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The purpose of this note is to present a new minimax theorem with the following
features: 1) it is equivalent to a generalized Ky Fan inequality; 2) while derived directly
from KKM Lemma by a simple argument it yields as straightforward consequences Kaku-
tani fixed point theorem and Nash equilibrium theorem; 3) it has a transparent economic
interpretation related to economic equilibrium, from Walras to Arrow-Debreu and Nash
equilibrium, concepts; 4) it highlights the cornerstone role of KKM Lemma in the intimate
connection between three central concepts of analysis and optimization: minimax, fixed
point and equilibrium.

Theorem 1. Let C be a nonempty compact subset of a Hausdorff topological vector space
X, D a nonempty closed convex subset of a Hausdorff topological vector space Y and
F (x, y) : C×D → R a function which is usc (upper semi-continuous) in x and quasiconvex
in y.

Assume that for some α ∈ R the following condition (A) is satisfied :

(A) There exists a closed set-valued map ϕ from D to C with nonempty compact convex
values such that ϕ(y) ⊂ Cα(y) ∀y ∈ D, where Cα(y) := {x ∈ C| F (x, y) ≥ α}.

Then ∩y∈DCα(y) 6= ∅.

If condition (A) is satisfied for every α < γ := infy∈D supx∈C F (x, y) there holds the
minimax equality

max
x∈C

inf
y∈D

F (x, y) = inf
y∈D

sup
x∈C

F (x, y). (1)

Proof. For every y ∈ D the set Cα(y) is nonempty and compact because ∅ 6= ϕ(y) ⊂ Cα(y)
and the function F (., y) is usc, while the set C is compact. In what follows, when there is
no danger of confusion we will omit the subscipt α and write simply C(y) for Cα(y).

Since each set C(y), y ∈ D, is a closed set of the compact set C, to prove that
∩y∈DC(y) 6= ∅ it will suffice to show that the family {C(y), y ∈ D} has the finite in-
tersection property, i.e. for any set {a1, . . . , ak} ⊂ D we have

∩k
i=1C(ai) 6= ∅. (2)
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1



In the case k = 2 this could be derived easily from Theorem 1 in [10] (under Assumption
A3c). However, the passage to the general case k > 2 by induction turned out to be much
harder. Therefore, we will prove (2) directly instead, by using the KKM Lemma in the
following form [2]:

Let Ω be a nonempty finite set in a Hausdorff topological vector space Y. Suppose for
every point u ∈ Ω there exists a closed subset L(u) ⊂ Y. If for every set E ⊂ Ω the convex
hull of E satisfies convE ⊂ ∪u∈EL(u) then ∩u∈ΩL(u) 6= ∅.

The proof of this proposition is well known when Ω is an affinely independent set of
points (see [5]). To prove it when Ω = {a1, . . . , ak} is an arbitrary finite set consider
k affinely independent points e1, . . . , ek. Since every x ∈ G := conv{e1, . . . , ek} can be
uniquely represented as x =

∑k
i=1 λi(x)ei, with λi(x) ≥ 0 ∀i,

∑k
i=1 λi(x) = 1 we can

define a map Φ from G to K := conv{a1, . . . , ak} by setting Φ(x) =
∑k

i=1 λi(x)ai for
every x ∈ G. Clearly Φ is a continuous map, so for each i = 1, . . . , k the set Mi :=
{x ∈ G| Φ(x) ∈ L(ai)} is closed. For every set I ⊂ {1, . . . , k} since by assumption
conv{ai, i ∈ I} ⊂ ∪i∈IL(ai), we deduce conv{ei, i ∈ I} ⊂ ∪i∈IMi. Applying then the
proposition to the affinely independent set {e1, . . . , ek} and the associated closed sets
M1, . . . ,Mk yields a point x̄ ∈ ∩k

i=1Mi, hence Φ(x̄) ∈ ∩k
i=1L(ai), as desired.

