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Abstract. Positiveness of scalar curvature and Ricci curvature
requires vanishing the obstruction θ(M) which is computed in some
KK-theory of C*-algebras index as a pairing of spin Dirac opera-
tor and Mishchenko bundle associated to the manifold. U. Pennig
had proved that the obstruction θ(M) does not vanish if M is
an enlargeable closed oriented smooth manifold of even dimension
larger than or equals to 3, the universal cover of which admits
a spin structure. Using the equivariant cohomology of holonomy
groupoids we prove the theorem in the general case without restric-
tion of evenness of dimension. Our groupoid method is different
from the method used by B. Hanke and T. Schick in reduction to
the case of even dimension.
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1. Introduction

The problem of existence of positive scalar curvature on a smooth
manifold M is reduced to computation of the obstruction θ(M), see
[R]. It is evaluated in the KO-theory KOn(C∗

R(π1(M))) of group C*-
algebras of the fundamental group π1(M). The Gromov, Lawson and
Rosenberg conjecture states that this invariant is adecquate to exis-
tence of positive scalar curvature metric on M , if dimM ≥ 5. The
conjecture was proven by Stolz [S] for the case when M , or at least his
universal covering M̃ is a spin manifold. He constructed θ(M) to take
values in the KO group KO(C∗

R(π̂ → π1(M)) of the group C*-algebra
of the twisted fundamental group π̂ as the central two-fold extension
of the fundamental group π1(M). The element θ(M) can be expressed
as the pairing

θ(M) = ind(Dν
+) = [νS]⊗C(M,Cl(M)) [DS]

of the twisted Dirac class [DS] from the K-homologyKK(C(M,Cl(M)),C)
and the twisted Mishchenko class [νS] from the K-cohomologyKK(C, C(M,Cl(M)⊗
C∗(π̂ → π(M))). He restricted to the case where the π1(M) modules
E are of finite dimension. We remark that the construction of the cup
product of pairing between the Dirac operator for Clifford module and
the Mishchenko bundle is also generalized for the infinite dimensional
finitely generated ones.

Our approach is to consider the two-fold covering

0 −−−→ Z/2Z −−−→ Ĝ −−−→ G −−−→ 1

of the holonomy groupoid G→M ×M which is constructed following
the commutative diagram

1 1y y
0 −−−→ Z/2Z Z/2Z −−−→ 0y y y
1 −−−→ π̂ −−−→ Ĝ

s,t−−−→ M ×M −−−→ pty y ∥∥∥
1 −−−→ π1(M) −−−→ G

s,t−−−→ M ×M −−−→ pty y y
1 1 −−−→ 0

Let us describe in more details the situation. Let M̃ be the universal
cover of M . The groupoid of holonomy G is consisting of all homotopy
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classes of free-end curves on M

G =

{
(x, y, [γ])

∣∣∣∣x, y ∈M, [γ] =
homotopy class of curve γ;

s(γ) = γ(0) = x, r(γ) = γ(1) = y

}
The source- and target- maps s, t : P → M provide the corresponding
groupoid structure on P . The product of two free-end curves γ1, γ2 can
be defined if t(γ1) = y1 = x2 = s(γ2), i.e.

(x1, y1, [γ]) ◦ (x2, y2, [γ2]) = (x1, y2, [γ1 ◦ γ2]).
The C*-algebra C∗(G) is defined in a standard way: convolution of two
absolutely integrable function on P is defined as

(f ∗ g)(γ) =

∫
γ1◦γ2=γ

f(γ1)g(γ2)dγ1.

The C*-algebra C∗(G) is defined as the completion of the Banach alge-
bra L1(G) with respect to dγ over the cover M̃ of M . From the results
of theory of groupoid.

Theorem 1.1 (Main Theorem). Every closed smooth manifold the uni-
versal covering of which has a spin structure and which is enlargeable
has the nonvanishing theta invariant, θ(M) 6= 0.

Remark 1.2. We show that the assumptions of even dimension in the
work is removed, because we pass to the equivariant theory of holonomy
groupoid G

s,t−−−→ M ×M .

Remark 1.3. Combine our result with the well-known result of Gromov
Lawson: “every simply connected closed non-spin manifold of dimen-
sion n ≥ 5 admits a positive scalar curvature meric” one deduces that
for the enlargeable simply connected closed manifolds of dimension
n ≥ 5 the spin-structure is decisable condition for the existence of pos-
itive scalar curvature metric: those manifolds admit a spin-structure if
and only iff the obstruction to existence of a PSC metric vanishes.

