
The existence and space-time decay rates of strong solutions to
Navier-Stokes Equations in weighed L∞(|x|γdx) ∩ L∞(|x|βdx) spaces

D. Q. Khai, N. M. Tri

Institute of Mathematics, VAST
18 Hoang Quoc Viet, 10307 Cau Giay, Hanoi, Vietnam

Abstract: In this paper, we prove some results on the existence and
space-time decay rates of global strong solutions of the Cauchy problem
for the Navier-Stokes equations in weighed L∞(Rd, |x|γdx) ∩ L∞(Rd, |x|βdx)
spaces.

§1. Introduction

This paper studies the Cauchy problem of the incompressible Navier-
Stokes equations (NSE) in the whole space Rd for d ≥ 2,

∂tu = ∆u−∇.(u⊗ u)−∇p,
∇.u = 0,
u(0, x) = u0,

which is a condensed writing for
1 ≤ k ≤ d, ∂tuk = ∆uk −

∑d
l=1 ∂l(uluk)− ∂kp,∑d

l=1 ∂lul = 0,
1 ≤ k ≤ d, uk(0, x) = u0k.

The unknown quantities are the velocity u(t, x) = (u1(t, x), . . . , ud(t, x)) of
the fluid element at time t and position x and the pressure p(t, x).
There is an extensive literature on the existence and decay rate of strong so-
lutions of the Cauchy problem for NSE. Maria E. Schonbek [1] established the
decay of the homogeneous Hm norms for solutions to NSE in two dimensions.
She showed that if u is a solution to NSE with an arbitrary u0 ∈ Hm∩L1(R2)
with m ≥ 3 then

‖Dαu‖2
2 ≤ Cα(t+1)−(|α|+1) and ‖Dαu‖∞ ≤ Cα(t+1)−(|α|+ 1

2
) for all t ≥ 1, α ≤ m.

2Keywords: Navier-Stokes equations; space-time decay rate
3e-mail address: Khaitoantin@gmail.com, Triminh@math.ac.vn
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Zhi-Min Chen [2] showed that if u0 ∈ L1(Rd) ∩ Lp(Rd), (d ≤ p < ∞) and
‖u0‖1 + ‖u0‖p is small enough then there is a unique solution
u ∈ BC([0,∞);L1 ∩ Lp), which satisfies decay property

sup
t>0

t
d
2

(
‖u‖∞ + t

1
2‖Du‖∞ + t

1
2‖D2u‖∞

)
<∞.

Kato [3] studied strong solutions in the spaces Lq(Rd) by applying the Lq−Lp
estimates for the semigroup generated by the Stokes operator. He showed
that there is T > 0 and a unique solution u, which satisfies

t
1
2

(1− d
q

)u ∈ BC([0, T );Lq), for d ≤ q ≤ ∞,

t
1
2

(2− d
q

)∇u ∈ BC([0, T );Lq), for d ≤ q ≤ ∞,

as u0 ∈ Ld(Rd). He showed that T =∞ if
∥∥u0

∥∥
Ld(Rd)

is small enough.

In 2002, Cheng He and Ling Hsiao [4] extended the results of Kato, they
estimated on decay rates of higher order derivatives about time variable and
space variables for the strong solution to NSE with initial data in Ld(Rd).
They showed that if

∥∥u0

∥∥
Ld(Rd)

is small enough then there is a unique solution

u, which satisfies

t
1
2

(1+|α|+2α0− dq )Dα
xD

α0
t u ∈ BC([0,∞);Lq), for q ≥ d

t
1
2

(2+|α|− d
q

)Dα
xp ∈ BC([0,∞);Lq), for q ≥ d,

where α = (α1, α2, ..., αd), |α| = α1 + α2 + ... + αd and α0 ∈ N. Dα
x denotes

∂
|α|
x = ∂|α|/(∂α1

x1
∂α2
x2
...∂αdxd ), ∂α0

t = ∂α0/∂tα0 .
In 2005, Okihiro Sawada [5] obtained the decay rate of solution to NSE with

initial data in Ḣ
d
2
−1(Rd). He showed that every mild solution in the class

u ∈ BC([0, T ); Ḣ
d
2
−1) and t

1
2

( d
2
− d
p

)u ∈ BC([0, T ); Ḣ
d
2
−1

q ),

for some T > 0 and p ∈ (2,∞] satisfies

‖u(t)‖
Ḣ
d
2−1+α
q

≤ K1(K2α̃)α̃t−
α̃
2 for α > 0, α̃ := α +

d

2
− d

q

where constants K1 and K2 depend only on d, p,M1, and M2 with

M1 = sup
0<t<T

‖u(t)‖
Ḣ
d
2−1 and M2 = sup

0<t<T
t
d
2

( 1
2
− 1
p

)‖u(t)‖
Ḣ
d
2−1
p

.

