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Abstract

We present normal forms for unfoldings of regular nilpotent contact
points of slow-fast systems in the plane. The normal forms are useful
in the treatment of non-generic jump points and non-generic turn-
ing points. For non-generic jump points, we prove a normal form of
Liénard type, while for non-generic turning points, the normal form is
of Liénard type up to exponentially small error. The techniques being
used are based on Gevrey estimates on formal power series, summation
up to exponentially small error and a Gevrey version of the prepara-
tion theorem for right equivalences. This extension of earlier results is
based on a Gevrey version of Levinson’s preparation theorem, which
we prove.

1 Introduction

This paper deals with local normal forms of slow-fast systems in the context
of a point of loss of normal hyperbolicity. In the framework of geometric
singular perturbation theory, normal form theory usually refers to Fenichel’s
work [4], which is valid when the critical manifold is normally hyperbolic.
Geometrically, this means that slow and fast variables can be meaningfully
split up and that the fast variables have hyperbolic singularities. Normal
hyperbolicity is lost either when the fast variables have singularities with
center directions (for example in the case of slow-fast systems with rapid
oscillations, see [7, 9]) or when there is a tangency between the fast dynamics
and the critical manifold (‘the critical manifold has a fold’). Our interest
goes to the second case of loss of normal hyperbolicity, i.e. tangency between
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the critical manifold and the fast foliation. At such points, there is no
separation between slow and fast variables; our interest goes into locally
reducing to a most elementary form, see (1) below for an example.

We focus on slow-fast systems in two variables, experiencing loss of nor-
mal hyperbolicity at one point due to the presence of a fold in the critical
curve. Generic folds have been dealt with in an earlier paper, here we focus
on contacts of order n. Geometrically, higher order contact points are much
more difficult to deal with, since they may typically unfold in multiple lower
order contact points upon variation of perturbation parameters.

Consider now an (analytic) (ε, λ)-family of local vector fields Xε,λ so that
for (ε, λ) = 0, λ0), the system has a simple curve of singular points expressed
by the zero set of some analytic function F = 0. We assume furthermore
that

X0,λ0 = F.Z0,

where Z0 is a vector field without singular points (it is the reduced vec-
tor field). Normal hyperbolicity can be expressed as 〈Z0,OF 〉 6= 0 along
{F = 0}, i.e. the nontangency of {F = 0} with the orbits of Z0. Under
the condition that Z0 has nowhere singular points, X0,λ0 has a nilpotent
linearization at any point with loss of normal hyperbolicity, and under these
circumstances, the family of vector fields can be brought into the following
(pre-normal) form ([3]): {

ẋ = y − f(x, ε, λ),

ẏ = εg(x, y, ε, λ),
(1)

defined for (x, y, ε, λ) in a neighbourhood of [−x0, x0]×[−y0, y0]×[0, ε0]×Λ, Λ
being a compact subset of parameters inside an euclidean space (and x0 > 0,
y0 > 0, ε0 > 0). For λ = λ0 the following condition expressed that the origin
is a nilpotent contact point of order n: f(0, 0, λ0) = ∂f

∂x (0, 0, λ0) = · · · = ∂n−1f
∂xn−1 (0, 0, λ0) = 0,

∂nf
∂xn (0, 0, λ0) 6= 0.

(2)

Our main result is the following theorem, which generalizes the results in [2]:

Theorem 1. Consider the analytic system (1) and suppose that (2) holds.
Then, there exists a local change of coordinates and regular change of time
that is analytic in (x, y, λ) and smooth in ε, bringing (1) in the form Ẋ = Y −Xn −

∑n−2
k=1 pk(λ, ε)X

k,

Ẏ = ε
[
G(X,λ, ε) +R(X,Y, λ, ε)

]
,

(3)

2



where |R(X,Y, λ, ε)| ≤ Le−
C
ε for some L,C > 0. Suppose additionally

that g(0, λ0, 0) 6= 0. Then for any N ∈ N there exists a CN local change
of coordinate and regular change of time, bringing (3) CN -smoothly in the
form {

Ẋ = Y −Xn −
∑n−2

k=1 pk(λ, ε)X
k,

Ẏ = εG(X,λ, ε).
(4)

This theorem states that it is possible to write the slow-fast system in
Liénard form, up to exponentially small terms. Equation (3) corresponds to
singular second-order differential equations

εX ′′ + F ′(X)X ′ −G(X,λ, ε) = O(e−C/ε),

after rescaling time, where F (X) = Xn +
∑n−2

k=1 pk(λ, ε)X
k.

It is an open question to what extent the exponentially small remainder
can be removed. We only have a partial result in that direction: when the
contact point is of jump type, then it is possible to remove the remainder
term in a CN -smooth way. Two questions hence remain: (1) can one improve
the smoothness, (2) can one remove the remainder R for general contact
points, not necessarily of jump type? These questions remain unanswered
here.

From a formal power series point of view, we conjecture that the normal
form in (3) is optimal: let Ĝ(X,λ, ε) =

∑∞
k=0Gk(X,λ)εk be the formal

power series expansion of g w.r.t. ε, then we claim that any normal form
representation in the same form as (3) of the initial slow-fast system (1)
necessarily has the same power series expansion on the Ẏ -equation. As a
consequence, we can see that not only the order of contact n, but also the
formal series ĝ would be a formal invariant of the slow-fast system. This
is in contrast to the normally hyperbolic case: any pair of planar slow-
fast systems, defined near normally hyperbolic point of a slow-fast system
(outside a singular point in the slow dynamics) are equivalent to one another
(if one allows time reversals to make attracting points equivalent to repelling
points), and also to the normal form {Ẋ = −X, Ẏ = ε}. In other words,
about normally hyperbolic points, slow-fast systems have no invariants. The
question whether or not Ĝ is an invariant near contact points is not resolved
in this paper.

The restriction to planar systems reduces the number of obstructions
from a formal point of view: as soon as there are three dimensions or more,
resonance phenomena may appear either in the slow system, the fast system
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or both. We nevertheless envisage future work on normal forms around
folded singularities (see [10]) of systems with two slow and one fast variable.

