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Abstract: In this paper, we prove some results on the existence and decay
properties of high order derivatives in time and space variables for local and
global solutions of the Cauchy problem for the Navier-Stokes equations in
Bessel-potential spaces.

§1. Introduction

This paper studies the Cauchy problem of the incompressible Navier-
Stokes equations (NSE) in the whole space R¢ for d > 2,

Ou=Au—V.(u®u)— Vp,
V.au =0,

u(0, z) = o,
which is a condensed writing for

1<k<d, Ouy=A0uy 30" dlwuy) — K,

ity Q= 0,
1 <k<d, ug(0,2)=up.

The unknown quantities are the velocity u(t,z) = (uy(t,z), ..., uq(t,x)) of
the fluid element at time ¢ and position x and the pressure p(t, ).

There is an extensive literature on the existence and decay rate of strong
solutions of the Cauchy problem for NSE. Maria E. Schonbek [1] established
the decay of the homogeneous H™ norms for solutions to NSE in two di-
mensions. She showed that if u is a solution to NSE with an arbitrary
up € H™ N LY(R?) with m > 3 then

| D%ul|?2 < Co(t+1)~ 0D and || D o < Ca(t+1)_(‘°‘|+%) for allt > 1,0 < m.
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Zhi-Min Chen [2] showed that if ug € L'(RY) N LP(R?),(d < p < o0) and
l|luolli + [luoll, is small enough then there is a unique solution
u € BCO([0,00); L' N LP), which satisfies decay property

supt? (o + 41 Dul + £ D2ulc) < .
t>

Kato [3] studied strong solutions in the spaces L(R?) by applying the L4 — L?
estimates for the semigroup generated by the Stokes operator. He showed
that there is T' > 0 and a unique solution u, which satisfies

$20-y € BC([0,T); L), for d < q < oo,
32-9) T4
t2¥"«'Vu € BC(]0,T); LY), for d < g < o0,

as ug € L4(R?). He showed that T' = oo if Hu0|lLd(Rd) is small enough.

Cannone [4] generalized the results of Kato. He showed that if uy € L¢ and
HUQH d_,.,(q > d) is small enough then there is a unique solution u, which
Bq

satisfies o
12079y € BC([0, 00); L), for ¢ > d.

Note that the condition on the initial data of Cannon is weaker than that of
Kato. In 2002, Cheng He and Ling Hsiao [6] extended the results of Kato.
They estimated the decay rates of higher order derivatives in time and space
variables for the strong solution to NSE with initial data in L4(R¢). They
showed that if HUOH L4 is small enough then there is a unique solution u,

which satisfies

R4)

t%(l—&-la\-l-?ao—%)DthaOu c BC({O’ oo); Lq), for ¢ > d,
t%@ﬂa\*g)Dgp € BC([0,00); LY), for ¢ > d,

where a = (g, a9, ..., q), |a| = a1 + g + ... + ag and ay € N. D¢ denotes

a:La\ _ 8“"'/(8“8&2 '_a;x;)’ A0 = g /e

Tl Tx9 "

In 2005, Okihiro Sawada [7] obtained the decay rate of solutions to NSE with
initial data in H %*1(Rd). He showed that every mild solution in the class

1

. .d_
we BO([0,T); He Y and ¢22~%u € BC((0,T); HZ ),

for some T' > 0 and p € (2, o0] satisfies

Gy & d d
Hu(t)||Hq%—1+a < Kl(KQ&)atii for o > O,d =+ 5 _ a’



where constants K; and K5 depend only on d,p,M;, and M, with
dl 1
My = sup |[u(®)] .4, and My = sup 2272 |[u(t)|| . 4_,.
0<t<T Hz2 0<t<T Hy
In this paper, we discuss the existence and decay properties of high order
derivatives in time and space variables for local and global solutions of the

Cauchy problem for the NSE with initial data in Bessel-potential spaces

d

H,,Eil(]Rd), (1 < p < 00). By using several tools from harmonic analysis, we
obtain decay estimates for derivatives of arbitrary order. The estimate for
the decay rate is optimal in the sense that it coincides with the decay rate
of a solution to the heat equation. This result improves the previous ones.
The content of this paper is as follows: in Section 2, we state our main the-
orem after introducing some notations. In Section 3, we first establish some
estimates concerning the heat semigroup with differential. We also recall
some auxiliary lemmas and several estimates in the homogeneous Sobolev
spaces and Besov spaces. Finally, in Section 4, we will give the proof of the
main theorem.

