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1. TANNAKIAN CATEGORIES



1.1. Tensor structure. Let C be a category and let

⊗ : C × C −→ C, (X,Y ) 7→ X ⊗ Y
be a functor. An associativity constraint for ⊗ is a natural Isomorphism

ΦX,Y,Z : X ⊗ (Y ⊗ Z) −→ (X ⊗ Y )⊗ Z,
such that, for all objectsX;Y ;Z; T , the pentagon diagram commutes. This is the pentagon axiom. It allows one
to identify various ways of determining the tensor product of several objects.

A commutativity constraint for ⊗ is a functorial Isomorphism

σX,Y : X ⊗ Y −→ Y ⊗X,
such that, for all objects X;Y ,

σY,X ◦ σX,Y = 1X,Y ,

and is compatible with the associativity constraint in terms of the commutatiity of the following hexagon diagram.
This is the hexagon axiom. One should however not to identify the tensor products of several objects obtained
by interchange the order in the tensor product.

An unit object is a pair (I; i) comprising an object I of C and an Isomorphism i : I → I ⊗ I is an unit object
of (C,⊗) if

r : X 7→ X ⊗ I : C → C
is an equivalence of categories. Unit objects are isomorphic by a unique morphism. Thus we can speak of the
unit object.

Definition 1.1.1. A system (C,⊗, σ, I) in which ⊗ and σ are compatible associativity and commutativity con-
straints, and I is an unit object is a tensor category.



1.2. The internal hom and dual object. For objects X and Y , if the functor

T 7→ Hom(T ⊗X,Y ) : Copp −→ C
is representable, then we denote byHom(X,Y ) the representing object and by

evX,Y : Hom(X,Y )⊗X −→ Y

the morphism corresponding to 1Hom(X,Y ). Consequently we have the functorial isomorphism

Hom(T,Hom(X,Y )) ' Hom(T ⊗X,Y ).

Lemma 1.2.1. We now assume that Hom(X,Y ) exists for every pair X,Y of objects in C. Then there is a
functorial composition map

Hom(X,Y )⊗Hom(Y, Z) −→ Hom(X,Z).

Proof. �

The dual to X is defined to be X∨ := Hom(X, I). Under the natural isomorphism:

Hom(Y ⊗X∨,Hom(X,Y )) ' Hom(Y ⊗X∨ ⊗X,Y ),

the morphism 1⊗ evX,I : Y ⊗X∨ ⊗X −→ Y corresponds to a morphims

Y ⊗X∨ −→ Hom(X,Y ).

X is said to be rigid if this is an isomorphism.

We have natural isomorphisms

Hom(X,Y ) ' Hom(I,Hom(X,Y )) ' Hom(I, Y ⊗X∨).
In particular, for Y = X, the identity of X induces a morphism

db : I → X ⊗X∨,
called the dual basis morphism.



For a morphism f : X → Y of rigid objects, we can define the dual (conjugate) morphism tf : Y ∨ → X∨ as
follows:

tf : Y ∨
1⊗dbX−−−→ Y ∨ ⊗X ⊗X∨ 1⊗f⊗1−−−−→ Y ∨ ⊗ Y ⊗X∨ evY⊗1−−−→ X∨.

We can give an alternative definition of rigid object: there exist an objectX∨ and morphisms evX : X∨⊗X → I
and dbX : I → X ⊗X∨ such that the following compositions are identities:

X
dbX⊗1−−−→ X ⊗X∨ ⊗X 1⊗evX−−−→ X;

X∨
1⊗dbX−−−→ X∨ ⊗X ⊗X∨ dbX⊗1−−−→ X∨.

For a rigid object X, consider the composition

I
dbX−−→ X ⊗X∨

σX,X∨−−−→ X∨ ⊗X evX−−→ I.

This is an element of k := End(I), called the categorical rank of I.

In general, for any morphism f : X → X, we can define its trace to be an element of k in the same manner.



