Representations and comodules

Manh-Linh Nguyen

École normale supérieure

August 23rd, 2021

Representations of group functors

2 Comodules

8 Relation between representations and comodules

4 Affine algebraic groups are linear

< ∃ > < ∃ >

A 1

Representations of group functors Comodules

Comodules Relation between representations and comodules Affine algebraic groups are linear Diagonalizable and unipotent groups

In this talk, k is a fixed field.

(日) (四) (王) (王) (王)

э

In this talk, k is a fixed field. If V is a vector space, we have k-group functors

> $V_{\mathfrak{a}}: k\text{-}\operatorname{Alg} o \operatorname{Grp}, \qquad A \mapsto V \otimes A,$ $\operatorname{GL}_V: k\text{-}\operatorname{Alg} o \operatorname{Grp}, \qquad \operatorname{Aut}_A(V \otimes A).$

< 🗇 🕨

* E > * E >

In this talk, k is a fixed field. If V is a vector space, we have k-group functors

> $V_{\mathfrak{a}}: k\text{-}\operatorname{Alg} \to \operatorname{Grp}, \qquad A \mapsto V \otimes A,$ $\operatorname{GL}_V: k\text{-}\operatorname{Alg} \to \operatorname{Grp}, \qquad \operatorname{Aut}_A(V \otimes A).$

If dim V = n is finite, the choice of a basis for V defines isomorphisms

$$V_{\mathfrak{a}} \simeq \mathbb{G}_{a}^{n} = \operatorname{Spec} k[T_{1}, \dots, T_{n}],$$

 $\operatorname{GL}_{V} \simeq \operatorname{GL}_{n} = \operatorname{Spec} k[\{T_{ij}\}_{1 \leqslant i, j \leqslant n}, \det^{-1}].$

< ∃ > < ∃ >

In this talk, k is a fixed field. If V is a vector space, we have k-group functors

> $V_{\mathfrak{a}}: k\text{-}\operatorname{Alg} \to \operatorname{Grp}, \qquad A \mapsto V \otimes A,$ $\operatorname{GL}_V: k\text{-}\operatorname{Alg} \to \operatorname{Grp}, \qquad \operatorname{Aut}_A(V \otimes A).$

If dim V = n is finite, the choice of a basis for V defines isomorphisms

$$V_{\mathfrak{a}} \simeq \mathbb{G}_{\mathfrak{a}}^{n} = \operatorname{Spec} k[T_{1}, \dots, T_{n}],$$

 $\mathsf{GL}_{V} \simeq \mathsf{GL}_{n} = \operatorname{Spec} k[\{T_{ij}\}_{1 \leqslant i, j \leqslant n}, \det^{-1}].$

Definition

Let G be a k-group functor. A representation of a G is a morphism $r: G \rightarrow GL_V$ of k-group functors, where V is a vector space.

A B + A B +

In this talk, k is a fixed field. If V is a vector space, we have k-group functors

> $V_{\mathfrak{a}}: k\text{-}\operatorname{Alg} \to \operatorname{Grp}, \qquad A \mapsto V \otimes A,$ $\operatorname{GL}_V: k\text{-}\operatorname{Alg} \to \operatorname{Grp}, \qquad \operatorname{Aut}_A(V \otimes A).$

If dim V = n is finite, the choice of a basis for V defines isomorphisms

$$V_{\mathfrak{a}} \simeq \mathbb{G}_{\mathfrak{a}}^n = \operatorname{Spec} k[T_1, \dots, T_n],$$

 $\mathsf{GL}_V \simeq \mathsf{GL}_n = \operatorname{Spec} k[\{T_{ij}\}_{1 \leqslant i, j \leqslant n}, \det^{-1}]$

Definition

Let G be a k-group functor. A representation of a G is a morphism $r: G \rightarrow GL_V$ of k-group functors, where V is a vector space.

To give a representation of G on V is to give a natural transformation $G \times V_a \to V_a$ such that for all commutative k-algebra A, the induced map

$$G(A) \times (V \otimes A) \to V \otimes A$$

is an A-linear action of G(A) on $V \otimes A$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Representations of group functors Comodules Relation between representations and comodules

Affine algebraic groups are linear Diagonalizable and unipotent groups

Example

• If V is a vector space, GL_V acts tautologically on V. This gives the standard representation of GL_V .

-∢ ≣ →

A 1

Example

- If V is a vector space, GL_V acts tautologically on V. This gives the standard representation of GL_V.
- **②** Let *G* be a *k*-group functor. A 1-dimensional representation χ : *G* → \mathbb{G}_m is called a character of *G*.