To prove Theorem 1, we strongly use the theory of Gevrey functions,
following the ideas put forward in [9] in combination with the use of center
manifolds (for the second part of the theorem). This paper is a follow-up
paper of [2] where normal forms of contact points of order 2 have been
established with the same method. The main difference that we deal in
this paper is the degeneracy of the contact point and the possibility that
the contact point perturbs w.r.t. parameters λ. As a consequence of this
degeneracy, we need an extra element in the construction of the normal
form: a Gevrey version of a preparation theorem developed by Levinson [6].

The paper is organized as follows: In Section 2, we first recall the prepa-
ration theorem for analytic functions in Section 2.1. As a consequence, we
obtain a pre-normal form for (1) in Remark 5. In Section 2.2, we establish a
Gevrey version of this preparation theorem (followed by a formal version in
Section 2.3). The results in Section 2.2 will be used later to prove Theorem 1
in Section 3.

2 Preparation theorem

Should f(x, ε, λ) = f0(x) for some reason then, still under assumption (2),
it is easy to reduce to the case where f0(x) = ±xn. Indeed, in that case
f0(x) = ±xn(c+O(x)) for some c > 0. Writing X = ϕ(x) := x(c+O(x))1/n

shows that f0(ψ(X)) = ±Xn with ψ = ϕ−1. For the slow-fast system (1) it
would imply that the coordinate change X = ϕ(x) together with a nonlinear
scaling of the time t would reduce the system of equations to a form where
the critical curve is given by y = ±Xn (see the proof of Corollary 4 for
details in a more general setting). The crucial step is the fact that we can
rewrite f0(x) as ±Xn by means of a coordinate change. This is in fact the
notion of right equivalence, and is rather trivially exposed in this paragraph
but becomes more delicate if we allow for parameters; this is the work of
Levinson. There is similarly a notion of left equivalence: we can write
f0(x) = g(x)xn with g(0) 6= 0 and from that point of view say that f0(x)
is left-equivalent to xn. This trivial observation led to the more general
Weierstrass preparation theorem for analytic functions, later generalized to
smooth functions by Malgrange-Mather. Quasi-analytic left-equivalence has
been studied in [8]. In this paper, we will only be using right equivalence,
and while smooth versions most certainly appear in the literature, up to our
knowledge there is no Gevrey version of the preparation theorem for right

4



equivalence.

2.1 Levinson’s Preparation theorem

Definition 2. Let x ∈ U ⊂ C, U containing the origin and let µ ∈M ⊂ Cs,
M containing a neighbourhood of µ0. We say that f(x, µ) is analytically
right-equivalent to f̃(x, µ) about (x, µ) = (0, µ0) if there exists a locally
analytic change of coordinates x = ψ(X,µ), with ψ(0, µ0) = 0, such that

f(ψ(X,µ), µ) = f̃(X,µ).

Theorem 3 (Levinson [6]). Let U ⊂ C be a neighbourhood of 0 and let
M ⊂ Cs be a neighbourhood of µ0. Let f : U ×M → C, (x, µ) 7→ f(x, µ) be
an analytic function satisfying the condition

f(0, µ0) =
∂f

∂x
(0, µ0) = · · · = ∂n−1f

∂xn−1
(0, µ0) = 0,

∂nf

∂xn
(0, µ0) 6= 0.

Then there exists an analytic function α(x, µ) defined on a (possibly smaller)
neighbourhood of (0, µ0) such that the coordinate change x = X+X2α(X,µ)
is a right equivalence between f and a polynomial:

f(X +X2α(X,µ), µ) =

n∑
k=0

pk(µ)Xk,

where p0(µ), . . . , pn(µ) are analytic, vanish at µ = µ0 for k < n, and does
not vanish at µ = µ0 for k = n.

We apply this theorem to the case of slow-fast systems, using µ = (ε, λ):

Corollary 4. Let system (1) be analytic, and assume (2). There exists a
real analytic coordinate change and a time rescaling by a strictly positive or
strictly negative real analytic function bringing (1) in the form{

ẋ = y − xn −
∑n−2

k=1 qk(λ)xk,

ẏ = εh(x, y, ε, λ),

where h is analytic and for k = 1, . . . , n− 2 the function qk is analytic and
vanishes at λ = λ0.

Proof. Let x = ψ(X, ε, λ) be the coordinate change suggested by Theorem 3.
By possibly changing ψ to −ψ, we may assume without loss of generality
that ψX > 0. Clearly, we have

ψXẊ = y − f(ψ(X, ε, λ), ε, λ).
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Since ψX > 0 a time rescaling brings the family of slow-fast vector fields in
the form {

Ẋ = y −
∑n

k=0 pk(ε, λ)Xk,

ẏ = εĥ(X, y, ε, λ),

where ĥ(X, y, ε, λ) := g(ψ(X, ε, λ), y, ε, λ)/ψX(X, ε, λ). Letting Y = y −
(
∑n

k=0 pk(ε, λ)xk −
∑n

k=0 pk(0, λ)xk) gives rise to a new system{
Ẋ = Y −

∑n
k=0 qk(λ)Xk,

Ẏ = εh(X,Y, ε, λ),
(5)

where qk(λ) := −pk(0, λ) and h is an analytic function. Due to assumptions
(2) it is clear that qn(λ0) 6= 0, so an additional scaling of X allows to reduce
to the case where qn(λ) ≡ ±1, depending on the sign of qn(λ0). In the case
of a negative sign, we change (Y, t)→ (−Y,−t) to obtain the form where the
coefficient at xn is exactly one. The difference between the required form
and (5) is that we have to remove the terms in the summation corresponding

to k = 0, and k = n− 1. Replacing X by X − qn−1(λ)
n−1 allows to remove the

term qn−1(λ)Xn−1; afterwards we can remove the constant term by making
a translation in the y-direction. This finishes the proof.

Remark 5. A normal form for an unfolding would mean that we consider
the case {

ẋ = y − xn −
∑n−2

k=1 µkx
k,

ẏ = εh(x, y, ε, λ),

where the parameter space is now Λ×M , with M = {(µ1, . . . , µn−2)}.

2.2 Preparation theorem in the Gevrey class

A Gevrey version of Theorem 3 could be interpreted in two ways: given func-
tions f(x, µ), we could consider the Gevrey property w.r.t. the x-variable,
or w.r.t. the parameter. In view of this paper, we only need Gevrey-results
in the parameter direction, and leave other questions for future research.