1.3. Abelian tensor category.

Definition 1.3.1. An additive (resp. abelian) tensor category is a tensor category (C,⊗) such that C is an additive
(resp. abelian) category and ⊗ is a bi-additive functor.

If (C,⊗) is an additive tensor category and (I, i) is an unit object, then k := End(I) is a ring which acts, via
rX : X ' X ⊗ I, on each object of X. The action of k on X commutes with endomorphisms of X hence
k is commutative. If (I ′, i′) is a second unit object, the unique isomorphism a : (I, i) −→ (I, i′) defines an
isomorphism k ' End(I ′). Therefore C is k-linear category and the functor ⊗ is bilinear. When C is rigid, the
trace morphism is a k-linear map Tr : End(X)→ k.

Proposition 1.3.2. Let (C,⊗) be a rigid tensor abelian category. Then⊗ commutes with direct and inverse limits
in each variable; in particular, it is exact in each variable.

Proof. �

Proposition 1.3.3. Let (C,⊗) be a rigid abelian tensor category. If U is a subobject of I, then I ' U ⊕ U⊥

where U⊥ = Ker(1 −→ U∨) (the dual to the inclusion U → I). Consequently, if End(I) is a field, I is a simple
object.



1.4. Tensor functor. Let (C,⊗) and C′,⊗′) be tensor categories.

Definition 1.4.1. A tensor functor (C,⊗) −→ (C′,⊗′) is a pair (ω, c) comprising a functor ω : C −→ C′ and a
functorial isomorphism cX,Y : ω(X)⊗′ ω(Y ) −→ ω(X ⊗ Y ) with the following properties:

(1) for all X,Y, Z ∈ ob(C) the following diagram commutes:

ω(X)⊗′ (ω(Y )⊗′ ω(Z)) //

Φ′
��

ω(X)⊗′ ω(Y ⊗ Z) // ω(X ⊗ (Y ⊗ Z))

ω(Φ)
��

(ω(X)⊗′ ω(Y ))⊗′ ω(Z) // ω(X ⊗ Y )⊗′ ω(Z) // ω((X ⊗ Y )⊗ Z);

(2) for all X,Y ∈ ob(C) the following diagram commutes:

ω(X)⊗′ ω(Y )
c //

σ′
��

ω(X ⊗ Y )

ω(σ)
��

ω(Y )⊗′ ω(X)
c

// ω(Y ⊗X).

(3) The object ω(I) together with the morphism ω(i) is an unit object in C′.

A tensor functor is a tensor equivalence if it an equivalence of categories. In this case, there is a quasi-inverse
which is a tensor functor.

Definition 1.4.2. A morphism of tensor functors (ω, c) and (η, d) between categories (C,⊗) and (C′,⊗′) is a
natural transformation θ : ω −→ η, satisfying the following conditions:



(1) for any pair X,Y ∈ ob(C) the diagram below commutes

ω(X)⊗′ ω(Y )
c //

θ⊗′θ
��

ω(X ⊗ Y )

θ
��

η(X)⊗′ η(Y ) // η(X ⊗ Y ).

(2) The morphism θ(i) is the unique isomorphism between the unit objects ω(I) and η(I).

Lemma 1.4.3. Let (ω, c) and (η, d) be tensor functors (C,⊗) → (C′,⊗′). If C is rigid, then every morphism of
tensor functors ω −→ η is an isomorphism.

Proof. Define the morphism µ : ω → η by the following commutative diagram:

ω(X∨)
θX∨ //

'
��

η(X∨)

'
��

ω(X)∨
t(µX)

// η(X)∨.

We claim that µ is the inverse to θ. The proof uses properties of the maps ev and db. �



1.5. Fiber functor, tannakian category. Let k be a field.

Let (C,⊗) be a rigid abelian tensor category such that k = End(I). A (neutral) fiber funtor for (C,⊗) is an
exact faithful k-linear tensor functor ω : C −→ veck – the cateogry of finite dimensional k-vector spaces.