The time-decay properties are therefore well understood. However, there are
few results on the spatial decay properties. Farwing and Sohr [7] showed
a class of weighted |x|α weak solutions with second derivatives in space
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variables and one order derivatives in time variable in Ls([0,+∞);Lq) for
1 < q < 3 = 2, 1 < s < 2 and 0 ≤ 3/q + 2/s − 4 ≤ α < min{1/2, 3 − 3/q}
in the case of exterior domains. In [10], they also showed that there exists a
class of weak solutions satisfying

‖|x|
α
2 u‖2

2 +

∫ t

0

‖|x|
α
2∇u‖2

2dt ≤


C(u0, f, α) if 0 ≤ α < 1

2
,

C(u0, f, α
′, α)t

α′
2
−1/4 if 1

2
≤ α < α′ < 1,

C(u0, f)(t1/4 + t1/2) if α = 1.

While in [11], a class of weak solutions

(1 + |x|2)1/4u ∈ L∞([0,+∞);Lp(R3))

was constructed for 6/5 ≤ p < 3/2, which satisfies

‖|x|
1
2u‖2

2 +

∫ t

0

‖|x|
1
2∇u‖2

2dt ≤ C(u0, f)(t1/4 + t1/2).

In 2002 Takahashi [9] studied the existence and space-time decay rates of
global strong solutions of the Cauchy problem for the Navier-Stokes equations
in the weighted L∞(Rd, (1 + |x|)βdx) spaces. Takahashi showed that if u0

satisfies
|et∆u0(x)| < δ(1 + |x|)−β, |et∆u0(x)| < δ(1 + t)−

β
2 , (1)

with sufficiently small δ, then NSE has a global mild solution u such that

|u(x, t)| ≤ C(1 + |x|)−β, |u(x, t)| ≤ (1 + t)−
β
2 ,

where β is restricted by the condition 1 ≤ β ≤ d+ 1.
Takahashi also showed that if

u0(x) ≤ c(1 + |x|)−β for some 0 < β ≤ d,

then
et∆u0(x) ≤ c(1 + |x|)−β, et∆u0(x) ≤ c(1 + t)

−β
2 .

In this paper, we discuss the existence and space-time decay rates of global
strong solutions of the Cauchy problem for the Navier-Stokes equations in the
weighted L∞(Rd, |x|γdx)∩L∞(Rd, |x|βdx) spaces. The spaces L∞(Rd, |x|γdx)∩
L∞(Rd, |x|βdx) are more general than the spaces L∞(Rd, (1 + |x|)βdx).
In particular, L∞(Rd, |x|γdx)∩L∞(Rd, |x|βdx) = L∞(Rd, (1 + |x|)βdx) when
γ = 0, and so this result improves the previous one.
The content of this paper is as follows: in Section 2, we state our main the-
orem after introducing some notations. In Section 3, we first prove the some
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estimates concerning the heat semigroup with the Helmholtz-Leray projec-
tion and some auxiliary lemmas. Finally, in Section 4, we will give the proof
of the main theorems.

§2. Statement of the results

Now, for T > 0, we say that u is a mild solution of NSE on [0, T ] cor-
responding to a divergence-free initial datum u0 when u solves the integral
equation

u = et∆u0 −
∫ t

0

e(t−τ)∆P∇.
(
u(τ, .)⊗ u(τ, .)

)
dτ.

Above we have used the following notation: for a tensor F = (Fij) we define

the vector∇.F by (∇.F )i =
∑d

j=1 ∂jFij and for two vectors u and v, we define
their tensor product (u⊗v)ij = uivj. The operator P is the Helmholtz-Leray
projection onto the divergence-free fields

(Pf)j = fj +
∑

1≤k≤d

RjRkfk,

where Rj is the Riesz transforms defined as

Rj =
∂j√
−∆

i.e. R̂jg(ξ) =
iξj
|ξ|
ĝ(ξ).

The heat kernel et∆ is defined as

et∆u(x) = ((4πt)−d/2e−|.|
2/4t ∗ u)(x).

