bounded open set in Cn and ϕ1, . . . , ϕm, ψ1, . . . , ψm
are plurisubharmonic functions on Ω, T be a closed positive current of bide-
gree (n−1, n−1) on Ω. Let O = {ϕ1 > ψ1}∩{ϕ2 > ψ2}∩· · ·∩{ϕm > ψm}.
Assume that u, v ∈ PSH ∩ L∞loc(Ω \K) where K b Ω. If u = v on O then

ddcu ∧ T |O = ddcv ∧ T |O.

Note that the set O in Theorem 1.1 and Theorem 1.2 are plurifinely open
which are easy to image then a plurifinely open set in the general form.
To get the proof of Theorem 1.2, in the fourth section of this paper we
will construct the wedge product of a plurisubharmonic function which is
bounded near the boundary of Ω with a closed positive current T .
The paper is organized as follows. In section 2 we recall some notions of
pluripotential theory and Cegrell classes F(Ω), E(Ω) in a bounded hyper-
convex domain Ω of Cn. Section 3 is devoted to the proof of Theorem 1.1
and in Section 4 we give the proof of Theorem 1.2.

2 The Cegrell classes

Some elements of pluripotential theory that will be used throughout the
paper can be found in [1], [2], [3], [5], [6], [12], [14]. As usually, we denote
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by d = ∂ + ∂ the exterior differential and by dc = i(∂ − ∂) the conjugate
differential. Then ddc = 2i∂∂. Let Ω be an open set in Cn. By PSH−(Ω)
we denote the set of negative plurisubharmonic functions on Ω. A domain
Ω ⊂ Cn is said to be hyperconvex if there exists ϕ ∈ PSH−(Ω) such that
{ϕ < −ε} b Ω for every ε > 0.

2.1 First we recall the Cegrell classes E0 = E0(Ω),F = F(Ω) and E =
E(Ω) introduced and investigated in [5] and [6] in the case Ω is a bounded
hyperconvex domain in Cn. Let Ω be a bounded hyperconvex domain in Cn.
As in [5] and [6] we recall the following subclasses of PSH−(Ω):

E0 = E0(Ω) = {ϕ ∈ PSH−(Ω) ∩ L∞(Ω) : lim
z→∂Ω

ϕ(z) = 0,

∫
Ω

(ddcϕ)n <∞},

F = F(Ω) =
{
ϕ ∈ PSH−(Ω) : ∃ E0 3 ϕj ↘ ϕ, sup

j

∫
Ω

(ddcϕj)
n <∞

}
,

and

E = E(Ω) =
{
ϕ ∈ PSH−(Ω) : ∀z0 ∈ Ω,∃ a neighbourhood ω 3 z0,

E0 3 ϕj ↘ ϕ on ω, sup
j

∫
Ω

(ddcϕj)
n <∞

}
.

As in [5], we note that if u ∈ PSH−(Ω) then u ∈ E(Ω) if and only if for
every ω b Ω, there exists v ∈ F(Ω) such that v ≥ u on Ω and v = u on ω.

3 Proof of Theorem 1.1.

Write O =
m⋂
j=1

{ϕj > ψj} =
⋃
cj∈Q

m⋂
j=1

{ϕj > cj > ψj}, where Q denotes the set

of rational numbers. It is enough to show that if u = v on O then

(ddcu)n| m⋂
j=1
{ϕj>cj>ψj}

= (ddcv)n| m⋂
j=1
{ϕj>cj>ψj}

,

for all cj ∈ Q. Now, for each k ≥ 1, set uk = max(u,−k) and vk =
max(v,−k). Then uk, vk ∈ PSH(Ω) ∩ L∞(Ω), uk ↘ u, vk ↘ v as k → ∞.
On the other hand, from u = v on O then we also have uk = vk on O.
Corollary 4.3 in [3] implies that

(ddcuk)
n|O = (ddcvk)

n|O.

Thus it follows that

min
1≤j≤m

(
max(ϕj, ψj, cj)−max(ψj, cj)

)
(ddcuk)

n
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= min
1≤j≤m

(
max(ϕj, ψj, cj)−max(ψj, cj)

)
(ddcvk)

n,

for all k ≥ 1. By Corollary 3.2 in [15], letting k →∞, we deduce that

min
1≤j≤m

(
max(ϕj, ψj, cj)−max(ψj, cj)

)
(ddcu)n

= min
1≤j≤m

(
max(ϕj, ψj, cj)−max(ψj, cj)

)
(ddcv)n.

