Speaker: Doan Duy Trung
Time: 9h30, Thursday, October 24, 2019 Location: Rom 611 - 612, Building A6, Institute of Mathematics
Abstract: Recently, the new concept on emph{conflict-free connection number} of a connected graph is introduced by Czap. An edge-colored graph $G$ is emph{conflict-free connected} if any two of its vertices are connected by a path, which contains a color used on exactly one of its edges. The conflict-free connection number of a connected graph $G$, denoted by $cfc(G)$, is the smallest number of colors needed in order to make $G$ conflict-free connected. In our talk, we consider some results on the conflict-free connection number $cfc(G)$ of connected graphs. |