2.2.1 Definitions and statement of the result

Throughout this section we will consider functions in (x, λ, ε); typically those
functions behave analytically w.r.t. (x, λ) and are Gevrey-1 divergent in ε
(definition soon follows). The parameter λ is supposed s-dimensional, s ≥ 1.
Since Gevrey functions are defined on sectors, we introduce a notation for a
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sector: for ρ > 0 and (ϕ, θ) ∈ (0, 2π)× (0, π), the complex sector Sρ,ϕ,θ with
vertex 0 is an open subset of C defined by

Sρ,ϕ,θ :=
{
z ∈ C : arg(z) ∈ (ϕ− θ, ϕ+ θ), 0 < |z| < ρ

}
.

Definition 6. Let Sρ,ϕ,θ denote a complex sector. Let U be an open neigh-
borhood of Cs and let a : U×Sρ,ϕ,θ → C, (λ, ε) 7→ a(λ, ε), be a bounded and
analytic function. The function a is called Gevrey-1 in ε (uniformly in λ)
of type T , if there exists a formal power series

∑∞
k=0 ak(λ)εk with analytic

coefficient functions, if there exists a positive α, and if for every subsector
S′ there exists a positive constant CS′ such that∣∣∣∣∣a(λ, ε)−

n−1∑
k=0

ak(λ)εi

∣∣∣∣∣ ≤ CS′Tn Γ(α+ n)|ε|n, ∀(λ, ε) ⊂ U × S′.

Gevrey-1 functions on sectors S can in principle not be evaluated at
ε = 0, since 0 /∈ Sρ,ϕ,θ, but the Gevrey-property shows that such functions
have a smooth extension at s = 0 and have a Taylor series there. At different
places in the statement of the theorem below, we will therefore substitute
ε = 0 without mentioning the smooth extension that is being used:

Theorem 7 (Preparation Theorem for Gevrey Functions). Let U be an
open set of Cs+1 containing the point (0, λ0) ⊂ C × Cs. Let f : U × S →
C, (x, λ, ε) 7→ f(x, λ, ε) be an bounded and analytic function, with S ⊂ C
is a sector of the origin with open angle smaller than π. Assume that f is
Gevrey-1 in ε (uniformly in (x, λ)) and satisfies

f(0, λ0, 0) =
∂f

∂x
(0, λ0, 0) = · · · = ∂n−1f

∂xn−1
(0, λ0, 0) = 0,

∂nf

∂xn
(0, λ0, 0) 6= 0.

Then, possibly after shrinking the neighbourhood U and the radius of the
sector S, there exists an analytic function α(x, λ, ε) defined on U×S so that
the coordinate change x = X + X2α(X,λ, ε) is a right equivalence between
f and a polynomial:

f(X +X2α(X,λ, ε), λ, ε) =
n∑
k=0

pk(λ, ε)X
k.

Moreover, the function α is analytic in (x, λ) and Gevrey-1 in ε.

Note: By the right equivalence, one automatically has

p0(λ0, 0) = · · · = pn−1(λ0, 0) = 0 and pn(λ0, 0) 6= 0.

The proof of Theorem 7 is spread over the next two subsections 2.2.2 and
2.2.3.
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2.2.2 Banach spaces of functions defined on sectors

The definition of Gevrey function does not easily permit us to define a proper
Banach space with proper norm containing Gevrey functions. Instead we
will consider below Banach spaces of bounded functions defined on sectors,
ignoring at that time the asymptotic properties required to have Gevrey-1
functions. There is a convenient way to obtain Gevrey-asymptotic proper-
ties of bounded functions defined on complex sectors, this is the theorem of
Ramis-Sibuya. So before stating the Banach space in which we will work
during the course of proving Theorem 7, let us first recall the relation be-
tween Gevrey asymptotics and bounded analytic functions on sectors.

For this purpose, we introduce a notion of sectorial covering: A good
sectorial covering of the origin in C is a finite (ordered) number of complex
sectors Sj := Sρ,ϕj ,θj , j = 1, . . . ,m, so that the following holds:

(i) ∪mj=1Sj = B(0, ρ) \ {0}.

(ii) 2θj < π for all j = 1, . . . ,m (i.e. no sector has an opening angle wider
than π).

(iii) For j, k = 1, . . . ,m with j < k, the intersection Sj ∩ Sk is not empty
if and only if k = j + 1 or (j, k) = (1,m).

The following proposition makes it possible for a given Gevrey function
f : U × S → C on a sector S to analytically extend the definition on a full
neighborhood of the origin, making a finite number of at most exponentially
small jumps:

Theorem 8. Let U be an open neighborhood of Cs and S be a complex
sector of the origin and f : U ×S → C be analytic and Gevrey-1 asymptotic
of type T to some formal series f̂ . Let T̃ > T be fixed. Then, there exists
a good covering (Sj)j=1,...,m and a sequence of functions (fj)j=1,...,m with
fj : Sj → C is analytic and bounded and (f1, S1) = (f, S), and all fj have
the following properties:

(i) The functions fj are also Gevrey-1 asymptotic (of type T̃ ) to f̂ .

(ii) There is a C > 0 so that for all two adjacent sectors (Sj , Sk) one has

|fj(λ, ε)− fk(λ, ε)| ≤ Ce
− 1
T̃ |ε| for λ ∈ U, ε ∈ Sj ∩ Sk.

The following theorem is the inverse of the preceding proposition.
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Theorem 9 (Ramis-Sibuya). Let (Sj)j=1,...,m be a good sectorial covering
and let fj : U × Sj → C be analytic and bounded. Suppose that for all two
adjacent sectors (Sj , Sk) we have

|fj(λ, ε)− fk(λ, ε)| = O(e
− 1
T |ε| ) ∀ε ∈ Sj ∩ Sk, as ε→ 0,

for some T > 0. Then, all functions fj are Gevrey-1 asymptotic of type T

inside Sj to a common formal power series f̂ .

(For the proofs of the above two theorems, see for example Proposi-
tion 3.20 and Theorem 4.1 of [5].)

We denote by B(0; r), B(λ0; r̂) the open ball with the radius r, r̂ centered
at 0 ∈ C, λ0 ∈ Cs, respectively. We finally write Xr,r̂;ρ,(ϕ,θ) for the space of
all bounded analytic functions α : B(0; r)×B(λ0; r̂)× Sρ,ϕ,θ → C, endowed
with the sup-norm, i.e.

