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Abstract: In this paper, we study local well-posedness for the Navier-Stokes
equations (NSE) with arbitrary initial data in homogeneous Sobolev-Lorentz
spaces H{,,(RY) = (=A)™2L%" for d > 2,¢ > 1,5 > 0, 1 < r < oo,

and CEZ —1 < s < 4 The obtained result improves the known ones for

q>d,r=gq,s=0 (see [4, 7]), forq:r:2,%l—1 <s< g (see [4, 10]), and
for s =0,d < ¢ < +00,1 <r < +00 (see [31]). In the case of critical indexes
(s = g — 1), we prove global well-posedness for NSE provided the norm of
the initial value is small enough. This result is a generalization of the one
in [5] and [9, 30] in which (¢ =7 =4d,s =0) and (¢ = d,s = 0,7 = +00),
respectively.

i

§1. Introduction

We consider the Navier-Stokes equations in R¢:

Ou=Au—V.(u®u)— Vp,
V. =0,

u(0, z) = uo,
which is a condensed writing for

1<k<d, Oup=A0uy 31 d(wuy) — hp,

Zflzl Oy = 0,
1 <k<d, ug(0,2)=ugg.

The unknown quantities are the velocity u(t,z) = (u(t,z), ..., uq(t, x)) of
the fluid element at time ¢ and position x and the pressure p(t, z).

In the 1960s, mild solutions were first constructed by Kato and Fujita (]20],
[15]) that are continuous in time and take values in the Sobolev spaces
H*RY), (s > 4 — 1), say u € C([0,T]; H*(RY)). In 1992, a modern treat-
ment for mild solutions in H*(R?), (s > £ — 1) was given by Chemin [10]. In
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1995, using the simplified version of the bilinear operator, Cannone proved
the existence of mild solutions in H*(R?), (s > 4 — 1), see [4]. Results
on the existence of mild solutions with value in LY(R%),(q > d) were es-
tablished in the papers of Fabes, Jones and Riviere [12] and of Giga [16].
Concerning the initial data in the space L*°, the existence of a mild solu-
tion was obtained by Cannone and Meyer in ([4], [7]). In 1994, Kato and

Ponce [24] showed that the NSE are well-posed when the initial data belong

d
to the homogeneous Sobolev spaces H _I(Rd), (d < g < o). Recently,
the authors of this article have considered NSE in mixed-norm Sobolev-
Lorentz spaces and Sobolev-Fourier-Lorentz spaces, see [25] and [26] respec-
tively. In [28] we prove that NSE are well-posed when the initial datum

d
belongs to the Sobolev spaces Hg_l(Rd) with (1 < p < d). In [27], We
considered the initial value problem for the non stationary Navier-Stokes
equations on torus T? = R3/Z3 and showed that NSE are well-posed when
the initial datum belongs to Sobolev spaces V,, := D(—=A)*? with 1 < a < 2.
In this paper, ford > 2,g > 1,s > 0, 1 < r < oo, and§—1§s<§,we
investigate mild solutions to NSE in the spaces L> ([0, T; H;,. (R%)) when
the initial data belong to the Sobolev-Lorentz spaces Hj,.,(R?), which are
more general than the spaces H;(Rd), (H;(]Rd) = H3.,(R%). We obtain
the existence of mild solutions with arbitrary initial value when 7' is small
enough, and existence of mild solutions for any 7" > 0 when the norm of

1 1
the initial value in the Besov spaces B;_d(g_g)’oo(]Rd), (%(% +9) < ;<
min{% + 55 %}) is small enough.
In the particular case (¢ > d,r = q,s = 0), we get the result which is more
general than that of Cannone and Meyer ([4], [7]). Here we obtained a state-
ment that is stronger than that of Cannone and Meyer but under a much
weaker condition on the initial data.
In the particular case (¢ = r = 2,% —1<s< g), we get the result which
is more general than those of Chemin in [10] and Cannone in [4]. Here we
obtained a statement that is stronger than those of Chemin in [10] and Can-
none in [4] but under a much weaker condition on the initial data.
In the case of critical indexes (1 < ¢ < d,r > 1,5 = g — 1), we get a
result that is a generalization of a result of Cannone [5]. In particular, when
q=r=d,s =0, we get back the Cannone theorem (Theorem 1.1 in [5]).
The paper is organized as follows. In Section 2 we prove some inequalities
for pointwise products in the Sobolev spaces and some auxiliary lemmas. In
Section 3 we present the main results of the paper. In the sequence, for a
space of functions defined on R?, say E(R?), we will abbreviate it as E.