Turning to the proof of Theorem 1 consider the set Ω := {ai, i = 1, . . . , k} and for
each i = 1, . . . , k define L(ai) := {y ∈ convΩ| ϕ(y) ∩ C(ai) 6= ∅}. It is easily seen that
L(ai) is a closed subset of D. Indeed, let {yν} ⊂ L(ai) be a net such that yν → y. Then
yν ∈ convΩ, so y ∈ convΩ because the set convΩ is closed. Further, for each ν there is
xν ∈ ϕ(yν) ∩ C(ai). Since C(ai) is compact we have, up to a subnet, xν → x for some
x ∈ C(ai) and since the map ϕ is closed, x ∈ ϕ(y). Consequently, x ∈ ϕ(y)∩C(ai), hence
ϕ(y) ∩ C(ai) 6= ∅, i.e. y ∈ L(ai).

For any nonempty set I ⊂ {1, . . . , k}, let DI := {y ∈ convΩ| C(y) ⊂ ∪i∈IC(ai)} =
{y ∈ D| F (x, y) < α ∀x /∈ ∪i∈IC(ai)}. By quasiconvexity of F (x, .) the set DI is convex
and since ai ∈ DI ∀i ∈ I it follows that

conv{ai, i ∈ I} ⊂ DI ⊂ {y ∈ convΩ| ϕ(y) ⊂ ∪i∈IC(ai)}. (3)

Therefore,

conv{ai, i ∈ I} ⊂ ∪i∈I{y ∈ convΩ| ϕ(y) ∩ C(ai) 6= ∅} ⊂ ∪i∈IL(ai). (4)

Science this holds for every set I ⊂ {1, . . . , k} by KKM Lemma we have ∩k
i=1L(ai) 6= ∅.

So there exists ȳ ∈ convΩ such that ϕ(ȳ) ∩ C(ai) 6= ∅ ∀i = 1, . . . , k.

Now for each i = 1, . . . , k take an xi ∈ ϕ(ȳ) ∩ C(ai). We show that every set I ⊂
{1, . . . , k} satisfies

M := conv{xi, i ∈ I} ⊂ ∪i∈IC(ai). (5)

In fact, assume the contrary, that S := {x ∈ M | x /∈ ∪i∈IC(ai)} 6= ∅. Since ȳ ∈ convΩ, by
(3) ϕ(ȳ) ⊂ ∪k

i=1C(ai), and since ϕ(ȳ) is convex it follows that

M ⊂ ϕ(ȳ) ⊂ ∪k
i=1C(ai). (6)

Therefore, S = {x ∈ M | x ∈ ∪k
i=1C(ai) \ ∪i∈IC(ai)} = {x ∈ M | x ∈ ∪i/∈IC(ai)} =

M ∩ (∪i/∈IC(ai)), and so S is a closed subset of M. On the other hand, M \ S = {x ∈
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M | x ∈ ∪i∈IC(ai)} = M ∩ (∪i∈IC(ai)), so M \ S, too, is a closed subset of M. But
M \ S 6= ∅ because xi ∈ C(ai) ∀i ∈ I. So M is the union of two disjoint nonempty closed
sets S and M \ S. This conflicts with the connectedness of M. Therefore, S = ∅, proving
(5).

Since (5) holds for every set I ⊂ {1, . . . , k}, again by KKM Lemma (this time with
Ω = {x1, . . . , xk}, L(xi) = C(ai)) we have

∩k
i=1C(ai) 6= ∅.

Thus, if condition (A) holds for some α ∈ R then (2) is true for any finite set {a1, . . . , ak} ⊂
D, hence, ∩y∈DC(y) 6= ∅, i.e.,

max
x∈C

inf
y∈D

F (x, y) ≥ α. (7)

If condition (A) holds for every α < γ, then by taking α arbitrarily close to γ it is
straightforward that

max
x∈C

inf
y∈D

F (x, y) ≥ γ,

whence the minimax equality (1) because the reverse inequality is trivial.

Corollary 1. Let C be a nonempty compact convex subset of a Hausdorff topological
vector space X, D a nonempty closed subset of a Hausdorff topological vector space Y, and
F (x, y) : C × D → R an usc function which is quasiconcave in x and quasiconvex in y.
Then there holds the minimax equality (1).