∃ > < ∃ >

Example

- If V is a vector space, GL_V acts tautologically on V. This gives the standard representation of GL_V.
- e Let G be a k-group functor. A 1-dimensional representation χ : G → G_m is called a character of G.
- Let G be a k-group scheme. The action given by $(g \cdot f)(x) := f(xg)$, for all commutative k-algebra A, $f \in A[G]$ and $x, g \in G(A)$, defines the regular representation $G \to GL_{k[G]}$ of G.

< ∃ > < ∃ >

Example

- If V is a vector space, GL_V acts tautologically on V. This gives the standard representation of GL_V.
- **2** Let G be a k-group functor. A 1-dimensional representation $\chi : G \to \mathbb{G}_m$ is called a character of G.
- **②** Let *G* be a *k*-group scheme. The action given by $(g \cdot f)(x) := f(xg)$, for all commutative *k*-algebra *A*, *f* ∈ *A*[*G*] and *x*, *g* ∈ *G*(*A*), defines the regular representation $G \rightarrow GL_{k[G]}$ of *G*.

Definition

Let V and W be representations of a k-group functors G. A linear map $\phi: V \to W$ is called a G-module homomorphism if $\phi \otimes id_A : V \otimes A \to W \otimes A$ is G(A)-equivariant for all commutative k-algebra A.

Example

- If V is a vector space, GL_V acts tautologically on V. This gives the standard representation of GL_V.
- **2** Let G be a k-group functor. A 1-dimensional representation $\chi : G \to \mathbb{G}_m$ is called a character of G.
- **②** Let *G* be a *k*-group scheme. The action given by $(g \cdot f)(x) := f(xg)$, for all commutative *k*-algebra *A*, *f* ∈ *A*[*G*] and *x*, *g* ∈ *G*(*A*), defines the regular representation $G \rightarrow GL_{k[G]}$ of *G*.

Definition

Let V and W be representations of a k-group functors G. A linear map $\phi: V \to W$ is called a G-module homomorphism if $\phi \otimes id_A : V \otimes A \to W \otimes A$ is G(A)-equivariant for all commutative k-algebra A.

Example

- If V is a vector space, GL_V acts tautologically on V. This gives the standard representation of GL_V.
- e Let G be a k-group functor. A 1-dimensional representation χ : G → G_m is called a character of G.
- Let G be a k-group scheme. The action given by (g ⋅ f)(x) := f(xg), for all commutative k-algebra A, f ∈ A[G] and x, g ∈ G(A), defines the regular representation G → GL_{k[G]} of G.

Definition

Let V and W be representations of a k-group functors G. A linear map $\phi: V \to W$ is called a G-module homomorphism if $\phi \otimes id_A : V \otimes A \to W \otimes A$ is G(A)-equivariant for all commutative k-algebra A.

Let $\operatorname{Hom}_{G}(V, W)$ be the space of *G*-module homomorphisms. We then have a category $\operatorname{Rep}_{k}(G)$ of representations of *G*.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト - - -

Let A be a (not necessarily commutative) k-algebra. A (left) A-module is a vector space M equipped with a linear map $\lambda : A \otimes M \to M$ such that

 $\lambda(a \otimes \lambda(b \otimes m)) = \lambda(ab \otimes m), \qquad \lambda(\alpha 1_A \otimes m) = \alpha m$

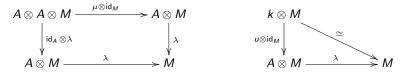
for all $a, b \in A$, $m \in M$ and $\alpha \in k$.

⇒ < ∃>

Let A be a (not necessarily commutative) k-algebra. A (left) A-module is a vector space M equipped with a linear map $\lambda : A \otimes M \to M$ such that

$$\lambda(a \otimes \lambda(b \otimes m)) = \lambda(ab \otimes m), \qquad \lambda(\alpha 1_A \otimes m) = \alpha m$$

for all $a, b \in A$, $m \in M$ and $\alpha \in k$. If $\mu : A \otimes A \to A$ denotes the multiplication and $u : k \to A$ denotes the unit (i.e. $u(\alpha) = \alpha \mathbf{1}_A$), then the diagrams

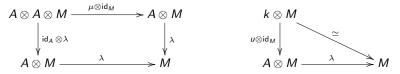


commute.