§2. Some auxiliary results

In this section, we recall the following results and notations.

Definition 1. (Lorentz spaces). (See [1].)
For 1 < p,r < oo, the Lorentz space LP"(R?) is defined as follows:
A measurable function f € LP"(R?) if and only if

HfHLp,r(Rd) = (fooo(t%f*(t))’“%)% < oo when 1 <7r < oo,

HfHLp,oo(Rd) = Stgloa t%f*(t) < 0o when r = o0,

where f*(t) = inf {7 : M%({z : |f(z)] > 7}) < t}, with M? being the
Lebesgue measure in R?.

Before proceeding to the definition of Sobolev-Lorentz spaces, let us in-
troduce several necessary notations. For real number s, the operator A® is
defined through Fourier translation by

(A1) (&) = €l f(e).

For 0 < s < d, the operator A* can be viewed as the inverse of the Riesz
potential I, up to a positive constant

f(y) d

I(f)(x :/ —————— dy for z € R".
(i) Re |2 —y|P®

Forg>1,r>1,and 0 < s < %, the operator I, is continuous from L%" to

L9" where %. = é — 2, see ([31], Theorem 2.4 743), p. 20).

Definition 2. (Sobolev-Lorentz spaces). (See [13].) _
For g > 1,r > 1, and 0 < s < g, the Sobolev-Lorentz space H,..(R?) is
defined as the space I,(L%"(R%)), equipped with the norm

Wy, = IAF

TS
HLQvT

Lemma 1. Let ¢ > 1,1 <r <7 <00, and 0 < s < g. Then we have the
following imbedding maps

(a)
Higw = Higr — Hjyi = Hjgoo.

(b) H; = H3,, (equality of the norm,).



Proof. It is easily deduced from the properties of the standard Lorentz
spaces. ]
In the following lemmas, we estimate the pointwise product of two functions
in H 5(RY),(d > 2) which is a generalization of the Holder inequality. In
the case when s = 0 we get back the usual Holder inequality. Pointwise
multiplication results for Sobolev spaces are also obtained in literature, see
for example [11], [31], [23] and the references therein.

Lemma 2. Assume that
1

1 1
l<pg<d, and —+- <1+ -.
poq d

Then the following inequality holds

71 71
lwoll gy S ull gy lloll sy W € Hyoo € Hy,

1 _1,1_1
wherer—p+q vk

Proof. By applying the Leibniz formula for the derivatives of a product
of two functions, we have

luvll gy = 3 ool < D @], + D fJu@)]

la)=1 la|=1 la|=1

L

By applying the Holder and Sobolev inequalities we obtain

>_ N woll, < 3 1ol vl o S lell 1ol 4y

|a|=1 |a|=1

where
1 1 1

@ g d
Similar to the above reasoning, we have

> [[u(@)]

laf=1

S el o]l
L~ N 1V -

This gives the desired result

vl s = Wl g ol -
HY ~ a eI



Lemma 3. Assume that

1 1
and =+ = <1+ 2, (1)

s 1 S
d’ P q d

1
0<s<1l,—>—-,—>
p dg

Then the following inequality holds

v‘ VuEHS,vEHS,

vl = Nealli llo

+

where % =

S
lw

1

p
Proof. It is not difficult to show that if p, ¢, and s satisfy (1) then there

exists numbers py, P2, ¢1, g2 € (1,4+00) (may be many of them) such that

1 1—s s 1 1—s s 1 1
== + === +—,—+—<1,
p y4i P2 q q1 g2 D1 q1
1 1 1
P <d,qga <d, and —+ — <1+ —.
P2 G2 d
Setting
11 11 1 1 1
P @' T2 Py G d
we have