§2. Statement of the results

Now, for T" > 0, we say that u is a mild solution of NSE on [0,7] cor-
responding to a divergence-free initial datum wug when u solves the integral
equation

t
u = euy — / e(t’T)AIPV.(u(T, ) @u(r,.))dr.
0

Above we have used the following notation: for a tensor F' = (F};) we define
the vector V.F by (V.F); = ijl 0;F;; and for two vectors u and v, we define
their tensor product (u®v);; = w;v;. The operator PP is the Helmholtz-Leray
projection onto the divergence-free fields

Bf);=1fi+ > RiRufr,

1<k<d

where R; is the Riesz transforms defined as

_ 9% . mmey
RJ_ m 1e. R]g(g) |£|g(§)

The heat kernel 2 is defined as
ePuz) = ((4mt) "2 P ) ().

For a space of functions defined on R¢, say E(R?), we will abbreviate it as F.
We denote by L4 := L(R?) the usual Lebesgue space for ¢ € [1, 00] with the

3



norm ||.[|;, and we do not distinguish between the vector-valued and scalar-
value spaces of functions. We define the Bessel-potential space by H; :=

A=%L9 equipped with the norm HfHH = ||A*f|l,. Here A® := FHEPPF,

where F and F~! are the Fourier transform and its inverse, respectively.
Now we can state our result

Theorem 1. Let 1 < p < oo be fized, then

Ld
(A) (Local existence) For any initial data vy € HpY 1(Rd) with V.ug = 0,
there exists a positive T = T'(ug) such that NSE has a unique mild solution
u satisfying

1 . d
(i) DA e BO([0,T); L9, for q>p.s>~ —1,
p
' d
(ii) t%(sHH”_g)Astu € BC([0,T7); L), for q>p,s>——1,n€eN,
p
: d
(iii) 22 DA% € BO([0,T);LY) ¢ > pos > = — 1.
p

(B) (Global existence) For all § > max{p,d} there exists a positive constant
Op.g.d Such that if
HUOH 4100 S Opgds (1)
q
then the existence time T in point (A) for the solution u is equal to +oo.
Moreover, we have

(a) limt2 (st |
t—o0

d
Oa fOquprZ__la
p

(b) limg2(F1420—5 HD”

t—o00

d
07 fOTQZP;SZ——LnENa
p

(s+2—
© Jimex

d
—OfOT’qu,SZ——l,
p

Remark 1. Our result improves the previous ones for L(R%) and H%~(R%).
These spaces, studied in [6] and [7], are particular cases of the Bessel spaces

Ld_
Hy ' with p = d and p = 2, respectively. We have the following imbeddings

.d_q - d_ .d_q
H (RN (cpe) = H2'(RY) = LYRY) = HY (R (psa)-

Furthermore, we obtain statements that are stronger than those of Cheng
He and Ling Hsiao [6] and Okihiro Sawada [7] but under a much weaker
condition on the initial data.



We show that the condition (1) on the initial data in Theorem 1 is weaker

-4 1,00
than the condition in [6]. We have LY(R?) < B/ " (R%), (G > d), but these
. &
two spaces are different. Indeed, we have }a:|_1 ¢ L and }.73‘_1 € B;

all § > d.

—1,00
for

§3. Tools from harmonic analysis

In this section we prove some auxiliary lemmas.
We first establish the LP— L9 estimate for the heat semigroup with differential.

Lemma 1. Assume thatd > 1 and s > 0,t >0 and 1 < p < q < 0o. Then
for all f € LP we have

d
2

BT v [ € B0, 00); L(RY) and [[Ae 1], < 01 HG0 ] g,

Proof. See [7]. O
In order to obtain our theorem we must establish the estimates for bilinear
terms. We thus need a version of Holder type inequality in Bessel-potential
spaces.

