The existence and space-time decay rates of strong solutions to Navier-Stokes Equations in weighed $L^{\infty}(|x|^{\gamma} dx) \cap L^{\infty}(|x|^{\beta} dx)$ spaces

D. Q. Khai, N. M. Tri

Institute of Mathematics, VAST 18 Hoang Quoc Viet, 10307 Cau Giay, Hanoi, Vietnam

Abstract: In this paper, we prove some results on the existence and space-time decay rates of global strong solutions of the Cauchy problem for the Navier-Stokes equations in weighed $L^{\infty}(\mathbb{R}^d, |x|^{\gamma} dx) \cap L^{\infty}(\mathbb{R}^d, |x|^{\beta} dx)$ spaces.

§1. Introduction

This paper studies the Cauchy problem of the incompressible Navier-Stokes equations (NSE) in the whole space \mathbb{R}^d for $d \geq 2$,

$$\begin{cases} \partial_t u = \Delta u - \nabla . (u \otimes u) - \nabla p, \\ \nabla . u = 0, \\ u(0, x) = u_0, \end{cases}$$

which is a condensed writing for

$$\begin{cases} 1 \leq k \leq d, \quad \partial_t u_k = \Delta u_k - \sum_{l=1}^d \partial_l (u_l u_k) - \partial_k p, \\ \sum_{l=1}^d \partial_l u_l = 0, \\ 1 \leq k \leq d, \quad u_k(0, x) = u_{0k}. \end{cases}$$

The unknown quantities are the velocity $u(t, x) = (u_1(t, x), \dots, u_d(t, x))$ of the fluid element at time t and position x and the pressure p(t, x).

There is an extensive literature on the existence and decay rate of strong solutions of the Cauchy problem for NSE. Maria E. Schonbek [1] established the decay of the homogeneous H^m norms for solutions to NSE in two dimensions. She showed that if u is a solution to NSE with an arbitrary $u_0 \in H^m \cap L^1(\mathbb{R}^2)$ with $m \geq 3$ then

$$||D^{\alpha}u||_{2}^{2} \leq C_{\alpha}(t+1)^{-(|\alpha|+1)} \text{ and } ||D^{\alpha}u||_{\infty} \leq C_{\alpha}(t+1)^{-(|\alpha|+\frac{1}{2})} \text{ for all } t \geq 1, \alpha \leq m.$$

²*Keywords*: Navier-Stokes equations; space-time decay rate

 $^{^3}e\mspace{-mail} address:$ Khaitoantin@gmail.com, Triminh@math.ac.vn

Zhi-Min Chen [2] showed that if $u_0 \in L^1(\mathbb{R}^d) \cap L^p(\mathbb{R}^d)$, $(d \leq p < \infty)$ and $||u_0||_1 + ||u_0||_p$ is small enough then there is a unique solution $u \in BC([0,\infty); L^1 \cap L^p)$, which satisfies decay property

$$\sup_{t>0} t^{\frac{d}{2}} \left(\|u\|_{\infty} + t^{\frac{1}{2}} \|Du\|_{\infty} + t^{\frac{1}{2}} \|D^{2}u\|_{\infty} \right) < \infty.$$

Kato [3] studied strong solutions in the spaces $L^q(\mathbb{R}^d)$ by applying the $L^q - L^p$ estimates for the semigroup generated by the Stokes operator. He showed that there is T > 0 and a unique solution u, which satisfies

$$t^{\frac{1}{2}(1-\frac{d}{q})} u \in BC([0,T); L^{q}), \text{ for } d \le q \le \infty,$$
$$t^{\frac{1}{2}(2-\frac{d}{q})} \nabla u \in BC([0,T); L^{q}), \text{ for } d \le q \le \infty,$$

as $u_0 \in L^d(\mathbb{R}^d)$. He showed that $T = \infty$ if $\|u_0\|_{L^d(\mathbb{R}^d)}$ is small enough. In 2002, Cheng He and Ling Hsiao [4] extended the results of Kato, they estimated on decay rates of higher order derivatives about time variable and space variables for the strong solution to NSE with initial data in $L^d(\mathbb{R}^d)$. They showed that if $\|u_0\|_{L^d(\mathbb{R}^d)}$ is small enough then there is a unique solution u, which satisfies

$$t^{\frac{1}{2}(1+|\alpha|+2\alpha_0-\frac{d}{q})} D_x^{\alpha} D_t^{\alpha_0} u \in BC([0,\infty); L^q), \text{ for } q \ge d$$
$$t^{\frac{1}{2}(2+|\alpha|-\frac{d}{q})} D_x^{\alpha} p \in BC([0,\infty); L^q), \text{ for } q \ge d,$$

where $\alpha = (\alpha_1, \alpha_2, ..., \alpha_d), |\alpha| = \alpha_1 + \alpha_2 + ... + \alpha_d$ and $\alpha_0 \in \mathbb{N}$. D_x^{α} denotes $\partial_x^{|\alpha|} = \partial^{|\alpha|} / (\partial_{x_1}^{\alpha_1} \partial_{x_2}^{\alpha_2} ... \partial_{x_d}^{\alpha_d}), \ \partial_t^{\alpha_0} = \partial^{\alpha_0} / \partial t^{\alpha_0}.$

In 2005, Okihiro Sawada [5] obtained the decay rate of solution to NSE with initial data in $\dot{H}^{\frac{d}{2}-1}(\mathbb{R}^d)$. He showed that every mild solution in the class

$$u \in BC([0,T); \dot{H}^{\frac{d}{2}-1}) \text{ and } t^{\frac{1}{2}(\frac{d}{2}-\frac{d}{p})} u \in BC([0,T); \dot{H}_q^{\frac{d}{2}-1}),$$

for some T > 0 and $p \in (2, \infty]$ satisfies

$$\|u(t)\|_{\dot{H}^{\frac{d}{2}-1+\alpha}_q} \le K_1(K_2\tilde{\alpha})^{\tilde{\alpha}}t^{-\frac{\tilde{\alpha}}{2}} \text{ for } \alpha > 0, \tilde{\alpha} := \alpha + \frac{d}{2} - \frac{d}{q}$$

where constants K_1 and K_2 depend only on d, p, M_1 , and M_2 with $M_1 = \sup_{0 < t < T} \|u(t)\|_{\dot{H}^{\frac{d}{2}-1}}$ and $M_2 = \sup_{0 < t < T} t^{\frac{d}{2}(\frac{1}{2}-\frac{1}{p})} \|u(t)\|_{\dot{H}^{\frac{d}{2}-1}}$. The time-decay properties are therefore well understood. However, there are