For a space of functions defined on Rd, say E(Rd), we will abbreviate it as
E. We define the space L∞(|x|βdx) := L∞(Rd, |x|βdx) which is made up by
the measurable functions u such that

‖u‖L∞(|x|αdx) := esssup
x∈Rd

|x|α|u(x)| < +∞.

Now we can state our result

Theorem 1. Let 0 ≤ γ ≤ 1 ≤ β < d be fixed, then for all γ̃, α, and β̃
satisfying

0 ≤ γ̃ ≤ γ, β̃ ≥ 0, β − 2 < β̃ ≤ β, 0 < α < 1, and β − β̃ − 1 < α < d− β̃,

there exists a positive constant δγ,γ̃,α,β,β̃,d such that for all u0 ∈ L∞(|x|γdx)∩
L∞(|x|βdx) with div(u0) = 0 satisfying

sup
x∈Rd,t>0

(|x|γ̃t
1
2

(γ−γ̃) + |x|αt
1
2

(1−α) + |x|β̃t
1
2

(β−β̃))|et∆u0|) ≤ δγ,γ̃,α,β,β̃,d, (2)
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NSE has a global mild solution u on (0,∞)× Rd such that

sup
x∈Rd,t>0

(|x|γ + t
γ
2 + |x|β + t

β
2 )|u(x, t)|) < +∞. (3)

Remark 1. Our result improves the previous results for L∞(Rd, (1+|x|)βdx).
This space, studied in [9], is a particular case of the space L∞(|x|γdx) ∩
L∞(|x|βdx) when γ = 0. Furthermore, we prove that Takahashi’s result
holds true under a much weaker condition on the initial data. Indeed, from
Lemma 4, it is easily seen that the condition (2) of Theorem 1 is weaker than
the condition (1).

Theorem 2. Assume that d ≥ 1, and 0 ≤ γ ≤ 1 ≤ β < d. Then for all
f ∈ L∞(|x|γdx) ∩ L∞(|x|βdx) we have

sup
x∈Rd,t>0

(|x|γ̃t
1
2

(γ−γ̃) + |x|αt
1
2

(1−α) + |x|β̃t
1
2

(β−β̃))|et∆f |) ≤

C(‖f‖L∞(|x|γdx) + ‖f‖L∞(|x|βdx))

for 0 ≤ γ̃ ≤ γ, 0 ≤ α ≤ 1 and 0 ≤ β̃ ≤ β.

Remark 2. We invoke Theorem 2 to deduce that if u0 ∈ L∞(|x|γdx) ∩
L∞(|x|βdx) and ‖u0‖L∞(|x|γdx) + ‖u0‖L∞(|x|βdx) is small enough then the
condition (2) of Theorem 1 is valid.

§3. Some auxiliary results

In this section we establish some auxiliary lemmas. We first prove a
version of Young’s inequality type for convolutions in L∞(|x|βdx) spaces.

Lemma 1. Assume that d ≥ 1, 0 < α < d, 0 < β < d and α + β > d. Then
for all f ∈ L∞(|x|αdx) and for all g ∈ L∞(|x|βdx) we have

‖f ∗ g‖L∞(|x|α+β−ddx) ≤ C‖f‖L∞(|x|αdx)‖g‖L∞(|x|βdx).

Proof. Since f ∗g is bilinear on L∞(|x|αdx)×L∞(|x|βdx), we may assume
‖f‖L∞(|x|αdx) = ‖g‖L∞(|x|βdx) = 1. We have

f ∗ g(x) =

∫
Rd
f(x− y)g(y)dy =

∫
|y|< |x|

2

+

∫
{|y|> |x|

2
}∩{|y|< 3|x|

2
}

+

∫
|y|> 3|x|

2

= I1 + I2 + I3.
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From
|f(x)| ≤ |x|−α, and |g(x)| ≤ |x|−β,

we get

|I1| ≤
∫
|y|< |x|

2

dy

|x− y|α|y|β
.

1

|x|α

∫
|y|< |x|

2

dy

|y|β
' 1

|x|α+β−d .

|I2| ≤
∫
{|y|> |x|

2
}∩{|y|< 3|x|

2
}

dy

|x− y|α|y|β
.

1

|x|β

∫
|y|< 5|x|

2

dy

|y|α
' 1

|x|α+β−d .

|I3| ≤
∫
|y|> 3|x|

2

dy

|x− y|α|y|β
.
∫
|y|> 3|x|

2

dy

|y|α|y|β
' 1

|x|α+β−d .