Let A be a (not necessarily commutative) k-algebra. A (left) A-module is a vector space M equipped with a linear map $\lambda : A \otimes M \to M$ such that

$$\lambda(a \otimes \lambda(b \otimes m)) = \lambda(ab \otimes m), \qquad \lambda(\alpha 1_A \otimes m) = \alpha m$$

for all $a, b \in A$, $m \in M$ and $\alpha \in k$. If $\mu : A \otimes A \to A$ denotes the multiplication and $u : k \to A$ denotes the unit (i.e. $u(\alpha) = \alpha \mathbf{1}_A$), then the diagrams



commute. Dually, let $(C, \Delta : C \to C \otimes C, \varepsilon : C \to k)$ be a *k*-coalgebra. A (right) *A*-comodule is a vector space *V* equipped with a linear map $\rho : V \to V \otimes C$ (the coaction) such that the following diagrams commute.

A linear map $\rho: V \to V \otimes C$ defines a comodule over (C, Δ, ε) iff

$$\forall v \in V, \qquad
ho(v) = \sum_i v_i \otimes c_i, \quad v_i \in V, \ c_i \in C$$

then

$$\sum_{i} \rho(\mathbf{v}_i) \otimes \mathbf{c}_i = \sum_{i} \mathbf{v}_i \otimes \Delta(\mathbf{c}_i) \in \mathbf{V} \otimes \mathbf{C} \otimes \mathbf{C} \quad \text{and} \quad \mathbf{v} = \sum_{i} \varepsilon(\mathbf{c}_i) \mathbf{v}_i.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

A linear map $\rho: V \to V \otimes C$ defines a comodule over (C, Δ, ε) iff

$$\forall v \in V, \qquad
ho(v) = \sum_i v_i \otimes c_i, \quad v_i \in V, \ c_i \in C$$

then

$$\sum_i \rho(\mathbf{v}_i) \otimes \mathbf{c}_i = \sum_i \mathbf{v}_i \otimes \Delta(\mathbf{c}_i) \in \mathbf{V} \otimes \mathbf{C} \otimes \mathbf{C} \quad \text{and} \quad \mathbf{v} = \sum_i \varepsilon(\mathbf{c}_i) \mathbf{v}_i.$$

Example

• C is a comodule over itself via $\Delta : C \to C \otimes C$.

Image: A matrix

A B + A B +

A linear map $\rho: V \to V \otimes C$ defines a comodule over (C, Δ, ε) iff

$$\forall v \in V, \qquad
ho(v) = \sum_i v_i \otimes c_i, \quad v_i \in V, \ c_i \in C$$

then

$$\sum_{i} \rho(\mathbf{v}_i) \otimes \mathbf{c}_i = \sum_{i} \mathbf{v}_i \otimes \Delta(\mathbf{c}_i) \in \mathbf{V} \otimes \mathbf{C} \otimes \mathbf{C} \quad \text{and} \quad \mathbf{v} = \sum_{i} \varepsilon(\mathbf{c}_i) \mathbf{v}_i.$$

Example

- C is a comodule over itself via $\Delta : C \to C \otimes C$.
- **3** A subspace $W \subseteq V$ is called a subcomodule if $\rho(W) \subseteq W \otimes C$.

イロン イボン イヨン イヨン

A linear map $\rho: V \to V \otimes C$ defines a comodule over (C, Δ, ε) iff

$$\forall v \in V, \qquad
ho(v) = \sum_i v_i \otimes c_i, \quad v_i \in V, \ c_i \in C$$

then

$$\sum_{i} \rho(\mathbf{v}_i) \otimes \mathbf{c}_i = \sum_{i} \mathbf{v}_i \otimes \Delta(\mathbf{c}_i) \in \mathbf{V} \otimes \mathbf{C} \otimes \mathbf{C} \quad \text{and} \quad \mathbf{v} = \sum_{i} \varepsilon(\mathbf{c}_i) \mathbf{v}_i.$$

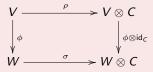
Example

- C is a comodule over itself via $\Delta : C \to C \otimes C$.
- **3** A subspace $W \subseteq V$ is called a subcomodule if $\rho(W) \subseteq W \otimes C$.

イロン イボン イヨン イヨン

Definition

Let (V, ρ) and (W, σ) be C-comodules. A linear map $\phi: V \to W$ is called a C-comodule homomorphisms if the diagram



commutes.

This amounts to requiring that for any $v \in V$, if

$$\rho(\mathbf{v}) = \sum_{i} \mathbf{v}_i \otimes \mathbf{c}_i, \qquad \mathbf{v}_i \in \mathbf{V}, \ \mathbf{c}_i \in \mathbf{C}$$

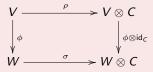
then

$$\sigma(\phi(\mathbf{v})) = \sum_i \phi(\mathbf{v}_i) \otimes \mathbf{c}_i.$$

* E > < E >

Definition

Let (V, ρ) and (W, σ) be C-comodules. A linear map $\phi: V \to W$ is called a C-comodule homomorphisms if the diagram



commutes.

