TANNAKIAN CATEGORIES: EXAMPLES

PHÙNG HÔ HAI

CONTENTS

1	Tannakian categories	4
1.1.	Tensor structure	5
1.2.	The internal hom and dual object	6
1.3.	Abelian tensor category	8
1.4.	Tensor functor	9
1.5.	Fiber functor, tannakian category	11
1.6.	Torsors	12
2. Examples of tensor categories		14
2.1.	Graded vector spaces	15
2.2.	Hodge structure	16
2.3.	Representations of abstract groups, tannakian evelopes	17
2.4.	Representation of continuous groups	19
2.5.	Essential finite bundles	20
2.6.	Connections	21
2.7.	Picard-Vessiot theory	23
3. Fiber functors		25
3.1.	Sufficient conditions for the existence of fiber functor	26

- 3.2. Tangential fiber functor
- 3.3. Grothendieck section conjecture

1. TANNAKIAN CATEGORIES

1.1. **Tensor structure.** Let C be a category and let

 $\otimes: \mathcal{C} imes \mathcal{C} \longrightarrow \mathcal{C}, \quad (X,Y) \mapsto X \otimes Y$

be a functor. An associativity constraint for \otimes is a natural Isomorphism

 $\Phi_{X,Y,Z}:X\otimes (Y\otimes Z)\longrightarrow (X\otimes Y)\otimes Z,$

such that, for all objects X; Y; Z; T, the pentagon diagram commutes. This is the pentagon axiom. It allows one to *identify various ways of determining the tensor product of several objects.*

A commutativity constraint for \otimes is a functorial Isomorphism

$$\sigma_{X,Y}: X\otimes Y \longrightarrow Y\otimes X,$$

such that, for all objects X; Y,

$$\sigma_{Y,X}\circ\sigma_{X,Y}=1_{X,Y},$$

and is compatible with the associativity constraint in terms of the commutatiity of the following hexagon diagram. This is the hexagon axiom. One should however *not to identify the tensor products of several objects obtained by interchange the order in the tensor product.*

An unit object is a pair (I; i) comprising an object I of C and an Isomorphism $i : I \to I \otimes I$ is an unit object of (C, \otimes) if

 $r: X \mapsto X \otimes I: \mathcal{C}
ightarrow \mathcal{C}$

is an equivalence of categories. Unit objects are isomorphic by a unique morphism. Thus we can speak of *the* unit object.

Definition 1.1.1. A system $(\mathcal{C}, \otimes, \sigma, I)$ in which \otimes and σ are compatible associativity and commutativity constraints, and I is an unit object is a tensor category.

1.2. The internal hom and dual object. For objects X and Y, if the functor

 $T\mapsto \mathsf{Hom}(T\otimes X,Y):\mathcal{C}^{\mathsf{opp}}\longrightarrow \mathcal{C}$

is representable, then we denote by \mathcal{H} om(X, Y) the representing object and by

 $\operatorname{ev}_{X,Y}:\mathcal{H}\operatorname{om}(X,Y)\otimes X\longrightarrow Y$

the morphism corresponding to $1_{\mathcal{H}om(X,Y)}$. Consequently we have the functorial isomorphism $\operatorname{Hom}(T, \mathcal{H}om(X,Y)) \simeq \operatorname{Hom}(T \otimes X, Y).$

Lemma 1.2.1. We now assume that $\mathcal{H}om(X, Y)$ exists for every pair X, Y of objects in C. Then there is a functorial composition map

 \mathcal{H} om $(X,Y)\otimes \mathcal{H}$ om $(Y,Z)\longrightarrow \mathcal{H}$ om(X,Z).

Proof.

The dual to X is defined to be $X^{\vee} := \mathcal{H}om(X, I)$. Under the natural isomorphism: $\operatorname{Hom}(Y \otimes X^{\vee}, \mathcal{H}om(X, Y)) \simeq \operatorname{Hom}(Y \otimes X^{\vee} \otimes X, Y),$ the morphism $1 \otimes \operatorname{ev}_{X,I} : Y \otimes X^{\vee} \otimes X \longrightarrow Y$ corresponds to a morphims

$$Y\otimes X^{ee}\longrightarrow \mathcal{H}$$
om $(X,Y).$

X is said to be rigid if this is an isomorphism.