Lemma 2. Let 1 < 7,p1,p2, q1,q2 < 00 and s > 0 satisfying % = p% + q% =
p% + qu. Then there exists a constant C' = C(d, s, p1, P2, q1,q2) such that for
all f € H3 (RY) N LP2(RY) and for all g € HE, (RY) N L9 (RY) we have

I79]

i < C(I7]

iy 1900+ 12 ll9] gz, )-

Proof. See [11]. O

Lemma 3. Let v,0 € R and t > 0, then
(a) If 0 < 1 then

1

3 >
/ (t— 1) %r = Ct'% where C' = / (1—7)""r77%r < .
0 0

(b) If v < 1 then

¢ 1
/ (t —7) 777 %7 = Ct'77 where C = / (1—7)"777%r < .
t 1

2

The proof of this lemma is elementary and may be omitted. O



Theorem 2. (Calderon-Zygmund theorem). ‘
The Riesz transforms R; = == (R;9)(&) = %f(g) are bounded
from H* to L', from L>® to BMO, and L? to L9 for 1 < q < oo.

Lemma 4. (Sobolev inequalities).
(a) For 0 < « < d, the operator (%)

=) is bounded from the Hardy space H!

to L and from LY* to BMO = (H')".
(b) For 1 <p < oo and 0 < a < d/p the operator (T)O‘ is bounded from

LP to L where 1 =1 — 2
q P d

In this paper we use the definition of the homogeneous Besov space B”’

in [8, 9]. A known property of these spaces is that the Riesz potential As =
(—A)*/? is an isomorphism from B0 onto B0~ see [10)].

The following lemmas will provide a dlfferent characterlzatlon of Besov spaces
Bg’p in terms of the heat semigroup and will be one of the staple ingredients
of the proof of Theorem 1.

Lemma 5. Let 1 < p,qg < oo and s € R.
(a) If s < 1 then the two quantities

(] wileseiar)) )" and|17],

.50 are equivalent.
q

(b) If s < 0 then the two quantities

([ ilessl,y )" ana |1

where ByP 1s the homogeneous Besov space.

pew are equivalent,
q

Proof. See ([5], Proposition 1, p. 181 and Proposition 3, p. 182), or see
([12], Theorem 5.4, p. 45). O
The following lemma is a generalization of the above lemma.

Lemma 6. Let 1 < p,q < oo, >0, and s < a. Then the two quantities

dt

([ @i, p ) and |1

Proof. Note that A® is an isomorphism from Bgvp to qu_s(”p, then we
can easily prove the lemma. O]
Let us recall following result on solutions of a quadratic equation in Banach
spaces (Theorem 22.4 in [12], p. 227).

e are equivalent,



Theorem 3. Let E be a Banach space, and B : E X E — E be a continuous
bilinear map such that there exists n > 0 so that

1B, y)|| < nllelliyl,

for all x and y in E. Then for any fixred y € E such that |y|]| < ﬁ, the

equation x =y — B(z,x) has a unique solution T € E satisfying ||Z|| < %7

84. Proof of Theorem 1

In this section we shall give the proof of Theorem 1. We now need three
more lemmas. In order to proceed, we define an auxiliary space K 7.
Let s,q,T be such that

d
g€ (l,400),s>——1, and 0 < T < o0,
q

we set

In the case T' < 0o, we define the auxiliary space Kj  which is made up by
the functions wu(t, z) such that

t2u e O([0,T); HY)
and

it ()

~0. 2)

In the case T' = oo, we define the auxiliary space K ., which is made up by
the functions wu(t, z) such that

t2u € BC(]0,00); Hqs),

Lt [|u(t, )| ., =0, (3)
and
tlirglotf“u(t, )| i = 0. (4)

The auxiliary space K 7 is equipped with the norm

= sup t%Hu(t, )]
0<t<T

Hu| Ks r Hg'



In the case s = E — 1 it is also convenient to define the space K 7 as the nat-
ural space C([0,T); H, $(R?)) with the additional condition that its elements
u(t, x) satisfy

hm”u =0,

t—0 HH?;
if T'= oo then its elements u(t, x) satisfy the additional condition

=0.

hmHu | :
t—o0 ) H;

Remark 2. The auxiliary space K, := K, (¢ > d,0 < T < o0) was
introduced by Weissler and systematlcally used by Kato [3] and Cannone [4].
In the case T' = oo, the space K, of Kato isn’t restricted by the condition

(4).