‖α‖∞ := sup
(x,λ,ε)∈B(0;r)×B(λ0;r̂)×Sρ,ϕ,θ

|α(x, λ, ε)|.

It is well-known that (Xr,r̂;ρ,(ϕ,θ), ‖ · ‖∞) is a Banach space. Let Kr,r̂;ρ,(ϕ,θ)
be the closed subset of the space Xr,r̂;ρ,(ϕ,θ) of functions α satisfying that

α(0, λ, ε) = 0 ∀λ, ε. (6)

We finish this subsection by proving a lemma that will be referenced later
on. It describes a sort of shift operator on the space just introduced, in
the following sense: a function α(x, λ, ε), written down as a power series in
powers of x, is shifted to the left, and the leftmost term (the term with x1)
is cancelled:

Lemma 10. The map S defined by

Sα(x, λ, ε) :=

{
1
xα(x, λ, ε)− ∂α

∂x (0, λ, ε), if x 6= 0,

0, if x = 0,

is a continuous linear map Kr,r̂;ρ,(ϕ,θ) → Kr,r̂;ρ,(ϕ,θ) with operator norm

‖S‖∞ ≤ 2
r . Furthermore,

Snα(x, λ, ε) =

 1
xn

[
α(x, λ, ε)−

∑n
k=1

1
k!
∂kα
∂xk

(0, λ, ε)xk
]
, if x 6= 0,

0, if x = 0.
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Proof. Obviously, the map S is well-defined and linear. It remains to esti-
mate the norm ‖S‖∞. By the maximum principle, we have

‖Sα‖∞ ≤
1

r
‖α‖∞ + sup

λ∈B(λ0;r̂),ε∈Sρ,(ϕ,θ)

∣∣∣∣∂α∂x (0, λ, ε)

∣∣∣∣ . (7)

Using Cauchy’s integral formula, we obtain that∣∣∣∣∂α∂x (0, λ, ε)

∣∣∣∣ =

∣∣∣∣ 1

2πi

∮
α(x, λ, ε)

x2
dx

∣∣∣∣ ≤ 1

r
‖α‖∞,

which together with (7) implies that ‖S‖∞ ≤ 2
r . The statement on Sn

follows directly from the definition of the operator S.

2.2.3 Proof of Theorem 7

Without loss of generality, and merely for the sake of simplicity, we assume
that ∂nf

∂xn (0, λ0, 0) = 1.
Let (Sj)j=1,...,m, where Sj = Sρ,ϕj ,θj , be a good covering and (fj)j=1,...,m

a sequence of functions with fj : B(0; r) × B(λ0; r̂) × Sj → C is bounded
and analytic and (f1, S1) = (f, S) and all fj satisfy properties (i) and (ii) in
Theorem 8, i.e.

(i) The functions fj are Gevrey-1 asymptotic to f̂(x, λ, ε) =
∑∞

k=0 ak(x, λ)εk.

(ii) There is a L > 0 so that for all two adjacent sectors (Sj , Sk) one has

|fj(x, λ, ε)− fk(x, λ, ε)| ≤ Le
− 1
T |ε| for ε ∈ Sj ∩ Sk,

where T is a positive constant.

Since all fj share the same asymptotic expansion w.r.t. ε with the one from
f , Assumption (2) generalizes to all fj :

∂kfj
∂xk

(0, λ0, 0) = 0 for k = 0, . . . , n− 1 and
∂nfj
∂xn

(0, λ0, 0) = 1. (8)

In particular, it means that

fj ∈ Xj := Xr,r̂;ρ,(ϕj ,θj).

In the sequel of the proof, we will most often work in the Banach space

Kj := Kr,r̂;ρ,(ϕj ,θj)
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and look in there for a change of variables of the form X = x+ xα(x, λ, ε),
thereby exchanging the roles of x and X as compared to the statement of
the theorem, and assuming that α ∈ Kj . The α in the statement is later
obtained after dividing by x (we will comment on it at the end of the proof).
Note that we do not necessarily have fj ∈ Kj .

For each fixed j, we will find an αj ∈ Kj so that fj(x + xα, λ, ε) is a
polynomial in x with coefficient functions in (λ, ε). In a second step, we
show that each two choices αj and αk are exponentially close to each other
in the intersection of adjacent sectors, hence allowing us to use the Theorem
of Ramis-Sibuya to conclude.

Step 1. Fixed point αj ∈ Kj. We Taylor expand fj as follows:

fj(x, λ, ε) =
n∑
k=0

∂kfj
∂xk

(0, λ, ε)
xk

k!
+ gj(x, λ, ε). (9)

Note that gj = xn · Sn(fj) is part of Kj , and satisfies

∂kgj
∂xk

(0, λ, ε) = 0 for k = 0, . . . , n. (10)

Since gj ∈ Kj is bounded, it follows that using the Cauchy’s integral formula
and upon making the radius r a bit smaller if necessary, that we may assume

that
∂kgj
∂xk

are also in the space Kj . This additional property of the function
gj and (10) implies that there exists a positive constant C1 such that for all
(x, λ, ε) ∈ B(0; 2r)×B(λ0; r̂)× Sρ;ϕj ,θj we have

|gj(x, λ, ε)| ≤ C1r
n+1 and

∣∣∣∣∂gj∂x (x, λ, ε)

∣∣∣∣ ≤ C1r
n. (11)

By (9) for each α ∈ Kj , we have the following expansion:

fj(x+ xα, λ, ε) =

n∑
k=0

1

k!

∂kfj
∂xk

(0, λ, ε) (x+ xα)k + gj(x+ xα, λ, ε).

which we split up as the polynomial
∑n

k=0
1
k!
∂kfj
∂xk

(0, λ, ε)xk together with a
remainder term

gj(x, λ, ε) +
1

(n− 1)!

∂nfj
∂xn

(0, λ, ε)xnα(x, λ, ε) +Rj(α)(x, λ, ε), (12)
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where the function Rj : Kj → Kj is given by

Rj(α) := gj(x+ xα, λ, ε)− gj(x, λ, ε)

+
n−1∑
k=1

1

k!

∂kfj
∂xk

(0, λ, ε)
k−1∑
i=0

Cikx
kαk−i

+
1

n!