We have natural isomorphisms

 $\operatorname{Hom}(X,Y) \simeq \operatorname{Hom}(I, \mathcal{H}\operatorname{om}(X,Y)) \simeq \operatorname{Hom}(I,Y \otimes X^{\vee}).$

In particular, for Y = X, the identity of X induces a morphism

 $\mathsf{db}: I o X \otimes X^{ee},$

called the dual basis morphism.

For a morphism $f: X \to Y$ of rigid objects, we can define the dual (conjugate) morphism ${}^tf: Y^{\vee} \to X^{\vee}$ as follows:

$${}^tf:Y^{\vee}\xrightarrow{1\otimes {\sf db}_X}Y^{\vee}\otimes X\otimes X^{\vee}\xrightarrow{1\otimes f\otimes 1}Y^{\vee}\otimes Y\otimes X^{\vee}\xrightarrow{{\sf ev}_Y\otimes 1}X^{\vee}.$$

We can give an alternative definition of rigid object: there exist an object X^{\vee} and morphisms $ev_X : X^{\vee} \otimes X \to I$ and $db_X : I \to X \otimes X^{\vee}$ such that the following compositions are identities:

$$X \xrightarrow{\mathsf{db}_X \otimes 1} X \otimes X^{\vee} \otimes X \xrightarrow{1 \otimes \mathsf{ev}_X} X;$$

 $X^{\vee} \xrightarrow{1 \otimes \mathsf{db}_X} X^{\vee} \otimes X \otimes X^{\vee} \xrightarrow{\mathsf{db}_X \otimes 1} X^{\vee}.$

For a rigid object X, consider the composition

$$I \xrightarrow{\mathsf{db}_X} X \otimes X^{\vee} \xrightarrow{\sigma_{X,X^{\vee}}} X^{\vee} \otimes X \xrightarrow{\mathsf{ev}_X} I.$$

This is an element of k := End(I), called the categorical rank of I.

In general, for any morphism $f: X \to X$, we can define its trace to be an element of k in the same manner.

1.3. Abelian tensor category.

Definition 1.3.1. An additive (resp. abelian) tensor category is a tensor category (C, \otimes) such that C is an additive (resp. abelian) category and \otimes is a bi-additive functor.

If (\mathcal{C}, \otimes) is an additive tensor category and (I, i) is an unit object, then $k := \operatorname{End}(I)$ is a ring which acts, via $r_X : X \simeq X \otimes I$, on each object of X. The action of k on X commutes with endomorphisms of X hence k is commutative. If (I', i') is a second unit object, the unique isomorphism $a : (I, i) \longrightarrow (I, i')$ defines an isomorphism $k \simeq \operatorname{End}(I')$. Therefore \mathcal{C} is k-linear category and the functor \otimes is bilinear. When \mathcal{C} is rigid, the trace morphism is a k-linear map $\operatorname{Tr} : \operatorname{End}(X) \to k$.

Proposition 1.3.2. Let (C, \otimes) be a rigid tensor abelian category. Then \otimes commutes with direct and inverse limits in each variable; in particular, it is exact in each variable.

 \square

Proof.

Proposition 1.3.3. Let (\mathcal{C}, \otimes) be a rigid abelian tensor category. If U is a subobject of I, then $I \simeq U \oplus U^{\perp}$ where $U^{\perp} = \text{Ker}(1 \longrightarrow U^{\vee})$ (the dual to the inclusion $U \rightarrow I$). Consequently, if End(I) is a field, I is a simple object. 1.4. **Tensor functor.** Let (\mathcal{C}, \otimes) and $\mathcal{C}', \otimes')$ be tensor categories.