Proof. For every α < γ define ϕ(y) := {x ∈ C| F (x, y) ≥ α}. Then ϕ(y) is a nonempty
closed convex set. If (xν , yν) ∈ C×D, (xν , yν) → (x̄, ȳ), and xν ∈ ϕ(yν), i.e. F (xν , yν) ≥ α
then by upper semi-continuity of F (x, y) we must have F (x̄, ȳ) ≥ α, i.e. x̄ ∈ ϕ(ȳ). So the
set-valued map ϕ is closed and condition (A) is satisfied for every α < γ. The conclusion
follows by Theorem 1.

Remark 1. The above Corollary differs from Sion’s well known minimax theorem [7] only
by the continuity condition imposed on F (x, y). It is a special case of a general minimax
theorem established in [8].

Theorem 1 can be restated in the following alternative equivalent form which appears
to be a generalization of Ky Fan inequality theorem [3] (see also [1]).

Theorem 2. Let C be a nonempty compact subset of a Hausdorff topological vector space
X, D a nonempty closed convex subset of a Hausdorff topological vector space Y, and
F (x, y) : C ×D → R a function which is usc in x and quasiconvex in y. If ϕ is a closed
set-valued map from D to C with nonempty convex compact values, then there exists x̄ ∈ C
such that

inf
y∈D

F (x̄, y) ≥ inf
y∈D

inf
x∈ϕ(y)

F (x, y), (8)

or equivalently, for every α ∈ R :

inf
y∈D

inf
x∈ϕ(y)

F (x, y) ≥ α ⇒ max
x∈C

inf
y∈D

F (x, y) ≥ α. (9)
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Proof. The assumption ϕ(y) ⊂ Cα(y) := {x ∈ C| F (x, y) ≥ α} ∀y ∈ D is equivalent
to saying that infy∈D infx∈ϕ(y) F (x, y) ≥ α while ∩y∈D{x ∈ C| F (x, y) ≥ α} 6= ∅ means
maxx∈C infy∈D F (x, y) ≥ α.

When D = C,F (x, y) = −f(x, y) and ϕ(y) is single-valued we get

Corollary 2. (Ky Fan inequality theorem [3]) Let C be a nonempty compact set in a
Hausdorff topological vector space X, and f(x, y) : C × C → R a function which is lsc
(lower semi-continuous) in x and quasiconcave in y. If ϕ(y) is a continuous map from C
into C there exists x̄ ∈ C such that

sup
y∈C

f(x̄, y) ≤ sup
y∈C

f(ϕ(y), y). (10)

In the special case ϕ(y) = y ∀y ∈ C this inequality becomes

sup
y∈C

f(x̄, y) ≤ sup
y∈C

f(y, y).

If, in addition, f(y, y) = 0 ∀y ∈ C then

sup
y∈C

f(x̄, y) ≤ 0.

Proof. By Theorem 2 there exists x̄ ∈ C such that infy∈C(−f(x̄, y)) ≥ infy∈C(−f(ϕ(y), y)),
hence (10).

In fact Corollary 2 is stronger than Ky Fan inequality theorem since it allows f(x, .)
to be quasiconcave instead of being concave as assumed in Ky Fan theorem.

Corollary 3. (Kakutani fixed point theorem [4]) Let C be a compact convex subset of a
Banach space and ϕ a closed set-valued map from C to C with nonempty convex values
ϕ(x) ⊂ C ∀x ∈ C. Then ϕ has a fixed point, i.e. a point x̄ ∈ ϕ(x̄).

Proof. Obviously the function F (x, y) : C × C → R defined by F (x, y) = ‖y − x‖ is
continuous on C ×C and convex in y for every fixed x. By Theorem 2 there exists x̄ ∈ C
such that

inf
y∈C

‖y − x̄‖ ≥ inf
y∈C

inf
x∈ϕ(y)

‖y − x‖.