1 1—-s s
= +

T T1 T2

Therefore, applying Theorem 6.4.5 (page 152) of [1] (see also [19] for H;),
we get

s __ 17l TS __ g s __ [rr1 rrl
B2 = (D7 HL ] B2 = (L0 HL),, S = (L7 L.

p

Applying the Holder inequality and Lemma 2 in order to obtain

vl i S llell o [oll s Ve € L7 0 € L,

ool gy, % Il Mol o€ 8740 €

From Theorem 4.4.1 (page 96) of [1] we get

lavll sy S el el



Lemma 4. Assume that

11 1 1 S
q>1p>10<—<m1n{ —},and——l——<1+—. (2)
d P q poq d

Then we have the inequality

Yu € HSv e H,

1 _1,1_ s
wherer—p—kq ik

Proof. Denote by [s] the integer part of s and by {s} the fraction part
of the argument s. Using the formula for the derivatives of a product of two
functions, we have

[uv]| g, = A (wo)]] . = [JA® (w0 ||HH

Z H(?C“A{s} (uv ||L Z HA{S}ﬁo‘ (uv)
|or|=(s] o] =

S s X el
v =(s] [v|+18]=[s]

Set
11 s—hl-{s}1_1_s-18l-{s}

p D d 7§ q d
Applying Lemma 3 and the Sobolev inequality in order to obtain

07w g S N0 ull e 070 oo S Null e [ol] giovecor S Ml 1ol
This gives the desired result

vl e S [l 1o

Lemma 5. Let 1 < p,qg < oo and s € R.
(a) If s < 1 then the two quantities

(/OO (t_§||etAt§Aqu)p%>l/p and HfHBs,p are equivalent.
0 q
(b) If s < 0 then the two quantities

</ (t_EHetAfH pdt) and HfHBs,p are equivalent,
0 q

where ByP is the homogeneous Besov space.
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Proof. See ([14], Proposition 1, p. 181 and Proposition 3, p. 182), or
see ([31], Theorem 5.4, p. 45). O

The following lemma is a generalization of the above lemma.
Lemma 6. Let 1 < p,q < oo, >0, and s < a. Then the two quantities

(/Ow@a;Hemt%mf”m)pﬁ); and ||f|

. R equivalent,

Proof. Note that A® is an isomorphism from Bg’p to Bg_s‘)’p, see [3],
then we can easily prove the lemma. O
Lemma 7. Assume that ¢ > 1,1 < r < oo, and 0 < s < g. The fol-
lowing statement is true: If uy € sz then e®uy € L=([0, oo);qu,r) and

HetA

o | v < luoll g
Ol Loo(j0,00); 5 4,r) = 11700l TS,

Proof. We have
A 1 el .
qu’r — HetAASUOHLq,T = WH /Rde lftl ASU()( o §)d§"
1 e
< W/Rde | Ao — €], de

1 —le?
= o o o

HetA

UO‘

Lar

oo dE = |uoll ;. -
Hgr 3 Ol .

m
Let us recall following result on solutions of a quadratic equation in Banach
spaces (Theorem 22.4 in [31], p. 227).

Theorem 1. Let E be a Banach space, and B : E X E — E be a continuous
bilinear map such that there exists n > 0 so that

1B(z, )l < nllz(lllyll,
for all x and y in E. Then for any fivred y € E such that ||y| < &, the

4n
equation x =y — B(z,x) has a unique solution T € E satisfying ||Z|| < %}

§3. Main results
Now, for T" > 0, we say that u is a mild solution of NSE on [0, 7] cor-

responding to a divergence-free initial datum wuy when u solves the integral
equation

t
u = ePug — / APV (u(r,.) ® u(r,.))dr.
0
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Above we have used the following notation: For a tensor F' = (F;;) we define

the vector V.F by (V.F); = Z?Zl 0;F;; and for two vectors u and v, we define
their tensor product (u®v);; = u;v;. The operator P is the Helmholtz-Leray
projection onto the divergence-free fields

+ Y RiRify, (3)

1<k<d

where R; is the Riesz transforms defined as

@j . — 5]
Rj=——, i e Riyg(¢)=
] /—_A7 L. ¢ ]g(g) |§|

with ~ denoting the Fourier transform. The heat kernel e*® is defined as

ePu(x) = ((Art)~ Y2 % sou) ().