Definition 1.4.1. A tensor functor $(\mathcal{C}, \otimes) \longrightarrow (\mathcal{C}', \otimes')$ is a pair (ω, c) comprising a functor $\omega : \mathcal{C} \longrightarrow \mathcal{C}'$ and a functorial isomorphism $c_{X,Y} : \omega(X) \otimes' \omega(Y) \longrightarrow \omega(X \otimes Y)$ with the following properties:

(1) for all $X, Y, Z \in ob(\mathcal{C})$ the following diagram commutes:

(2) for all $X, Y \in ob(\mathcal{C})$ the following diagram commutes:

$$egin{aligned} &\omega(X)\otimes'\omega(Y)\stackrel{c}{\longrightarrow}\omega(X\otimes Y)\ &\sigma'&ert\ &ert\ \omega(\sigma)\ &\omega(Y)\otimes'\omega(X)\stackrel{c}{\longrightarrow}\omega(Y\otimes X). \end{aligned}$$

(3) The object $\omega(I)$ together with the morphism $\omega(i)$ is an unit object in \mathcal{C}' .

A tensor functor is a tensor equivalence if it an equivalence of categories. In this case, there is a quasi-inverse which is a tensor functor.

Definition 1.4.2. A morphism of tensor functors (ω, c) and (η, d) between categories (\mathcal{C}, \otimes) and (\mathcal{C}', \otimes') is a natural transformation $\theta : \omega \longrightarrow \eta$, satisfying the following conditions:

(1) for any pair $X, Y \in ob(\mathcal{C})$ the diagram below commutes

$$egin{aligned} &\omega(X)\otimes'\omega(Y)\stackrel{c}{\longrightarrow}\omega(X\otimes Y)\ & heta\otimes' heta&igg|\ &\eta(X)\otimes'\eta(Y)\longrightarrow\eta(X\otimes Y). \end{aligned}$$

(2) The morphism $\theta(i)$ is the unique isomorphism between the unit objects $\omega(I)$ and $\eta(I)$.

Lemma 1.4.3. Let (ω, c) and (η, d) be tensor functors $(\mathcal{C}, \otimes) \to (\mathcal{C}', \otimes')$. If \mathcal{C} is rigid, then every morphism of tensor functors $\omega \longrightarrow \eta$ is an isomorphism.

Proof. Define the morphism $\mu: \omega \to \eta$ by the following commutative diagram:

$$egin{aligned} &\omega(X^ee) \stackrel{ heta_{X^ee}}{\longrightarrow} \eta(X^ee) \ &\simeq & ig| & ee \simeq \ &\omega(X)^ee_{t_{(\mu_X)}} \eta(X)^ee. \end{aligned}$$

We claim that μ is the inverse to θ . The proof uses properties of the maps ev and db.

1.5. Fiber functor, tannakian category. Let k be a field.

Let (\mathcal{C}, \otimes) be a rigid abelian tensor category such that k = End(I). A (neutral) fiber funtor for (\mathcal{C}, \otimes) is an exact faithful k-linear tensor functor $\omega : \mathcal{C} \longrightarrow \text{vec}_k$ – the cateogry of *finite dimensional k*-vector spaces.

A triple $(\mathcal{C},\otimes,\omega)$ is called a (neutral) tannakian category.

Define a group functor $\underline{Aut}^{\otimes}(\omega)$ on the category of k-algebras as follows.

$$\operatorname{\underline{Aut}}^{\otimes}(\omega)(R):=\operatorname{\mathsf{Aut}}^{\otimes}_R(\omega\otimes_k R),$$

where $\omega \otimes_k R : \mathcal{C} \longrightarrow \mathsf{Mod}_R, X \longmapsto \omega(X) \otimes_k R.$

Theorem 1.5.1. Let $(\mathcal{C}, \otimes, \omega)$ be a (neutral) tannakian category. Then the functor $\operatorname{Aut}^{\otimes}(\omega)$ is representable by an affine group scheme G_{ω} over k. Futher the functor ω induces an equivalence between \mathcal{C} and $\operatorname{rep}_{k}(G_{\omega})$:

Notice that the equivalence $\mathcal{C} \simeq \operatorname{rep}_k G$ prolongs to a tensor equivalence

 $\operatorname{Ind} \mathcal{C} \simeq \operatorname{Rep}_k(G_\omega).$

Here, on the left hand side we have the category of ind-objects of C and on the righ hand side we have the category of any representations of G_{ω} .