This amounts to requiring that for any $v \in V$, if

$$\rho(\mathbf{v}) = \sum_{i} \mathbf{v}_i \otimes \mathbf{c}_i, \quad \mathbf{v}_i \in \mathbf{V}, \ \mathbf{c}_i \in \mathbf{C}$$

then

$$\sigma(\phi(\mathbf{v})) = \sum_i \phi(\mathbf{v}_i) \otimes \mathbf{c}_i.$$

Let **Comod**_C denote the category of right C-comodules and C-comodule homomorphisms between them.

э

Let $G = \operatorname{Spec}(k[G], \Delta, \varepsilon)$ be an affine k-group scheme.

< ∃ > < ∃ >

-77 ▶

Let $G = \operatorname{Spec}(k[G], \Delta, \varepsilon)$ be an affine k-group scheme. To a k[G]-comodule $\rho: V \to V \otimes k[G]$ one associates a representation $r_{\rho}: G \to \operatorname{GL}_V$ as follows. Let A be a commutative k-algebra and $g \in G(A)$ (which corresponds to a k-algebra homomorphism $g^*: k[G] \to A$). Then $r_{\rho}(g): V \otimes A \to V \otimes A$ is the A-linear map induced by the composition $V \xrightarrow{\rho} V \otimes k[G] \xrightarrow{\operatorname{id}_V \otimes g^*} V \otimes A$.

Let $G = \operatorname{Spec}(k[G], \Delta, \varepsilon)$ be an affine k-group scheme. To a k[G]-comodule $\rho: V \to V \otimes k[G]$ one associates a representation $r_{\rho}: G \to \operatorname{GL}_V$ as follows. Let A be a commutative k-algebra and $g \in G(A)$ (which corresponds to a k-algebra homomorphism $g^*: k[G] \to A$). Then $r_{\rho}(g): V \otimes A \to V \otimes A$ is the A-linear map induced by the composition $V \xrightarrow{\rho} V \otimes k[G] \xrightarrow{\operatorname{id}_V \otimes g^*} V \otimes A$. Thus if $v \in V$ and $a \in A$ and

$$\rho(\mathbf{v}) = \sum_{i} \mathbf{v}_i \otimes f_i, \quad \mathbf{v}_i \in \mathbf{V}, \ f_i \in k[G]$$

then $r_{\rho}(g)(v \otimes a) = \sum_{i} v_i \otimes f_i(g)a \in V \otimes A.$

Let $G = \operatorname{Spec}(k[G], \Delta, \varepsilon)$ be an affine k-group scheme. To a k[G]-comodule $\rho: V \to V \otimes k[G]$ one associates a representation $r_{\rho}: G \to \operatorname{GL}_V$ as follows. Let A be a commutative k-algebra and $g \in G(A)$ (which corresponds to a k-algebra homomorphism $g^*: k[G] \to A$). Then $r_{\rho}(g): V \otimes A \to V \otimes A$ is the A-linear map induced by the composition $V \xrightarrow{\rho} V \otimes k[G] \xrightarrow{\operatorname{id}_V \otimes g^*} V \otimes A$. Thus if $v \in V$ and $a \in A$ and

$$\rho(\mathbf{v}) = \sum_{i} \mathbf{v}_i \otimes f_i, \quad \mathbf{v}_i \in \mathbf{V}, \ f_i \in k[G]$$

 $\begin{array}{l} \text{then } r_{\rho}(g)(v\otimes a) = \sum_{i} v_{i}\otimes f_{i}(g)a \in V\otimes A.\\ \text{Let } g,h\in G(A). \text{ For } v\in V, a\in A \text{ and } v_{i},f_{i} \text{ as above, write} \end{array}$

$$\rho(\mathbf{v}_i) = \sum_j \mathsf{v}_{ij} \otimes f_{ij}, \qquad \Delta(f_i) = \sum_{\ell} f'_{i\ell} \otimes f''_{i\ell}, \qquad \mathsf{v}_{ij} \in V, \ f_{ij}, f'_{i\ell}, f''_{i\ell} \in k[G].$$

Then $r_{\rho}(gh) = r_{\rho}(g) \circ r_{\rho}(h)$ since $r_{\rho}(g)(r_{\rho}(h)(v \otimes a)) = \sum_{i} r_{\rho}(g)(v_{i} \otimes f_{i}(h)a)$ $= \sum_{i,j} v_{ij} \otimes f_{ij}(g) f_{i}(h)a = \sum_{i,\ell} v_{i} \otimes f_{i\ell}'(g) f_{i\ell}''(h)a = \sum_{i} v_{i} \otimes f_{i}(gh)a = r_{\rho}(gh)(v \otimes a).$