9(¢)

If X is a normed space and u = (uy,us, ..., uq),u; € X,1 <14 < d, then we

write .
1/2
we X, Jlullx = (D k)
=1

We define the auxiliary space ICq +o which is made up by the functions u(t, z)
such that

H | = sup t2Hu )‘H& < 00,
<t<T Lar
and
%E}%t? HU )| HS o =0, (4)
where 7, ¢, ¢, s being fixed constants satisfying
s 1 1 s+1
7~€ 17 ) 217 207_<T§_§ )
¢.q € (1,400),r s <75 y
and L
=alq,q) = d(— — 7>.
qa g

In the case ¢ = ¢, it is also convenient to define the space ICZ:ZT as the natural

space L>([0,T); H,.(R%)) with the additional condition that its elements
u(t, x) satisfy

hm”u )’
t—0

e =0 (5)

Remark 1. The auxiliary space K; := /CSZZ,T (G > d) was introduced by
Weissler and systematically used by Kato [21] and Cannone [5].
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Lemma 8. Let 1 <r <7 < o0o. Then we have the following imbedding maps

s,q 5,4 5, 8,4
Kiir = Kirr = Kirr = Ko

Proof. It is easily deduced from Lemma 1 (a) and the definition
of Ko} 1. O

Lemma 9. If uy € qu,r(]Rd) with ¢ > 1,7 > 1,5 > 0, and § < 1< %
then for all q satisfying

Q

we have

tA 5,4
eug € KT oo

and the following imbedding map
Ts d 55=(§=9)%
Hjqr(RY) — B; (RY). (6)
Proof. Before proving this lemma, we need to prove the following lemma.

Lemma 10. Suppose that ug € Lq”'(Rd) with 1 < g < oo and1 <7r < oo.
Then lim ||Xnu0||Lq7T = 0, where n € N, X, (x) =0 forz € {x : |z| <
n—o0

n} N {z: |uo(z)| <n} and X, (z) =1 otherwise.
Proof. With § > 0 being fixed, we have
{z: | Xuo(z)| >0} D {z: |Xpiuo(z)| > 0}, (7)

and
n?jo{x | Xug(z)] > 6 = {7+ Jug(z)] = +o0l. (8)

We prove that
M({z : |ug(x)| = +00}) =0, (9)

with M9 being the Lebesgue measure in R?, assuming on the contrary
M{z : Jug(x)] = +00}) > 0.

We have uj(t) = inf {7 : M ({z : |up(z)| > 7}) < t} = 400 for all ¢
such that 0 < t < M4({x : |up(z)| = +oo}) and then ‘UOHL‘LT = +o00, a
contradiction.

Note that

M ({z + | Xouo(2)] > 6}) = M ({x : [ug(z)| > 0}).
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We prove that
M ({z  Jug(z)] > 6}) < oo, (10)

assuming on the contrary
M ({z : Jug(z)| > 6}) = o0.

We have u(t) > ¢ for all t > 0, from the definition of the Lorentz space, we
get

ool = ([ ) = ([Thor ) =a( [ e = o
a contradiction.

From (7), (8), (9), and (10), we infer that

S =

nh_>1£10/\/ld({$ L Xouo(2)] > 6}) = MU({z : |ug(x)| = +o00}) = 0. (11)

Set
up(t) = inf {7 : M ({z : | X,uo(z)| > 7}) < t}.
We have
un(t) 2 44 (1) (12)
Fixed t > 0. For any € > 0, from (11) it follows that there exists a number
ng = no(t, €) large enough such that

