Mumford-Tate groups II

Manh Toan Nguyen

Universität Osnabrück

August 26, 2021

Manh Toan Nguyen (Universität Osnabrück)

Mumford-Tate groups II

불▶ 《불▶ 불 ∽ Q (~ August 26, 2021 1 / 27

イロト イポト イヨト イヨト

Deligne torus and Hodge structures

2 Mumford-Tate groups

O-Hodge structures of CM type and the Serre group

・ロト ・回ト ・ヨト ・

Let k be a field and L/k be a field extension.

- X_F : = $X \times_k F$ for any k-variety X.
- V_F : = $V \otimes_k F$ for any k-vector space V.
- $\operatorname{Rep}_k(G)$ the category of finite dimensional representation of G over k.

<ロト <回ト < 回ト < 回

Deligne torus and Hodge structures

Deligne torus

Let L/k be a finite field extension and X a L-variety. The functor

$$\operatorname{Res}_{L/k} X : (k - schemes)^{op} \to \operatorname{Set}, S \mapsto X(S \times_k L)$$

is represented by a k- variety called *Weil restriction* (or restriction of scalars) of X and denoted by $(X)_{L/k}$.

Definition

Deligne torus is defined as \mathbb{S} : = $(\mathbb{G}_{m,\mathbb{C}})_{\mathbb{C}/\mathbb{R}}$.

Facts:

- $\mathbb{S} = \operatorname{Spec}(\mathbb{R}[x, y][(x^2 + y^2)^{-1}])$. For any commutative \mathbb{R} -algebra A, $\mathbb{S}(A) = (A \otimes_{\mathbb{R}} \mathbb{C})^*$. In particular, $\mathbb{S}(\mathbb{R}) = \mathbb{C}^{\times}$ and $\mathbb{S}_{\mathbb{C}} \cong \mathbb{G}_m^2$.
- There are homomorphisms

$$\mathbb{G}_{m,\mathbb{R}} \xrightarrow{\omega} \mathbb{S} \xrightarrow{\operatorname{Nr}} \mathbb{G}_{m,\mathbb{R}}$$
$$\mathbb{R}^{\times} \xrightarrow{a \mapsto a^{-1}} \mathbb{C}^{\times} \xrightarrow{z \mapsto z\overline{z}} \mathbb{R}^{\times}$$

 ω : weight cocharacter, Nr : norm character.

• $\mathbb{S} = \mathbb{S}^1.\mathbb{G}_{m,\mathbb{R}}$ where $\mathbb{S}^1: = \ker(\mathsf{Nr})$ is the topological torus.

= nar

Real Hodge structures

Definition

Let V be a real vector space.

- A (\mathbb{R} -) Hodge structure on V is a homomorphism $h: \mathbb{S} \to \mathsf{GL}(V)$.
- V is called pure of weight m if $h(a) = a^{-m}$. id $\forall a \in \mathbb{R}^{\times}$.
- A morphism of \mathbb{R} -Hodge structures is a \mathbb{R} -linear morphism $f: V \to W$ which is S-equivariant.

The category of $\mathbb R\text{-}\mathsf{Hodge}$ structures is denoted by $\mathbb R\operatorname{\mathsf{HS}}.$

- Such *h* determines a decomposition $V \otimes \mathbb{C} = \bigoplus V^{p,q}$ where $V^{p,q}$ is the subspace on which h(z) acts as $z^{-p}.\overline{z}^{-q}$. Therefore, $V^{p,q} = \overline{V^{q,p}}$.
- If $f: V \to W$ is a morphism of HS, then $f_{\mathbb{C}}(V^{p,q}) \subset W^{p,q}$.
- \mathbb{R} HS is a neutral Tannakian category whose Tannakian group is \mathbb{S} .

イロト イポト イヨト イヨト

Rational Hodge structures

Definition

- A Q-Hodge structure (V, h) is a Q-vector space V together with a Hodge structure h on V_R such that ω_h = h ∘ ω: G_{m,R} → GL_{V,R} is defined over Q.
- A morphism of \mathbb{Q} -Hodge structures is a \mathbb{Q} -linear morphism $f: V \to W$ such that $f_{\mathbb{R}}: V_{\mathbb{R}} \to W_{\mathbb{R}}$ is S-equivariant.

The category of \mathbb{Q} -Hodge structures is denoted by \mathbb{Q} HS.