∂nfj
∂xn

(0, λ, ε)

n−2∑
i=0

Cinx
nαn−i.

Note that the map Rj is a well-defined map Kj → Kj . In order for the
change of variables X = x+ xα to lead to a polynomial f(x+ xα, λ, ε), we
need that Sn applied to (12) is equal to 0, where S is the shift-operator
introduced in Lemma 10. We therefore have

Sngj +
1

(n− 1)!

∂nfj
∂xn

(0, λ, ε)α+ SnRj(α) = 0.

We hence find the following fixed-point formulation for α:

α = − (n− 1)!
∂nfj
∂xn (0, λ, ε)

Sn
(
gj +Rj(α)

)
. (13)

Now α is a fixed point op the map Tj : Kj → Kj defined by

Tjα := − (n− 1)!
∂nfj
∂xn (0, λ, ε)

Sn
(
gj +Rj(α)

)
. (14)

For a γ > 0, let B(γ) ⊂ Kj denote the closed ball of elements α of norm
bounded by γ. We will now choose γ, r, r̂, ρ such that the map Tj maps B(γ)
into itself and is contractive on B(γ). Let α, α̂ ∈ B(γ) be arbitrary and α 6=
α̂. To estimate ‖Tjα−Tjα̂‖∞, we consider the difference ‖Rj(α)−Rj(α̂)‖∞.
A direct computation yields that for any k = 1, . . . , n− 1:∥∥∥∑k−1

i=0 C
i
kx

kαk−i −
∑k−1

i=0 C
i
kx

kα̂k−i
∥∥∥
∞

‖α− α̂‖∞
≤

k−1∑
i=0

(k − i)Cikrkγk−i−1.

Similarly one has∥∥∥∑n−2
i=0 C

i
nx

nαn−i −
∑n−2

i=0 C
i
nx

nα̂n−i
∥∥∥
∞

‖α− α̂‖∞
≤

n−2∑
i=0

(n− i)Cinrnγn−i−1.
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By the Mean Value Theorem, for any x ∈ B(0; r), λ ∈ B(λ0; r̂) and ε ∈
Sρ;ϕj ,θj we have

|gj(x+ xα, λ, ε)− gj(x+ xα̂, λ, ε)|
‖α− α̂‖∞

≤ r sup
(∗)

∣∣∣∣∂gj∂x (x, λ, ε)

∣∣∣∣ ,
where the supremum (*) is taken for x ∈ B(0; r + rγ), λ ∈ B(λ0; r̂), ε ∈
Sρ;ϕj ,θj . Let γ := r

1
2 with r < 1 which is chosen later. Combining the

preceding inequalities yields that

‖Rj(α)−Rj(α̂)‖∞
‖α− α̂‖∞

≤ r sup
(∗)

∣∣∣∣∂gj∂x (x, λ, ε)

∣∣∣∣
+C2

n−1∑
k=1

sup
(∗∗)

∣∣∣∣∂kfj∂xk
(0, λ, ε)

∣∣∣∣
+C3 sup

(∗∗)

∣∣∣∣∂nfj∂xn
(0, λ, ε)

∣∣∣∣ rn+ 1
2 ,

where the supremum (**) is taken for λ ∈ B(λ0; r̂), ε ∈ Sρ;ϕj ,θj , and where

C2 and C3 depend only on n. Note that
∂kfj
∂xk

(0, λ0, 0) = 0 for k = 1, . . . , n−1.

Hence, choosing r̂ = ρ := rn+
1
2 gives that

n−1∑
k=1

sup
(∗∗)

∣∣∣∣∂kfj∂xk
(0, λ, ε)

∣∣∣∣ = O(rn+
1
2 ),

which together with (11) implies that there exists a constant C such that

‖Rj(α)−Rj(α̂)‖∞ ≤ Crn+
1
2 ‖α− α̂‖∞.

Finally, from
∂nfj
∂xn (0, λ0, 0) = 1, we can choose r small enough such that∣∣∣∣∂nfj∂xn

(0, λ, ε)

∣∣∣∣ ≥ 1

2
for all λ ∈ B(λ0, r̂), ε ∈ Sρ;ϕj ,θj .

Thus, by the definition of Tj as in (14) and Lemma 10 we have

‖Tj(α)− Tj(α̂)‖∞ ≤ 2(n− 1)!
2n

rn
‖Rj(α)−Rj(α̂)‖∞

≤ C 2n+1(n− 1)! r
1
2 ‖α− α̂‖∞.

13



So, letting r small enough so that ‖Tj(α)−Tj(α̂)‖∞ ≤ 1
2‖α− α̂‖∞, the map

Tj is Lipschitz with Lipschitz constant less than L < 1
2 . It remains to choose

r such that Tj maps the ball B(γ) into itself. To obtain this property, we
use

‖Tj(α)‖∞ ≤ ‖Tj(α)− Tj(0)‖∞ + ‖Tj(0)‖∞ ≤ L‖α− 0‖∞ + ‖Tj(0)‖∞

‖Tj(0)‖∞ = (n− 1)!

∥∥∥∥∥ Sngj
∂nfj
∂xn (0, λ, ε)

∥∥∥∥∥
∞

≤ 2n+1(n− 1)!

rn
‖gj‖∞,

which together with (11) implies that

‖Tj(0)‖∞ ≤ C1
2n+1(n− 1)!

rn
rn+1 = C12

n+1(n− 1)! r
1
2γ.

Hence, we can choose r small enough such that ‖Tj(0)‖∞ ≤ γ
2 . So, for any

α ∈ B(γ) we have ‖Tj(α)‖∞ ≤ γ.

Step 2. Exponentially small differences. Let αj ∈ Kj be the unique
fixed point of Tj , for j = 1, . . . ,m. We will prove that αj is Gevrey-1 in ε
(uniformly in (x, λ)), using the Theorem of Ramis-Sibuya. Note that fj−fk
are exponentially small in adjacent sectors, by construction. By application
of Cauchy’s lemma it is easily seen that we may assume that any finite
number of partial derivatives w.r.t. x have the same property concerning
exponential closeness to each other. Similarly, Snfj −Sngk is exponentially
small.

