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Definition

A differential ring R is a map ∂ : R → R satisfying the following
properties for all a, b ∈ R:

(Additivity) ∂(a + b) = ∂a + ∂b

(Leibnitz) ∂(ab) = a∂b + b∂a

∂ is called a derivation. A differential field is a field with a derivation.

A differential extension of R is a ring S ⊃ R such that the derivation on
S extends the derivation on R.

Example

A field C with trivial derivation (Q, C with usual derivation).

The field C(z) of rational fractions with usual derivation.

The fields R(z , ez),C(z , ez). The field C(z , ez) is a differential
extension of C(z).

Formal series C[[z ]], convergent series C {z}.
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Definition

The set of constants C of R is the elements of R with zero derivation.

Proposition

The set of constants C is a differential subring of R, containing 1.
Moreover, if R is a field, then C is a field.

Using the Leibnitz property, ∂1 = 2∂1, so ∂1 = 0. Again using linearity
and Leibnitz property, we have ∂(a− b), ∂(ab) ∈ C , for all a, b ∈ C . If R
is a field and a ∈ C , a 6= 0, letting b be s.t ab = 1, we have
∂(ab) = a∂b = 0, so ∂b = 0, i.e. b ∈ C .

Example

The fields of constants of C(z), C(z , ez) are all C.
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Definition

Let (R, ∂) be a differential ring. A differential ideal I of R is an ideal of
R such that ∂I ⊂ I .

If I is generated by (aj)j∈J , then I is a differential ideal iff ∂(aj) ∈ I for
all j .

Example

In the differential ring R = C[z , ez ], I = Rez is a differential ideal.

Given a differential ideal I ⊂ R, we can define a differential structure on
R/I by setting ∂[a] = [∂a] (well-defined since ∂I ⊂ I ).

Definition

A differential ring morphism between R and S is a ring morphism that
commutes with derivations.
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Proposition

Let R be a differential ring and S a multiplicative subset of R. There
exists a unique derivation on the localization RS−1 of R such that the
canonical map R → RS−1 is a differential ring morphism.

This property is used to extend the derivation on a Picard-Vessiot ring
onto its field of fractions. We define the derivation on RS−1 by
∂(r/s) = (rs ′ − sr ′)/s2 (with ’ being the derivation on R). It is unique
and well-defined by construction. Linearity and Leibnitz property of ∂ are
straightforward.
In particular, the derivation on R extends uniquely on Fr(R).

Example

The (integral) ring of analytic functions O on the complex plane is a
differential ring (with usual derivation). Its derivation extends uniquely to
Fr(O) =M (meromorphic functions).

Differential Galois Theory
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Proposition

Let K be a differential field with derivation ′, and a finite separable
extension K ⊂ K̃ . Then ′ extends uniquely to K̃ .

Uniqueness. By the primitive element theorem, K̃ = K (a). Let P be the
minimal polynomial of a. Deriving P(a) = 0 gives : Pd(a) + P ′(a)a′ = 0,
where Pd is the polynomial with coefficients the derivation of P’s
coefficients. By minimality of P, Pd(a) 6= 0, so a′ = −Pd(a)(P ′(a))−1,
hence unicity of the extension.
Existence. Let K̃ ' K [X ]/(P). First we extend the derivation of K on
K [X ] by setting X ′ = −Pd(X )h(X ) where h(X )P ′(X ) = 1 mod P. Then

(P) is a differential ideal for this derivation, hence also K̃ .
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In the rest of the talk, K is a field of characteristic 0, with the field of
constants C .

Consider the homogeneous linear differential equation of degree n
over K :

L(y) = y (n) + an−1y
(n−1) + · · ·+ a0y = 0, ai ∈ K

If all solutions are in some differential field extension L ⊃ K , then the
solution space V is a vector space over CL (L’s constants).

Proposition

The dimension of V is at most n.

We first introduce the Wronski matrix W . Let y1, . . . , ym be m elements
of K . Then W (y1, . . . , ym) = (Y1, . . . ,Ym), where

Yi = (yi , y
′
i , . . . , y

(m−1)
i )T
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Proposition

The elements y1, . . . , yn are linearly independent over C if and only if
detW (y1, . . . , yn) 6= 0.