Ld_
Lemma 7. If uq € H} 1(Rd), (1 <p<o0) then
(a) For all ¢ and s satisfying ¢ > p and s > % — 1 we have

12Dy € BC((0, 00); HY) (5)
and
2(s—i—l _
Jim ¢ 7. = 0. (6)

(b) For all q and s satisfying ¢ > p and s > g — 1 we have
ePugy € Koo
Proof. (a) By applying Lemma 1 for A%_luo € LP, we have
(=D AsetByy = 2 HImD AT A ALy € BO([0,00); L), (7)

The relation (5) is equivalent to the relation (7).
We now prove (6), it is easily prove that

=0, (8)

p

. L d_q
lim ’XnAP Ug

n—oo

where X, (z) = 0 for x € {z : |z| < n}N{x : ‘Agfluo(x)’ < n} and
X, () = 1 otherwise. Let p* be such that 1 < p* < p. Applying Lemma 1,
we get

t%(erl 4 He U0||' _t2(s+1 HAs 441 tAAp UOH
3010 HAS‘%“JA(XnA%‘Iuo)Hq + BEHTD AT (1 - A) AP o) |,
< [ ks ||+ #2675 (1 - &) - (9)

8



For any € > 0, from (8) we have
P4 €
[ A A7 o[, < 3 (10)

for large enough n. Fixed one of such n, there exists ty = to(n) > 0 satisfying
€
- < 5 (11)

for all t > t,, from the inequalities (9), (10), and (11) we deduce that

2G50

|n(1 —X,)

(D e S|y < e for all ¢ > to.

(b) We only need to prove
NN YCEE R STTIEYN _
lim¢2 a He UOHH; =0.

Let p* be such that p < p* < q. For any € > 0, applying Lemma 1, by an
argument similar to the previous one, there exist a sufficiently large n and a
sufficiently small ¢y = to(n) such that

t%(s-}-l—%) HetA

g < || AT |+ 416

o) ‘n(l —X,)

<e€

p*

forall t <tg . ]
In the following lemmas a particular attention will be devoted to the study
of the bilinear operator B(u,v)(t) defined by

t
B(u,v)(t) = / e(t’T)A]P’V.(u(T) ® v(r))dr. (12)
0
Lemma 8. Let r,q,q,s € R be such that
d d 1 1 1 1 1 1
l<rg<oo,g>d,s>max{—-—1,——1,0}, =+ - —=-< - <=+ —.
q r q q d r—q q
Then the bilinear operator B(u,v)(t) is continuous from
(ICS’T N IC;T) X (IC%T N IC;T) into K 1,
and the following inequality holds
B (u, )| Ks o < CH“HK%TNC;T”U”Kg,TnIC;T’ (13)

where the space IC%T N K, 7 is equipped with the norm

[l o = lull o+ |l
KaqrOKer Kar Ker’

and C'is a positive constant independent of T.

9



Proof. We split the integral given in (12) into two parts coming from

the subintervals (0, %) and (%,¢)

L t
B(u,v)(t) = / e(t_T)AIPV.(u ®v)dr + / e(t_T)AIP’V.(u @u)dr.  (14)

0
To estimate the first term on the right-hand side of the equation (14), apply-
ing Lemma 1, 3, the Holder inequality, and the Calderon-Zygmund theorem
to obtain

3 3.
| / IAPY (ugv)dr| < / |Aret=m2PY (u e v) | ar =
0 Hﬁ 0 r
5. \V4
/ HAsﬂe(t_T)AlP’f.(u@v) dr <
0 A r
t
2 _stlyd(l 2
/ (t = 1) B () sl adr <
0
t
2 s+1 1_2y _ l lr_d
/ (t—7)"F 26D 0D sup 2D fuln) |5 sup 20D [[o(n)|lsdr =~
0 O<n<t 0<n<t
2058 sup 2D |lu(n) 5. sup 729D o) |5 (15)
o<n<t 0<n<t

Note that since ¢ > d, it follows that 6 = (1 — g) < 1 is satisfied. So we can
apply Lemma 3 (a).