The time-decay properties are therefore well understood. However, there are few results on the spatial decay properties. Farwing and Sohr [7] showed a class of weighted $|x|^{\alpha}$ weak solutions with second derivatives in space variables and one order derivatives in time variable in $L^s([0, +\infty); L^q)$ for 1 < q < 3 = 2, 1 < s < 2 and $0 \le 3/q + 2/s - 4 \le \alpha < \min\{1/2, 3 - 3/q\}$ in the case of exterior domains. In [10], they also showed that there exists a class of weak solutions satisfying

$$\||x|^{\frac{\alpha}{2}}u\|_{2}^{2} + \int_{0}^{t} \||x|^{\frac{\alpha}{2}} \nabla u\|_{2}^{2} \mathrm{d}t \leq \begin{cases} C(u_{0}, f, \alpha) & \text{if } 0 \leq \alpha < \frac{1}{2}, \\ C(u_{0}, f, \alpha', \alpha)t^{\frac{\alpha'}{2} - 1/4} & \text{if } \frac{1}{2} \leq \alpha < \alpha' < 1, \\ C(u_{0}, f)(t^{1/4} + t^{1/2}) & \text{if } \alpha = 1. \end{cases}$$

While in [11], a class of weak solutions

$$(1+|x|^2)^{1/4}u \in L^{\infty}([0,+\infty);L^p(\mathbb{R}^3))$$

was constructed for $6/5 \le p < 3/2$, which satisfies

$$||x|^{\frac{1}{2}}u||_{2}^{2} + \int_{0}^{t} ||x|^{\frac{1}{2}}\nabla u||_{2}^{2} \mathrm{d}t \le C(u_{0}, f)(t^{1/4} + t^{1/2}).$$

In 2002 Takahashi [9] studied the existence and space-time decay rates of global strong solutions of the Cauchy problem for the Navier-Stokes equations in the weighted $L^{\infty}(\mathbb{R}^d, (1 + |x|)^{\beta} dx)$ spaces. Takahashi showed that if u_0 satisfies

$$|e^{t\Delta}u_0(x)| < \delta(1+|x|)^{-\beta}, |e^{t\Delta}u_0(x)| < \delta(1+t)^{-\frac{\beta}{2}},$$
(1)

with sufficiently small δ , then NSE has a global mild solution u such that

$$|u(x,t)| \le C(1+|x|)^{-\beta}, |u(x,t)| \le (1+t)^{-\frac{\beta}{2}},$$

where β is restricted by the condition $1 \le \beta \le d + 1$. Takahashi also showed that if

$$u_0(x) \le c(1+|x|)^{-\beta}$$
 for some $0 < \beta \le d$,

then

$$e^{t\Delta}u_0(x) \le c(1+|x|)^{-\beta}, \ e^{t\Delta}u_0(x) \le c(1+t)^{\frac{-\beta}{2}}$$

In this paper, we discuss the existence and space-time decay rates of global strong solutions of the Cauchy problem for the Navier-Stokes equations in the weighted $L^{\infty}(\mathbb{R}^d, |x|^{\gamma} dx) \cap L^{\infty}(\mathbb{R}^d, |x|^{\beta} dx)$ spaces. The spaces $L^{\infty}(\mathbb{R}^d, |x|^{\gamma} dx) \cap L^{\infty}(\mathbb{R}^d, |x|^{\beta} dx)$ are more general than the spaces $L^{\infty}(\mathbb{R}^d, (1 + |x|)^{\beta} dx)$. In particular, $L^{\infty}(\mathbb{R}^d, |x|^{\gamma} dx) \cap L^{\infty}(\mathbb{R}^d, |x|^{\beta} dx) = L^{\infty}(\mathbb{R}^d, (1 + |x|)^{\beta} dx)$ when $\gamma = 0$, and so this result improves the previous one.

The content of this paper is as follows: in Section 2, we state our main theorem after introducing some notations. In Section 3, we first prove the some estimates concerning the heat semigroup with the Helmholtz-Leray projection and some auxiliary lemmas. Finally, in Section 4, we will give the proof of the main theorems.

§2. Statement of the results

Now, for T > 0, we say that u is a mild solution of NSE on [0, T] corresponding to a divergence-free initial datum u_0 when u solves the integral equation

$$u = e^{t\Delta}u_0 - \int_0^t e^{(t-\tau)\Delta} \mathbb{P}\nabla . (u(\tau, .) \otimes u(\tau, .)) d\tau.$$

Above we have used the following notation: for a tensor $F = (F_{ij})$ we define the vector ∇F by $(\nabla F)_i = \sum_{j=1}^d \partial_j F_{ij}$ and for two vectors u and v, we define their tensor product $(u \otimes v)_{ij} = u_i v_j$. The operator \mathbb{P} is the Helmholtz-Leray projection onto the divergence-free fields

$$(\mathbb{P}f)_j = f_j + \sum_{1 \le k \le d} R_j R_k f_k,$$

where R_j is the Riesz transforms defined as

$$R_j = \frac{\partial_j}{\sqrt{-\Delta}}$$
 i.e. $\widehat{R_j g}(\xi) = \frac{i\xi_j}{|\xi|} \hat{g}(\xi).$

The heat kernel $e^{t\Delta}$ is defined as

$$e^{t\Delta}u(x) = ((4\pi t)^{-d/2}e^{-|\cdot|^2/4t} * u)(x).$$

For a space of functions defined on \mathbb{R}^d , say $E(\mathbb{R}^d)$, we will abbreviate it as *E*. We define the space $L^{\infty}(|x|^{\beta} dx) := L^{\infty}(\mathbb{R}^d, |x|^{\beta} dx)$ which is made up by the measurable functions *u* such that

$$||u||_{L^{\infty}(|x|^{\alpha}\mathrm{dx})} := \operatorname{esssup}_{x \in \mathbb{R}^{d}} |x|^{\alpha} |u(x)| < +\infty.$$

Now we can state our result

Theorem 1. Let $0 \leq \gamma \leq 1 \leq \beta < d$ be fixed, then for all $\tilde{\gamma}, \alpha$, and $\tilde{\beta}$ satisfying

$$0 \leq \tilde{\gamma} \leq \gamma, \tilde{\beta} \geq 0, \beta - 2 < \tilde{\beta} \leq \beta, 0 < \alpha < 1, \text{ and } \beta - \tilde{\beta} - 1 < \alpha < d - \tilde{\beta},$$

there exists a positive constant $\delta_{\gamma,\tilde{\gamma},\alpha,\beta,\tilde{\beta},d}$ such that for all $u_0 \in L^{\infty}(|x|^{\gamma} dx) \cap L^{\infty}(|x|^{\beta} dx)$ with $\operatorname{div}(u_0) = 0$ satisfying

$$\sup_{x \in \mathbb{R}^d, t > 0} (|x|^{\tilde{\gamma}} t^{\frac{1}{2}(\gamma - \tilde{\gamma})} + |x|^{\alpha} t^{\frac{1}{2}(1-\alpha)} + |x|^{\tilde{\beta}} t^{\frac{1}{2}(\beta - \tilde{\beta})})|e^{t\Delta} u_0|) \le \delta_{\gamma, \tilde{\gamma}, \alpha, \beta, \tilde{\beta}, d}, \quad (2)$$

NSE has a global mild solution u on $(0,\infty) \times \mathbb{R}^d$ such that

$$\sup_{x \in \mathbb{R}^d, t > 0} (|x|^{\gamma} + t^{\frac{\gamma}{2}} + |x|^{\beta} + t^{\frac{\beta}{2}})|u(x,t)|) < +\infty.$$
(3)

Remark 1. Our result improves the previous results for $L^{\infty}(\mathbb{R}^d, (1+|x|)^{\beta} dx)$. This space, studied in [9], is a particular case of the space $L^{\infty}(|x|^{\gamma} dx) \cap L^{\infty}(|x|^{\beta} dx)$ when $\gamma = 0$. Furthermore, we prove that Takahashi's result holds true under a much weaker condition on the initial data. Indeed, from Lemma 4, it is easily seen that the condition (2) of Theorem 1 is weaker than the condition (1).