We thus obtain

|f ∗ g(x)| . 1

|x|α+β−d .

The proof Lemma 1 is complete.
We now deduce the L∞(|x|γdx)−L∞(|x|βdx) estimate for the heat semigroup.

Lemma 2. Assume that d ≥ 1 and 0 ≤ γ ≤ β < d. Then for all f ∈
L∞(|x|βdx) we have∥∥et∆f∥∥

L∞(|x|γdx)
≤ Ct−

1
2

(β−γ)‖f‖L∞(|x|βdx), for t > 0. (4)

Proof. We have

et∆f(x) =

∫
Rd

1

td/2
E(
x− y√

t
)f(y)dy, where E(x) = (4π)−

d
2 e−

|x|2
4 .

Recall the simate

t−
d
2 e−

|x|2
4t ≤ C|x|−αt

1
2

(d−α), for 0 ≤ α ≤ d. (5)

We first consider the case 0 < γ < β. From (5) and Lemma 1, it follows that

|et∆f(x)| .
∫
Rd

‖f‖L∞(|x|βdx)

t
1
2

(β−γ)|x− y|γ+d−β|y|β
dy . t−

1
2

(β−γ)|x|−γ‖f‖L∞(|x|βdx).

This proves (4).
We consider the case 0 = γ < β. Applying Proposition 2.4 (b) in ([6], pp.

20) and note that |x|−β ∈ L
d
β
,∞

|et∆f(x)| . t−
d
2

∥∥E(
.√
t
)
∥∥
L

d
d−β ,1
‖f‖

L
d
β
,∞ .

∥∥E∥∥
L

d
d−β ,1

t−
β
2 ‖f‖L∞(|x|βdx).
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This proves (4).
Suppose finally that 0 ≤ γ = β. From∫

Rd

1

td/2
E(
x− y√

t
)f(y)dy =

∫
|y|< |x|

2

+

∫
|y|> |x|

2

= I1 + I2,

we get

|I1| ≤ ‖f‖L∞(|x|γdx)

∫
|y|< |x|

2

|x− y|−d|y|−γdy ≤

‖f‖L∞(|x|γdx)

( |x|
2

)−d ∫
|y|< |x|

2

|y|−γdy ' ‖f‖L∞(|x|γdx)|x|−γ.

|I2| ≤ ‖f‖L∞(|x|γdx)

∫
|y|> |x|

2

1

td/2
E(
x− y√

t
)|y|−γdy ≤

‖f‖L∞(|x|γdx)

( |x|
2

)−γ ∫
y∈Rd

1

td/2
E(

y√
t
)dy = C‖f‖L∞(|x|γdx)|x|−γ,

where

C = 2γ
∫
y∈Rd

E(y)dy < +∞.

Therefore,
|et∆f(x)| . ‖f‖L∞(|x|γdx)|x|−γ.

The proof of Lemma 2 is complete.

We now deduce the L∞(|x|γdx) − L∞(|x|βdx) estimate for the operator
et∆P∇. As shown in [6], the kernel function Ft of et∆P∇ satisfies the following
inequalities

Ft(x) = t−
d+1
2 F

( x√
t

)
, |F (x)| . 1

(1 + |x|)d+1
, (6)

Ft(x) ≤ C|x|−αt
1
2

(d+1−α), for 0 ≤ α ≤ d+ 1. (7)

By using the inequalities (6) and (7) and arguing as in the proof of
Lemma 2, we can easily prove the following lemma.

Lemma 3. Assume that d ≥ 1 and 0 ≤ γ ≤ β < d. Then for all f ∈
L∞(|x|βdx) we have∥∥et∆Pf∥∥

L∞(|x|γdx)
≤ Ct−

1
2

(β+1−γ)‖f‖L∞(|x|βdx), for t > 0.
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Lemma 4. Let 0 ≤ γ < β ≤ d. Assume that f ∈ S ′(Rd) and satisfies the
following inequality

esssup
x∈Rd,t>0

(|x|γ + |x|β)|et∆f(x)| = C < +∞, (8)

then
f ∈ L∞(|x|γdx) ∩ L∞(|x|βdx)

and
esssup
x∈Rd

(|x|γ + |x|β)|f(x)| ≤ C. (9)

Proof. We have

et∆f ∈ L
d
β
,∞ ∩ L

d
γ
,∞ ⊂ Lq for d/β < q < d/γ.