However, min
1≤j≤m

(
max(ϕj, ψj, cj)−max(ψj, cj)

)
= min

1≤j≤m
{ϕj− cj} > 0 on the

set
m⋂
j=1

{ϕj > cj > ψj} and Lemma 4.2 in [14] implies that

(ddcu)n = (ddcv)n,

on the set
m⋂
j=1

{ϕj > cj > ψj} and the desired conclusion follows.

Now we give a corollary of Theorem 1.1 concerning to the comparison princi-
ple of the log canonical threshold. As in [8], Demailly and Kollár introduced
the log canonical threshold of a plurisubharmonic function u at z ∈ Ω as-
follows. Let u be a plurisubharmonic function on an open set Ω in Cn and
z ∈ Ω. By cu(z) we denote the log canonical threshold of u at z and as in
[8] it is defined by:

cu(z) = sup
{
c > 0 : e−2cu is L1 on a neighborhood of z

}
.

Using Theorem 1.1, we obtain the following result.

Corollary 3.1. Let Ω be a domain in Cn and O be a plurifinely open subset
in Ω. Assume that u, v ∈ PSH(Ω) such that u ≥ v on O. Then cu(z) ≥ cv(z)
for all z ∈ O.

Proof. Take z0 ∈ O. By Theorem 2.3 in [3], there exists a plurisubharmonic
function ϕ on a neighborhood D = {z ∈ Cn : ||z− z0|| < r} of z0 such that
z0 ∈ {z ∈ D : ϕ(z) > 0} ⊂ O. Since u ≥ v on O, we have max(u, v, g) =
max(u, g) on {z ∈ D : ϕ(z) > 0}, for all g ∈ PSH(D)∩L∞loc(D\{z0}). Using
Theorem 1.1, we have∫

{z0}

(ddc max(u, v, g))n =

∫
{z0}

(ddc max(u, g))n,

for all g ∈ PSH(D) ∩ L∞loc(D\{z0}). By Theorem 3.3 in [11], we obtain
cu(z0) ≥ cv(z0).

4 Proof of Theorem 1.2.

In order to prove Theorem 1.2 we need to construct the wedge product of a
plurisubharmonic function which is bounded near the boundary of Ω with
a closed nonnegative current T of bidegree (p, p), p < n. Namely, we prove
the following proposition.
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Proposition 4.1. Let Ω be an open subset in Cn and T be a closed positive
current of bidegree (p, p) on Ω (p < n). Assume that u is a plurisubharmonic
function which is bounded near the boundary of Ω. Then the current uT has
locally finite mass in Ω.

Remark 4.2. To differ the above proposition to Proposition 2.1 in [7] is
in our proposition we remove the hypothesis Ω is covered by a family of
Stein open sets X b Ω whose boundaries ∂X do not intersect L(u)∩SuppT
where L(u) denotes the unbounded locus of u (see the hypothesis (b) of
Proposition 2.1 in [7]).

Proof. Without loss of generality, we may assume that u ∈ PSH−(Ω). Let
Ω′′ b Ω′ b Ω be such that

M = sup ‖u‖L∞(Ω\Ω′′) < +∞.

Take a sequence {uj}j≥1 ⊂ PSH ∩ C∞(Ω) such that uj ↘ u on Ω′. First,
we show that

sup
j≥1

∫
Ω′

ddcuj ∧ T ∧ (ddc‖z‖2)n−p−1 < +∞.

Indeed, take a function φ ∈ C∞0 (Ω) such that φ = 1 on Ω′′ and suppφ ⊂ Ω′.
We choose C > 0 such that −Cddc‖z‖2 ≤ ddcφ ≤ Cddc‖z‖2. By Stoke’s
theorem, we have∫

Ω′

ddcuj ∧ T ∧ (ddc‖z‖2)n−p−1 ≤
∫
Ω

φddcuj ∧ T ∧ (ddc‖z‖2)n−p−1

≤
∫
Ω

ujdd
cφ ∧ T ∧ (ddc‖z‖2)n−p−1

=

∫
Ω′\Ω′′

ujdd
cφ ∧ T ∧ (ddc‖z‖2)n−p−1

≤ C

∫
Ω′\Ω′′

−ujT ∧ (ddc‖z‖2)n−p

≤ CM

∫
Ω′\Ω′′

T ∧ (ddc‖z‖2)n−p.