Theorem 2. Assume that $d \ge 1$, and $0 \le \gamma \le 1 \le \beta < d$. Then for all $f \in L^{\infty}(|x|^{\gamma} dx) \cap L^{\infty}(|x|^{\beta} dx)$ we have

$$\sup_{x \in \mathbb{R}^{d}, t > 0} (|x|^{\tilde{\gamma}} t^{\frac{1}{2}(\gamma - \tilde{\gamma})} + |x|^{\alpha} t^{\frac{1}{2}(1 - \alpha)} + |x|^{\tilde{\beta}} t^{\frac{1}{2}(\beta - \tilde{\beta})})|e^{t\Delta}f|) \le C(||f||_{L^{\infty}(|x|^{\gamma} dx)} + ||f||_{L^{\infty}(|x|^{\beta} dx)})$$

for $0 \leq \tilde{\gamma} \leq \gamma, 0 \leq \alpha \leq 1$ and $0 \leq \tilde{\beta} \leq \beta$.

Remark 2. We invoke Theorem 2 to deduce that if $u_0 \in L^{\infty}(|x|^{\gamma} dx) \cap L^{\infty}(|x|^{\beta} dx)$ and $||u_0||_{L^{\infty}(|x|^{\gamma} dx)} + ||u_0||_{L^{\infty}(|x|^{\beta} dx)}$ is small enough then the condition (2) of Theorem 1 is valid.

§3. Some auxiliary results

In this section we establish some auxiliary lemmas. We first prove a version of Young's inequality type for convolutions in $L^{\infty}(|x|^{\beta} dx)$ spaces.

Lemma 1. Assume that $d \ge 1, 0 < \alpha < d, 0 < \beta < d$ and $\alpha + \beta > d$. Then for all $f \in L^{\infty}(|x|^{\alpha} dx)$ and for all $g \in L^{\infty}(|x|^{\beta} dx)$ we have

$$\|f \ast g\|_{L^{\infty}(|x|^{\alpha+\beta-d}\mathrm{dx})} \le C\|f\|_{L^{\infty}(|x|^{\alpha}\mathrm{dx})}\|g\|_{L^{\infty}(|x|^{\beta}\mathrm{dx})}.$$

Proof. Since f * g is bilinear on $L^{\infty}(|x|^{\alpha} dx) \times L^{\infty}(|x|^{\beta} dx)$, we may assume $||f||_{L^{\infty}(|x|^{\alpha} dx)} = ||g||_{L^{\infty}(|x|^{\beta} dx)} = 1$. We have

$$f * g(x) = \int_{\mathbb{R}^d} f(x - y)g(y)dy = \int_{|y| < \frac{|x|}{2}} + \int_{\{|y| > \frac{|x|}{2}\} \cap \{|y| < \frac{3|x|}{2}\}} + \int_{|y| > \frac{3|x|}{2}} = I_1 + I_2 + I_3.$$

From

$$|f(x)| \le |x|^{-\alpha}$$
, and $|g(x)| \le |x|^{-\beta}$,

we get

$$|I_1| \le \int_{|y| < \frac{|x|}{2}} \frac{\mathrm{d}y}{|x - y|^{\alpha} |y|^{\beta}} \lesssim \frac{1}{|x|^{\alpha}} \int_{|y| < \frac{|x|}{2}} \frac{\mathrm{d}y}{|y|^{\beta}} \simeq \frac{1}{|x|^{\alpha + \beta - d}}.$$

$$|I_2| \le \int_{\{|y| > \frac{|x|}{2}\} \cap \{|y| < \frac{3|x|}{2}\}} \frac{\mathrm{d}y}{|x - y|^{\alpha}|y|^{\beta}} \lesssim \frac{1}{|x|^{\beta}} \int_{|y| < \frac{5|x|}{2}} \frac{\mathrm{d}y}{|y|^{\alpha}} \simeq \frac{1}{|x|^{\alpha + \beta - d}}$$

$$|I_3| \le \int_{|y| > \frac{3|x|}{2}} \frac{\mathrm{d}y}{|x - y|^{\alpha} |y|^{\beta}} \lesssim \int_{|y| > \frac{3|x|}{2}} \frac{\mathrm{d}y}{|y|^{\alpha} |y|^{\beta}} \simeq \frac{1}{|x|^{\alpha + \beta - d}}.$$

We thus obtain

$$|f * g(x)| \lesssim \frac{1}{|x|^{\alpha+\beta-d}}.$$

The proof Lemma 1 is complete.

We now deduce the $L^{\infty}(|x|^{\gamma} dx) - L^{\infty}(|x|^{\beta} dx)$ estimate for the heat semigroup. **Lemma 2.** Assume that $d \ge 1$ and $0 \le \gamma \le \beta < d$. Then for all $f \in L^{\infty}(|x|^{\beta} dx)$ we have

$$\|e^{t\Delta}f\|_{L^{\infty}(|x|^{\gamma}\mathrm{dx})} \le Ct^{-\frac{1}{2}(\beta-\gamma)}\|f\|_{L^{\infty}(|x|^{\beta}\mathrm{dx})}, \text{ for } t > 0.$$
(4)

Proof. We have

$$e^{t\Delta}f(x) = \int_{\mathbb{R}^d} \frac{1}{t^{d/2}} E(\frac{x-y}{\sqrt{t}}) f(y) \mathrm{d}y, \text{ where } E(x) = (4\pi)^{-\frac{d}{2}} e^{-\frac{|x|^2}{4}}.$$

Recall the simate

$$t^{-\frac{d}{2}}e^{-\frac{|x|^2}{4t}} \le C|x|^{-\alpha}t^{\frac{1}{2}(d-\alpha)}, \text{ for } 0 \le \alpha \le d.$$
(5)

We first consider the case $0 < \gamma < \beta$. From (5) and Lemma 1, it follows that

$$|e^{t\Delta}f(x)| \lesssim \int_{\mathbb{R}^d} \frac{\|f\|_{L^{\infty}(|x|^{\beta} \mathrm{dx})}}{t^{\frac{1}{2}(\beta-\gamma)}|x-y|^{\gamma+d-\beta}|y|^{\beta}} \mathrm{d}y \lesssim t^{-\frac{1}{2}(\beta-\gamma)}|x|^{-\gamma}\|f\|_{L^{\infty}(|x|^{\beta} \mathrm{dx})}.$$

This proves (4).