1.6. **Torsors.** Assume that (\mathcal{C}, ω) is a neutral Tannakian category over k. A fibre functor on \mathcal{C} with values in a k-algebra R is a k-linear exact faithful tensor functor $\eta : \mathcal{C} \to \text{mod}_R$, which should take values in the subcategory proj_R of mod_R.

Consider the functor $\underline{\text{Isom}}^{\otimes}(\omega, \eta)$ on *R*-algebras:

$$\operatorname{\underline{Isom}}^{\otimes}(\omega,\eta)(S) = \operatorname{Isom}_{S}^{\otimes}(\omega \otimes_{k} S,\eta \otimes_{R} S).$$

Notice that

$$\mathsf{Hom}^{\otimes}(\omega,\eta) = \mathsf{Isom}^{\otimes}(\omega,\eta)$$

according to Lemma 1.4.3.

Composition defines a pairing

$$\underline{\operatorname{Isom}}^{\otimes}(\omega,\eta)\times\underline{\operatorname{Aut}}^{\otimes}(\omega)\longrightarrow\underline{\operatorname{Isom}}^{\otimes}(\omega,\eta).$$

Theorem 1.6.1. Let (\mathcal{C}, ω) be a neutral Tannakian category over k.

- (1) For any fibre functor η on C with values in mod_R , $\underline{\text{Isom}}^{\otimes}(\omega, \eta)$ is representable by an affine scheme $G_{\omega,\eta}$, faithfully flat over SpecR; it is therefore a G_{ω} -torsor.
- (2) The functor $\eta \mapsto \underline{\text{Isom}}^{\otimes}(\omega, \eta)$ determines an equivalence between the category of fibre functors on C with values in mod_R and the category of G_{ω} -torsors over R.

Let G be an affine group scheme over k. A G-torsor over Spec R is a scheme U over R equipped with an action of G:

$$\mu: U imes G \longrightarrow U, \quad (u,g) \longmapsto ug,$$

satisfying the following conditions

(1) U is faithfully flat over R;

(2) the morphism $U \times G \longrightarrow U \times_R U$,

$$U imes G \xrightarrow{\Delta imes 1} U imes_R U imes G \xrightarrow{1 imes \mu} U imes_R U, \quad (u,g) \longmapsto (u,ug)$$

is an isomorphism.

If for an *R*-algebra *S*, the set $U(S) \neq \emptyset$ then the above action yields a bijection $U(S) \rightarrow G(S)$.

In particular, if $\eta : \mathcal{C} \longrightarrow \text{vec}_k$ is a fiber functor, then $\eta \simeq \omega$ if $G_{\omega,\eta}(k) \neq \emptyset$. In this case we have $G_{\omega} \simeq G_{\eta}$.

2. EXAMPLES OF TENSOR CATEGORIES

2.1. Graded vector spaces. Let vec^{Gr} be the category whose objects are families finite dimensional vector space V together with a \mathbb{Z} - grading, i.e. a decomposition

$$V=igoplus_{n\in\mathbb{Z}}V^n.$$

There is an obvious rigid tensor structure on $\operatorname{vec}^{\operatorname{Gr}}$ for which $\operatorname{End} I = k$ the fiber functor is just the forgetful functor. Thus, according to Theorem 1.5.1, there is an equivalence of tensor categories $\operatorname{vec}^{\operatorname{Gr}} \simeq \operatorname{rep}_k G$ for some affine k-group scheme G.

Proposition 2.1.1. The tannakian group G of the category GrV of graded finite dimensional vector spaces over k is the multiplicative group $\mathbb{G}_{m,k}$.

Proof. This is easy to describe: $V = \bigoplus V^n$ correspond to the representation of \mathbb{G}_m on V acts on V^n through the character $\lambda \mapsto \lambda^n$.