Hence,

sup
j≥1

∫
Ω′

ddcuj ∧ T ∧ (ddc‖z‖2)n−p−1 < +∞.

Next, we prove that

sup
j≥1

∫
Ω′

−ujT ∧ (ddc‖z‖2)n−p < +∞.
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Indeed, by Stoke’s theorem we have∫
Ω′

−ujT ∧ (ddc‖z‖2)n−p ≤
∫
Ω′

−φujT ∧ (ddc‖z‖2)n−p

=

∫
Ω

‖z‖2ddc(−φuj) ∧ T ∧ (ddc‖z‖2)n−p−1

≤
∫
Ω

−‖z‖2φddcuj ∧ T ∧ (ddc‖z‖2)n−p−1

− 2

∫
Ω

‖z‖2duj ∧ dcφ ∧ T ∧ (ddc‖z‖2)n−p−1

+

∫
Ω

−‖z‖2ujdd
cφ ∧ T ∧ (ddc‖z‖2)n−p−1

≤ −2

∫
Ω

‖z‖2duj ∧ dcφ ∧ T ∧ (ddc‖z‖2)n−p−1

+

∫
Ω

−‖z‖2ujdd
cφ ∧ T ∧ (ddc‖z‖2)n−p−1

= 2

∫
Ω

ujd‖z‖2 ∧ dcφ ∧ T ∧ (ddc‖z‖2)n−p−1

+

∫
Ω

uj‖z‖2ddcφ ∧ T ∧ (ddc‖z‖2)n−p−1

= 2

∫
Ω′\Ω′′

ujd‖z‖2 ∧ dcφ ∧ T ∧ (ddc‖z‖2)n−p−1

+

∫
Ω′\Ω′′

uj‖z‖2ddcφ ∧ T ∧ (ddc‖z‖2)n−p−1

≤ (2 sup
z∈Ω′
|dφ(z)|+ C sup

z∈Ω′
‖z‖2)M

∫
Ω′\Ω′′

T ∧ (ddc‖z‖2)n−p.

Hence,

sup
j≥1

∫
Ω′

−ujT ∧ (ddc‖z‖2)n−p < +∞.

This implies that ∫
Ω′

|u|T ∧ (ddc‖z‖2)n−p < +∞.

The proof is complete.
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Definition 4.3. From Proposition 4.1 we can define the current ddcu ∧ T
by

ddcu ∧ T = ddc(uT ),

for the case T is a closed nonegative current of bidegree (p, p) (p < n) and
u is a plurisubharmonic function which bounded near the boundary of Ω.

As the proof of Corollary 2.3 in [7] and Corollary 3.2 in [15], we have the
following proposition.

Proposition 4.4. Let Ω be an open subset in Cn and T be a closed positive
current of bidegree (p, p) on Ω (p < n). Assume that uj, u are plurisubhar-
monic functions which are bounded near the boundary of Ω. If uj ↘ u then
the current h(ϕ1, ..., ϕm)ddcuj ∧ T → h(ϕ1, ..., ϕm)ddcu ∧ T weakly for all
ϕ1, ..., ϕm ∈ PSH ∩ L∞loc(Ω), h ∈ C(Rm).

Proposition 4.5. Let Ω ⊂ Cn be an open set and T be a closed positive
current of bidegree (n− 1, n− 1) on Ω. Assume that u, v ∈ PSH ∩L∞loc(Ω).
Then

(ddc max(u, v)) ∧ T |{u>v} = ddcu ∧ T |{u>v}.

Proof. Take Ω′ b Ω. We choose a sequence uj ∈ PSH ∩ C∞(Ω′) such that
uj ↘ u on Ω′. Since {uj > v} is an open set, we have

(ddc max(uj, v) ∧ T |{uj>v} = ddcuj ∧ T |{uj>v}.

Moreover, since {u > v} ⊂ {uj > v}, we get

(ddc max(uj, v)) ∧ T |{u>v} = ddcuj ∧ T |{u>v}.

Hence

[max(u, v)− v](ddc max(uj, v)) ∧ T = [max(u, v)− v]ddcuj ∧ T.