To estimate the second term on the right-hand side of the equation (14),
applying Lemmas 1, 2, 3, and the Calderon-Zygmund theorem to obtain

t t
H / e(t_T)A]P’V.(u ® U) dT‘ o < /

t
/é (tT)AP%.AS (u ® v)

t _l,del 1 _1
[ = D),
2

dr =

T

Aselt=APY (u ® v)

dr <

r

o(r) ladr+

H;dT S

[ (t — ) D) () 4o (7)]

;o 72D v sdr+
T0<n<t

t
J R e Y e
% 0<n<t

t
[ =m0 sup D fuly sup D o
t 0 0<n<t !



_l(yg_d lyyg_d 10q_d
w1308 (sup D () sup 8 o) o
0<n<t To<n<t

1q_d 1(14g_d
sup 11249 Ju(n)llg sup 72D () Hg). (16)
o<n<t o<n<t
Note that since é + 5 L < L it follows that v = § — 4(+ — % — é) <1lis

q
satisfied. So we can apply Lemma 3 (b). From the mequalities (15) and (16)
we have

3¢

(u, v)(t)]

11 1q_d
e S Sup n? Dllum) g sup 72 D|u(n)|l+
r 0<n<t

1(14s—1) lq_d
sup 7207 [lu(n) | g, sup 7207 [lo(n) |+

0<n<t 0<n<t
i (17)

sup 72~ [u(n)|l; Sup 772(1“ o)
0<n<t 0<

The estimate (13) is deduced from the inequality (17). Let us now check the
validity of the condition (2) for the bilinear term B(u,v)(t). Indeed, from
the inequality (17) we have

lim¢ 2 (15~ HB u, v)(t)]

=0 (18)

H
whenever

limt 200 u(t) |5 = ez 9o () |5 =

t—0
. L14s—49) L la4s—9) L
Lt} (0 5, = it (8, = 0. (19)
In the case of T' = oo, we check the validity of the condition (4) for the
bilinear term B(u,v)(t). Firstly we estimate the first term on the right-hand
side of equation (14). From the estimates in the inequality (15) we get

t%(l—‘—s—%) g

=IAPY . (u & U)dT‘ .

Hs

r

0

1
2 s
/ (1—7) T 20D D () 2D u(er) | 5(t7) 2 D u(tr) || 5) dr
0

Applying Lebesgue’s convergence theorem we deduce that

lim 200 |7 eC02PY (w@ v)dr| =0 (20)
t—r00 0 Hg
whenever
t20-Dy € BO([0,00); L), 2Dy € BO([0, 00); LI), (21)

11



and

lim 20D u(t)||; = lim2 @D |[o(t)|; = 0.

t—o0 t—o00

By an argument similar to the previous one, we have

=0
Hy

lim ¢3 0+ H/ ISPV (u @ v)dr|

t—o00

whenever
12070y € BO((0,00); H), 2 Wv € BO([0, 00); 1Y),
20Dy € BO([0,00); L), and 2~ Dv € BC([0, 00); LY),
and

. 1 s—4d . 1 s—<
i 555 () 5, =l 2 o)l =

t—00
. leq_d . L4
i #20=Dfu(e) 5 = Jim #2079 o(0); = 0.

It follows readily from (20) and (23) that

lim ¢2(F~ HB u, v)(t)|| . =0,

whenever (24) and (25) are satisfied.

(22)

(23)

Finally, the continuity at ¢t = 0 zero of 2059 B(u, v)(t) follows from the
equality (18). The continuity elsewhere follows from carefully rewriting the

expression fot e fot and applying the same argument.

]

Remark 3. Lemma 8 is a generalization of Lemma 10 in ([5], p. 196). In

particular, when ¢ = ¢, s = 0, we get back Lemma 10 in ([5], p. 196).