Definition

- An element x is called to be purely of type (p,q) if $x \in V \cap V^{p,q}$.
- $x \in V$ is called a (p, p)-Hodge class if x is purely of type (p, p) for some $p \in \mathbb{Z}$.

A morphism of Q-HS $f: V \to W$ is the same as a (0,0)-Hodge class in the Q-HS Hom(V, W).

・ロト ・四ト ・ヨト ・ヨト

Tate object

Definition

- Tate-Hodge structure $\mathbb{Q}(r)$: = $(2\pi i)^r \mathbb{Q} \subset \mathbb{C}$ of pure type $(-r, -r) \in \mathbb{Z}^2$ where h(z) acts as multiplication by $(z.\overline{z})^r$.
- Tate twist V(r): = $V \otimes \mathbb{Q}(r)$ for any \mathbb{Q} -HS V. One has $V(r)^{p,q} = V^{p+r,q+r}$.

Why Tate object?:

A morphism $f: V \to W$ such that $f_{\mathbb{C}}(V^{p,q}) \subset W^{p+r,q+r}$ for a $r \in \mathbb{Z}$ is not a morphism of \mathbb{Q} -HS in our sense, unless r = 0. Such f is called a 'morphism of HS of degree r'. With Tate twist, $(2\pi i)^r f: V \to W(r)$ is a morphism of HS with our definition.

Example

Let X and Y be two compact Kähler manifolds and let $f: X \to Y$ be a holomorphic map. Then

- $f^*: H^n(Y, \mathbb{Q}) \to H^n(X, \mathbb{Q})$ is a morphism of Hodge structures.
- The Gysin morphism $f_*: H^n(X, \mathbb{Q}) \to H^{n-2r}(Y, \mathbb{Q})$ is a 'morphism of Hodge structures of degree r', where $r = \dim(Y) \dim(X)$.

イロト イポト イヨト イヨト

Polarizable Hodge structures

Definition

A *polarization* of a \mathbb{Q} -Hodge structure (V, h) of weight $m \in \mathbb{Z}$ is a morphism of Hodge structure $\psi: V \otimes V \to \mathbb{Q}(-m)$ such that

$$(x,y)\mapsto (2\pi i)^m\psi_{\mathbb{R}}(x,Cy):V_{\mathbb{R}}\times V_{\mathbb{R}}\to\mathbb{R}$$

is symmetric and positive definite. Here C := h(i) is the Weil operator.

Facts:

- The orthogonal complement of a sub-HS w.r.t. a polarization gives a complementary HS. Hence, the category of polarized Q-HS is *semisimple*.
- The category QHS is *not* semisimple. The category of complex tori up to isogeny is equivalent to the category of *effective* weight 1 Q-HSs. There are morphisms of complex tori $T \rightarrow T$ which do not split up to isogeny.

(日) (周) (日) (日)

- Riemann's Theorem: The functor A → H¹(A, Q) is an equivalence between the category of complex abelian varieties, up to isogeny, and the category of polarizable Q-Hodge structures of type (-1,0), (0,-1).
- Hodge Decomposition: If X is a smooth complex projective variety, then $H^m(X, \mathbb{Q})$ is a polarizable \mathbb{Q} -Hodge structure of weight m. The (p, q)-component of $H^m(X, \mathbb{Q})$ is isomorphic to $H^q(X, \Omega_X^p)$ where Ω_X^p is the sheaf of differential forms of degree p on X.
- Hodge Conjecture: Rational Hodge classes in $H^{2p}(X, \mathbb{Q})$ are algebraic.

イロト イポト イヨト イヨ

Mumford-Tate groups

Mumford-Tate groups

Definition

Let (V, h) be a \mathbb{Q} -Hodge structure.

- The Mumford-Tate group MT(V) is the smallest algebraic subgroup G of GL(V) (over \mathbb{Q}) such that $G_{\mathbb{R}} \supset h(\mathbb{S})$.
- The Hodge group (or the special Mumford-Tate group) Hg(V) is the smallest algebraic subgroup G^1 of GL(V) (over \mathbb{Q}) such that $G^1_{\mathbb{R}} \supset h(\mathbb{S}^1)$.