M ({z : | Xuo(z)| > €}) < t,Vn > ng.
From this we deduce that
uy (t) < €,Yn > ny,

therefore
lim u(t) = 0. (13)

n—oo
From (12) and (13), we apply Lebesgue’s monotone convergence theorem to
get

lim HXTLUOHLW = lim (/ (tqun<t>>7‘_> —0. O
0

n—00 n—o00 t

Now we return to prove Lemma 9. We prove that

@
sup tz HGtAU()‘
0<t<oo

Hzci,l ~ to HZ%T (14)
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Set

1 14 1 1
h q q
Applying Proposition 2.4 (¢) in ([31], pp. 20) for convolution in the Lorentz
spaces, we have
= |[e"®A%u ‘ = L 6_% « A*u ’ <
Lal Ol pan (47Tt)d/2 Ol paa ~
_LE ; _a _a
lle 4 [ Auol] o = 7%l Flpalivoll, . S ol
We claim now that
limt 2 0.
t—0 L q,1
From Lemma 10, we have
lim ‘Xnys/\suo ~0, (15)
n—00 LasT

where X, (z) = 0forz € {z: |z| <n}n{z: ‘Asuo(x)‘ <n}and X, 4(z) =1
otherwise. We have

a_d
o 1578 | 2 s
tz‘ ) < (47r)d/2H6 e *(XnSA UO)‘L5,1+
t27% | 12 ”
W e 4t %k ((1 — Xn,s)A UO) Lil‘ (16)

For any € > 0, applying Proposition 2.4 (¢) in ([31], pp. 20) and note that
(15), we have

an)iz H HZ (X“ASUO)‘

Ld:1

< Ciffe+

Xn,sASUOH S CZHXn,SASuO‘

IIW

La»00 Lar 2

for large enough n. Fixed one of such n, applying Proposition 2.4 (a) in ([31],
pp. 20), we conclude that

t%_g _ﬁ A S
(gl (= i)
12 .
< C3t5_%H€_%HL1 (1 o Xn’S)Asu()’ Lal
< Cat | | [[n(1 = )0 =
Csnt ||(1 = X)) || 100 = Co(n)t2 < % (18)
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for small enough ¢t > 0. From the estimates (16), (17), and (18) it follows
that
t%HetAu0|

Hs ~ S 02
a1

Xn,sASUOH + Cﬁ(n)t% < €.
Lar

Finally, the embedding (6) is derived from the inequality (14), Lemma 1, and
Lemma 6.

Remark 2. In the case s =0 and ¢ = r = d, Lemma 11 is a generalization
of Lemma 9 in ([8], p. 196).

In the following lemmas a particular attention will be devoted to study
of the bilinear operator B(u,v)(t) defined by

B(u,v)(t) = /0 e"IAPY . (u(r) @ v(7))dr.

Lemma 11. Let s,q € R be such that

1 1
s>0,qg>1, and§<5§8j;. (19)
Then for all § satisfying
s 1 1 s 1
- <= <mingy =+ —, - 20
i< mm{2+2d’q}’ (20)

the bilinear operator B(u,v)(t) is continuous from ICZ:Z:,T X IC;:Z;T into ICZ:'iT
and the following inequality holds

1(14sd
1B, 0)|yens < C.T20 0 uf et Molliea s (21)
where C'is a positive constant independent of T.
Proof. We have
t
1B, 0)(®)] 5. < / He@*ﬂﬁw.(u(ﬂ ) ® (T, .))‘ L dr=
L1 0 Lt
t
/ Heu,T)APv.As(u(T,.)@v(T,.))‘ | (22)
0 q,

From the properties of the Fourier transform
A

(2P A (u(r, ) @ (7)) (€) =

J

T Ed: (35— 5 i) (At Juntr, ) (€.

2
] €l
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and then

1 Zd: Klvkﬁj(\/t'__T) o (A (wnlr, Jui(,)) ). (23)

where

_— 1 ) )
Kin (&) = <2W>d/2~6_|g‘ <5jk - %)(Zfz)

Applying Proposition 11.1 ([31], p. 107) with |a| = 1 we see that the tensor
K(z) = {Kx;(z)} satisfies

K@) S e (24)
So, we can rewrite the equality (23) in the tensor form
e"TAPY A (u(r,.) @u(r,.)) =
(t_lT)%“K(m) « (A (u(r, ) @ o(r, ). (25)
Set 1 2 s 1 s 1
FTi @ d it (26)

From the inequalities (19) and (20), we can check that the following condi-
tions are satisfied

S|

1 1
l<hr<oocand —+1=—-+
q h

Applying Proposition 2.4 (¢) in ([31], pp. 20) for convolution in the Lorentz
spaces, we have

He(th)A]P)V.AS (u(T, ) ® (T, )) . <
(t_lT>d;1 (=), v ey, e

Applying Lemma 4 we obtain

|

A® (u(r,.) ®@v(r,.))