Thus, a decomposition of a vector space into direct sum of subspace is the same as an action of $\mathbb{G}_{m,k}$ on it. Notice that this correspondence extends to any vector spaces.

2.2. Hodge structure. Let $k = \mathbb{R}$ the real numbers.

A real Hodge structure is a finite-dimensional vector space V over R together with a decomposition

$$V_{\mathbb{C}}:=V\otimes_{\mathbb{R}}\mathbb{C}\simeqigoplus V^{p,q}$$

such that $V^{p,q}$ and $V^{q,p}$ are conjugate complex subspaces in $V_{\mathbb{C}}$. There is an obvious rigid tensor structure on the category Hod_R of real Hodge structures, and the forgetful functor makes it a tannakian category over \mathbb{R} .

Proposition 2.2.1. The tannakian group of $Hod_{\mathbb{R}}$ is the Weil restriction of $\mathbb{G}_{m,\mathbb{C}}$ to \mathbb{R} , denoted by \mathbb{S} .

Proof. The Weil restriction of $\mathbb{G}_{m,\mathbb{C}}$ to \mathbb{R} is to consider $\mathbb{G}_{m,\mathbb{C}}$ as a real group scheme. The coordinate ring of $\mathbb{G}_{m,\mathbb{C}}$ is $\mathbb{C}[t, u]/(tu - 1)$.

Writing t = X + iY and u = U + iV and expand the equation uv = 1 we obtain the description as an \mathbb{R} -algebra:

$$\mathbb{R}[X, Y, U, V]/(XU - YV = 1; XV + UY = 0).$$

A real matrix $\begin{bmatrix} X & Y \\ V & U \end{bmatrix}$ satifying the above equation determines a non-zero complex number. Thus
 $\mathbb{S}(\mathbb{R}) \simeq \mathbb{C}^{\times}.$

For $\lambda \in S(\mathbb{R})$, let it acts on $V^{p,q}$ by $\lambda^{-p}\overline{\lambda}^{-q}$. In this way we obtain an equivalence between $\operatorname{rep}_k S$ and $\operatorname{Hod}_{\mathbb{R}}$. \Box

$$\mathsf{Hod}_{\mathbb{R}} \longrightarrow \mathsf{Vec}^{\mathsf{Gr}}, \hspace{0.3cm} (V,V^{p,q}) \longmapsto (V,V^n): V^n \otimes_{\mathbb{R}} \mathbb{C} = \bigoplus_{p+q=n} V^{p,q}.$$

yield a morphism $\mathbb{G}_{m,\mathbb{R}} \to \mathbb{S}$, on real points, it is $\mathbb{R}^{\times} \longrightarrow \mathbb{C}^{\times}$, $t \mapsto t^{-1}$.

2.3. Representations of abstract groups, tannakian evelopes. Let Γ be an abstract group. Consider the category rep_k Γ of finite dimensional k-linear representations of Γ . Together with the forgetful functor to vec_k, it is a tannakian category. The tannakian group is denoted by $\widehat{\Gamma}_k$. It is equipped with a group homomorphism

$$ho:\Gamma \longleftarrow \widehat{\Gamma}_k(k).$$

Indeed, each $\gamma \in \Gamma$ determines a map $\rho_{\gamma} : V \to V$ on any $V \in ob(rep_k(\Gamma))$, which is just the action of γ on V. This yields an automorphism of the forgetful functor

$$\operatorname{rep}_k\Gamma\longrightarrow\operatorname{vec}_k,$$

which we call $\rho(\gamma)$.

Proposition 2.3.1. The map $\rho : \Gamma \longleftarrow \widehat{\Gamma}_k(k)$ is universal in the sense that for any *k*-affine group scheme *G* and group homomorphism $\varphi : \Gamma \longrightarrow G(k)$, there exists a unique morphism $\widehat{\Gamma}_k \longrightarrow G$, such that the following diagram commutes:

In particular, the image $\rho(\Gamma)$ is schematically dense in $\widehat{\Gamma}_k$.