Since infy∈C ‖y− x̄‖ = 0, for every natural k we have infy∈C infx∈ϕ(y) ‖y−x‖ ≤ 1/k, hence
there exist yk ∈ C, xk ∈ ϕ(yk) such that ‖yk − xk‖ ≤ 1/k. In view of the fact ϕ(yk) ⊂ C
there exist x̄, ȳ such that, up to a subsequence, xk → x̄ ∈ C, yk → x̄ ∈ C. Since the map
ϕ is closed we then have x̄ ∈ ϕ(x̄).

Remark 2. Traditionally Kakutani theorem and Ky Fan inequality are each derived
from Brouwer’s theorem (which is itself equivalent to KKM Lemma) via a quite involved
machinery. The above thus provides a short proof of these propositions.

Remark 3. Theorem 2 has a transparent economic interpretation. Suppose, for instance,
that a company (or a person, or a community) has an utility function F (x, y) which
depends upon a variable x ∈ C under its control and a variable y ∈ D outside its control.
If for every y ∈ D the company has available to it a strategy set ϕ(y) ⊂ D every element
of which ensures for it an utility no less than α, then (under suitable conditions) it can
select an x̄ ∈ C with a guaranteed utility no less than α no matter whatever y ∈ D.
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This economic interpretation is closely related to the concepts of economic equilibrium
as has been discussed by Walras, Arrow-Debreu, Nash (see e.g. [1]). In fact, a weaker ver-
sion of Theorem 2 (with both C,D compact and F (x, y) continuous on C×D), was shown
many years ago [9] to be a Generalized Walras Excess Demand Theorem. Furthermore,
Nash celebrated equilibrium theorem can be deduced from Theorem 2 in a straightforward
manner as follows.

Consider an n-person game in which the player i has a strategy set Xi ⊂ Rmi . When
the player i chooses a strategy xi ∈ Xi, the situation of the game is described by the vector
x = (x1, . . . , xn) ∈

∏n
i=1 Xi. In that situation the player i obtains a payoff fi(x).

Assume that each player does not know which strategy is taken by the other players.
A vector x̄ ∈ X :=

∏n
i=1 Xi is then called a Nash equilibrium if for every i = 1, . . . , n :

fi(x̄1, x̄2, . . . , x̄n) = max
xi∈Xi

fi(x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄n).

In other words, x̄ ∈ X is a Nash equilibrium if

fi(x̄) = max
xi∈Xi

fi(x̄|ixi),

where for any z ∈ Xi, x̄|iz denotes the vector x̄ ∈
∏n

i=1 Xi in which x̄i is replaced by z.

Corollary 4. (Nash Equilibrium Theorem [6]) Assume that for each i = 1, . . . , n the set
Xi is convex compact, the function fi is continuous while for each fixed x the function
yi 7→ fi(x|yi) is concave. Then there exists a Nash equilibrium.

Proof. Define a function F (x, y) : X ×X → R by setting

F (x, y) :=
n∑

i=1

[fi(x)− fi(x|iyi)] ∀(x, y) ∈ X ×X,

The set X is convex, compact as it is the cartesian product of n convex compact sets.
On the other hand, F (x, y) is continuous and the function y 7→ F (x, y) is convex. Clearly
F (y, y) = 0 ∀y ∈ X, so setting ϕ(y) := y yields infy∈X infx∈ϕ(y) F (x, y) ≥ 0. Therefore, by
Theorem 2 there exists x̄ ∈ X such that

F (x̄, y) =
n∑

i=1

[fi(x̄)− fi(x̄|iyi)] ≥ 0 ∀y ∈ X.

Fix an arbitrary i and take y = (x̄|iyi). The above inequality can be written as

fi(x̄)− fi(x̄|iyi) +
∑
j 6=i

[fj(x̄)− fj(x̄|jyj)] ≥ 0.

But for each j 6= i we have yj = xj so x̄|jyj = x̄. Therefore, for every i = 1 . . . , k,

fi(x̄) ≥ fi(x̄|yi) ∀yi ∈ Xi,

which is exactly the condition of a Nash equilibrium.
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