<|

. A (u(r, ) @ v(r,.)) HLT = [Ju(r,.) @ v(r,.)|

< ||u(T, )‘ U(T,.)|

HZ HE
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Fom the inequalities (24) and (26) we infer that

— (t = 7) 3 || K|y = (= 7)3 TR, (29)

Lhi1

|x(7=)

From the inequalities (27), (28), and (29) we deduce that

He(t_T)AIPV.AS (u(r,.) @ v(r, ))‘ . <
(t—’T)%i%i%”u(T,.)} s U(T,.)| i (30)

From the estimates (22) and (30), and note that from the inequalities (19)
and (20), we can check that § — % —1>-land a = d(% — %) < 1, this
gives the desired result

t
B0 )0, 5/0(t_7)2—§q~—é||u(7,.)|Hg. o(r, ) g7 <
t ) N N
/ (t — 7')5_2%_%T’a sup anu(n, )} s+ SUP 712 Hv(n, )‘ AT =
0 0<n<t a 0<n<t q

sup 02 ||u(n,.)|| ;.- sup n2||v(n, )|,
0<n<t 7 0<n<t q
t—%t%(l-i—s—%)

0

sup 02 |lu(n, )| 4o - sup n%|jv(n,.)| (31)
<n<t L9 0<n<t

Let us now check the validity of the condition (4) for the bilinear term
B(u,v)(t). Indeed, we have

ligétaHB(u,v)(m e =0
whenever
g e, = g ot =0
The estimate (21) is now deduced from the inequality (31). O

Remark 3. In the case s = 0 and ¢ = d, Lemma 9 is a generalization of
Lemma 10 in ([8], p. 196).

Lemma 12. Let s,q € R be such that

1 1
s>0,9g>1, and§<5§3j;

. (32)

Then for all ¢ satisfying
1,1 s 1 1 s 1
—|-+= - ing -+ —,— 33
2<q+d><q~<mm{2+2d’q}’ (33)
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the bilinear operator B(u,v)(t) is continuous from K% x K22 into K24 1
and the following inequality holds

1B v)lles < O uf o ollea (34)
where C'is a positive constant independent of T.
Proof. Set 1 9 s 1 1 9 4
. E—E,E:1+5—5+E. (35)
From the inequalities (32) and (33)

33), we can check that h and r satisfy

1 1 1
l<hr<ocand —4+1=—+ —.
,

q h

From the equality (25), applying Proposition 2.4 (¢) in ([31], pp. 20), we
obtain

He(t’T)AIP’V.AS (u(r,.) @ (7, .))‘ S
1 ) .
K( )‘ AS< N )‘ . 36
e (Sl 0 IS CLRETCE)] S
Applying Lemma 4, we have
ISCCRETCN)] I EYCCP TS|
S lfutr Mg el s (37)
From the inequalities (24) and (35) it follows that
- B o (=)
(=), = = DN = = mEEe oy
From the estimates (36), (37), (38) we deduce that
d_dy s 1
He(t_T)AIP’V.(u(T, )@ (T, ))‘ . < (t—r)2aat22 ||u(7', )} e l|o(r, )| i
La,1 q q

d

(t—7)°F573072 |u(r, )|

U(T,.)|

s s
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From the inequalities (32) and (33), we can check that o + 5 — % —3>-1
and o = d(% — %) < 1, this gives the desired result

K s_d_1
HB(U’U)(t)| Hz%l Sl(t_T)a+2 2 2”“(7—")‘ Hg U(T7')| H;de
t
o ats_4_1 _ Y . o ‘ _
/O(t T)** 272y Oiggtnz"u(n,.)}Hg.oiggtnz“v(n,.)‘Hng