The paper is organised as follows: In §2 we introduce some prepara-
tion and in particular introduce the notion of bundle gerbe, Mishchenko
bundle gerbe and Mischenko bundle. Section 3 is devoted to proof of
the main theorem. In §4 we related the problem with the Lie algebroid
cohomology.

Remark 1.4. In the paper ([HS], Proof of Thm. 4.2) B. Hanke and T.
Schick reduced the general case to the case that M has even dimen-
sion, by using the diagram composing of homotopy classification of K-
homology and the Baum-Connes assembley map from the K-homology
of classifying spaces to the corresponding K-homology of C*-algebras
of the fundamental groups, and their corresponding images underer
multiplication with the fundamental class [S1]. Our method of passing
to groupoids, is quite different from those high developed techniques.
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2. Preliminaries

We will use the same notation as in the paper of U. Pennig [P]. Let
us remind and modify some notions from that work for our usage.

2.1. Bundle Gerbes.

Definition 2.1 (bundle gerbe). Consider a surjective submersion Y →
M and a real line bundle L → Y [2] = Y ×M Y and its pullback pr∗ijL

over Y [2] with respect to the projections prij : Y [3] → Y [2] on factors. It
is called a Z/2Z-bundle gerbe if the following diagram is commutative

(pr∗12L⊗ pr∗23L)⊗ pr∗34L . pr∗12L⊗ (pr∗23L⊗ pr∗34L)

µ⊗id
y yid⊗µ

pr∗13L⊗ pr∗34L −−−→
µ

pr∗14L ←−−−
µ

pr∗12L⊗ pr∗24L

The bundle gerbe δQ = pr1Q⊗pr2Q→ Y [2] which is the pullback from
a line bundle Q → Y under projections pri : Y [2] → Y is called trivial
bundle gerbe.

Let us remind from [P] that if M is a closed smooth oriented manifold
of dimension dim(M) ≥ 3, then the oriented frame bundle P = PSO is
a principal bundle, we have the short exact sequence of spaces

SO(n) ↪→ PSO(M) �M

therefore we have a part of long exact sequence

π2(M) −−−→ π1(SO(n)) −−−→ π1(PSO(M)) −−−→ π1(M) −−−→ 1,

then for the universal covering

SO(n) ↪→ PSO(M̃) � M̃

we have a similar exact sequence

π2(M̃) −−−→ π1(SO(n)) −−−→ π1(PSO(M̃)) −−−→ π1(M̃) = 1

We suppose that the universal covering M̃ admids a spin structure.
If the map f : S2 → M̃ is a representative of the second homotopy
group π2(M̃) then the map π2(M̃) → π1(SO(n)) sends it to a map
ϕf : S1 → SO(n) obtained from the pullback f ∗PSO(M̃) and it must be

factorized through a map S1 → Spin(n) which is nullhomotopic and
the same is also the map π2(M) → π1(SO(n)). One has therefore the
short exact sequence

1 −−−→ Z/2Z −−−→ π1(PSO) −−−→ π1(M) −−−→ 1

and therefore we also have an exact sequence

1 −−−→ Z/2Z −−−→ π1(Ĝ) −−−→ π1(M ×M) −−−→ 1.

Following U. Pennig [P] we have
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Definition 2.2. The lifting bundle gerve LG → Ĝ[2] associated to the
central extension Ĝ→ M̃ × M̃ is called the Mishchenko bundle gerbe.

2.2. Construction of θ-Invariance.

Definition 2.3. The fibered product νr = Ĝ×M×MC
∗
r (π̂1(M)) is called

twisted Mishchenko bundle.

Definition 2.4. For any C∗(π̂)-module E, the index of the Dirac op-
erator DE representing a class [DE] ∈ KK(C, C(M,Cl(M))⊗ C∗(π̂))

θE(M) = ind(DE
+) = [νE]⊗C(M,Cl(M)) [DS]

is called the θ-invariant of M . In the case of regular representation or
E = C∗(π̂) one denote simply [νS] and θ(M)

2.3. Equivariant KK-Theory of Groupoids. We will show in the
next section that there is a natural isomorphism between equivariant
KK-groups of holonomy groupoid and the corresponding KK-group for
M , and the same for cyclic homologies.

Remark 2.5. It reduces the theory of cohomology of the manifold M
to the equivariant cohomology of holonomy groupoids. Later we will
reduce the equivariant cohomology theory of holonomy groupoids to
the cohomology of correspoding Lie algebroids, which is computed in
more convenient situation of linear algebra.

3. Proof of the Main Theorem

The idea is to apply the main theorem of U. Pennig [P]. In order
to do so we do check all the condition to apply such a result to the
two-fold covering of the holonomy groupoid.