We can say linearly independent over constants without ambiguity, since
the (non)cancellation of W is independent of constants. More precisely,
the (y1, . . . , yn) ∈ K n is independent over C iff they are independent over
CL.
(⇒) If y1, . . . , yn are linearly dependent over C then

∑
ciyi = 0, ci not

all zero. By deriving, we obtain
∑

ciy
(k)
i = 0, 0 6 k 6 n − 1, i.e.∑

ciYi = 0, so detW = 0.
(⇐) We have

∑
ciYi = 0 with ci ∈ K . Wlog, we can assume c1 = 1,

detW (y2, . . . , yn) 6= 0. We need to prove c2, . . . , cn ∈ C . By

differentiating equality
∑

ciy
(k)
i = 0 then subtracting by equality∑

ciy
(k+1)
i = 0, we obtain

∑
i>2 c

′
i yi = 0, so c ′i = 0.
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the (non)cancellation of W is independent of constants. More precisely,
the (y1, . . . , yn) ∈ K n is independent over C iff they are independent over
CL.
(⇒) If y1, . . . , yn are linearly dependent over C then

∑
ciyi = 0, ci not

all zero. By deriving, we obtain
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ciy
(k)
i = 0, 0 6 k 6 n − 1, i.e.∑

ciYi = 0, so detW = 0.
(⇐) We have

∑
ciYi = 0 with ci ∈ K . Wlog, we can assume c1 = 1,

detW (y2, . . . , yn) 6= 0. We need to prove c2, . . . , cn ∈ C .

By

differentiating equality
∑

ciy
(k)
i = 0 then subtracting by equality∑

ciy
(k+1)
i = 0, we obtain

∑
i>2 c

′
i yi = 0, so c ′i = 0.
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Corollary

The equation L(y) = 0 has at most n solutions in L linearly independent
over the field of constants. In particular, the solution space V is of
dimension at most n.

The last row of the Wronskian of n + 1 elements that are solutions are
L(y) is linearly dependent of the preceding ones.
A set of n solutions y1, . . . , yn of L(y) = 0, linearly independent over
constants, in some field extension L of K is called a fundamental set of
solutions.
In (classical) Galois theory, the (normal, separable) field extension is
maximal in the sense that it is the splitting field of some polynomial.
In differential theory, we want the field extension maximizes the
dimension of solution space.
This leads to the notion of Picard-Vessiot fields. Construction idea :
adding the fundamental solutions to the base field.
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Definition

Let L(y) = 0 be a homogeneous linear differential equation. A
differential field extension K ⊂ L is a Picard-Vessiot field for L if :

L = K (y1, . . . , yn), where yi are fundamental solutions of L.

L and K have the same field of constants.

Construction of a Picard-Vessiot field.

Consider the differential extension
K ⊂ K [Yi,j , 0 6 i 6 n − 1, 1 6 j 6 n], where Y ′i,j = Yi+1,j ,
Y ′n−1,j = −an−1Yn−1,j − · · · − a0Y0,j .

Localize at W = det(Yi,j), we get a differential ring
R0 = K [Yi,j ,W

−1].

Take L to be Frac(R), R := R0/I where I is a maximal differential
ideal of R0. (need to prove that I is a prime ideal, so R is integral
and L is indeed a field. In particular, R = R0/I has no proper
differential ideal).

The ring R is a Picard-Vessiot ring for L.
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Proprosition

If the constants C of K is algebraically closed then the field L = Fr(R)
has the same constants as K .