¢

s_a_ 2
Hs/(t_7_>a+2 20" 27 dT ~
7Jo

P [o(n,.)|

sup 02 ||u(n,.)|| ;.- sup 02 ||v(n, )|
0<n<t 7 0<n<t

t%(1+sf§)

sSup 77%”“(777)‘ Hs. .® (39)
0<n<t L399

Let us now check the validity of the condition (5) for the bilinear term
B(u,v)(t). Indeed, we have

1%||B(u,v)(t)} i = 0
whenever
i, )5, = it o), =
The estimate (34) is now deduced from the inequality (39). O

Combining Theorem 1 with Lemmas 7, 9, 11, 12, we obtain the following
existence result.

Theorem 2. Let s,q, and r € R be such that

1 1
520,q>1,7’21,and§<5§82. (40)
(a) For all G satisfying
1/1 s 1 1 s 1
(2« cmind 24 22 41
2<q+d><§<mm{2+2d’q}’ (41)

there exists a positive constant 0s4g4 such that for all T > 0 and for all
ug € Hi,r(RY) with div(ug) = 0 satisfying

T2+s= sup t <4

2G7)|| et
0<t<T

UO‘ H§ $,q,4,d» (42)

NSE has a unique mild solution u € IC;:?T NL>®([0,T); Hy,.). In particular,
for arbitrary ug € Hj,, with div(ug) = 0, there exists T(ug) small enough
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such that the inequality (42) holds.
(b) If1<q<d, and s = %l — 1 then for any § be such that

1 1<1< {1+1 1 1}
B min S
qg 2d 2 2q 2dql’

< Og4d

—1,00

there exists a positive constant o444 such that if HUOH d
BJ
q

and T = oo then the inequality (42) holds.

Proof. From Lemmas 11 and 8 , the bilinear operator B(u,v)(t) is con-
tinuous from IC;:(H x K4 into K72 1 and we have the inequality

«a o]
ket A

where 057%@7,1 is a positive constant independent of 7. From Theorem 1 and
the above inequality, we deduce following: for any ug € H3,.(R?) such that

||Buv{

54

1 1_‘_5_1)
wi < Cygqadl? a Hu}
’Cq:({,T — $,4,9,

1 d d 1
div(ug) = 0, 72979 sup t26 e ugll e < ,
(o) 0<t<T ” Ol 13 ™ A0 44
NSE has a mild solution u on the interval (0,7") so that
uwe k. (43)

Lemma 12 and the relation (43) imply that
Blu,u) € K € Kyt € 1([0,T); H5r).

On the other hand, from Lemma 7, we have e¢'®uy € L™ ([0, T}, qu,r).

Therefore .
u = e®uy — Bu,u) € LOO([O,T]; qum).

From Lemma 9 and Lemma 11, we deduce that u € ICZ:‘;T.

From the definition of ICZ:;T and Lemma 9, we deduce that the left-hand
side of the inequality (42) converges to 0 when 7' tends to 0. Therefore
the inequality (42) holds for arbitrary uy € Hi,.(R%) when T (uo) is small
enough.

(b) From Lemma 6, the two quantities

||u0H 4, and sup t23 He uOH 4,

Bi 0<t< il

are equivalent, then there exists a positive constant o,44 such that if

HugH 4y <0454 and T = oo then the inequality (42) holds. H
Bq £ bh- 5l

q

17



Remark 4. In the case when the initial data belong to the critical Sobolev-
Lorentz spaces HL%(,_,TI (RY), (1 < ¢ < d,r > 1), from Theorem 2 (b), we get the
existence of global mild solutions in the spaces L>(]0, 00); ngj (R?)) when
the norm of the initial value in the Besov spaces Bq% _1700(Rd) is small enough.
Note that a function in H L%(: (R?%) can be arbitrarily large in the H L%QTTI(Rd)

L4 oo
norm but small in the B} " (R?) norm. This is deduced from the following
imbedding maps (see Lemma 9)

100 11 1 1
quTRd%Bq Rd,(———<j<—).
o () @) (- g<i<s

This result is stronger than that of Cannone. In particular, when ¢ = r =
d,s = 0, we get back the Cannone theorem (Theorem 1.1 in [5]).