Fact:

- MT(V) and Hg(V) are connected.
- Let $\mu: \mathbb{G}_m \to \operatorname{GL}(V)_{\mathbb{C}}$ such that $\mu(z)v = z^{-p}v$ for $v \in V^{p,q}$. Since $h(z) = \mu(z).\overline{\mu(z)}$, $\operatorname{MT}(V)$ is the smallest algebraic subgroup G of $\operatorname{GL}(V)$ (over \mathbb{Q}) such that $G_{\mathbb{C}} \supset \mu(\mathbb{G}_m)$.
- $\operatorname{Hg}(V) \subset \operatorname{MT}(V)$ is a subgroup and $\operatorname{MT}(V) = \operatorname{Hg}(V).\omega_h(\mathbb{G}_m)$.
- MT groups are interesting from Galois representation and motives perspectives (e.g., Mumford-Tate conjecture).

I Sac

(日) (周) (日) (日)

Proposition

Let G be a connected algebraic group over \mathbb{Q} and $h: \mathbb{S} \to G_{\mathbb{R}}$. The pair (G, h) is the Mumford-Tate group of a \mathbb{Q} -Hodge structure iff the following conditions hold:

(a)
$$\omega_h(\mathbb{G}_m) \subset Z(G)$$
 where $Z(G)$ is the centre of G ,

(b)
$$\omega_h \colon \mathbb{G}_{m,\mathbb{R}} \to G_{\mathbb{R}}$$
 is defined over \mathbb{Q} , and

(c) h generates G (i.e., if $H \subset G$ is any subgroup such that $h(\mathbb{S}) \subset H_{\mathbb{R}}$, then H = G).

Proof.

(⇒): If (*G*, *h*) is the Mumford-Tate group of a Q-Hodge structure (*V*, *h*), then (*b*), (*c*) are obvious. To show (*a*), let *Z*(ω_h) denote the centralizer of ω_h in *G*. For any $a \in \mathbb{R}^{\times}$, $\omega_h(a): V_{\mathbb{R}} \to V_{\mathbb{R}}$ is a morphism of \mathbb{R} -Hodge structures, hence it commutes with the action of *h*(S). This implies *h*(S) ⊂ *Z*(ω_h)_ℝ. As *h* generates *G*, *Z*(ω_h) = *G*. (⇐): If (*G*, *h*) satifies these conditions, then for any faithful representation $\rho: G \to \operatorname{GL}(V)$, the pair (*V*, $h \circ \rho$) is a Q-Hodge structure, and (*G*, *h*) is its Mumford-Tate group.

イロト 不得下 イヨト イヨト

Let (V, h) be a Q-HS. For any pair of multi-indices $d, e \in \mathbb{N}^n$, we define the tensor space

$$T^{d,e}V: = \bigoplus_{i=1}^n V^{\otimes d_i} \otimes (V^{\vee})^{\otimes e_i}.$$

This space inherits a natural Hodge structure from V. The group $MT(V) \subset GL(V)$ acts naturally on $T^{d,e}V$.

Proposition

- 1. For any pair (d, e) and $W \subset T^{d, e}V$ a Q-subspace, W is a sub-Hodge structure if and only if W is stable under the action of MT(V) on $T^{d, e}V$.
- 2. An element $v \in T^{d,e}V$ is a (0,0)-Hodge class if and only if v is an invariant under MT(V).

Corollary

 $\mathsf{Hom}_{\mathbb{Q}\,\mathsf{HS}}(V) = \mathsf{End}_{\mathbb{Q}}(V)^{\mathsf{MT}(V)}$

(日) (周) (日) (日)

Proposition

If (V, h) is polarizable Q-HS, then MT(V) is a reductive group.

Proposition

Let $G \subset GL(V)$ be a subgroup of elements that fix every (0,0)-Hodge class in every tensor space $T^{d,e}V$. Then G = MT(V).

Proof.

By Proposition 12, $MT(V) \subset G$. The converse is a general fact about reductive group and includes 3 teps:

- 1. MT(V) is the stabilizer of a one dimensional subspace $L \subset T = T^{d,e}V$ for some d, e (Chevalley's theorem).
- 2. Since MT(V) is reductive, $T = L \oplus L'$ as representation and MT(V) is the stabilizer of a generator of $L \otimes L^{\vee}$ in $T \otimes T^{\vee}$.
- 3. Such generator is a (0,0)-Hodge class, hence $G \subset MT(V)$ by Proposition 12.