Proof. The map φ induces functor $\varphi^* : \operatorname{rep}_k(G) \longrightarrow \operatorname{rep}_k(\Gamma)$ whence the morphism $\widehat{\Gamma}_k \to G$.

Conversely, $p:\widehat{\Gamma}_k
ightarrow G$ yields a functor commuting with forgeful functors:

Hence every $\gamma \in \Gamma$ yields an automorphisms of the functor $\operatorname{rep}_k(G) \longrightarrow \operatorname{vec}_k$ by composing with p^* , that is, an element of G(k).

 \square

Note that we cannot extend the above equivalence to the category of *any* representations of Γ , since a representation of Γ is not necessarily the direct limit of its finite dimensional subrepresentations.

Assume that $\overline{k} = k$. Then we can consider the category $\operatorname{mod}_k(\Gamma)$ of those finite dimensional representations $\rho: \Gamma \longrightarrow \operatorname{GL}(V)$, in which the image of Γ is a finite sets. The resulting tannakian group scheme $\widehat{G}_{f,k}$ is a profinite group scheme. The group $\widehat{G}_{f,k}(k)$ is profinite and is the profinite completion of Γ .

2.4. **Representation of continuous groups.** Let K be a topological group. The category rep_{c,R}K of continuous representations of K on finite-dimensional real vector spaces is, in a natural way, a neutral Tannakian category with the forgetful functor as fibre functor.

There is therefore a real affine algebraic group $\widehat{K}_{\mathbb{R}}$ called the real algebraic envelope of K, for which there exists an equivalence $\operatorname{rep}_{c,\mathbb{R}} K \simeq \operatorname{rep}_k \widehat{K}_{\mathbb{R}}$.

Proposition 2.4.1 (Tannaka). The natural homomorphism $K \leftarrow \widehat{K}_{\mathbb{R}}(\mathbb{R})$ is an isomorphism if K is compact.

In general, a real algebraic group G is said to be compact if $G(\mathbb{R})$ is compact and the natural functor

 $\operatorname{rep}_{c,\mathbb{R}}(G(\mathbb{R}) \longleftarrow \operatorname{rep}_{\mathbb{R}}(G)$

is an equivalence. The second condition is equivalent to each connected component of $G(\mathbb{C})$ containing a real point (or to $G(\mathbb{R})$ being Zariski dense in G).

2.5. Essential finite bundles. [Nori] A vector bundle E on a curve C is semi-stable if for every sub-bundle $E_0 \subset E$,

$$rac{\deg E'}{\operatorname{rank}E'} \leq rac{\deg E}{\operatorname{rank}E}.$$

Let X be a complete connected reduced k-scheme, where k is assumed to be perfect. A vector bundle E on X will be said to be semi-stable if for every nonconstant morphism $f : C \longrightarrow X$ with C a projective smooth connected curve, f^*E is semi-stable of degree zero.

A bundle *E* is finite if there exist polynomials $g; h \in \mathbb{N}[t]$, $g \neq h$, such that $g(E) \simeq h(E)$. Let C_N denote the category of semi-stable vector bundles on *X*, which is isomorphic to a subquotient of a finite vector bundle.

Proposition 2.5.1. Let X be a complete connected reduced k-scheme, where k is assumed to be perfect. The category C_N is an abelian rigid tensor category.

If X has a k-rational point x, then C_N is a neutral Tannakian category over k with fibre functor $\omega(E) = E|_x$. The tannakian group scheme of (C_N, ω_x) is a pro-finite group scheme over k, called the true fundamental group of $\pi^N(X; x)$ of X. It which classifies all G-torsos on X with G a finite group scheme over k.

In particular, the largest pro-étale quotient of $\pi^N(X; x)$ classifies the finite étale coverings of X together with a k-point lying over x; it coincides with the usual étale fundamental group of X when $k = \bar{k}$.