We consider the case $0 = \gamma < \beta$. Applying Proposition 2.4 (b) in ([6], pp. 20) and note that $|x|^{-\beta} \in L^{\frac{d}{\beta},\infty}$

$$|e^{t\Delta}f(x)| \lesssim t^{-\frac{d}{2}} \left\| E(\frac{\cdot}{\sqrt{t}}) \right\|_{L^{\frac{d}{d-\beta},1}} \|f\|_{L^{\frac{d}{\beta},\infty}} \lesssim \left\| E \right\|_{L^{\frac{d}{d-\beta},1}} t^{-\frac{\beta}{2}} \|f\|_{L^{\infty}(|x|^{\beta}\mathrm{dx})}.$$

This proves (4). Suppose finally that $0 \leq \gamma = \beta$. From

$$\int_{\mathbb{R}^d} \frac{1}{t^{d/2}} E(\frac{x-y}{\sqrt{t}}) f(y) \mathrm{d}y = \int_{|y| < \frac{|x|}{2}} + \int_{|y| > \frac{|x|}{2}} = I_1 + I_2,$$

we get

$$|I_1| \le \|f\|_{L^{\infty}(|x|^{\gamma} \mathrm{d}x)} \int_{|y| < \frac{|x|}{2}} |x - y|^{-d} |y|^{-\gamma} \mathrm{d}y \le \|f\|_{L^{\infty}(|x|^{\gamma} \mathrm{d}x)} (\frac{|x|}{2})^{-d} \int_{|y| < \frac{|x|}{2}} |y|^{-\gamma} \mathrm{d}y \simeq \|f\|_{L^{\infty}(|x|^{\gamma} \mathrm{d}x)} |x|^{-\gamma}.$$

$$|I_{2}| \leq ||f||_{L^{\infty}(|x|^{\gamma} \mathrm{dx})} \int_{|y| > \frac{|x|}{2}} \frac{1}{t^{d/2}} E(\frac{x-y}{\sqrt{t}})|y|^{-\gamma} \mathrm{d}y \leq ||f||_{L^{\infty}(|x|^{\gamma} \mathrm{dx})} (\frac{|x|}{2})^{-\gamma} \int_{y \in \mathbb{R}^{d}} \frac{1}{t^{d/2}} E(\frac{y}{\sqrt{t}}) \mathrm{d}y = C ||f||_{L^{\infty}(|x|^{\gamma} \mathrm{dx})} |x|^{-\gamma},$$

where

$$C = 2^{\gamma} \int_{y \in \mathbb{R}^d} E(y) \mathrm{d}y < +\infty.$$

Therefore,

$$|e^{t\Delta}f(x)| \lesssim ||f||_{L^{\infty}(|x|^{\gamma}\mathrm{dx})}|x|^{-\gamma}.$$

The proof of Lemma 2 is complete.

We now deduce the $L^{\infty}(|x|^{\gamma} dx) - L^{\infty}(|x|^{\beta} dx)$ estimate for the operator $e^{t\Delta}\mathbb{P}\nabla$. As shown in [6], the kernel function F_t of $e^{t\Delta}\mathbb{P}\nabla$ satisfies the following inequalities

$$F_t(x) = t^{-\frac{d+1}{2}} F\left(\frac{x}{\sqrt{t}}\right), |F(x)| \lesssim \frac{1}{(1+|x|)^{d+1}},\tag{6}$$

$$F_t(x) \le C|x|^{-\alpha} t^{\frac{1}{2}(d+1-\alpha)}, \text{ for } 0 \le \alpha \le d+1.$$
 (7)

By using the inequalities (6) and (7) and arguing as in the proof of Lemma 2, we can easily prove the following lemma.

Lemma 3. Assume that $d \ge 1$ and $0 \le \gamma \le \beta < d$. Then for all $f \in L^{\infty}(|x|^{\beta} dx)$ we have

$$\left\|e^{t\Delta}\mathbb{P}f\right\|_{L^{\infty}(|x|^{\gamma}\mathrm{dx})} \leq Ct^{-\frac{1}{2}(\beta+1-\gamma)}\|f\|_{L^{\infty}(|x|^{\beta}\mathrm{dx})}, \text{ for } t > 0.$$

Lemma 4. Let $0 \leq \gamma < \beta \leq d$. Assume that $f \in \mathcal{S}'(\mathbb{R}^d)$ and satisfies the following inequality

$$\operatorname{esssup}_{x \in \mathbb{R}^d, t > 0} (|x|^{\gamma} + |x|^{\beta})|e^{t\Delta}f(x)| = C < +\infty,$$
(8)

then

$$f \in L^{\infty}(|x|^{\gamma} d\mathbf{x}) \cap L^{\infty}(|x|^{\beta} d\mathbf{x})$$

and

$$\operatorname{esssup}_{x \in \mathbb{R}^d} (|x|^{\gamma} + |x|^{\beta}) |f(x)| \le C.$$
(9)

Proof. We have

$$e^{t\Delta}f \in L^{\frac{d}{\beta},\infty} \cap L^{\frac{d}{\gamma},\infty} \subset L^q \text{ for } d/\beta < q < d/\gamma.$$

Therefore $e^{t\Delta}f \in L^{\infty}(0,\infty;L^q)$, by a compactness theorem in Banach space, there exists a sequence t_k which converges to 0 such that $e^{t_k\Delta}f$ converges weakly to f' in L^q with $f' \in L^q$. Since $e^{t\Delta}$ is a continuous semigroup on $\mathcal{S}'(\mathbb{R}^d)$, it follows that $f = f' \in L^q$ and so we have

$$\lim_{k \to \infty} \left\| e^{t_k \Delta} f - f \right\|_{L^q} = 0$$

Therefore, there exists a subsequence t_{k_j} of the sequence t_k such that

$$\lim_{k \to \infty} e^{t_k \Delta} f(x) = f(x) \text{ for almost everywhere } x \in \mathbb{R}^d.$$
(10)

The inequality (9) is deduced from equalities (8) and (10).

Remark 3. From Lemma 4, we see that the condition (1) of Takahashi on the initial data is equivalent to the condition $||u_0||_{L^{\infty}((1+|x|)^{\beta} dx)} \leq \delta$.