Lemma

- Suppose V is of weight m. If m = 0 then $MT(V) \subset SL(V)$. If $m \neq 0$, then $G_m . id \subset MT(V)$.
- If V_1 and V_2 are two \mathbb{Q} -Hodge structures then $MT(V_1 \oplus V_2) \subset MT(V_1) \times MT(V_2)$ as subgroups of $GL(V_1 \oplus V_2)$ and the projection to either factor is surjective.
- For $V_1,\ldots,V_n\in \mathbb{Q}HS$ and positive integers n_1,\ldots,n_r we have

 $\mathsf{MT}(V_1^{n_1}\oplus\ldots\oplus V_r^{n_r})=\mathsf{MT}(V_1\oplus\ldots\oplus V_r).$

Proof.

These properties follows from the definition of MT groups. E.g., since h(z) acts as multiplication by $z^{-p}\bar{z}^{-q}$ on $V^{p,q}$, $\det(h(z)) = \operatorname{Nr}(z)^{-m\dim(V)/2}$ for any $z \in \mathbb{S}$.

Example

$$\mathsf{MT}(\mathbb{Q}(n)) = \begin{cases} 1, & \text{if } n = 0 \\ \mathbb{G}_m, & \text{otherwise} \end{cases}.$$

Manh Toan Nguyen (Universität Osnabrück)

Mumford-Tate groups II

August 26, 2021 14 / 27

Tannakian formulation

Proposition

The functor

$$\mathsf{Rep}(\mathsf{MT}(V)) \to \mathbb{Q}\mathsf{HS}, \ (\rho \colon \mathsf{MT}(V) \to \mathsf{GL}(W)) \mapsto (\rho \circ h \colon \mathbb{S} \to \mathsf{GL}(W))$$

is fully faithful. The image of this functor is the full subcategory $\langle V, h \rangle^{\otimes} \subset \mathbb{Q}$ HS whose objects are the \mathbb{Q} -HS that are isomorphic to a subquotient of some $T^{d,e}V$. In other words, $\langle V, h \rangle^{\otimes}$ is a Tannakian category whose Tannakian group is MT(V).

Proof.

- The second statement follows from the fact that every representation of MT(V) is isomorphic to a subquotient of $T^{d,e}V$ for some pair d, e.
- The first statement follows from Proposition 12 and the fact that a morphism of HS $W_1 \rightarrow W_2$ is the same as a (0,0)-Hodge class in Hom (W_1, W_2) .

Mumford-Tate groups MT group of an Elliptic curve

Let E be an elliptic curve and $V =: H^1(E, \mathbb{Q})$. Let $D: = End(X) \otimes \mathbb{Q}$. One has

$$D \cong \operatorname{End}(V, h)$$
: = Hom_{Q HS} $(V, V) \cong \operatorname{End}(V)^{\operatorname{MT}(V)}$

where the first isomorphism follows from Riemann theorem and the last one folows from Proposition 12.

Two possibilities (Albert classification):

- $D \cong \mathbb{Q}$. The only connected reductive subgroups of $GL(V) = GL_2$ containing \mathbb{G}_m .id are \mathbb{G}_m .id, GL_2 or maximal tori of GL_2 . Since $\mathbb{Q} \cong End(\mathbb{Q}^2)^{MT(V)}$, one has MT(V) = GL(V).
- D ≃ Q(τ) is an imaginary quadratic field (hence CM field). In this case E has complex multiplication and E = C/(Z + τZ). Now V is free module of rank 1 on D. Since MT(V) has to consist of D-linear automorphism of V, one has MT(V) ⊂ T_D, where T_D is the algebraic torus whose set of points over any ring R is (R ⊗_Q A)* (in other word, T_D is the Weil restriction (G_{m,D})_{D/Q}). Then MT(V) = G_m.id or T_D. Since Q(τ) = End(Q²)^{MT(V)}, one has MT(V) = T_D.

E AQA

イロト 不得下 イヨト イヨト

Q-Hodge structures of CM type and the Serre group

Torus

Let k be a field, k^s a separable closure of k.

Definition

Let T be a linear algebraic group over k. T is called an algebraic torus if $T_{k^s} \cong \mathbb{G}_{m,k^s}^r$ for some $r \in \mathbb{Z}_{>0}$ (r is called the rank or dimension of T). If $T_L \cong \mathbb{G}_{m_I}^r$ for a field extension L/k, then T is said to be split by L.