Let $e_A \in G(A)$ be the identity element. Again, let $v \in V$, $a \in A$ and write

$$\rho(\mathbf{v}) = \sum_{i} \mathbf{v}_i \otimes f_i, \quad \mathbf{v}_i \in \mathbf{V}, \ f_i \in k[G].$$

Then $r_{\rho}(e_A) = \mathrm{id}_{V \otimes A}$ since

$$r_{\rho}(e_{A})(v \otimes a) = \sum_{i} v_{i} \otimes f_{i}(e_{A})a = \sum_{i} v_{i} \otimes \varepsilon(f_{i})a = \left(\sum_{i} \varepsilon(f_{i})v_{i}\right) \otimes a = v \otimes a.$$

⇒ < ∃>

Let $e_A \in G(A)$ be the identity element. Again, let $v \in V$, $a \in A$ and write

$$\rho(\mathbf{v}) = \sum_{i} \mathbf{v}_i \otimes f_i, \quad \mathbf{v}_i \in \mathbf{V}, \, f_i \in k[G].$$

Then $r_{\rho}(e_A) = \mathrm{id}_{V\otimes A}$ since

$$r_{\rho}(e_A)(v \otimes a) = \sum_i v_i \otimes f_i(e_A)a = \sum_i v_i \otimes \varepsilon(f_i)a = \left(\sum_i \varepsilon(f_i)v_i\right) \otimes a = v \otimes a.$$

We show functoriality in A. To this end, let $\psi : A \to B$ be k-algebra homomorphism. Let $g \in G(A)$ corresponding to a k-algebra homomorphism $g^* : k[G] \to A$ (then $\psi_*g \in G(B)$ corresponds to $\psi \circ g^*$). Then the diagram

commutes since $v \otimes a$ maps to $\sum_{i} v_i \otimes \psi(f_i(g)a)$ by both compositions.

Conversely, to a representation $r: G \to GL_V$ one associates a coaction $\rho_r: V \to V \otimes k[G]$ as follows.

⇒ < ∃>

Conversely, to a representation $r: G \to GL_V$ one associates a coaction $\rho_r: V \to V \otimes k[G]$ as follows. First, let $g^{univ} \in G(k[G])$ correspond to the identity $k[G] \to k[G]$ (the universal element of G). Then we define

$$\forall v \in V, \qquad
ho_r(v) := r(g^{univ})(v \otimes 1).$$

Conversely, to a representation $r: G \to GL_V$ one associates a coaction $\rho_r: V \to V \otimes k[G]$ as follows. First, let $g^{univ} \in G(k[G])$ correspond to the identity $k[G] \to k[G]$ (the universal element of G). Then we define

$$\forall v \in V, \qquad \rho_r(v) := r(g^{univ})(v \otimes 1).$$

By functoriality, if

$$\rho_r(\mathbf{v}) = r(g^{\text{univ}})(\mathbf{v} \otimes 1) = \sum_i v_i \otimes f_i, \quad v_i \in V, f_i \in k[G]$$

then for all commutative k-algebra A, $g \in G(A)$ and $a \in A$, one has

$$r(g)(v \otimes a) = \sum_{i} v_i \otimes f_i(g) a \in V \otimes A.$$

Conversely, to a representation $r: G \to GL_V$ one associates a coaction $\rho_r: V \to V \otimes k[G]$ as follows. First, let $g^{univ} \in G(k[G])$ correspond to the identity $k[G] \to k[G]$ (the universal element of G). Then we define

$$\forall v \in V, \qquad
ho_r(v) := r(g^{univ})(v \otimes 1).$$

By functoriality, if

$$\rho_r(\mathbf{v}) = r(g^{\text{univ}})(\mathbf{v} \otimes 1) = \sum_i v_i \otimes f_i, \quad v_i \in V, f_i \in k[G]$$

then for all commutative k-algebra A, $g \in G(A)$ and $a \in A$, one has

$$r(g)(v \otimes a) = \sum_{i} v_i \otimes f_i(g) a \in V \otimes A.$$

Let us show that ρ_r is indeed a coaction.

Let $A = k[G] \otimes k[G]$ and $g, h \in G(A)$ corresponding to

$$g^*: k[G] \to A, \qquad f \mapsto f \otimes 1,$$

$$h^*: k[G] \to A, \qquad f \mapsto 1 \otimes f$$

respectively. Then $gh \in G(A)$ corresponds to $\Delta : k[G] \rightarrow A$.