A triple (C,⊗, ω) is called a (neutral) tannakian category.

Define a group functor Aut⊗(ω) on the category of k-algebras as follows.

Aut⊗(ω)(R) := Aut⊗R(ω ⊗k R),

where ω ⊗k R : C −→ ModR, X 7−→ ω(X)⊗k R.

Theorem 1.5.1. Let (C,⊗, ω) be a (neutral) tannakian category. Then the functor Aut⊗(ω) is representable by
an affine group scheme Gω over k. Futher the functor ω induces an equivalence between C and repk(Gω):

C ω //

' %%

veck

repk(Gω).
forget
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Notice that the equivalence C ' repkG prolongs to a tensor equivalence

Ind-C ' Repk(Gω).

Here, on the left hand side we have the category of ind-objects of C and on the righ hand side we have the
category of any representations of Gω.



1.6. Torsors. Assume that (C, ω) is a neutral Tannakian category over k. A fibre functor on C with values in a
k-algebraR is a k-linear exact faithful tensor functor η : C → modR, which should take values in the subcategory
projR of modR.

Consider the functor Isom⊗(ω, η) on R-algebras:

Isom⊗(ω, η)(S) = Isom⊗S (ω ⊗k S, η ⊗R S).

Notice that
Hom⊗(ω, η) = Isom⊗(ω, η)

according to Lemma 1.4.3.

Composition defines a pairing

Isom⊗(ω, η)× Aut⊗(ω) −→ Isom⊗(ω, η).

Theorem 1.6.1. Let (C, ω) be a neutral Tannakian category over k.

(1) For any fibre functor η on C with values in modR, Isom⊗(ω, η) is representable by an affine scheme Gω,η,
faithfully flat over SpecR; it is therefore a Gω-torsor.

(2) The functor η 7−→ Isom⊗(ω, η) determines an equivalence between the category of fibre functors on C
with values in modR and the category of Gω-torsors over R.

Let G be an affine group scheme over k. A G-torsor over SpecR is a scheme U over R equipped with an
action of G:

µ : U ×G −→ U, (u, g) 7−→ ug,

satisfying the following conditions

(1) U is faithfully flat over R;



(2) the morphism U ×G −→ U ×R U ,

U ×G ∆×1−−→ U ×R U ×G
1×µ−−→ U ×R U, (u, g) 7−→ (u, ug)

is an isomorphism.

If for an R-algebra S, the set U(S) 6= ∅ then the above action yields a bijection U(S)→ G(S).

In particular, if η : C −→ veck is a fiber functor, then η ' ω if Gω,η(k) 6= ∅. In this case we have Gω ' Gη.



2. EXAMPLES OF TENSOR CATEGORIES



2.1. Graded vector spaces. Let vecGr be the category whose objects are families finite dimensional vector
space V together with a Z- grading, i.e. a decompostion

V =
⊕
n∈Z

V n.

There is an obvious rigid tensor structure on vecGr for which EndI = k the fiber functor is just the forgetful functor.
Thus, according to Theorem 1.5.1, there is an equivalence of tensor categories vecGr ' repkG for some affine
k-group scheme G.

Proposition 2.1.1. The tannakian group G of the category GrV of graded finite dimensional vector spaces over
k is the multiplicative group Gm,k.

Proof. This is easy to describe: V =
⊕
V n correspond to the representation of Gm on V acts on V n through

the character λ 7−→ λn. �

Thus, a decomposition of a vector space into direct sum of subspace is the same as an action of Gm,k on it.

Notice that this correspondence extends to any vector spaces.



2.2. Hodge structure. Let k = R the real numbers.

A real Hodge structure is a finite-dimensional vector space V over R together with a decomposition

VC := V ⊗R C '
⊕

V p,q

such that V p,q and V q,p are conjugate complex subspaces in VC. There is an obvious rigid tensor structure on
the category HodR of real Hodge structures, and the forgetful functor makes it a tannakian category over R.