As a consequence, not only gj − gk is exponentially small (remember
that gj = xnSnfj), but also Rj(α) − Rk(α) is exponentially small for all
‖α‖∞ ≤ γ, it suffices to take a look at the definition of Rj to see this.

From those properties, it easily follows that also Tj(α)− Tk(α) is expo-
nentially small. Let us now write

‖αj − αk‖∞ = ‖Tj(αj)− Tk(αk)‖∞
= ‖Tj(αj)− Tj(αk)‖∞ + ‖Tj(αk)− Tk(αk)‖∞

≤ 1

2
‖αj − αk‖∞ +Me−1/T |ε|.

The exponential closeness of αj and αk follow directly, and the theorem
of Ramis-Sibuya applies, showing all αj are Gevrey-1 asymptotic on Sj ,
uniformly in (x, λ).
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The transformation announced in the statement of the theorem can be
defined as α := 1

xα1. The division by x does not harm the Gevrey estimates
since α1 ∈ K1, so it is O(x) anyway (a detailed proof of the Gevrey properties
of α would use the maximum principle to deal with the division in x). This
completes the proof of Theorem 7.

2.3 A formal version of Theorem 7

Here, we establish a formal series version of the Gevrey Preparation Theo-
rem 7. To that end, let us first introduce a definition

Definition 11. A formal series â(ε) =
∑∞

i=0 anε
n is called Gevrey-1 in ε of

type A, if there exist positive constants C,α such that

|an| ≤ CAn/σΓ(α+ n).

The theorem of Borell-Ritt-Gevrey (see for example See [5, Lemma 3.15])
states that for any Gevrey-1 series f̂ of type A and for any sector S = Sρ,ϕ,θ
(with “small” opening angle 2θ ≤ π) there exists a bounded analytic function
f : S → C so that f is Gevrey-1 asymptotic to f̂ of type T := A/ cos θ (see
definition of Gevrey function). This results allows to relate a statement on
formal series to a statement on Gevrey functions and is the key to proving
the next theorem:

Theorem 12 (Preparation Theorem for Gevrey Formal Series). Let U be an
open set of Cs+1 containing the point (0, λ0) ⊂ C×Cs. Let (ai(x, λ))∞i=0 be a
sequence of analytical functions from U to C. Suppose that the formal series∑∞

i=0 ai(x, λ)εi is Gevrey-1 in ε (uniformly in (x, λ)). Assuming additionally
that

a0(0, λ0) = · · · = ∂n−1a0
∂xn−1

(0, λ0) = 0,
∂na0
∂xn−1

(0, λ0) 6= 0. (15)

Then, there exists a Gevrey-1 formal series
∑∞

i=0 αi(x, λ)εi in ε such that
the change of variable X = x+ x2

∑∞
i=0 αi(x, λ)εi yields that

∞∑
i=0

ai(X,λ)εi =
n∑
k=0

pk(λ, ε)x
k,

where pk(λ, ε) =
∑∞

i=0 a
(k)
i (λ)εi is a Gevrey-1 formal series in ε.
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Proof. According to the theorem of Borel-Ritt-Gevrey, there exists an ana-
lytic function f : U × Sρ,ϕ,θ → C that is Gevrey-1 asymptotic to the formal
power series

∑∞
i=0 ai(x, λ)εi. Clearly (15) implies the equivalent condition

in the statement of Theorem 7. Hence in the light of that theorem, there
exists an analytic function α(x, λ, ε) defined on (a possibly smaller) U × S
such that the coordinate change x = X+X2α(X,λ, ε) is a right equivalence
between f and a polynomial:

f(X +X2α(X,λ, ε), λ, ε) =

n∑
k=0

pk(λ, ε)X
k.

Then the Gevrey-1 asymptotic
∑∞

i=0 αi(x, λ)εi of α(x, λ, ε) is the desired
formal series.

3 Proof of Theorem 1

In this section, we use the Gevrey preparation theorem to prove Theorem 1.
We follow the guidelines of [2]. As a first step, we use Corollary 4 and a
linear rescaling of the singular parameter ε 7→ εδ, to rewrite (1) as{

ẋ = y − q(x, λ),

ẏ = εδ h(x, y, λ, εδ),
(16)

where h is analytic and q(x, λ) = xn+
∑n−2

i=1 qi(λ)xi with qi are analytic and
qi vanish at λ = λ0, and δ is a small but fixed positive constant.

The dilatation trick ε 7→ δε will become handy since the requested nor-
mal form transformation will be seen as a fixed point of a map, whose
Lipschitz constant is shown to be O(δ). Hence by choosing δ small enough,
the contraction property is guaranteed. Since for any fixed δ > 0, the re-
quested normal form transformation will be valid for arbitrarily small values
of ε in a sector, it suffices to rescale back the sector by a factor δ to find
the normal form result for the original system without δ. In other words,
we will restrict to proving Theorem 1 for (16), for sufficiently small δ.

Instead of directly establishing an equivalence between (16) and (3), we
first establish an intermediary equivalence between (16) and{

ẋ = Y − ϕ(x, ε, λ),

Ẏ = εG̃(x, λ, ε) + εR̃(x, Y, λ, ε),
(17)
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with R̃ exponentially small in ε. The homological equation arises from
applying a coordinate change of the form Y = y+ εV (x, y, λ, ε) to (17) and
imposing that the resulting system is parallel to (16):∣∣∣∣∣ y − q(x, λ) (y + εV − ϕ)(1 + εVy)

δh(x, y, λ, δε) G̃+ R̃(x, y + εV, λ, ε)− Vx(y + εV − ϕ)

∣∣∣∣∣ = 0. (18)

Resolving (18) in terms of the unknowns ϕ, G̃, R̃ and V is the topic of
Section 3.2. Section 3.1 prepares a Banach setting to do so.

3.1 Banach spaces and appropriate norms

Below we will consider power series in ε with functions in (x, y, λ) as coef-
ficients. The coefficient function with εk will be assigned to a k-dependent
Banach space. Let r, r̂ be sufficient small and consider for a given 0 < ρ < r
the scalar function

d(y) =

{
r − |y| if |y| ≥ ρ,
r − ρ if |y| < ρ.