Example

- Deligne torus $\mathbb S$ is a torus of rank 2 on $\mathbb R.$
- If $[L : \mathbb{Q}] = d$, then $(\mathbb{G}_{m,L})_{L/\mathbb{Q}}$ is a *d*-dimensional torus on \mathbb{Q} .
- Character group $X^*(T)$: = Hom $(T_{k^s}, \mathbb{G}_{m,k^s})$.
- Cocharacter group $X_*(T)$: = Hom($\mathbb{G}_{m,k^s}, T_{k^s}$).
- $X^*(T)$ and $X_*(T)$ are free abelian group of rank r equipped with a continuous action of $Gal(k^s/k)$.
- Perfect pairing $\langle , \rangle \colon X^*(T) \times X_*(T) \to \operatorname{End}(\mathbb{G}_{m,k^s}) = \mathbb{Z}.$

E 996

Main properties:

 Let A be the category of free abelian group of finite rank with a continuous action of Gal(k^s/k)). Then the functors

$$X^*(-)$$
: (algebraic tori on $k)^{op} \to \mathcal{A}$

and

$$X_*(-)$$
: (algebraic tori on $k) o \mathcal{A}$

are equivalence of categories.

There is an equivalence between Rep_k(T) and the category of finite dimensional k-vector space V with X*(T)-grading V_{ks} = ⊕_{χ∈X*(T)}V_{ks}(χ) such that σV_{ks}(χ) = V_{ks}(σχ) for all σ ∈ Gal(k^s/k). Over k = k^s, one has T = 𝔅^r_m and

$$\operatorname{Rep}_{k}(T) = \{ V = \bigoplus_{(n_{1}, \dots, n_{r}) \in \mathbb{Z}^{r}} V^{n_{1}, \dots, n_{r}} \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

HS of CM-type

Definition

A *CM* field is a number field that admits a non-trivial involution i_E such that $\rho \circ i_E = i \circ \rho$ for any $\rho \colon E \to \mathbb{C}$. Equivalently, a CM field is a totally imaginary quadratic extension of a totally real field.

Example

- $\mathbb{Q}(\sqrt{a})$ with $a \in \mathbb{Z}_{<0}$ is a CM field.
- $\mathbb{Q}(\zeta_n)$ where ζ_n is a primitive *n*-th root of unity is a CM field.

Definition

A polarizable \mathbb{Q} -Hodge structure (V, h) is called to be of *CM-type* if its Mumford-Tate group is a torus.

Equivalent condition: The endomorphism algebra End(V, h) contains a commutative semisimple \mathbb{Q} -algebra F such that V is free of rank 1 as an F-module. When (V, h) is simple, it is of CM-type iff End(V, h) is a CM-field.

イロト イポト イヨト イヨト

Examples

Example

Let E be an elliptic curve with complex multiplication, then $V := H^1(E, \mathbb{Q})$ is a Hodge structure of CM-type.

Example

Let A be a complex abelian variety of dimension g and V: $= H_1(A, \mathbb{Q})$. The choice of a polarization $\lambda: A \to A^t$ yields a polarization $\psi: V \otimes V \to \mathbb{Q}(1)$. $D: = \operatorname{End}(A) \otimes \mathbb{Q}$ is finite dimensional semisimple \mathbb{Q} -algebra. A is said to be of CM-type if there is a commutative semisimple sub-algebra $F \subset D$ with $\dim_{\mathbb{Q}} F = 2g$. If A is simple, then this is equivalent to the condition that D is a CM field of degree 2g over \mathbb{Q} .

A is of CM-type if and only if MT(V) is a torus [4, (5.3)].

イロト イポト イヨト イヨ

Torus as MT group

Proposition

Let T be a torus over \mathbb{Q} and $\mu \colon \mathbb{G}_m \to T_{\mathbb{C}}$ be a cocharacter. The pair (T, μ) is the Mumford-Tate group of a polarized rational Hodge structure if and only if

- (a) T is split by a CM field.
- (b) $\omega = \mu + i.\mu$ of μ is defined over \mathbb{Q} .
- (c) μ generates T.

Let $\Gamma = \text{Gal}(\mathbb{Q}^{\text{al}}/\mathbb{Q})$. In terms of cocharacter group $X_*(T)$ of T, (a) says the action of i on $X_*(T)$ commutes with the action of Γ , (b) says $\mu + i\mu$ is fixed by Γ , and (c) says $X_*(T) = \Gamma \mu$. Idea of the proof:

• If (V, h) is a non-trivial simple Hodge structure of CM-type, then E: = End(V, h) is a CM field and V is 1-dimensional vector space over E.