Next, we consider the super-critical indexes s > % —1.

Theorem 3. Let

1 1
820,q>1,7“21,andf<—<$+ .
d q d

Then for any ¢ be such that
1(1+3)<1< {1 sl}
2\q d q wmin 2d’

there exists a positive constant 0454 such that for all T > 0 and for all
ug € H3 o (RY) with div(ug) = 0 satisfying

T D]

B (4-9).00 < 557%6,057

q
q

NSE has a unique mild solution u € /C;:?T N L>=([0,T]; qu,r).

Proof. Applying Lemma 6, the two quantities Hu0|

(d_d and
I i

(1
d(l_
2 (g )”em

sup t u0| - are equivalent. Thus
0<t<oo q
d(1_1y
sup (a3 ¢! Pl S [Juol JERTEri.
0<t<T LI

‘1

the theorem is proved by applying the above inequality and Theorem 2. [J
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Remark 5. In the case when the initial data belong to the Sobolev-Lorentz
spaces H{,.(RY), (¢ > 1,7 > 1,5 > 0, and g —1<s< %l)? we obtain the

existence of mild solutions in the spaces L>([0,T]; Hf,.(R%)) for any T > 0
d_d

(R?) is

small enough. Note that a function in H3,,(R%) can be arbitrarily large in

. L s—(2—9).00 N
the Hj,.(R?) norm but small in B, 69 (R?) norm. This is deduced from
the following imbedding maps (see Lemma 9)

when the norm of the initial value in the Besov spaces B;i(rg)’oo

" d . s—(%—% 00 4 S 1 1
Applying Theorem 3 for ¢ > d,r = g and s = 0, we get the following
proposition which is stronger than the result of Cannone and Meyer ([4], [7]).
In particular, we obtained a result that is stronger than that of Cannone and
Meyer but under a much weaker condition on the initial data.

Proposition 1. Let ¢ > d. Then for any ¢ be such that
q<q<2q,

there exists a positive constant 0444 Such that for all T > 0 and for all
ug € LI(RY) with div(ug) = 0 satisfying

T%(l_g)HuoH 4 d oo < 0gg.ds (44)
qu q’
NSE has a unique mild solution u € ICS:?T N L>([0,T]; £7).
Ldod o
Remark 6. If in (44) we replace the B/ *° norm by the L7 norm then we

get the assumption made in ([4], [7]). We show that the condition (44) is
weaker than the condition in ([4], [7]). In Remark 5 we have showed that

d_d

LURY) — BI *(RY), (G > ¢ > d),

d
but these two spaces are different. Indeed, we have |x‘75 ¢ LY(R?). On the
d

La Ldod
other hand by using Lemma 6, we can easily prove that |x| T €B; (R%)
for all ¢ > ¢.

Applying Theorem 3 for ¢ = r = 2,%’ —1l<s< g, we get the following
proposition which is stronger than the results of Chemin in [10] and Cannone
in [4]. In particular, we obtained the result that is stronger than that of

Chemin and Cannone but under a much weaker condition on the initial data.
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Proposition 2. Let %l —1l<s< g. Then for any q be such that

1 <1 . 3) - 1 < 1

2\2 d qg 2
there exists a positive constant dsgq such that for all T > 0 and for all
ug € H*(R?) with div(ug) = 0 satisfying

T304 g

I I < 0s.4.d, (45)

q

NSE has a unique mild solution u € /C 10 N L([0,T7; H?).

_(d_d :
Remark 7. If in (45) we replace the B~ 9% horm by the H*(R%) norm
then we get the assumption made in ([ 0], [4]). We show that the condition

]
(45) is weaker than the condition in ([10], [4]). In Remark 5 we showed that

. s (4o o 1 /1 1 1
e (RY) < 70 ,§(§+§)<5<§,

but that these two spaces are different. Indeed, we have A=5|.|72 ¢ H*(R%),
on the other hand by wusing Lemma 6, we easily prove that

57(%7g)700 d ~
i (R?) for all ¢ > 2.

A=s||"% € B,
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