프 () (프)

Let $A = k[G] \otimes k[G]$ and $g, h \in G(A)$ corresponding to

$$g^*: k[G] \to A, \qquad f \mapsto f \otimes 1,$$

 $h^*: k[G] \to A, \qquad f \mapsto 1 \otimes f$

respectively. Then $gh \in G(A)$ corresponds to $\Delta : k[G] \rightarrow A$. For $v \in V$, write

$$ho_r(\mathbf{v}) = r(\mathbf{g}^{ ext{univ}})(\mathbf{v}\otimes 1) = \sum_i \mathbf{v}_i \otimes f_i, \qquad
ho_r(\mathbf{v}_i) = \sum_j \mathbf{v}_{ij} \otimes f_{ij}$$

where $v_i, v_{ij} \in V$ and $f_i, f_{ij} \in k[G]$. Then

$$\sum_{i} v_i \otimes \Delta(f_i) = r(gh)(v \otimes 1 \otimes 1) = r(g)(r(h)(v \otimes 1 \otimes 1)) = \sum_{i} r(g)(v_i \otimes f_i(h))$$

$$=\sum_{i} r(g)(v_i \otimes 1 \otimes f) = \sum_{i,j} v_{ij} \otimes f_{ij}(g)(1 \otimes f_i)$$
$$=\sum_{i,j} v_{ij} \otimes (f_{ij} \otimes 1)(1 \otimes f_i) = \sum_{i,j} v_{ij} \otimes f_{ij} \otimes f_i = \sum_{i} \rho_r(v_i) \otimes f_i.$$

4 A I

Let $A = k[G] \otimes k[G]$ and $g, h \in G(A)$ corresponding to

$$g^*: k[G] \to A, \qquad f \mapsto f \otimes 1,$$

 $h^*: k[G] \to A, \qquad f \mapsto 1 \otimes f$

respectively. Then $gh \in G(A)$ corresponds to $\Delta: k[G] \rightarrow A$. For $v \in V$, write

$$\rho_r(\mathbf{v}) = r(\mathbf{g}^{\text{univ}})(\mathbf{v} \otimes 1) = \sum_i \mathbf{v}_i \otimes f_i, \qquad \rho_r(\mathbf{v}_i) = \sum_j \mathbf{v}_{ij} \otimes f_{ij}$$

where $v_i, v_{ij} \in V$ and $f_i, f_{ij} \in k[G]$. Then

$$\sum_{i} v_i \otimes \Delta(f_i) = r(gh)(v \otimes 1 \otimes 1) = r(g)(r(h)(v \otimes 1 \otimes 1)) = \sum_{i} r(g)(v_i \otimes f_i(h))$$
$$= \sum_{i} r(g)(v_i \otimes 1 \otimes f) = \sum_{i,j} v_{ij} \otimes f_{ij}(g)(1 \otimes f_i)$$

$$=\sum_{i,j}\mathsf{v}_{ij}\otimes(f_{ij}\otimes 1)(1\otimes f_i)=\sum_{i,j}\mathsf{v}_{ij}\otimes f_{ij}\otimes f_i=\sum_i\rho_r(\mathsf{v}_i)\otimes f_i.$$

・ 同 ト ・ ヨ ト ・ モ ト・

Since the identity element $e \in G(k)$ corresponds to $\varepsilon : k[G] \rightarrow k$, one has

$$v = r(e)(v) = \sum_i \varepsilon(f_i)v_i.$$

Theorem

Let $G = \operatorname{Spec} k[G]$ be an affine k-group scheme. The constructions $r \mapsto \rho_r$ and $\rho \mapsto r_\rho$ above are inverse to each other.

Theorem

Let $G = \operatorname{Spec} k[G]$ be an affine k-group scheme. The constructions $r \mapsto \rho_r$ and $\rho \mapsto r_\rho$ above are inverse to each other.

Proof. Let $\rho: V \to V \otimes k[G]$ be a coaction. Then the coaction ρ' corresponding to the representation $r_{\rho}: G \to GL_V$ is given by $\rho'(v) = r_{\rho}(g^{\text{univ}})(v \otimes 1)$ for all $v \in V$, where $g^{\text{univ}} \in G(k[G])$ corresponds to the identity $k[G] \to k[G]$. Write

$$\rho(\mathbf{v}) = \sum_{i} \mathbf{v}_i \otimes f_i, \quad \mathbf{v}_i \in \mathbf{V}, \, f_i \in k[G].$$

Then $\rho' = \rho$, since

$$ho'(\mathbf{v})=r_{
ho}(\mathbf{g}^{\mathsf{univ}})(\mathbf{v}\otimes 1)=\sum_{i}v_{i}\otimes f_{i}(\mathbf{g}^{\mathsf{univ}})=\sum_{i}v_{i}\otimes f_{i}=
ho(\mathbf{v}).$$

⇒ < ∃>

Theorem

Let $G = \operatorname{Spec} k[G]$ be an affine k-group scheme. The constructions $r \mapsto \rho_r$ and $\rho \mapsto r_\rho$ above are inverse to each other.