Lemma 3.1. There is a natural two-fold covering Ĝ of the groupoid of
holonomy G

s,t−−−→ M ×M . .

Proof. The two-fold covering Ĝ

0 −−−→ Z/2Z −−−→ Ĝ −−−→ G −−−→ 1

of the holonomy groupoid G
s,t−−−→ M ×M which is constructed fol-

lowing the commutative diagram
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1 1y y
0 −−−→ Z/2Z Z/2Z −−−→ 0y y y
1 −−−→ π̂ −−−→ Ĝ

r×s−−−→ M ×M −−−→ pty y ∥∥∥
1 −−−→ π1(M) −−−→ G

r×s−−−→ M ×M −−−→ pty y y
1 1 −−−→ 0

�

Lemma 3.2. If L is a bundle gerbe over M̃ then there is a bundle
gerbe LG over Ĝ.

Proof. Indeed, if we have a bundle gerbe L → M̃ then L × L is
a bundle gerbe over M̃ × M̃ and therefore we may construct LG =
(r × s)∗(L̃× M̃) as the corresponding pullback. �

The following Lemma is trivial.

Lemma 3.3. If dimM ≥ 2 then Ĝ is a manifold of even dimension
larger than 3.

Proof. Locally Ĝ is homeomorphic to M ×M . �

Lemma 3.4. if the manifold M is enlargeable, then G̃ is also enlarge-
able.

Proof. If for any positive ε there exists an ε-contraction map
(M, g)→ (Sn, g0), then there exists also an ε-contraction map (Ĝ, g)→
(S2n, g0) because locally Ĝ and M̂ × M̃ are diffeomorphic to each-
another and the same is locally, for Sn × Sn and S2n. �

Lemma 3.5. If the universal covering M̃ of the manifold M has a spin
structure then Ĝ has also a spin structure.

Proof. If there is a spin structure on M̃ then the same one exists
on M̃ × M̃ and therefore on Ĝ. �

Let us denote by P the principal bundle of frames over M and P̃
its two-fold covering. The next lemma reduces the computation of the
K-group of M with spin structure on M̃ to the equivariant one on the
holonomy groupoid.
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Lemma 3.6. The equivariant K-group KK0
Ĝ

(C∗(Ĝ), C(G,Cl(G)) ∼=
KK0

π1(M)(C(P̃ ), C(P,Cl(P )) is isomorphic to the K-group

KK0(C(M̃), C(M,Cl(M)).

Proof. When we fix a connection on the holonomy groupoid we
have the principal bundle P̂ = P̂SO. The first isomorphism is natural.
The second isomorphism is also obtained from the natural diffeomor-
phism P̂ / SO(M) ∼= M from the exact sequence of spaces

1 −−−→ SO(n) −−−→ P̂SO(M) −−−→ M.

�

Lemma 3.7. The Dirac operator DE
G on the holonomy groupoid G can

be decomposed as the sum of two copies of the corresponding Dirac
operators DE

M on M × {pt} and {pt} ×M
DE
G = DE

M ⊗ Id + Id⊗DE
M .

Proof. Locally G is homeomorphic to M × M . From the local
definition of Dirac operator we have: if the index of DE

M vanishes, so
does the index of DE

G. But the index of the Dirac operator class [DE
G]

does not vanish, following [P]. �

Lemma 3.8. The equivariant cylic cohomology of the holonomy groupoid
is isomorphic with the cyclic cohomology of Lie algebroid.

Proof. There is a natural isomorphism of equivariant differential
forms and equivariant tangent vector fields. Therefore, the natural iso-
morphism between equivariant cohomology on the holonomy groupoid
and the cohomology of Lie algebroids. �

4. Lie algebroid cohomology

The computation of equivariant cyclic cohomology of the groupoid
of holonomy is reduced to the same one for Lie algebroids of tangent
fields. In many case it should be easear than the original ones.

It is the Lie algebroid Vect(M) of equivariant free-end tangent to
curve vector fields. For two free-end tangent vector fields, their Lie
bracket can be defined when the sources and rivals are coinc̈ıded re-
spectively. Trivial verification show that the Lie brackets, when they
are defined satisfied the axioms of Lie theory of vector field

We do compute it for the cohomology.

Proposition 4.1. The equivariant groupoid cyclic cohomology HC∗
Ĝ

(Ĝ;R)

is isomorphic to the cyclic cohomology HC∗(g;R) of Lie algebroid g =
Vect(M) of invariant vector fields.

Proof. When we fix a trivialization of Ĝ we come to the oriented
frame bundle P̂ . For P̂ and corresponding p as Lie subgroupoid and
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Lie subalgebroid, we have natural isomorphism of equivariant cyclic
theories. �
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