Therefore et∆f ∈ L∞(0,∞;Lq), by a compactness theorem in Banach space,
there exists a sequence tk which converges to 0 such that etk∆f converges
weakly to f ′ in Lq with f ′ ∈ Lq. Since et∆ is a continuous semigroup on
S ′(Rd), it follows that f = f ′ ∈ Lq and so we have

lim
k→∞

∥∥etk∆f − f
∥∥
Lq

= 0.

Therefore, there exists a subsequence tkj of the sequence tk such that

lim
k→∞

etk∆f(x) = f(x) for almost everywhere x ∈ Rd. (10)

The inequality (9) is deduced from equalities (8) and (10).

Remark 3. From Lemma 4, we see that the condition (1) of Takahashi on
the initial data is equivalent to the condition ‖u0‖L∞((1+|x|)βdx) ≤ δ.

Lemma 5. Let γ, θ ∈ R and t > 0, then
(a) If θ < 1 then∫ t

2

0

(t− τ)−γτ−θdτ = Ct1−γ−θ, where C =

∫ 1
2

0

(1− τ)−γτ−θdτ <∞.

(b) If γ < 1 then∫ t

t
2

(t− τ)−γτ−θdτ = Ct1−γ−θ, where C =

∫ 1

1
2

(1− τ)−γτ−θdτ <∞.

(c) If γ < 1 and θ < 1 then∫ t

0

(t− τ)−γτ−θdτ = Ct1−γ−θ, where C =

∫ 1

0

(1− τ)−γτ−θdτ <∞.
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The proof of this lemma is elementary and may be omitted.
Let us recall the following result on solutions of a quadratic equation in
Banach spaces (Theorem 22.4 in [6], p. 227).

Theorem 3. Let E be a Banach space, and B : E×E → E be a continuous
bilinear map such that there exists η > 0 so that

‖B(x, y)‖ ≤ η‖x‖‖y‖,

for all x and y in E. Then for any fixed y ∈ E such that ‖y‖ ≤ 1
4η

, the

equation x = y −B(x, x) has a unique solution x ∈ E satisfying ‖x‖ ≤ 1
2η

.

§4. Proofs of Theorems 1 and 2

In this section we will give the proofs of Theorems 1 and 2. We now need
seven more lemmas. In order to proceed, we define an auxiliary space Kβ

α .
Let α and β be such that 0 ≤ α ≤ β < d, we define the auxiliary space Kβ

α

which is made up by the measurable functions u(t, x) such that

esssup
x∈Rd,t>0

|x|βt
1
2

(β−α)|u(x, t)| < +∞.

The auxiliary space Kα
β is equipped with the norm∥∥u∥∥
Kβ
α

:= esssup
x∈Rd,t>0

|x|βt
1
2

(β−α)|u(x, t)|.

We rewrite Lemma 2 as follows

Lemma 6. Assume that d ≥ 1 and 0 ≤ α ≤ β < d. Then for all f ∈
L∞(|x|βdx) we have et∆f ∈ Kβ

α and ‖et∆f‖Kβ
α
≤ C‖f‖L∞(|x|βdx).

Lemma 7. Assume that d ≥ 1 and 0 ≤ α ≤ β < d. Then Kβ
α ⊂ Kβ

β ∩K
β
0 .

The proof of this lemma is elementary and may be omitted.
In the following lemmas a particular attention will be devoted to the study
of the bilinear operator B(u, v)(t) defined by

B(u, v)(t) =

∫ t

0

e(t−τ)∆P∇.
(
u(τ)⊗ v(τ)

)
dτ. (11)

Lemma 8. Let β, β̃, β̂ and α be such that

0 ≤ β < d, β̃ > β − 2, 0 ≤ β̃ ≤ β, 0 < α < 1, β − β̃ − 1 < α < d− β̃,
0 ≤ β̂ ≤ α + β̃, and α + β̃ − 1 < β̂ ≤ β.
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Then the bilinear operator B(u, v)(t) is continuous from K1
α × K

β

β̃
into Kβ

β̂

and the following inequality holds∥∥B(u, v)
∥∥
Kβ

β̂

≤ C
∥∥u∥∥

K1
α

∥∥v∥∥
Kβ

β̃

, (12)

where C is a positive constant independent of T.