Conversely, let $r : G \to GL_V$ be a representation. Then the representation r' corresponding to the coaction $\rho_r : V \to V \otimes k[G]$ is described as follows. Let A be a commutative k-algebra and $g \in G(A)$. For $v \in V$ and $a \in A$, write

$$\rho_r(\mathbf{v}) = r(g^{\text{univ}})(\mathbf{v} \otimes 1) = \sum_i v_i \otimes f_i, \quad v_i \in V, f_i \in k[G].$$

Then, for $v \in V$ and $a \in A$, one has

$$r'(g)(v\otimes a) = \sum_i v_i\otimes f_i(g)a = r(g)(v\otimes a).$$

It follows that r = r'.

Theorem

Let G = Spec k[G] be an affine k-group scheme. The categories $\text{Rep}_k(G)$ and $\text{Comod}_{k[G]}$ are isomorphic.

Theorem

Let $G = \operatorname{Spec} k[G]$ be an affine k-group scheme. The categories $\operatorname{Rep}_k(G)$ and $\operatorname{Comod}_{k[G]}$ are isomorphic.

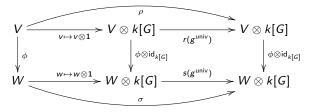
Proof. It remains to show that if (V, r) and (W, s) are representations of G, then a linear map $\phi : V \to W$ is a G-module homomorphism iff it is a k[G]-comodule homomorphism. Let $\rho : V \to V \otimes k[G]$ and $\sigma : W \to W \otimes k[G]$ be the corresponding coactions.

∃→ ∢ ∃→

Theorem

Let G = Spec k[G] be an affine k-group scheme. The categories $\text{Rep}_k(G)$ and $\text{Comod}_{k[G]}$ are isomorphic.

Proof. It remains to show that if (V, r) and (W, s) are representations of G, then a linear map $\phi : V \to W$ is a G-module homomorphism iff it is a k[G]-comodule homomorphism. Let $\rho : V \to V \otimes k[G]$ and $\sigma : W \to W \otimes k[G]$ be the corresponding coactions. Suppose that ϕ is a G-module homomorphism. Then the diagram



commutes (where $g^{\text{univ}} \in G(k[G])$ is the universal element), *i.e.* ϕ is a k[G]-comodule homomorphism.

Theorem

Let $G = \operatorname{Spec} k[G]$ be an affine k-group scheme. The categories $\operatorname{Rep}_k(G)$ and $\operatorname{Comod}_{k[G]}$ are isomorphic.

Conversely, suppose that ϕ is a k[G]-comodule homomorphism. Let A be a commutative k-algebra and $g \in G(A)$. For $v \in V$ and $a \in A$, write

$$ho(\mathbf{v}) = r(\mathbf{g}^{\mathrm{univ}})(\mathbf{v}\otimes 1) = \sum_{i} \mathbf{v}_i \otimes f_i, \qquad \mathbf{v}_i \in \mathbf{V}, \, f_i \in k[G].$$

Then $\sigma(\phi(v)) = s(g^{\text{univ}})(\phi(v) \otimes 1) = \sum_{i} \phi(v_i) \otimes f_i$. On the other hand, one

has

$$r(g)(v \otimes a) = \sum_{i} v_i \otimes f_i(g) a \in V \otimes A,$$

$$s(g)(\phi(v)\otimes a)=\sum_i\phi(v_i)\otimes f_i(g)\in W\otimes A.$$

It follows that $(\phi \otimes id_A) \circ r(g) = s(g) \circ (\phi \otimes id_A)$ for all $g \in G(A)$, *i.e.* that $\phi \otimes id_A$ is G(A)-equivariant. Thus ϕ is a G-module homomorphism.

Example

Let V be a representation of an affine k-group scheme G corresponding to the coaction p : V → V ⊗ k[G]. A subspace W ⊆ V is a G-submodule (i.e. the A-submodule W ⊗ A ⊆ V ⊗ A is G(A)-stable for all commutative k-algebra A) iff it is a k[G]-subcomodule (i.e. p(W) ⊆ W ⊗ k[G]).