This function is used to define, for each k ∈ N, a norm that is equivalent to
the sup-norm (on a slightly smaller disk):

‖a‖k := sup
|x|,|y|<r,|λ−λ0|<r̂

|a(x, y, r)| d(y)k. (19)

Such sequence of norms is called a Nagumo norm, following [9]. Note that
the Nagumo norm defined above depends on the choice of ρ but we do not
indicate this. We also refer the reader to [1, Section 3] for a list of references
relating to this notion. Let us now define

Ar,r̂ :=
{
a(x, y, λ) : a is analytic for |x|, |y| < r, |λ− λ0| < r̂, ‖a‖k <∞

}
.

In the next lemma, the function q and its coefficient functions qi are taken
from the family of vector fields (16). Using the fact that q1(λ0) = · · · =
qn−1(λ0) = 0, for each r we can choose r̂ such that

|q(x, λ)| ≤ 2rn for |x| ≤ r, |λ− λ0| ≤ r̂. (20)

The lemma below contains three parts. The first part is Nagumo’s lemma,
which shows that one can control the size of a derivative of a function based
on the size of the function itself (without shrinking the domain). This is
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precisely the reason why the norms are chosen in the above particular way.
The second and third parts of the lemmma can be understood as follows:
suppose one writes the function a(x, y, λ) as a series

∞∑
k=0

ak(x, λ)(y − q(x, λ))k,

then part (ii) of the lemma associates to a function a the zero-order term
of the series, namely a0, and part (iii) of the lemma shifts the series to the
left:

Lemma 13. Suppose that r, ρ satisfies 0 < 2rn < ρ < r and r̂ satisfies (20).
Then, the following statements hold for all k ∈ N:

(i) For any function a ∈ Ar,r̂, we have ‖∂a∂y‖k+1 ≤ (k + 1)e‖a‖k, where

e := limn→∞
(
1 + 1

n

)n
is the Euler number.

(ii) Define the function Z : Ar,r̂ → Ar,r̂ by Za(x, y, λ) := a(x, q(x, λ), λ).
Then, ‖Za‖k ≤ ‖a‖k.

(iii) Define the shift function S : Ar,r̂ → Ar,r̂ by

Sa(x, y, λ) :=


a(x,y,λ)−a(x,q(x,λ),λ)

y−q(x,λ) , if y 6= q(x, λ),

∂a
∂y (x, q(x, λ), λ), if y = q(x, λ).

Then,

‖Sa‖k ≤
2

ρ− 2rn
‖a‖k.

Proof. Analog to [2, Lemma 1].

Space of formal power series

We consider formal power series in ε with coefficient functions in Ar,r̂

A(x, y, λ, ε) =

∞∑
k=0

Ak(x, y, λ)εk.

Let us now define a suitable norm on the space of formal power series.
Choose ρ < r and define

Er,r̂,ρ :=

{
A(x, y, λ, ε) =

∞∑
k=0

Ak(x, y, λ)εk : ‖A‖r,r̂,ρ :=

∞∑
k=0

‖Ak‖k
k!

<∞

}
.

(21)
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In the following proposition, we state and prove some fundamental properties
of the space Er,r̂,ρ.

Proposition 14. The space Er,r̂,ρ is a Banach space when equipped with
the norm ‖ · ‖r,r̂,ρ defined as in (21). Furthermore, the following statements
hold:

(i) The norm ‖ · ‖r,r̂,ρ is sub-multiplicative, i.e. for A,B ∈ Er,r̂,ρ, we have
‖AB‖r,r̂,ρ ≤ ‖A‖r,r̂,ρ‖B‖r,r̂,ρ.

(ii) Let A =
∑∞

k=0Ak(x, y, λ)εk ∈ Er,r̂,ρ. Then, A is a Gevrey formal
series of order 1 in ε (uniformly in (x, y, λ)).

Proof. Obviously, the space (Er,r̂,ρ, ‖ · ‖r,r̂,ρ) is a normed vector space, see
e.g. [1, Page 102]. It remains to show that (Er,r̂,ρ, ‖ · ‖r,r̂,ρ) is complete. For
this purpose, let (An)n∈N be a Cauchy sequence of elements in Er,r̂,ρ. Then,
for each k ∈ N the sequence of functions (Ank(x, y, λ))n∈N is also a Cauchy
sequence in the space (Ar,r̂, ‖ · ‖k). Thus, by (19) for each fixed (x, y, λ)
with |x|, |y| < r, |λ − λ0| < r̂, the limit Ak(x, y, λ) := limn→∞A

n
k(x, y, λ)

exists. Due to analyticity of Ank(x, y, λ), the limit function Ak(x, y, λ) is also
analytic. Let ε > 0 be arbitrary. Then, there exists N ∈ N such that for all
n,m ≥ N we have

∞∑
k=0

‖Ank −Amk ‖k
k!

≤ ε

2
,

letting m→∞ yields that

∞∑
k=0

‖Ank −Ak‖k
k!

≤ ε,

which proves that limn→∞ ‖An−A‖r,r̂,ρ = 0 and thus we have that the space
(Er,r̂,ρ, ‖ · ‖r,r̂,ρ) is a Banach space. To conclude the proof, we are now going
to prove the properties (i) and (ii) of this space:
(i) Let A =

∑∞
k=0Ak(x, y, λ, ε)ε

k and B =
∑∞

k=0Bk(x, y, λ, ε)ε
k be elements

of Er,r̂,ρ. Then,

‖(AB)n‖n
n!

=
‖
∑n

k=0Ak(x, y, λ)Bn−k(x, y, λ)‖n
n!

≤
n∑
k=0

‖Ak(x, y, λ)‖k
k!

‖Bn−k(x, y, λ)‖n−k
(n− k)!

,

which implies that ‖AB‖r,r̂,ρ ≤ ‖A‖r,r̂,ρ‖B‖r,r̂,ρ.
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(ii) Let A =
∑∞

k=0Ak(x, y, λ)εk ∈ Er,r̂,ρ. By (21), there exists C > 0 such
that

‖An(x, y, λ)‖n ≤ Cn! for all n ∈ N.
From definition of Nagumo’s norm as in (19), we derive that

‖An(x, y, λ)‖n ≥ sup
|x|,|y|<ρ,|λ−λ)|<r̂

|An(x, y, λ)|(r − ρ)n,

which implies that

sup
|x|,|y|<ρ,|λ−λ)|<r̂

|An(x, y, λ)| ≤ C
(

1

r − ρ

)n
n!.