By Proposition 4.4, letting j →∞, we get

[max(u, v)− v](ddc max(u, v)) ∧ T = [max(u, v)− v]ddcu ∧ T.

By Lemma 4.2 in [14], we deduce that

(ddc max(u, v)) ∧ T |{u>v} = ddcu ∧ T |{u>v}.

As a corollary of the above fact we get the following.

Proposition 4.6. Let Ω ⊂ Cn be an open set and T be a closed positive
current of bidegree (n−1, n−1) on Ω. Assume that ϕ1, . . . , ϕm, ψ1, . . . , ψm ∈
PSH(Ω) and u, v ∈ PSH ∩ L∞loc(Ω) such that u = v on O = {ϕ1 > ψ1} ∩
{ϕ2 > ψ2} ∩ · · · ∩ {ϕm > ψm}. Then

ddcu ∧ T |O = ddcv ∧ T |O.
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Proof. First, we will prove that

(ddc max(u, v)) ∧ T |O = ddcu ∧ T |O.

Write O =
m⋂
j=1

{ϕj > ψj} =
⋃
cj∈Q

m⋂
j=1

{ϕj > cj > ψj}. It is enough to show

that if u = v on O then

(ddc max(u, v)) ∧ T | m⋂
j=1
{ϕj>cj>ψj}

= ddcu ∧ T | m⋂
j=1
{ϕj>cj>ψj}

.

By Proposition 4.5, we have

(ddc max(u+ ε, v)) ∧ T |{u+ε>v} = ddcu ∧ T |{u+ε>v},

for all ε > 0. Moreover, since O ⊂ {u+ ε > v}, we get

(ddc max(u+ ε, v)) ∧ T |O = ddcu ∧ T |O,

for all ε > 0. Hence

min
1≤j≤m

(
max(ϕj, ψj, cj)−max(ψj, cj)

)
(ddc max(u+ ε, v)) ∧ T

= min
1≤j≤m

(
max(ϕj, ψj, cj)−max(ψj, cj)

)
ddcu ∧ T.

for all ε > 0. By Proposition 4.4, letting ε↘ 0, we get

min
1≤j≤m

(
max(ϕj, ψj, cj)−max(ψj, cj)

)
(ddc max(u, v)) ∧ T =

min
1≤j≤m

(
max(ϕj, ψj, cj)−max(ψj, cj)

)
ddcu ∧ T.

Lemma 4.2 in [14] implies that

(ddc max(u, v)) ∧ T | m⋂
j=1
{ϕj>cj>ψj}

= ddcu ∧ T | m⋂
j=1
{ϕj>cj>ψj}

.

Similarly, we have

(ddc max(u, v)) ∧ T |O = ddcv ∧ T |O.

Therefore
ddcu ∧ T |O = ddcv ∧ T |O.

Proof of Theorem 1.2. Now, by using the same the notations as in proof of
Theorem 1.1 we get the following

min
1≤j≤m

(
max(ϕj, ψj, cj)−max(ψj, cj)

)
ddcuk ∧ T

= min
1≤j≤m

(
max(ϕj, ψj, cj)−max(ψj, cj)

)
ddcvk ∧ T,
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for all k ≥ 1. Proposition 4.4 implies that

min
1≤j≤m

(
max(ϕj, ψj, cj)−max(ψj, cj)

)
ddcu ∧ T

= min
1≤j≤m

(
max(ϕj, ψj, cj)−max(ψj, cj)

)
ddcv ∧ T,

Next, by repeating the same argument as in the proof of Theorem 1.1 we
finish the proof of Theorem 1.2.

Remark 4.7. The above result still holds for the following case. Let Ω be
a bounded open set in Cn and ϕ1, . . . , ϕm, ψ1, . . . , ψm are plurisubharmonic
functions on Ω, T be a closed positive current of bidegree (n − q, n − q)
on Ω (0 < q < n). Let O = {ϕ1 > ψ1} ∩ {ϕ2 > ψ2} ∩ · · · ∩ {ϕm > ψm}.
Assume that u1, . . . uq, v1, . . . vq ∈ PSH ∩ L∞loc(Ω \ K) where K b Ω. If
uk = vk, 1 ≤ k ≤ q on O then

ddcu1 ∧ · · · ∧ ddcuq ∧ T |O = ddcv1 ∧ · · · ∧ ddcvq ∧ T |O.
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