Lemma 9. Let q,q,s € R be such that

d d d
g>1,G>d,s >max{——1,0}, and ——1<s" <s+1——.
q q

q

Then the bilinear operator B(u,v)(t) is continuous from
(K2 N K 7) x (K2 NI 1) into Koo,
and the following inequality holds
1B (u,v)]

< O[ul] o]
* = 0 0
Ko Kgrnkgr W IKG 205 77

where C'is a positive constant independent of T.

12
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Proof. To estimate the first term on the right-hand side of the equa-

tion (14), we apply Lemmas 1, 3, the Holder inequality, and the Calderon-
Zygmund theorem

H /2 e(t*T)A]PV.(u ® U)dT‘ . < /2 HAs*e(t*T)AIP’V.(u ® v)
0 q 0
/2 HAS*_'_le(t_T)A]PZ.(U ® ’U) dr S
0 A q

t
2 s*
/ (t—7)" 7 26D u(r) gl|v(r)]|4dr <
0

dr =

q

/ (t—7)" T 2D 0D qup 2D u(n)||; sup 72D |ju(n)|dr ~
0 0<n<t 0 t

Cl(ysrd _d _d
7200 sup 2D |lu(n) 7. sup 920D ()|l (27)

0<n<t 0<n<t

Note that since ¢ > d, it follows that 6 = 1 — é < 1 is satisfied. So we can

apply Lemma 3 (a). To estimate the second term on the right-hand side of
equation (14), we apply Lemmas 1, 2, 3, and the Calderon-Zygmund theorem

t t
H/ e(t’T)AIP’V.(u@)v)dT‘ g/
t
/ dr <
¢ q

t 75*75+17i
J = A ) (o) adr+
2

dr =

q

A =TAPY . (u & U)

AS*SJrle(tT)A]P)%.AS (U ® ’U)

*_s+1

ﬂ (t — ) A () o (7)]

¢ .
J = ry A D g gD sup 0D e+
t 0<n<t

Hng <

t
/ (t—7) 2 2 3 qup 2 Dfull; sup 2D o]
t 0<n<t

Hng

~ t_%(lﬂ*_g)( sup 27D |ul

1 d
s sup 2070 o] g+
0<n<t

sup 217 ||u||q sup n%“*s Dol

) (28)

Note that since s* < s+1— g, it follows that v = “‘TS“ + % < 1 is satisfied.
So we can apply Lemma 3 (b).

13



From the inequalities (27) and (28), we have

pp(s™ =) HB<“> v)(t)|

1q_d 10q_d
e S sup 2@ ()| sup 2 Ju(n) |+
q 0<n<t 0<n<t

1(1qg_d
sup 7270 fu(n))|

11_d
s sup 0270 [[o(n)]|g+
0<n<t 0<n<t

1

1({_d 11ye_d
sup 7?7 ||u(n)||; sup n2"* q)Hv(n)HH;- (29)
0<n<t o<n<t

The estimate (26) is deduced from the inequality (29). Finally, by an
argument similar to the one used in Lemma 9, we easily check the valid-
ity of the conditions (2) and (4) for the bilinear term B(u,v)(t) and the

continuity of t%(lﬁ*_s)B(u, v)(t) at all t > 0. O
Proof of Theorem 1

(A) To prove point (i), we take arbitrary ¢ satisfying ¢ > max{p, d}.
Applying Lemma 8 we deduce that the bilinear operator B is bounded from

0 max{2—1,0} | max{<—1,0} 0 0 - 0
K; x K; 7 into K; * and from K; x K7 into K;. Therefore,
bilinear operator B is bounded from
max{<—1,0} max{<—1,0}, . max{<—1,0}
(KgnK; 7 ) x(KgnK; » 7)into (K;NK; 7 7).