Lemma 5. Let $\gamma, \theta \in \mathbb{R}$ and t > 0, then (a) If $\theta < 1$ then

$$\int_0^{\frac{t}{2}} (t-\tau)^{-\gamma} \tau^{-\theta} \mathrm{d}\tau = Ct^{1-\gamma-\theta}, \text{ where } C = \int_0^{\frac{1}{2}} (1-\tau)^{-\gamma} \tau^{-\theta} \mathrm{d}\tau < \infty.$$

(b) If $\gamma < 1$ then

$$\int_{\frac{t}{2}}^{t} (t-\tau)^{-\gamma} \tau^{-\theta} d\tau = Ct^{1-\gamma-\theta}, \text{ where } C = \int_{\frac{1}{2}}^{1} (1-\tau)^{-\gamma} \tau^{-\theta} d\tau < \infty.$$

(c) If $\gamma < 1$ and $\theta < 1$ then

$$\int_0^t (t-\tau)^{-\gamma} \tau^{-\theta} \mathrm{d}\tau = Ct^{1-\gamma-\theta}, \text{ where } C = \int_0^1 (1-\tau)^{-\gamma} \tau^{-\theta} \mathrm{d}\tau < \infty.$$

The proof of this lemma is elementary and may be omitted. \Box Let us recall the following result on solutions of a quadratic equation in Banach spaces (Theorem 22.4 in [6], p. 227).

Theorem 3. Let E be a Banach space, and $B : E \times E \to E$ be a continuous bilinear map such that there exists $\eta > 0$ so that

$$||B(x,y)|| \le \eta ||x|| ||y||,$$

for all x and y in E. Then for any fixed $y \in E$ such that $||y|| \leq \frac{1}{4\eta}$, the equation x = y - B(x, x) has a unique solution $\overline{x} \in E$ satisfying $||\overline{x}|| \leq \frac{1}{2\eta}$.

§4. Proofs of Theorems 1 and 2

In this section we will give the proofs of Theorems 1 and 2. We now need seven more lemmas. In order to proceed, we define an auxiliary space K_{α}^{β} . Let α and β be such that $0 \leq \alpha \leq \beta < d$, we define the auxiliary space K_{α}^{β} which is made up by the measurable functions u(t, x) such that

$$\operatorname{esssup}_{x \in \mathbb{R}^d, t > 0} |x|^{\beta} t^{\frac{1}{2}(\beta - \alpha)} |u(x, t)| < +\infty.$$

The auxiliary space K^{α}_{β} is equipped with the norm

$$\left\|u\right\|_{K^{\beta}_{\alpha}} := \operatorname*{esssup}_{x \in \mathbb{R}^{d}, t > 0} |x|^{\beta} t^{\frac{1}{2}(\beta - \alpha)} |u(x, t)|.$$

We rewrite Lemma 2 as follows

Lemma 6. Assume that $d \ge 1$ and $0 \le \alpha \le \beta < d$. Then for all $f \in L^{\infty}(|x|^{\beta} dx)$ we have $e^{t\Delta}f \in K^{\beta}_{\alpha}$ and $||e^{t\Delta}f||_{K^{\beta}_{\alpha}} \le C||f||_{L^{\infty}(|x|^{\beta} dx)}$.

Lemma 7. Assume that $d \ge 1$ and $0 \le \alpha \le \beta < d$. Then $K_{\alpha}^{\beta} \subset K_{\beta}^{\beta} \cap K_{0}^{\beta}$.

The proof of this lemma is elementary and may be omitted. \Box In the following lemmas a particular attention will be devoted to the study of the bilinear operator B(u, v)(t) defined by

$$B(u,v)(t) = \int_0^t e^{(t-\tau)\Delta} \mathbb{P}\nabla \cdot \left(u(\tau) \otimes v(\tau)\right) \mathrm{d}\tau.$$
(11)

Lemma 8. Let β , $\tilde{\beta}$, $\hat{\beta}$ and α be such that

$$\begin{split} 0 \leq \beta < d, \tilde{\beta} > \beta - 2, 0 \leq \tilde{\beta} \leq \beta, 0 < \alpha < 1, \beta - \tilde{\beta} - 1 < \alpha < d - \tilde{\beta}, \\ 0 \leq \hat{\beta} \leq \alpha + \tilde{\beta}, \text{ and } \alpha + \tilde{\beta} - 1 < \hat{\beta} \leq \beta. \end{split}$$

Then the bilinear operator B(u, v)(t) is continuous from $K^1_{\alpha} \times K^{\beta}_{\tilde{\beta}}$ into $K^{\beta}_{\hat{\beta}}$ and the following inequality holds

$$\|B(u,v)\|_{K^{\beta}_{\hat{\beta}}} \le C \|u\|_{K^{1}_{\alpha}} \|v\|_{K^{\beta}_{\hat{\beta}}},$$
(12)

where C is a positive constant independent of T.

Proof. Since B(.,.) is bilinear on $K^1_{\alpha} \times K^{\beta}_{\tilde{\beta}}$, we may assume $||u||_{K^1_{\alpha}} = ||u||_{K^{\beta}_{\tilde{\alpha}}} = 1$. From

$$|(u \otimes v)| \le |y|^{-(\alpha + \tilde{\beta})} t^{-\frac{1}{2}(1 - \alpha + \beta - \tilde{\beta})}$$

by using Lemma 3, we have

$$\left|e^{(t-\tau)\Delta}\mathbb{P}\nabla.\left(u\otimes v\right)\right| \lesssim |x|^{-\hat{\beta}} \frac{1}{(t-s)^{\frac{1}{2}(1+\alpha+\tilde{\beta}-\hat{\beta})}t^{\frac{1}{2}(1-\alpha+\beta-\tilde{\beta})}}$$

then applying Lemma 5 (c), we get

$$|B(u,v)| \le |x|^{-\hat{\beta}} \int_0^t \frac{1}{(t-s)^{\frac{1}{2}(1+\alpha+\tilde{\beta}-\hat{\beta})} t^{\frac{1}{2}(1-\alpha+\beta-\tilde{\beta})}} \mathrm{d}s = |x|^{-\hat{\beta}} t^{-\frac{1}{2}(\beta-\hat{\beta})}.$$

This proves Lemma 8.

Note that since $\alpha > \beta - \tilde{\beta} - 1$ and $\hat{\beta} > \alpha + \tilde{\beta} - 1$, it follows that the conditions $\frac{1-\alpha+\beta-\tilde{\beta}}{2} < 1$ and $\frac{1+\alpha+\tilde{\beta}-\hat{\beta}}{2} < 1$ are valid. So we can apply Lemma 5 (c). \Box

Lemma 9. Assume that NSE has a mild solution $u \in K^1_{\tilde{\alpha}}$ for some $\tilde{\alpha} \in (0, 1)$ with initial data $u_0 \in L^{\infty}(|x| dx)$ then $u \in K^1_{\alpha}$ for all $\alpha \in [0, 1]$.