Remark. Assume Γ is a finite group. Let V be its regular representation: as vector space, $V = k[\Gamma]$ - the group algebra of Γ , with Γ acts on the basis by left action. Then, as a representation of Γ , we have

$$V\otimes V\simeq V^{\oplus|\Gamma|}.$$

2.6. **Connections.** Let k be a field of characteristic 0. Let X/k be a smooth scheme. Let Ω_X^1 be the sheaf of differential forms. It is locally free as X/k is smooth and it is equipped with a differential

$$d: \mathcal{O}_X o \Omega^1_X; \quad f \mapsto df,$$

satisfying the Leibniz condition d(fg) = fdg + gdf.

A connection on a coherent sheaf of \mathcal{O}_X -modules \mathcal{M} is a k-linear map

$$abla : \mathcal{M} \longrightarrow \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{M},$$

satisfying the Leibniz condition

$$abla(fm)=df\otimes m+f
abla(m).$$

where f, m are (sections of) \mathcal{O}_X , \mathcal{M} .

 ∇ induces a map

$$abla : \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{M} \longrightarrow \Omega^2_X \otimes_{\mathcal{O}_X} \mathcal{M}$$

by formular $\nabla(\omega \otimes m) = d\omega \otimes m - \omega \wedge \nabla(m)$. We say that ∇ is a flat connection if the composed map

$$\mathcal{M} \xrightarrow{\nabla} \Omega^1_X \otimes_{\mathcal{O}_X} \mathcal{M} \xrightarrow{\nabla} \Omega^2_X \otimes_{\mathcal{O}_X} \mathcal{M}$$

is the zero map.

Let $\mathcal{D}_X := \mathcal{H}om(\Omega^1_X, \mathcal{O}_X)$ be the sheaf of derivations of \mathcal{O}_X . Then ∇ induces a k-linear map (denoted by the same symbol)

$$\nabla: \mathcal{D}_X \longrightarrow \mathcal{E} \mathrm{nd}_k \mathcal{M},$$

satisfying $\nabla(D)(fe) = D(f)m + f\nabla(D)(m)$, where D, f, m are (sections of) $\mathcal{D}_X, \mathcal{O}_X, \mathcal{M}$. Then ∇ is flat iff it satisfies

$$abla([D_1,D_2])=[
abla(D_1),
abla(D_2)].$$

Lemma 2.6.1. Let \mathcal{M} be a coherent \mathcal{O}_X -module equipped with a connection. Then \mathcal{M} is locally free.

Proof. This is a local property, so assume X = SpecR, where R is a regular local ring, and \mathcal{M} corresponds to an R-module M. The base change $R \longrightarrow \hat{R}$ is faithfully flat, hence if suffices to assume $R = \hat{R}$. In this case, the connection has a full set of solutions: a solution to ∇ is an element of

$$M^
abla := {\sf Ker}(oldsymbol
abla : \Omega^1_X \otimes_R M).$$

This is a k-linear subspace of M with property

$$M^{\nabla} \otimes_k R \cong M.$$

Hence M is free.

The category of coherent modules with connection on X/k is denoted by Conn(X). Morphisms are those morphism of sheaves compatible with the connections. The tensor product in Conn(X) the usual tensor product, on which the connection act diagonally:

$$abla(m_1\otimes m_2)=m_1
abla(m_2)+
abla(m_1)\otimes m_2.$$

The local freeness implies the rigidity: the connection of \mathcal{M}^{\vee} is given by the equation

$$abla(arphi)(m) = arphi(
abla(m)).$$

The unite object is (\mathcal{O}_X, d) . Assume that X is geometrically connected then the endomorphism of the unit object is equal to k.

Any k-point of X determines a fiber functor for Conn(X). The corresponding tannakian group is called the differential fundamental group scheme of X at x.

2.7. **Picard-Vessiot theory.** A differential field is a pair (K, δ) where K is a field of characteristic 0 and δ : $K \longrightarrow K$ is a derivation, i.e. $\delta(a \cdot b) = a\delta(b) + b\delta(a)$. The subset $k := K^{\delta} = \text{Ker}\delta$ is a subfield of K and δ is k-linear. Let V be a K-vector space. A connection on V is a k-linear map

 $abla : V o V; \quad
abla (\lambda v) = \delta(\lambda) v + \lambda
abla (v).$

This corresponds to a system of linear differential equation. The solution set is Ker(δ), denoted by K^{Δ} .