Proposition 2.2.1. The tannakian group of HodR is the Weil restriction of Gm,C to R, denoted by S.

Proof. The Weil restriction of Gm,C to R is to consider Gm,C as a real group scheme. The coordinate ring of Gm,C
is C[t, u]/(tu− 1).

Writing t = X + iY and u = U + iV and expand the equation uv = 1 we obtain the description as an
R-algebra:

R[X,Y,U, V ]/(XU − Y V = 1;XV + UY = 0).

A real matrix

[
X Y

V U

]
satifying the above equation determines a non-zero complex number. Thus

S(R) ' C×.

For λ ∈ S(R), let it acts on V p,q by λ−pλ̄−q. In this way we obtain an equivalence between repkS and HodR. �

Notice that the forgetful functor

HodR −→ VecGr, (V, V p,q) 7−→ (V, V n) : V n ⊗R C =
⊕
p+q=n

V p,q.

yield a morphism Gm,R → S, on real points, it is R× −→ C×, t 7→ t−1.



2.3. Representations of abstract groups, tannakian evelopes. Let Γ be an abstract group. Consider the
category repkΓ of finite dimensional k-linear representations of Γ. Together with the forgetful functor to veck, it is
a tannakian category. The tannakian group is denoted by Γ̂k. It is equipped with a group homomorphism

ρ : Γ←− Γ̂k(k).

Indeed, each γ ∈ Γ determines a map ργ : V → V on any V ∈ ob(repk(Γ), which is just the action of γ on V .
This yields an automorphism of the forgetful functor

repkΓ −→ veck,

which we call ρ(γ).

Proposition 2.3.1. The map ρ : Γ ←− Γ̂k(k) is universal in the sense that for any k-affine group scheme G
and group homomorphism ϕ : Γ −→ G(k), there exists a unique morphism Γ̂k −→ G, such that the following
diagram commutes:

Γ //

&&

Γ̂k(k)

��

G(k).

In particular, the image ρ(Γ) is schematically dense in Γ̂k.

Proof. The map ϕ induces functor ϕ∗ : repk(G) −→ repk(Γ) whence the morphism Γ̂k → G.

Conversely, p : Γ̂k → G yields a functor commuting with forgeful functors:

repk(G)
p∗

//

))

repk(Γ̂k)

��

veck.



Hence every γ ∈ Γ yields an automophisms of the functor repk(G) −→ veck by composing with p∗, that is, an
element of G(k).

�

Note that we cannot extend the above equivalence to the category of any representations of Γ, since a repre-
sentation of Γ is not necessarily the direct limit of its finite dimensional subrepresentations.

Assume that k̄ = k. Then we can consider the category modfk(Γ) of those finite dimensional representations
ρ : Γ −→ GL(V ), in which the image of Γ is a finite sets. The resulting tannakian group scheme Ĝf,k is a
profinite group scheme. The group Ĝf,k(k) is profinite and is the profinite completion of Γ.



2.4. Representation of continuous groups. LetK be a topological group. The category repc,RK of continuous
representations of K on finite-dimensional real vector spaces is, in a natural way, a neutral Tannakian category
with the forgetful functor as fibre functor.

There is therefore a real affine algebraic group K̂R called the real algebraic envelope of K, for which there
exists an equivalence repc,RK ' repkK̂R.

Proposition 2.4.1 (Tannaka). The natural homomorphism K ←− K̂R(R) is an isomorphism if K is compact.

In general, a real algebraic group G is said to be compact if G(R) is compact and the natural functor

repc,R(G(R)←− repR(G)

is an equivalence. The second condition is equivalent to each connected component of G(C) containing a real
point (or to G(R) being Zariski dense in G).



2.5. Essential finite bundles. [Nori] A vector bundle E on a curve C is semi-stable if for every sub-bundle
E0 ⊂ E,

degE′

rankE′
≤

degE
rankE

.