•
$$\mathsf{MT}(V) \subset T_E$$
: $= (\mathbb{G}_{m,E})_{E/\mathbb{Q}}$

I Sac

イロト イポト イヨト イヨト

Q-Hodge structures of CM type and the Serre group Serre group

For a CM-field $E \subset \mathbb{C}$ let S^E be the quotient of $(\mathbb{G}_{m,E})_{E/\mathbb{Q}}$ with character group

$$X^*(S^E) = \{\lambda \in \mathbb{Z}^{\operatorname{Hom}(E,\mathbb{C})} | \lambda(\tau) + \lambda(i\tau) = constant\}.$$

Define μ^{E} to be the cocharacter of S^{E} such that

$$\langle \lambda, \mu^{\mathsf{E}}
angle = \lambda(au_0), \text{ for all } \lambda \in X^*(S^{\mathsf{E}})$$

where $\tau_0: E \hookrightarrow \mathbb{C}$ is the given embedding. Let $E \subset E' \subset \mathbb{C}$, the norm map defines a homomorphism $S^{E'} \to S^E$ carrying out $\mu^{E'} \to \mu^E$.

Definition

The pair
$$(S, \mu_{can})$$
: = $\lim_{E} (S^E, \mu^E)$ is called the Serre group.

Let \mathbb{Q}^{cm} be the union of all CM-subfields of \mathbb{Q}^{al} , then $X^*(S)$ can be identified with the set of all locally constant function λ : Gal $(\mathbb{Q}^{cm}/\mathbb{Q}) \to \mathbb{Z}$ such that $\lambda(\tau) + \lambda(i\tau) = -m$.

E naa

Let *E* be a CM field and M: = Hom(*E*, \mathbb{C}). There is a bijection between Hodge structures of CM-type of weight *n* with endomorphisms by *E*, and function $\lambda \colon M \to \mathbb{Z}$ such that $\lambda(\tau) + \lambda(i\tau) = n$ [1, Lemma 2].

Theorem

Let (T, μ) be a pair satisfying conditions (a) and (b) in Proposition 21. Then there exists a unique homomorphism $\rho: S \to T$ defined over \mathbb{Q} such that $\rho \circ \mu_{can} = \mu$. Moreover, $(S, \mu_{can}) = \varprojlim(T, \mu)$ where the limit is taken over all pairs (T, μ) satisfying 21(a)(b)(c).

Proof.

Work with character groups.

(日) (同) (三) (三)

Corollary

The \mathbb{Q} -Hodge structures of CM-type form a Tannakian category whose Tannakian group is the Serre group.

Proof.

It is obvious that Hodge structures of CM-type form a Tannakian category. The pro-algebraic group attached to the forgetful fibre functor is the inverse limit of the Mumford-Tate groups of the Hodge structures of CM type. The statement follows from Theorem 20.

Non-example

Proposition (Green)

A simple algebraic group G over \mathbb{Q} is a Mumford-Tate group if and only if $G(\mathbb{R})$ contains a compact maximal torus.

Corollary

 SL_n is not a MT group when $n \ge 3$.

・ロト ・回ト ・ヨト ・

[Abdulali05] S. Abdulali, Hodge structures of CM-type. J. Ramanujan Math. Soc. 20 (2005), no. 2, 155–162.

[Deligne82] P. Deligne (notes by J.S. Milne), Hodge cycles on abelian varieties (1982), available onlline from https://www.jmilne.org/math/Documents/Deligne82.pdf.

[Deligne-Milne82] P. Deligne and J. S. Milne, Tannakian Categories, Lectures Notes in Mathemat-ics, Springer, 1982.

[Moonen04] B. Moonen, An introduction to Mumford-Tate groups(2004), available online from https://www.math.ru.nl/~bmoonen/Lecturenotes/MTGps.pdf.

[Serre68] J. P. Serre, Abelian ℓ -adic representations and elliptic curves. McGill University lecture notes, W. A. Benjamin, Inc., New York-Amsterdam 1968 xvi+177 pp.

[Schnell11] C. Schnell, Two Lectures on Mumford-Tate-Groups, Rend. Sem. Mat. Univ. Pol.Torino Vol. xx, x (xxxx), 1 – 16, 2011.

Thank you for paying attention!

2

メロト メロト メヨト メ