Proof. Since B(., .) is bilinear on K1
α × Kβ

β̃
, we may assume ‖u‖K1

α
=

‖u‖Kβ

β̃

= 1. From

|(u⊗ v)| ≤ |y|−(α+β̃)t−
1
2

(1−α+β−β̃),

by using Lemma 3, we have∣∣e(t−τ)∆P∇.
(
u⊗ v

)∣∣ . |x|−β̂ 1

(t− s) 1
2

(1+α+β̃−β̂)t
1
2

(1−α+β−β̃)

then applying Lemma 5 (c), we get

|B(u, v)| ≤ |x|−β̂
∫ t

0

1

(t− s) 1
2

(1+α+β̃−β̂)t
1
2

(1−α+β−β̃)
ds = |x|−β̂t−

1
2

(β−β̂).

This proves Lemma 8.
Note that since α > β− β̃−1 and β̂ > α+ β̃−1, it follows that the conditions
1−α+β−β̃

2
< 1 and 1+α+β̃−β̂

2
< 1 are valid. So we can apply Lemma 5 (c).

Lemma 9. Assume that NSE has a mild solution u ∈ K1
α̃ for some α̃ ∈ (0, 1)

with initial data u0 ∈ L∞(|x|dx) then u ∈ K1
α for all α ∈ [0, 1].

Proof. From u = et∆u0 +B(u, u), applying Lemmas 6 and 8 with β = 1
and α = β̃ = α̃, we get u ∈ K1

β̂
for all β̂ ∈

(
α̃− (1− α̃), 2α̃

)
∩ [0, 1]. Applying

again Lemmas 6 and 8 with β = 1, α = α̃, and β̃ ∈
(
α̃−(1− α̃), 2α̃

)
∩ [0, 1] to

get u ∈ K1
β̂

for all β̂ ∈
(
α̃−2(1− α̃), 3α̃

)
∩ [0, 1]. By induction, we get u ∈ K1

β̂

for all β̂ ∈
(
α̃ − n(1 − α̃), (n + 1)α̃

)
∩ [0, 1] with n ∈ N. Since α̃ ∈ (0, 1), it

follows that there exists sufficiently large n satisfying(
α̃− n(1− α̃), (n+ 1)α̃

)
⊃ [0, 1].

This proves Lemma 9.

Lemma 10. Let β be a fixed number in the interval [0, d). Assume that NSE
has a mild solution u ∈ ∩

α∈[0,1]
K1
α ∩K

β

β̃
for some β̃ ∈ [0, β] ∩ (β − 2, β] with

initial data u0 ∈ L∞(|x|βdx), then u ∈ Kβ

β̂
for all β̂ ∈ [0, β] ∩ (β̃ − 2, β].

10



Proof. We first prove that u ∈ Kβ

β̂
for all β̂ ∈ [0, β] ∩ (β̃ − 2, β̃ + 1).

Let α1 and α2 be such that

max{β − β̃ − 1, β̂ − β̃, 0} < α1 < 1 and max{β̂ − β̃, β̃ − β̂ − 1, 0} < α2 < 1.

We split the integral given in (11) into two parts coming from the subintervals
(0, t

2
) and ( t

2
, t)

B(u, u)(t) =

∫ t
2

0

e(t−τ)∆P∇.
(
u⊗ u

)
dτ +

∫ t

t
2

e(t−τ)∆P∇.
(
u⊗ u

)
dτ = I1 + I2.

Since u ∈ ∩
α∈[0,1]

K1
α, it follows that

|u(x, t)| . |x|−α1t−
1
2

(1−α1), (13)

|u(x, t)| . |x|−α2t−
1
2

(1−α2), (14)

and since u ∈ Kβ

β̃
, it follows that

|u(x, t)| . |x|−β̃t−
1
2

(β−β̃). (15)

From the inequalities (13) and (15), and Lemma 3, we get∣∣e(t−τ)∆P∇.
(
u⊗ u

)∣∣ . |x|−β̂ 1

(t− s) 1
2

(1+α1+β̃−β̂)t
1
2

(1−α1+β−β̃)
.

Then applying Lemma 5 (a), we have

I1 ≤ |x|−β̂
∫ t

2

0

1

(t− s) 1
2

(1+α1+β̃−β̂)t
1
2

(1−α1+β−β̃)
ds = |x|−β̂t−

1
2

(β−β̂). (16)

From the inequalities (14) and (15), and Lemma 3, we get∣∣e(t−τ)∆P∇.
(
u⊗ u

)∣∣ . |x|−β̂ 1

(t− s) 1
2

(1+α2+β̃−β̂)t
1
2

(1−α2+β−β̃)
.