Let CL be the field of constants of L and b ∈ CL. Let
J = {h ∈ R, hb ∈ J}, then J is a differential ideal. Since R has no
proper diff ideal, J = R, so CL ⊂ R.
For any b ∈ CL, there exists c in C such that b − c is a nonunit in
R. Indeed, by tensoring with the algebraic closure K of K , we can
assume that K algebraically closed. (since if (b − c)⊗ 1 is non-unit
in R ⊗K K , then (b − c) is non-unit in R).
Let V be the affine variety with coordinate ring R. Then b ∈ R
defines a K -valued function over V . By Chevalley’s theorem : the
image of b is either finite or cofinite.
Since C is algebraically closed (hence infinite), if b(V ) is cofinite,
then ∃c ∈ C s.t. b − c belongs to a maximal ideal, so is not a unit,
hence (b − c)R 6= R, so b = c ∈ C .
If b(V ) is finite, then b ∈ K (since V is irreductible, by integrality of
R), so b ∈ C .
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Uniqueness of Picard-Vessiot field. We need the lemma :

Lemma

Let L1, L2 be Picard-Vessiot extensions of K for a homogeneous linear
differential equation L(y) = 0 of order n. Let K ⊂ L be a differential
field extension with CL = CK . If σi : Li → L, i = 1, 2 are differential
K -morphisms then σ1(L1) = σ2(L2).

Let Vi and V be solution spaces of Li and L, i = 1, 2. Then
dimCK

Vi = n and dimCK
V 6 n, so σi (Vi ) = V , but Li = K (Vi ), so

σ1(L1) = σ2(L2).

Proposition

The Picard-Vessiot extensions L1, L2 of L over K are isomorphic (i.e.
there exists a differential K -morphisms between L1, L2).

Idea. Immerge L1, L2 into a field K ⊂ E with CE = CK , then apply the
preceding lemma.
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(x ⊗ y)′ = x ′ ⊗ y + x ⊗ y ′. Let J be a proper maximal diff ideal of
L3. We have an injection R ↪→ L3/J (since R has no proper diff
ideal), so L1 ↪→ E := Fr(L3) (which is a field since J is maximal diff
ideal, hence prime), and L2 ↪→ E by the obvious map.

By the same reasons as the construction part, using that E is the
fraction field of a finitely generated L2-algebra, we obtain
CE = CL2 = CK .

We have differential K -morphisms Li ⊂ E , i = 1, 2 with CK = CE ,
so we can conlude that there exists differential K -isomorphism
between L1, L2, using the previous lemma.
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Theorem

Let K be a differential field with algebraically closed field of constants C .
Let L(y) = y (n) + an−1y

(n−1) + . . . a0y = 0 be a homogeneous
differential linear equation of order n over K . Then :

There exists a Picard-Vessiot field L ⊃ K for L.

The field L is unique, up to differential K -isomorphism.

Example

We consider the equation y ′ = a ⇐⇒ y ′′ − (a′/a)y ′ = 0, (a 6= 0) over
K , where α′ = a and a is not a derivative (@b ∈ K , b′ = a). Then K (α)
is a Picard-Vessiot extension and G (K (α)/K ) ' GC ,a.

α is transcendental over K (by differentiating
P(α) = αn + b1α

n−1 + · · · = 0, we get a = (b1/n)′, contradiction).

Next, CK(α) = C (if f (α)/g(α) is a constant, we will get a
contradiction).

Since 1, α are fundamental solutions of y ′′ − (a′/a)y ′ = 0, K (α) is a
Picard-Vessiot extension.
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Next, we define the Differential Galois group of a homogeneous linear
differential equation.

Definition

Let K be a differential field of characteristic 0 with algebraically closed
field of constants C . Let K ⊂ L be a Picard-Vessiot extension of K . The
group G (L/K ) of differential K -automorphisms of L is called the
differential Galois group of L ⊃ K for L.

Example

We consider the equation y ′ = a ⇐⇒ y ′′ − (a′/a)y ′ = 0, (a 6= 0) over
K , where α′ = a and a is not a derivative (@b ∈ K , b′ = a). Then K (α)
is a Picard-Vessiot extension and G (K (α)/K ) ' GC ,+.
Indeed, every σ ∈ G (K (α)/K ) satisfies σ(α)′ = a, so σ(α) = α + c ,
c ∈ C .

G (K (α)/K ) ' C '
{(

1 c
0 1

)
, c ∈ C

}
' GC ,+
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Example

The differential extension L = K (α) with α′ = aα, a 6= 0. The
Picard-Vessiot ring R = K [α, α−1] has only trivial differential ideals, so
L = K (α) is a Picard-Vessiot field.