Proof. From $u = e^{t\Delta}u_0 + B(u, u)$, applying Lemmas 6 and 8 with $\beta = 1$ and $\alpha = \tilde{\beta} = \tilde{\alpha}$, we get $u \in K^1_{\hat{\beta}}$ for all $\hat{\beta} \in (\tilde{\alpha} - (1 - \tilde{\alpha}), 2\tilde{\alpha}) \cap [0, 1]$. Applying again Lemmas 6 and 8 with $\beta = 1, \alpha = \tilde{\alpha}$, and $\tilde{\beta} \in (\tilde{\alpha} - (1 - \tilde{\alpha}), 2\tilde{\alpha}) \cap [0, 1]$ to get $u \in K^1_{\hat{\beta}}$ for all $\hat{\beta} \in (\tilde{\alpha} - 2(1 - \tilde{\alpha}), 3\tilde{\alpha}) \cap [0, 1]$. By induction, we get $u \in K^1_{\hat{\beta}}$ for all $\hat{\beta} \in (\tilde{\alpha} - n(1 - \tilde{\alpha}), (n + 1)\tilde{\alpha}) \cap [0, 1]$ with $n \in \mathbb{N}$. Since $\tilde{\alpha} \in (0, 1)$, it follows that there exists sufficiently large n satisfying

$$\left(\tilde{\alpha} - n(1 - \tilde{\alpha}), (n+1)\tilde{\alpha}\right) \supset [0, 1].$$

This proves Lemma 9.

Lemma 10. Let β be a fixed number in the interval [0, d). Assume that NSE has a mild solution $u \in \bigcap_{\alpha \in [0,1]} K^1_{\alpha} \cap K^{\beta}_{\tilde{\beta}}$ for some $\tilde{\beta} \in [0, \beta] \cap (\beta - 2, \beta]$ with initial data $u_0 \in L^{\infty}(|x|^{\beta} dx)$, then $u \in K^{\beta}_{\hat{\beta}}$ for all $\hat{\beta} \in [0, \beta] \cap (\tilde{\beta} - 2, \beta]$.

Proof. We first prove that $u \in K_{\hat{\beta}}^{\beta}$ for all $\hat{\beta} \in [0, \beta] \cap (\tilde{\beta} - 2, \tilde{\beta} + 1)$. Let α_1 and α_2 be such that

 $\max\{\beta - \tilde{\beta} - 1, \hat{\beta} - \tilde{\beta}, 0\} < \alpha_1 < 1 \text{ and } \max\{\hat{\beta} - \tilde{\beta}, \tilde{\beta} - \hat{\beta} - 1, 0\} < \alpha_2 < 1.$ We split the integral given in (11) into two parts coming from the subintervals $(0, \frac{t}{2})$ and $(\frac{t}{2}, t)$

$$B(u,u)(t) = \int_0^{\frac{t}{2}} e^{(t-\tau)\Delta} \mathbb{P}\nabla (u \otimes u) d\tau + \int_{\frac{t}{2}}^t e^{(t-\tau)\Delta} \mathbb{P}\nabla (u \otimes u) d\tau = I_1 + I_2.$$

Since $u \in \bigcap_{\alpha \in [0,1]} K^1_{\alpha}$, it follows that

$$|u(x,t)| \lesssim |x|^{-\alpha_1} t^{-\frac{1}{2}(1-\alpha_1)},\tag{13}$$

$$|u(x,t)| \lesssim |x|^{-\alpha_2} t^{-\frac{1}{2}(1-\alpha_2)},$$
 (14)

and since $u \in K^{\beta}_{\tilde{\beta}}$, it follows that

$$|u(x,t)| \lesssim |x|^{-\tilde{\beta}} t^{-\frac{1}{2}(\beta-\tilde{\beta})}.$$
(15)

From the inequalities (13) and (15), and Lemma 3, we get

$$\left|e^{(t-\tau)\Delta}\mathbb{P}\nabla.\left(u\otimes u\right)\right| \lesssim |x|^{-\hat{\beta}} \frac{1}{(t-s)^{\frac{1}{2}(1+\alpha_{1}+\tilde{\beta}-\hat{\beta})}t^{\frac{1}{2}(1-\alpha_{1}+\beta-\tilde{\beta})}}$$

Then applying Lemma 5 (a), we have

$$I_{1} \leq |x|^{-\hat{\beta}} \int_{0}^{\frac{t}{2}} \frac{1}{(t-s)^{\frac{1}{2}(1+\alpha_{1}+\tilde{\beta}-\hat{\beta})} t^{\frac{1}{2}(1-\alpha_{1}+\beta-\tilde{\beta})}} \mathrm{d}s = |x|^{-\hat{\beta}} t^{-\frac{1}{2}(\beta-\hat{\beta})}.$$
 (16)

From the inequalities (14) and (15), and Lemma 3, we get

$$\left|e^{(t-\tau)\Delta}\mathbb{P}\nabla.(u\otimes u)\right| \lesssim |x|^{-\hat{\beta}} \frac{1}{(t-s)^{\frac{1}{2}(1+\alpha_2+\tilde{\beta}-\hat{\beta})}t^{\frac{1}{2}(1-\alpha_2+\beta-\tilde{\beta})}}$$

Then applying Lemma 5 (b), we have

$$I_{1} \leq |x|^{-\hat{\beta}} \int_{\frac{t}{2}}^{t} \frac{1}{(t-s)^{\frac{1}{2}(1+\alpha_{2}+\tilde{\beta}-\hat{\beta})} t^{\frac{1}{2}(1-\alpha_{2}+\beta-\tilde{\beta})}} \mathrm{d}s = |x|^{-\hat{\beta}} t^{-\frac{1}{2}(\beta-\hat{\beta})}.$$
 (17)

From the inequalities (16) and (17), we get $B(u, u) \in K^{\beta}_{\hat{\beta}}$, and from $u = e^{t\Delta}u_0 + B(u, u)$ and Lemma 6, we have $u \in K^{\beta}_{\hat{\beta}}$. Therefore, $u \in K^{\beta}_{\hat{\beta}}$ for all

 $\hat{\beta} \in [0, \beta] \cap (\tilde{\beta} - 2, \tilde{\beta} + 1)$. This proves the result. We now prove $u \in K^{\beta}_{\hat{\beta}}$ for all $\hat{\beta} \in (\beta - 2, \beta] \cap [0, \beta]$. Indeed, if $\tilde{\beta} > \beta - 1$ then $u \in K^{\beta}_{\hat{\beta}}$ for all $\hat{\beta} \in [0, \beta] \cap (\tilde{\beta} - 2, \beta]$ and so the lemma is proved. In the case $\tilde{\beta} \leq \beta - 1$, the proof is analogous to the previous one, we have $u \in K_{\hat{\beta}}^{\beta}$ for all $\hat{\beta} \in [0,\beta] \cap (\tilde{\beta}-2,\tilde{\beta}+2) = [0,\beta] \cap (\tilde{\beta}-2,\beta]$. Therefore the proof of Lemma 10 is complete.