Thus, A is a Gevrey formal series of order 1 in ε (uniformly in (x, y, λ)).

Some useful lemmas

We define the following operators ∂
∂y ,S, I : Er,r̂,ρ → Er,r̂,ρ as follows: For

each A(x, y, λ, ε) =
∑∞

k=0 ak(x, y, λ)εk ∈ Er,r̂,ρ, let

∂

∂y
A(x, y, λ, ε) =

∞∑
k=0

∂ak
∂y

(x, y, λ)εk,

SA(x, y, λ, ε) =
∞∑
k=0

Sak(x, y, λ)εk

IA(x, y, λ, ε) :=

∞∑
k=0

(∫ x

0
ak(u, y, λ) du

)
εk.

Lemma 15. The operators ε ∂∂y ,S and I are linear operators from Er,r̂,ρ into
itself and ∥∥∥∥ε ∂∂y

∥∥∥∥
r,r̂,ρ

≤ e, ‖S‖r,r̂,ρ ≤
2

ρ− 2rn
, ‖I‖r,r̂,ρ ≤ r. (22)

Proof. See [2, Proposition 2 & 3].

Lemma 16. For all A ∈ Er,r̂,ρ with ‖A‖r,r̂,ρ < 1
r , then 1

1−εA ∈ Er,r̂,ρ and∥∥∥∥ 1

1− εA

∥∥∥∥
r,r̂,ρ

≤ 1

1− r‖A‖r,r̂,ρ
.

The map A 7→ 1
1−εA is Lipschitz continuous with Lipschitz constant 4r on

the closed ball around 0 with radius 1
2r .

Proof. See [2, Lemma 2].
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3.2 Existence of formal normal form transformation

We first eliminate all but one unknown in the homological equation. It will
lead to the fixed-point formula (24). The reduction to this form will be kept
concise as it can also be found in [2]. We look at (18) from a formal power
series point of view, thereby making one of the unknowns (the exponentially
small R̃) vanish:∣∣∣∣∣ y − q(x, λ) (y + εV − ϕ)(1 + εVy)

δh(x, y, λ, δε) G̃− Vx(y + εV − ϕ)

∣∣∣∣∣ = 0. (23)

A necessary condition for (23) to be satisfied is that the zero sets of both
elements on the top row are identical (they are nullclines of the two vector
fields). It means that ϕ = q + εV (x, q(x, λ), λ, ε). Written in terms of the
operators defined in the previous section, we have ϕ = q + εZV , and we
hence also have

y + εV − ϕ = (y − q).S(y + εV − ϕ) = (y − q)(1 + εSV ).

This observation allows to eliminate the unknown ϕ from (23), which then
reduces to

G̃− Vx(y − q)(1 + εSV ) = δh.(1 + εSV )(1 + εVy)

There are still two unknowns here, G̃ and V . However G̃ does not depend
on y, implying that S(G̃) = 0, so applying S to both sides of the equation
eliminates G̃ and reduces (after remembering that S acts by shifting a power
series in y − q to the left) to

−Vx(1 + εSV ) = δS [h.(1 + εSV )(1 + εVy)] .

We see that if V ∈ Er,r̂,ρ is a fixed point of the map L : Er,r̂,ρ → Er,r̂,ρ defined
by

LV := −δ I

S
[
h
(

1 + ε∂V∂y

)
(1 + εSV )

]
1 + εSV

 , (24)

then equation (16) is formally equivalent to (17).

By virtue of Lemma 15 and Lemma 16, we can choose small but fixed
δ, γ such that that L(Bγ(0)) ⊂ Bγ(0), where Bγ(0) denotes the ball of
radius γ centered at 0 of the Banach space Er,r̂,ρ, and L is contractive in this
closed ball. Therefore, L has a fixed point in Bγ(0) denoted by V (x, y, λ, ε).
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Note that using Proposition (14)(ii), the series V is analytic in (x, y, λ) and
Gevrey-1 in ε.

The step from (17) to (3) is based on the Gevrey preparation Theorem,
Theorem 12, to find a change of variable x = X +X2A(X,λ, ε), where A is
analytic in (X,λ) and Gevrey-1 in ε, such that

ϕ(X +X2A(X,λ, ε), λ, ε) =
n∑
k=0

pk(λ, ε)X
k, (25)

where pk(λ, ε) =
∑∞

i=0 a
(k)
i (λ)εi is a Gevrey-1 formal series in ε and

a
(0)
0 (λ0) = · · · = a

(n−1)
0 (λ0) = 0, a

(n)
0 (λ0) 6= 0.

Using this transformation, we find, from (17), the equation{
(1 +X2AX + 2XA)Ẋ = Y − q(x, λ)−

∑n
k=0 pk(λ, ε)X

k,

Ẏ = εG(X +X2A, λ, ε).

Using a time scaling it is equivalent to{
Ẋ = Y −

∑n
k=0 pk(λ, ε)X

k,

Ẏ = εH(X,λ, ε),

where H is again analytic in (x, λ) and Gevrey-1 in ε. Dividing Y by qn(λ, ε),
we are able to scale the highest coefficient of the polynomial

∑n
k=0 pk(λ, ε)X

k

to be equal to 1. To conclude the proof, we need to remove the terms in the
summation corresponding to k = 0, k = n − 1. However, this work can be
done similarly as in the proof of Corollary 4.

3.3 Finishing the proof of Theorem 1

So far, we have proved that under formal Gevrey transformations, a slow
fast system near a nilpotent contact point of order n can be written as in
(3). According to the Theorem of Borel-Ritt-Gevrey, we are able to find
Gevrey functions realizing these formal Gevrey transformation. Applying
transformations induced by these Gevrey functions, (16) is transformed to
a system of Liénard form plus an exponentially small remaining term. Note
that the equation of fast variable is still a polynomial of order n. For the case
of a jump-point, we can apply an analogous technique as in [2] to remove this
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exponentially small remaining term. It is done by means of an extra change
of coordinates in the x-variable, of the form X̃ = X + ∆(X,Y, λ, ε) where
∆ is exponentially small. The homological equation characterizes D = ∆ as
a graph of a center manifold of a singularly perturbed system in (X,Y,D)-
variables, to which one can apply the center manifold theorem. For details
we refer to [2]. This finishes the proof of Theorem 1.
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