Every σ ∈ G (K (α)/K ) satisfies
(σ(α)/α)′ = a, i.e. σ(α) = cα, c ∈ C .

If α is transcendental over K then G (K (α)/K ) ' GC ,×.

If ∃n, αn = b ∈ K , then G (K (α)/K ) is a finite cylic group. Indeed,
(σ(α))n = b = cnb ∈ C , so c = 1.

Example

The algebraic Galois extension L ⊃ K (K is always of char 0, with field of
constants C = C ) is a Picard-Vessiot extension. Sketch : since L is a
splitting field of P ∈ K [X ], deg(P) = n, we can extend uniquely the
derivation to L such that x ′ is a polynomial of degree < n.
The n + 1 elements x , x ′, . . . , x (n) are then linearly dependent over K , so
satisfy a homogeneous LDE.
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All the differential Galois groups in the examples above correspond to
linear algebraic groups.

More generally :

Theorem

If L/K is a Picard-Vessiot extension of a degree-n homogeneous LDE ,
then G (L/K ) is (isomorphic to) a (Zariski-)closed subgroup of GLn(C ).

Remark. We have a faithful representation of G (L/K ) by the C -vector
space generated by the fundamental solutions y1, . . . , yn. Indeed
σ(yj) =

∑n
i=1 ci,jyi , so we get an injective morphism :

G (L/K )→ GLn(C )

σ → (ci,j)

G (L/K ) is a subgroup, determined up to conjugation, of GLn(C ).
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Let K {Z1, . . . ,Zn} be the ring of differential polynomials in n
indeterminates over K (i.e. we add the indeterminates Zi and all their

formal derivatives Z ′1 := Z
(1)
1 ,Z ′′1 := Z

(2)
1 , . . . ,Z ′2, . . . to K ).

We define a differential K -morphism φ by :

K {Z1, . . . ,Zn} → L

Zj → yj

Let L[Xi,j ] be a differential field with X ′i,j = 0. The differential
K -morphism ψ is defined as :

K {Z1, . . . ,Zn} → L[Xi,j ]

Zj →
n∑

j=1

Xi,jyi

We can write ψ(ker φ) =
∑n

k=1 Fk(Xi,j)wk , where wk is a basis of the
C -vector space L and Fk are polynomials in C [Xi,j ].
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Direct approach. With φ : Zj → yj and ψ : Zj →
∑n

j=1 Xi,jyi , we define
the evaluation map ev : L[Xi,j ]→ L,Xi,j → ci,j .

One can check that
ev ◦ ψ = σ ◦ φ,

K {Z1, . . . ,Zn}
φ //

ψ

��

L

σ

��
L[Xi,j ]

ev // L

so ev ◦ ψ(ker(φ)) = ev(
∑n

k=1 Fk(Xi,j)wk) =
∑

k Fk(ci,j)wk = 0, i.e.
Fk(ci,j) = 0.
Conversely, given the Fk and ci,j s.t. Fk(ci,j) = 0, we construct σ by
σ : yj →

∑n
i=1 ci,jyi , and we can prove that σ is a differential

K -automorphism.
Categorical approach : Construct a functor
F : AlgC → Grp,B → AutK⊗CB,∂(L⊗C B) such that F (C ) = G (L/K )
and show that F is representable by A. Then A is automatically a
commutative Hopf algebra and Hom(A,C ) ' F (C ) = G (L/K ), so
G (L/K ) is the set of C -valued points of the affine group scheme Spec(A).
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Proposition

Let K ⊂ L be a Picard-Vessiot extension with differential Galois group
G = G (L/K ), and R the Picard-Vessiot ring of L. Let Z = Spec(R) and
C [G ] the coordinate ring of G . We have an isomorphism of

K̃ [G ]-modules : K̃ ⊗K R ' K̃ ⊗C C [G ], or equivalently, Z (K̃ ) ' G (K̃ ).

Corollary

Let H is a subgroup of G with Zariski closure H. Then LH = K if and
only if H = G .