Lemma 11. Assume that NSE has a mild solution $u \in \bigcap_{\alpha \in [0,1]} K^1_{\alpha} \cap \bigcap_{\hat{\beta} \in [\tilde{\beta},\beta]} K^{\beta}_{\hat{\beta}}$ for some $\tilde{\beta} \in [0, \beta]$ with initial data $u_0 \in L^{\infty}(|x|^{\beta} dx)$. Then $u \in K_{\hat{\beta}}^{\beta}$ for all $\hat{\beta} \in [0, \beta].$

Proof. We first prove that $u \in K^{\beta}_{\hat{\beta}}$ for all $\hat{\beta} \in [0, \beta] \cap (\tilde{\beta} - 1, \tilde{\beta}]$. Let α_1 be such that $0 < \alpha_1 < 1$. Since $u \in K^1_{\alpha_1} \cap K^\beta_\beta$, it follows that

$$|u(x,t)| \lesssim |x|^{-\alpha_1} t^{-\frac{1}{2}(1-\alpha_1)}, \tag{18}$$

$$|u(x,t)| \lesssim |x|^{-\beta}.$$
(19)

From the inequalities (18) and (19), and Lemma 3, we get

$$\left|e^{(t-\tau)\Delta}\mathbb{P}\nabla.\left(u\otimes u\right)\right| \lesssim |x|^{-\hat{\beta}}\frac{1}{(t-s)^{\frac{1}{2}(1+\alpha_1+\beta-\hat{\beta})}t^{\frac{1}{2}(1-\alpha_1)}}$$

Then applying Lemma 5 (a), we have

$$I_1 \le |x|^{-\hat{\beta}} \int_0^{\frac{t}{2}} \frac{1}{(t-s)^{\frac{1}{2}(1+\alpha_1+\beta-\hat{\beta})} t^{\frac{1}{2}(1-\alpha_1)}} \mathrm{d}s = |x|^{-\hat{\beta}} t^{-\frac{1}{2}(\beta-\hat{\beta})}.$$
 (20)

Since $u \in K_0^1 \cap K_{\tilde{\beta}}^{\beta}$, it follows that

$$|u(x,t)| \lesssim t^{-\frac{1}{2}} \text{ and } |u(x,t)| \lesssim |x|^{\tilde{\beta}} t^{-\frac{1}{2}(\beta-\tilde{\beta})}.$$
 (21)

From the inequality (21), and Lemma 3, we get

$$\left|e^{(t-\tau)\Delta}\mathbb{P}\nabla.\left(u\otimes u\right)\right| \lesssim |x|^{-\hat{\beta}}\frac{1}{(t-s)^{\frac{1}{2}(1+\hat{\beta}-\hat{\beta})}t^{\frac{1}{2}(1+\beta-\hat{\beta})}}$$

Then applying Lemma 5 (b), we obtain

$$I_{2} \leq |x|^{-\hat{\beta}} \int_{\frac{t}{2}}^{t} \frac{1}{(t-s)^{\frac{1}{2}(1+\tilde{\beta}-\hat{\beta})} t^{\frac{1}{2}(1+\beta-\tilde{\beta})}} \mathrm{d}s = |x|^{-\hat{\beta}} t^{-\frac{1}{2}(\beta-\hat{\beta})}.$$
 (22)

From the inequalities (20) and (22), we get $B(u, u) \in K^{\beta}_{\hat{\beta}}$. From $u = e^{t\Delta}u_0 + B(u, u)$ and Lemma 6, we deduce $u \in K^{\beta}_{\hat{\beta}}$ for all $\hat{\beta} \in [0, \beta] \cap (\tilde{\beta} - 1, \tilde{\beta}]$. Therefore, we get $u \in K^{\beta}_{\hat{\beta}}$ for all $\hat{\beta} \in [0, \beta] \cap (\tilde{\beta} - 1, \beta]$.

We now prove that $u \in K_{\hat{\beta}}^{\beta}$ for all $\hat{\beta} \in [0, \beta]$. Indeed, in exactly the same way, since $u \in K_{\hat{\beta}}^{\beta}$ for all $\hat{\beta} \in [0, \beta] \cap (\tilde{\beta} - 1, \beta]$, it follows that $u \in K_{\hat{\beta}}^{\beta}$ for all $\hat{\beta} \in [0, \beta] \cap (\tilde{\beta} - 2, \beta]$. By induction, we get $u \in K_{\hat{\beta}}^{\beta}$ for all $\hat{\beta} \in [0, \beta] \cap (\tilde{\beta} - n, \beta]$ with $n \in \mathbb{N}$. However, there exists a sufficiently large number n satisfying b - n < 0 and therefore $u \in K_{\hat{\beta}}^{\beta}$ for all $\hat{\beta} \in [0, \beta]$. The proof of Lemma 11 is complete.

Lemma 12. Let $0 \leq \beta < d$ be fixed, then for all α and $\tilde{\beta}$ satisfying

$$\tilde{\beta} \ge 0, 0 < \alpha < 1, \beta - 2 < \tilde{\beta} \le \beta, \text{ and } \beta - \tilde{\beta} - 1 < \alpha < d - \tilde{\beta},$$

there exists a positive constant $\delta_{\alpha,\beta,\tilde{\beta},d}$ such that for all $u_0 \in L^{\infty}(|x|^1 dx) \cap L^{\infty}(|x|^{\beta} dx)$ with $\operatorname{div}(u_0) = 0$ satisfying

$$\sup_{x\in\mathbb{R}^d,t>0} (|x|^{\alpha} t^{\frac{1}{2}(1-\alpha)} + |x|^{\tilde{\beta}} t^{\frac{1}{2}(\beta-\tilde{\beta})})|e^{t\Delta}u_0|) \le \delta_{\alpha,\beta,\tilde{\beta},d},\tag{23}$$

NSE has a global mild solution u on $(0,\infty) \times \mathbb{R}^d$ such that

$$\sup_{x \in \mathbb{R}^d, t > 0} (|x| + t^{\frac{1}{2}} + |x|^{\beta} + t^{\frac{\beta}{2}})|u(x,t)|) < +\infty.$$
(24)

Proof. Applying Lemma 8 we deduce that the bilinear operator B is bounded from $K^1_{\alpha} \times K^1_{\alpha}$ into K^1_{α} and from $K^1_{\alpha} \times K^{\beta}_{\tilde{\beta}}$ into $K^{\beta}_{\tilde{\beta}}$. Therefore, the bilinear operator B is bounded from

$$(K^1_{\alpha} \cap K^{\beta}_{\tilde{\beta}}) \times (K^1_{\alpha} \cap K^{\beta}_{\tilde{\beta}})$$
 into $(K^1_{\alpha} \cap K^{\beta}_{\tilde{\beta}})$.

where the space $K^1_{\alpha} \cap K^{\beta}_{\tilde{\beta}}$ is equipped with the norm

1

$$||u||_{K^1_{\alpha} \cap K^{\beta}_{\tilde{\beta}}} := \max\{||u||_{K^1_{\alpha}}, ||u||_{K^{\beta}_{\tilde{\beta}}}\}.$$

Applying Theorem 3 to the bilinear operator B, we deduce that there exists a positive constant $\delta_{\alpha,\beta,\tilde{\beta},d}$ such that for all T > 0 and for all $u_0 \in L^{\infty}(|x|^1 dx) \cap L^{\infty}(|x|^{\beta} dx)$ with $\operatorname{div}(u_0) = 0$ satisfying

$$\left\|e^{t\Delta}u_0\right\|_{K^1_{\alpha}\cap K^{\beta}_{\tilde{\beta}}} \leq \delta_{\alpha,\beta,\tilde{\beta},d}$$

then NSE has a unique mild solution u satisfying

$$u \in K^1_{\alpha} \cap K^{\beta}_{\tilde{\beta}}$$

Applying Lemmas 9, 10, and 11, we get $u \in K_{\hat{\beta}}^{\beta}$ for all $\hat{\beta} \in [0, \beta]$. The proof of Lemma 12 is now complete.