Then applying Lemma 5 (b), we have

I1 ≤ |x|−β̂
∫ t

t
2

1

(t− s) 1
2

(1+α2+β̃−β̂)t
1
2

(1−α2+β−β̃)
ds = |x|−β̂t−

1
2

(β−β̂). (17)

From the inequalities (16) and (17), we get B(u, u) ∈ Kβ

β̂
, and from u =

et∆u0 + B(u, u) and Lemma 6, we have u ∈ Kβ

β̂
. Therefore, u ∈ Kβ

β̂
for all

11



β̂ ∈ [0, β] ∩ (β̃ − 2, β̃ + 1). This proves the result.
We now prove u ∈ Kβ

β̂
for all β̂ ∈ (β − 2, β] ∩ [0, β]. Indeed, if β̃ > β − 1

then u ∈ Kβ

β̂
for all β̂ ∈ [0, β]∩ (β̃− 2, β] and so the lemma is proved. In the

case β̃ ≤ β − 1, the proof is analogous to the previous one, we have u ∈ Kβ

β̂

for all β̂ ∈ [0, β] ∩ (β̃ − 2, β̃ + 2) = [0, β] ∩ (β̃ − 2, β]. Therefore the proof of
Lemma 10 is complete.

Lemma 11. Assume that NSE has a mild solution u ∈ ∩
α∈[0,1]

K1
α ∩ ∩

β̂∈[β̃,β]
Kβ

β̂

for some β̃ ∈ [0, β] with initial data u0 ∈ L∞(|x|βdx). Then u ∈ Kβ

β̂
for all

β̂ ∈ [0, β].

Proof. We first prove that u ∈ Kβ

β̂
for all β̂ ∈ [0, β] ∩ (β̃ − 1, β̃].

Let α1 be such that 0 < α1 < 1. Since u ∈ K1
α1
∩Kβ

β , it follows that

|u(x, t)| . |x|−α1t−
1
2

(1−α1), (18)

|u(x, t)| . |x|−β. (19)

From the inequalities (18) and (19), and Lemma 3, we get∣∣e(t−τ)∆P∇.
(
u⊗ u

)∣∣ . |x|−β̂ 1

(t− s) 1
2

(1+α1+β−β̂)t
1
2

(1−α1)
.

Then applying Lemma 5 (a), we have

I1 ≤ |x|−β̂
∫ t

2

0

1

(t− s) 1
2

(1+α1+β−β̂)t
1
2

(1−α1)
ds = |x|−β̂t−

1
2

(β−β̂). (20)

Since u ∈ K1
0 ∩K

β

β̃
, it follows that

|u(x, t)| . t−
1
2 and |u(x, t)| . |x|β̃t−

1
2

(β−β̃). (21)

From the inequality (21), and Lemma 3, we get∣∣e(t−τ)∆P∇.
(
u⊗ u

)∣∣ . |x|−β̂ 1

(t− s) 1
2

(1+β̃−β̂)t
1
2

(1+β−β̃)
.

Then applying Lemma 5 (b), we obtain

I2 ≤ |x|−β̂
∫ t

t
2

1

(t− s) 1
2

(1+β̃−β̂)t
1
2

(1+β−β̃)
ds = |x|−β̂t−

1
2

(β−β̂). (22)

12



From the inequalities (20) and (22), we get B(u, u) ∈ Kβ

β̂
. From u = et∆u0 +

B(u, u) and Lemma 6, we deduce u ∈ Kβ

β̂
for all β̂ ∈ [0, β] ∩ (β̃ − 1, β̃].

Therefore, we get u ∈ Kβ

β̂
for all β̂ ∈ [0, β] ∩ (β̃ − 1, β].

We now prove that u ∈ Kβ

β̂
for all β̂ ∈ [0, β]. Indeed, in exactly the same

way, since u ∈ Kβ

β̂
for all β̂ ∈ [0, β]∩ (β̃ − 1, β], it follows that u ∈ Kβ

β̂
for all

β̂ ∈ [0, β]∩(β̃−2, β]. By induction, we get u ∈ Kβ

β̂
for all β̂ ∈ [0, β]∩(β̃−n, β]

with n ∈ N. However, there exists a sufficiently large number n satisfying
b− n < 0 and therefore u ∈ Kβ

β̂
for all β̂ ∈ [0, β]. The proof of Lemma 11 is

complete.