Since LH = LH , we can suppose H = H. The rings of fractions of
K̃ ⊗K R and K̃ ⊗K C [G ] are K̃ ⊗K L and K̃ ⊗K C (G ). Taking

H-invariant, K̃ ⊗K LH ' K̃ ⊗K C (G )H ' K̃ ⊗K G/H. Therefore if
LH = k, we have that G = H.
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As an analogy to the classic Galois theory, we have the

Fundamental Theorem

Let K ⊂ L be a Picard-Vessiot extension and G (L/K ) its Galois group.

The correspondences

H → LH , F → G (L/F )

define mutually inverse bijective maps between the (Zariski)-closed
subgroups H of G (L/K ) and the differential fields K ⊂ F ⊂ L.

The field F is a Picard-Vessiot extension of K if and only if
H = G (L/F ) is normal in G (L/K ). The restriction

G (L/K )→ G (F/K )

σ → σ|F

induces an isomorphism G (L/K )/G (L/F ) ' G (F/K ).
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Two points : 1) LG(L/F ) = F and 2) G (L/LH) = H.

To prove 1),
first remark that L ⊃ F is a Picard-Vessiot extension. Use the
(non-trivial) fact : for all x /∈ F , ∃σ ∈ G (L/F ) s.t. σ(x) /∈ x . Hence
LG(L/F ) ⊂ F , so F = LG(L/F ).
To prove 2), we use the corollary : LG(L/LH ) = LH if and only if
H = G (L/LH).

If F ⊂ L is a Picard-Vessiot extension of K , then σ(F ) ⊂ F .
Reasoning the same way as in classic Galois theory, G (L/F ) is a
normal subgroup of G (L/K ) and the morphism
φ : G (L/K )→ G (F/K ), σ → σ|F is well-defined with kernel
G (L/F ).
It remains to prove that φ is surjective i.e. every τ ∈ G (F/K ) can
be extended to G (L/K ).
Since F ⊂ L is Picard-Vessiot, the Picard-Vessiot ring RL of L is
RL = (RF ,0 ⊗K F )/P, where P is the maximal diff ideal of
(RF ,0 ⊗K F ), and RF ,0 = K [Yi,j , 1/ det]. The extension of
τ ∈ G (F/K ) is then τ ⊗ IdRF,0

.
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It remains to prove that : if H is a normal closed subgroup of G (L/K )
then F is a Picard-Vessiot extension.

Let R = K [Yi,j , 1/ det] be the
Picard-Vessiot ring of L. We need the following points :

1) For all r ∈ R, the C -vector space Gr = {σ(r), σ ∈ G} is finite
dimensional.

2) RH ⊂ R is finitely generated K -algebra.

3) F := LH = Fr(RH).

They allow us to prove RH = K 〈V1〉, where V1 is a G -stable, finite
dimensional C -vector solutions space of some homogeneous LDE. By
direct reasoning, RH is G -stable.
Take V = C 〈Gt1, . . . ,Gts〉, where t1, . . . , ts are generators of RH (by
2)). By 1), V1 is finite-dimensional.
Let z1, . . . , zm be a basis of V1. Then the equation

L(Z ) =
detW (Z , z1, . . . , zm)

detW (z1, . . . , zm)
= 0

is satisfied by all z ∈ V1, has coefficients fixed by G , so in K . By 3),
F = LH = Fr(RH) is the Picard-Vessiot field of L(Z ) = 0.
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Let K be a differential field of constants C .

Definition

A differential module M of dimension n is a n-dimensional K -vector
space. endowed with an additive map ∂ : M → M such tht
∂(fm) = f ′m + f ∂m, for all f ∈ K ,m ∈ M.

A matrix LDE Y ′ = AY (A = (ai,j) ∈ Mn(K )) defines a K -module
M ' K n with basis e1 = (1, . . . , 0), . . . , en = (0, . . . , 1), and derivation
∂ei =

∑n
j=1−aj,iej . Conversely a differential module defines a matrix

LDE.
The Picard-Vessiot theory for matrix LDE is completely analogous to the
homogeneous LDE version. We can then define a Picard-Vessiot field for
a differential module.
To a differential module, we can associate a representation induced by
the action of the (universal) differential Galois group G on the solution
space. This correspondence defines an equivalence of categories between
DiffK and ReprG .
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