Applying Theorem 3 to the bilinear operator B, we deduce that there exists
.d_q

a positive constant d, ;4 such that for all T > 0 and for all ug € Hy ~(R?)

with div(ug) = 0 satisfying

HetAUOH maX{%*LO} < 5p,[j,d (30)

0
KgrNEqr

NSE has a unique mild solution u satisfying

max gfl,(]
we Kopn Ko™, (31)
Assuming that the inequality (30) is valid, we prove that
< d
u€ K:p forals>——1. (32)

p

Indeed, from (31) applying Lemmas 7 (b) and 9 to obtain
d d d
uwe K, forall s € |— —1,max{— — 1,0} +1— =
4T [p {p } q)

14



Note that 1 — % > 0, applying again Lemmas 7 (b) and 9 to get
d d d
ue Ky forall s € [-—1,max{— —1,0} +2(1 — =)).
p p q
By induction, we obtaine
d d d
u € K foralln € Nand s e [Z; - 1,max{]—) — 1,0} +n(1 - 5)),

therefore, the relation (32) is valid.
We prove that

d
u€ K r forallszg—landq>p. (33)

Indeed, let s be fixed in % —1 < s < o0, applying Lemmas 7 (b) and 8, by
an argument similar to the previous one, we get

u€ K;p forall g >p, (34)

therefore, the relation (34) is valid. Applying again Lemma 8 to get
d
B(u,u) € K7 forall s > — —1and ¢q > p. (35)
p

From u = e'®uy + B(u,u), the definition of K, the relation (35) and
Lemma 7 (a), we deduce that (i) is valid.

(ii)) We have proven that (ii) is valid for n = 0. We will prove that (ii) is
valid for n = 1. Applying Lemma 2 and the Calderon-Zygmund theorem to
obtain

3 (s+1+2-9) HAs“tH < 3 (s+1+2=9) HASHUH +t2(s+1+2—— HP As+1( ®U)H N

Y

t%(s+1+2—g)”As+2uH +t2(s+1+2 A HAsH ”

(3 (s+12-9) HASHUH | palst2gg HAerluHthz —35 < 00, (36)

H o,

the last inequality in (36) is deduced by applying (ii) for n = 0.
We prove that (ii) is valid for n = 2. Applying again Lemma 2 and the
Calderon-Zygmund theorem to obtain

AT |, S AR A AR D )

<t%(5+2+1+2_§)HA3+2u I, 2T [ Aty ||, #2075 ul], +

A8, B, < oo &
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the last inequality in (36) is deduced by applying (ii) for n = 1.
By continuing this procedure, we can prove that (ii) is valid for all n € N.
(iii) Applying Lemma 2 and the Calderon-Zygmund theorem we have

e D], = D TS e o)), £ 4O ius ),
SO el 0l < £

The last inequality in (37) is deduced by applying (i).
Finally, we will show that the inequality (30) is valid when 7" is small enough.
We first prove that

max{%— s
eBug € KOpnKop v (39)
Indeed, we consider two cases p > d and p < d. In the case p > d, applying
Lemma 7 (b) obtain e®uy € K?;. Therefore, the relation (39) is valid. In

d_q
the case p < d, we invoke Lemma 7 (b) to deduce that e®ug € KJp , using

Lemma 4 we get ug € L? then applying Lemma 7 (b) to obtain e®ug € Kgm
Therefore, the relation (39) is valid.

From the definition of K} ;- and the relation (39), we deduce that the left-hand
side of the inequality (30) converges to 0 when 7" tends to 0. Therefore the

Ld
inequality (30) holds for arbitrary uy € Hp " when T'(up) is small enough.
(B) Applying Lemma 6, we deduce that the three quantities

tA tA
uol| 4 1o ||e oo and ||€uo|| s 10
Bj @00 doo |

are equivalent, then there exists a positive constant o,44 such that if
HuOH 410 < 0pga the inequality (30) holds for 7" = oco. Therefore, in
Ba

point EA) we can take 7' = +o00.
(a) From Lemma 7 (a), we only need to prove

lim ¢2(+1=9) Hw‘
t—o0

s = 0, where w = B(u,u). (40)

Indeed, this is deduced from the relation (35) and the definition of K .
(b) For n = 1, (b) is deduced from (a) and the inequality (36). In the case
n = 2, (b) is deduced by using the inequality (37) and applying (b) for n = 1.
By continuing this procedure, we can prove that (b) is valid for all n € N.
(c) Using (a) and the inequality (38), we deduce that (c) is valid. O
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