Let X be a complete connected reduced k-scheme, where k is assumed to be perfect. A vector bundle E on
X will be said to be semi-stable if for every nonconstant morphism f : C −→ X with C a projective smooth
connected curve, f∗E is semi-stable of degree zero.

A bundle E is finite if there exist polynomials g;h ∈ N[t], g 6= h, such that g(E) ' h(E). Let CN denote the
category of semi-stable vector bundles on X, which is isomorphic to a subquotient of a finite vector bundle.

Proposition 2.5.1. Let X be a complete connected reduced k-scheme, where k is assumed to be perfect. The
category CN is an abelian rigid tensor category.

If X has a k-rational point x, then CN is a neutral Tannakian category over k with fibre functor ω(E) = E|x.
The tannakian group scheme of (CN , ωx) is a pro-finite group scheme over k, called the true fundamental group
of πN(X;x) of X. It which classifies all G-torsos on X with G a finite group scheme over k.

In particular, the largest pro-étale quotient of πN(X;x) classifies the finite étale coverings of X together with a
k-point lying over x; it coincides with the usual étale fundamental group of X when k = k̄.

Remark. Assume Γ is a finite group. Let V be its regular representation: as vector space, V = k[Γ] - the
group algebra of Γ, with Γ acts on the basis by left action. Then, as a representation of Γ, we have

V ⊗ V ' V ⊕|Γ|.



2.6. Connections. Let k be a field of characteristic 0. Let X/k be a smooth scheme. Let Ω1
X be the sheaf of

differential forms. It is locally free as X/k is smooth and it is equipped with a diffential

d : OX → Ω1
X; f 7→ df,

satisfying the Leibniz condition d(fg) = fdg + gdf .

A connection on a coherent sheaf of OX-modulesM is a k-linear map

∇ :M−→ Ω1
X ⊗OXM,

satisfying the Leibniz condition
∇(fm) = df ⊗m+ f∇(m).

where f,m are (sections of) OX,M.

∇ induces a map
∇ : Ω1

X ⊗OXM−→ Ω2
X ⊗OXM

by formular∇(ω ⊗m) = dω ⊗m− ω ∧∇(m). We say that∇ is a flat connection if the composed map

M ∇−→ Ω1
X ⊗OXM

∇−→ Ω2
X ⊗OXM

is the zero map.

LetDX := Hom(Ω1
X,OX) be the sheaf of derivations ofOX. Then∇ induces a k-linear map (denoted by the

same symbol)
∇ : DX −→ EndkM,

satisfying ∇(D)(fe) = D(f)m + f∇(D)(m), where D, f,m are (sections of) DX, OX,M. Then ∇ is flat
iff it satisfies

∇([D1, D2]) = [∇(D1),∇(D2)].

Lemma 2.6.1. LetM be a coherent OX-module equipped with a connection. ThenM is locally free.



Proof. This is a local property, so assume X = SpecR, where R is a regular local ring, andM corresponds to
an R-module M . The base change R −→ R̂ is faithfully flat, hence if suffices to assume R = R̂. In this case,
the connection has a full set of solutions: a solution to∇ is an element of

M∇ := Ker(∇ : Ω1
X ⊗RM).

This is a k-linear subspace of M with property

M∇ ⊗k R ∼= M.

Hence M is free. �

The category of coherent modules with connection on X/k is denoted by Conn(X). Morphisms are those
morphism of sheaves compatible with the connections. The tensor product in Conn(X) the usual tensor product,
on which the connection act diagonally:

∇(m1 ⊗m2) = m1∇(m2) +∇(m1)⊗m2.

The local freeness implies the rigidity: the connection ofM∨ is given by the equation

∇(ϕ)(m) = ϕ(∇(m)).

The unite object is (OX, d). Assume that X is geometrically connected then the endomorphism of the unit
object is equal to k.