Picard-Vessiot theory. Investigate the extension of (K, δ) in which the above connection has solution, i.e., a differential field (L, δ) such that:

(1) $L^{\delta} = k;$

- (2) $(X \otimes_K L)^{\Delta}$ generate $X \otimes_K L$ over L;
- (3) *L* is generated by the coordinates of the solutions of $X \otimes_K L$ in a basis of *X* over *K*.

The connection of the tensor product of two vector spaces is defined diagonally and on the dual vector space is defined by the equation

$$abla(arphi)(v) = arphi(
abla(v)).$$

The unit object is (K, δ) . Morphisms of two vector spaces with connection are *K*-linear maps, which are compatible with the connections. The hom-set is a *k*-linear vector space. This is a *k*-linear abelian tensor cagegory. There are however no fiber functors to vec_k!

Theorem 2.7.1. Let C_V be the full subcategory tensor generated by an connection (V, ∇) . Assume that $k = \overline{k}$. Then C_V admits a fiber functor.

Let ω_0 denote this fiber functor and $G(\omega_0)$ the tannakian group. Let ω denote the forgetful functor to vec_K. Then

 $(\omega_0,\omega|\mathcal{C}_V)$

is a torsor under $G(\omega_0)$. Let $G(\omega_0, \omega)$ denote the representing scheme.

Theorem 2.7.2. The Picard-Vessiot extension for V is the function field of $G(\omega_0, \omega)$.

3. FIBER FUNCTORS

3.1. Sufficient conditions for the existence of fiber functor. (Deligne, Roberts)

Internal characterization of Tannakian categories (in characteristic 0).

Theorem 3.1.1. Let k be field of characteristic 0. Let C be a k-linear abelian rigid tensor category. The following are equivalent:

(1) C is tannakian;

(2) For all $X \in ob(\mathcal{C})$, $rank(X) \in \mathbb{N}$;

(3) For all $X \in ob(\mathcal{C})$, there exist n such that $\wedge^n(X) \simeq 0$.

Idea of proof: construct a "universal torsor" in Ind-C, i.e. an algebra A such that for all X,

 $X\otimes A\simeq A^{\operatorname{rank} X}.$

3.2. Tangential fiber functor. (Deligne, Katz)

Connections on $\mathbb{P}^1\smallsetminus\{0,\infty\}.$

A connection on \mathbb{P}^1_C is said to be regular singular if it is regular singular at 0 and ∞ .

If $C = \mathbb{C}$ then regular singular connections on \mathbb{P}^1_C are (holomorphically) equivalent to Euler connections.

There is a natural "restriction" functor from regular singular connections on \mathbb{P}^1_C to regular singular connections on C((x)).

Theorem 3.2.1 (Deligne-Katz equivalence). The restriction functor mentioned above is an equivalence. Consequently the category of regular singular connections on \mathbb{P}^1_C is equivalent to the category of *C*-linear representations of \mathbb{Z} .

The Deligne-Katz equivalence is compatible with Galois descent, hence holds over any field (of characteristic 0);

This yields a fiber functor for the category of regular singular connections on C((x)), which is called **tangential** fiber functor by Deligne.

3.3. Grothendieck section conjecture. X: a hyperbolic curve over a number field k. One asks about its rational points.

Grothendiek's fundamental exact sequence

$$1 \to \pi^{\text{\'et}}(\bar{X}, \bar{x}) \to \pi^{\text{\'et}}(X, \bar{x}) \xrightarrow{p} \operatorname{Gal}(\bar{k}/k) \to 1.$$

Each k-rational point of X yields a section to p.

Grothendieck's section conjecture: Sections to p are in 1-1 correspondence with rational points of X.

[Esnault, –]: sections to p are in 1-1 correspondence with (neutral) fiber functors from **finite** connections on X, section given in terms of a rational point corresponds to the fiber functor at that point.