Proof of Theorem 1

Since $\in L^{\infty}(|x|dx) \subset L^{\infty}(|x|^{\gamma}dx) \cap L^{\infty}(|x|^{\beta}dx)$, it follows that $u_0 \in L^{\infty}(|x|dx)$. Applying Lemma 12 then there exists a positive constant $\delta_{\alpha,\beta,\tilde{\beta},d}$ such that if

$$\sup_{x\in\mathbb{R}^d,t>0}(|x|^{\alpha}t^{\frac{1}{2}(1-\alpha)}+|x|^{\tilde{\beta}}t^{\frac{1}{2}(\beta-\tilde{\beta})})|e^{t\Delta}u_0|)\leq\delta_{\alpha,\beta,\tilde{\beta},d},$$

NSE has a global mild solution u on $(0,\infty) \times \mathbb{R}^d$ such that

$$\sup_{x \in \mathbb{R}^d, t > 0} (|x| + t^{\frac{1}{2}} + |x|^{\beta} + t^{\frac{\beta}{2}})|u(x, t)|) < +\infty.$$

Applying Lemma 12 for $\beta = \gamma$ then there exists a positive constant $\delta_{\alpha,\gamma,\tilde{\gamma},d}$ such that if

$$\sup_{x\in\mathbb{R}^d,t>0} (|x|^{\alpha} t^{\frac{1}{2}(1-\alpha)} + |x|^{\tilde{\gamma}} t^{\frac{1}{2}(\gamma-\tilde{\gamma})})|e^{t\Delta}u_0|) \le \delta_{\alpha,\gamma,\tilde{\gamma},d},$$

NSE has a global mild solution u on $(0, \infty) \times \mathbb{R}^d$ such that

$$\sup_{x \in \mathbb{R}^d, t > 0} (t^{\frac{1}{2}} + |x| + |x|^{\gamma} + t^{\frac{\gamma}{2}}) |u(x, t)|) < +\infty$$

Therefore, if u_0 satisfies the following inequality

$$\sup_{x\in\mathbb{R}^d,t>0} (|x|^{\tilde{\gamma}}t^{\frac{1}{2}(\gamma-\tilde{\gamma})} + |x|^{\alpha}t^{\frac{1}{2}(1-\alpha)} + |x|^{\tilde{\beta}}t^{\frac{1}{2}(\beta-\tilde{\beta})})|e^{t\Delta}u_0|) \le \min\{\delta_{\alpha,\beta,\tilde{\beta},d},\delta_{\alpha,\gamma,\tilde{\gamma},d}\}$$

NSE has a global mild solution u on $(0, \infty) \times \mathbb{R}^d$ such that (3). The proof of Theorem 1 is complete.

Proof of Theorem 2

Since $|x| \leq C(|x|^{\gamma} + |x|^{\beta})$, it follows that

$$||f||_{L^{\infty}}(|x|\mathrm{d}x) \le C(||f||_{L^{\infty}}(|x|^{\gamma}\mathrm{d}x) + ||f||_{L^{\infty}}(|x|^{\beta}\mathrm{d}x)).$$

From Lemma 2 we have

$$|x|^{\alpha} t^{\frac{1}{2}(1-\alpha)} |e^{t\Delta} u_{0}| \lesssim ||f||_{L^{\infty}} (|x| \mathrm{d}x) \lesssim ||f||_{L^{\infty}} (|x|^{\gamma} \mathrm{d}x) + ||f||_{L^{\infty}} (|x|^{\beta} \mathrm{d}x),$$

$$|x|^{\tilde{\gamma}} t^{\frac{1}{2}(\gamma-\tilde{\gamma})} |e^{t\Delta} u_{0}| \lesssim ||f||_{L^{\infty}} (|x|^{\gamma} \mathrm{d}x), \text{ and } |x|^{\tilde{\beta}} t^{\frac{1}{2}(\beta-\tilde{\beta})} |e^{t\Delta} u_{0}| \lesssim ||f||_{L^{\infty}} (|x|^{\beta} \mathrm{d}x).$$

This proves Theorem 2.

Acknowledgments. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2014.50.

References

- Maria E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations in H^m spaces, Comm. Partial Differential Equations 20 (1995), no. 1-2, 103-117
- [2] Zhi-Min Chen, A sharp decay result on strong solutions of the Navier-Stokes equations in the whole space, Comm. Partial Differential Equations 16 (1991), no. 4-5, 801-820
- [3] T. Kato, Strong L^p solutions of the Navier-Stokes equations in \mathbb{R}^m with applications to weak solutions, Math. Zeit., **187** (1984), 471-480.
- [4] Cheng He and Ling Hsiao, The decay rates of strong solutions for Navier-Stokes equations, J. Math. Anal. Appl. 268 (2002), no. 2, 417-425
- [5] O. Sawada, On analyticity rate estimates of the solutions to the Navier-Stokes equations in Bessel-potential spaces, J. Math. Anal. Appl. 312 (2005), no. 1, 1-13.
- [6] P. G. Lemarie-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman and Hall/CRC Research Notes in Mathematics, vol. 431, Chapman and Hall/CRC, Boca Raton, FL, 2002.
- [7] R. Farwig and H. Sohr, Global estimates in weighted spaces of weak solutions of the Navier- Stokes equations in exterior domains, Arch. Math. 67 (1996), 319-330.
- [8] R. Farwig and H. Sohr, Weighted energy inequalities for the Navier-Stokes equations in exterior domains, Appl. Analysis 58(1-2) (1995), 157-173.

- [9] T. Miyakawa, Tetsuro Notes on space-time decay properties of nonstationary incompressible Navier-Stokes flows in ℝⁿ, Funkcial. Ekvac. 45 (2002), no. 2, 271-289.
- [10] R. Farwig and H. Sohr, Weighted energy inequalities for the Navier-Stokes equations in exterior domains, Appl. Analysis 58(1-2) (1995), 157-173.
- [11] C. He, Weighted estimates for nonstationary Navier-Stokes equations, J. Diff. Eqns 148(1998), 422-444.