Lemma 12. Let 0 ≤ β < d be fixed, then for all α and β̃ satisfying

β̃ ≥ 0, 0 < α < 1, β − 2 < β̃ ≤ β, and β − β̃ − 1 < α < d− β̃,

there exists a positive constant δα,β,β̃,d such that for all u0 ∈ L∞(|x|1dx) ∩
L∞(|x|βdx) with div(u0) = 0 satisfying

sup
x∈Rd,t>0

(|x|αt
1
2

(1−α) + |x|β̃t
1
2

(β−β̃))|et∆u0|) ≤ δα,β,β̃,d, (23)

NSE has a global mild solution u on (0,∞)× Rd such that

sup
x∈Rd,t>0

(|x|+ t
1
2 + |x|β + t

β
2 )|u(x, t)|) < +∞. (24)

Proof. Applying Lemma 8 we deduce that the bilinear operator B is
bounded from K1

α ×K1
α into K1

α and from K1
α ×K

β

β̃
into Kβ

β̃
. Therefore, the

bilinear operator B is bounded from

(K1
α ∩K

β

β̃
)× (K1

α ∩K
β

β̃
) into (K1

α ∩K
β

β̃
).

where the space K1
α ∩K

β

β̃
is equipped with the norm∥∥u∥∥

K1
α∩K

β

β̃

:= max{
∥∥u∥∥

K1
α
,
∥∥u∥∥

Kβ

β̃

}.

Applying Theorem 3 to the bilinear operator B, we deduce that there exists a
positive constant δα,β,β̃,d such that for all T > 0 and for all u0 ∈ L∞(|x|1dx)∩
L∞(|x|βdx) with div(u0) = 0 satisfying∥∥et∆u0

∥∥
K1
α∩K

β

β̃

≤ δα,β,β̃,d,

13



then NSE has a unique mild solution u satisfying

u ∈ K1
α ∩K

β

β̃
.

Applying Lemmas 9, 10, and 11, we get u ∈ Kβ

β̂
for all β̂ ∈ [0, β].

The proof of Lemma 12 is now complete.

Proof of Theorem 1

Since ∈ L∞(|x|dx) ⊂ L∞(|x|γdx) ∩ L∞(|x|βdx), it follows that
u0 ∈ L∞(|x|dx). Applying Lemma 12 then there exists a positive constant
δα,β,β̃,d such that if

sup
x∈Rd,t>0

(|x|αt
1
2

(1−α) + |x|β̃t
1
2

(β−β̃))|et∆u0|) ≤ δα,β,β̃,d,

NSE has a global mild solution u on (0,∞)× Rd such that

sup
x∈Rd,t>0

(|x|+ t
1
2 + |x|β + t

β
2 )|u(x, t)|) < +∞.

Applying Lemma 12 for β = γ then there exists a positive constant δα,γ,γ̃,d
such that if

sup
x∈Rd,t>0

(|x|αt
1
2

(1−α) + |x|γ̃t
1
2

(γ−γ̃))|et∆u0|) ≤ δα,γ,γ̃,d,

NSE has a global mild solution u on (0,∞)× Rd such that

sup
x∈Rd,t>0

(t
1
2 + |x|+ |x|γ + t

γ
2 )|u(x, t)|) < +∞.

Therefore, if u0 satisfies the following inequality

sup
x∈Rd,t>0

(|x|γ̃t
1
2

(γ−γ̃) + |x|αt
1
2

(1−α) + |x|β̃t
1
2

(β−β̃))|et∆u0|) ≤ min{δα,β,β̃,d, δα,γ,γ̃,d}

NSE has a global mild solution u on (0,∞)× Rd such that (3).
The proof of Theorem 1 is complete.

Proof of Theorem 2

Since |x| ≤ C(|x|γ + |x|β), it follows that

‖f‖L∞(|x|dx) ≤ C(‖f‖L∞(|x|γdx) + ‖f‖L∞(|x|βdx)).

14



From Lemma 2 we have

|x|αt
1
2

(1−α)|et∆u0| . ‖f‖L∞(|x|dx) . ‖f‖L∞(|x|γdx) + ‖f‖L∞(|x|βdx),

|x|γ̃t
1
2

(γ−γ̃)|et∆u0| . ‖f‖L∞(|x|γdx), and |x|β̃t
1
2

(β−β̃)|et∆u0| . ‖f‖L∞(|x|βdx).

This proves Theorem 2.
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