Any k-point of X determines a fiber functor for Conn(X). The corresponding tannakian group is called the
differential fundamental group scheme of X at x.



2.7. Picard-Vessiot theory. A differential field is a pair (K, δ) where K is a field of characteristic 0 and δ :
K −→ K is a derivation, i.e. δ(a · b) = aδ(b) + bδ(a). The subset k := Kδ = Kerδ is a subfield of K and δ
is k-linear. Let V be a K-vector space. A connection on V is a k-linear map

∇ : V → V ; ∇(λv) = δ(λ)v + λ∇(v).

This corresponds to a system of linear differential equation. The solution set is Ker(δ), denoted by K∆.

Picard-Vessiot theory. Investigate the extension of (K, δ) in which the above connection has solution, i.e., a
differential field (L, δ) such that:

(1) Lδ = k;
(2) (X ⊗K L)∆ generate X ⊗K L over L;
(3) L is generated by the coordinates of the solutions of X ⊗K L in a basis of X over K.

The connection of the tensor product of two vector spaces is defined diagonally and on the dual vector space
is defined by the equation

∇(ϕ)(v) = ϕ(∇(v)).

The unit object is (K, δ). Morphisms of two vector spaces with connection are K-linear maps, which are com-
patible with the connections. The hom-set is a k-linear vector space. This is a k-linear abelian tensor cagegory.
There are however no fiber functors to veck!

Theorem 2.7.1. Let CV be the full subcategory tensor generated by an connection (V,∇). Assume that k = k̄.
Then CV admits a fiber functor.

Let ω0 denote this fiber functor and G(ω0) the tannakian group. Let ω denote the forgetful functor to vecK.
Then

(ω0, ω|CV )

is a torsor under G(ω0). Let G(ω0, ω) denote the representing scheme.



Theorem 2.7.2. The Picard-Vessiot extension for V is the function field of G(ω0, ω).



3. FIBER FUNCTORS



3.1. Sufficient conditions for the existence of fiber functor. (Deligne, Roberts)

Internal characterization of Tannakian categories (in characteristic 0).

Theorem 3.1.1. Let k be field of characteristic 0. Let C be a k-linear abelian rigid tensor category. The following
are equivalent:

(1) C is tannakian;
(2) For all X ∈ ob(C), rank(X) ∈ N;
(3) For all X ∈ ob(C), there exist n such that ∧n(X) ' 0.

Idea of proof: construct a ”universal torsor” in Ind-C, i.e. an algebra A such that for all X,

X ⊗A ' ArankX.



3.2. Tangential fiber functor. (Deligne, Katz)

Connections on P1 r {0,∞}.

A connection on P1
C is said to be regular singular if it is regular singular at 0 and∞.

If C = C then regular singular connections on P1
C are (holomorphically) equivalent to Euler connections.

There is a natural ”restriction” functor from regular singular connections on P1
C to regular singular connections

on C((x)).

Theorem 3.2.1 (Deligne-Katz equivalence). The restriction functor mentioned above is an equivalence. Conse-
quently the category of regular singular connections on P1

C is equivalent to the category of C-linear representa-
tions of Z.

The Deligne-Katz equivalence is compatible with Galois descent, hence holds over any field (of characteristic
0);

This yields a fiber functor for the category of regular singular connections onC((x)), which is called tangential
fiber functor by Deligne.



3.3. Grothendieck section conjecture. X: a hyperbolic curve over a number field k. One asks about its
rational points.

Grothendiek’s fundamental exact sequence

1→ πét(X̄, x̄)→ πét(X, x̄)
p−→ Gal(k̄/k)→ 1.

Each k-rational point of X yields a section to p.

Grothendieck’s section conjecture: Sections to p are in 1-1 correspondence with rational points of X.

[Esnault, –]: sections to p are in 1-1 correspondence with (neutral) fiber functors from finite connections on
X, section given in terms of a rational point corresponds to the fiber functor at that point.