Example

- Let V be a representation of an affine k-group scheme G corresponding to the coaction ρ : V → V ⊗ k[G]. A subspace W ⊆ V is a G-submodule (i.e. the A-submodule W ⊗ A ⊆ V ⊗ A is G(A)-stable for all commutative k-algebra A) iff it is a k[G]-subcomodule (i.e. ρ(W) ⊆ W ⊗ k[G]).
- O The standard reprensetation of G = GL_n = Spec k[{T_{ij}}_{1≤i,j≤n}, det ⁻¹] on V = kⁿ (with the standard basis (e₁,..., e_n)). has the corresponding coaction ρ : V → V ⊗ k[G] given by

$$\rho(e_j) = \sum_{i=1}^n e_i \otimes T_{ij}, \qquad j = 1, \dots, n.$$

O The regular representation G → GL_{k[G]} has the correponding coaction given by the comultiplication ∆ : k[G] → k[G] ⊗ k[G].

イロト 不得下 イヨト イヨト

Proposition

Let $G = \text{Spec}(k[G], \Delta, \varepsilon)$ be an affine k-group scheme. Then every representation of G is the union of its finite-dimensional subrepresentations.

< ∃→

Proposition

Let $G = \text{Spec}(k[G], \Delta, \varepsilon)$ be an affine k-group scheme. Then every representation of G is the union of its finite-dimensional subrepresentations.

Proof. Choose a basis $(f_i)_i$ for the k-vector space k[G] and write

$$\Delta(f_i) = \sum_{j,\ell} lpha_{ij\ell}(f_j \otimes f_\ell), \qquad lpha_{ij\ell} \in k.$$

< ∃→

Proposition

Let $G = \text{Spec}(k[G], \Delta, \varepsilon)$ be an affine k-group scheme. Then every representation of G is the union of its finite-dimensional subrepresentations.

Proof. Choose a basis $(f_i)_i$ for the k-vector space k[G] and write

$$\Delta(\mathit{f}_i) = \sum_{j,\ell} lpha_{ij\ell}(\mathit{f}_j \otimes \mathit{f}_\ell), \qquad lpha_{ij\ell} \in k.$$

Let $\rho: V \to V \otimes k[G]$ be a k[G]-comodule and $v \in V$. Write

$$\rho(\mathbf{v}) = \sum_{i} \mathbf{v}_i \otimes f_i, \qquad \mathbf{v}_i \in \mathbf{V},$$

where $v_i = 0$ for all but finitely many *i*'s. Then

$$\sum_{\ell}
ho(\mathbf{v}_{\ell}) \otimes f_{\ell} = \sum_{i} \mathbf{v}_{i} \otimes \Delta(f_{i}) = \sum_{i,j,\ell} lpha_{ij\ell} (\mathbf{v}_{i} \otimes f_{j} \otimes f_{\ell}).$$

(日) (日) (日)

Proposition

Let $G = \text{Spec}(k[G], \Delta, \varepsilon)$ be an affine k-group scheme. Then every representation of G is the union of its finite-dimensional subrepresentations.

Proof. Choose a basis $(f_i)_i$ for the k-vector space k[G] and write

$$\Delta(\mathit{f}_i) = \sum_{j,\ell} lpha_{ij\ell}(\mathit{f}_j \otimes \mathit{f}_\ell), \qquad lpha_{ij\ell} \in k.$$

Let $\rho: V \to V \otimes k[G]$ be a k[G]-comodule and $v \in V$. Write

$$\rho(\mathbf{v}) = \sum_{i} \mathbf{v}_i \otimes f_i, \qquad \mathbf{v}_i \in \mathbf{V},$$

where $v_i = 0$ for all but finitely many *i*'s. Then

$$\sum_{\ell} \rho(\mathbf{v}_{\ell}) \otimes f_{\ell} = \sum_{i} \mathbf{v}_{i} \otimes \Delta(f_{i}) = \sum_{i,j,\ell} \alpha_{ij\ell} (\mathbf{v}_{i} \otimes f_{j} \otimes f_{\ell})$$

By linear independece of the family $(f_{\ell})_{\ell}$, we obtain

$$\rho(\mathbf{v}_{\ell}) = \sum_{i,j} \alpha_{ij\ell}(\mathbf{v}_i \otimes f_j).$$

Thus the subspace spanned by v and the v_i 's is a subrepresentation.

Theorem

Let $G = \text{Spec}(k[G], \Delta, \varepsilon)$ be an affine algebraic group over k. Then there is a faithful representation $G \to \text{GL}_n$ for some positive integer n.

Theorem

Let $G = \operatorname{Spec}(k[G], \Delta, \varepsilon)$ be an affine algebraic group over k. Then there is a faithful representation $G \to \operatorname{GL}_n$ for some positive integer n.

Proof. Let $V \subseteq k[G]$ be a finite-dimensional subrepresentation of the regular representation such that V generates k[G] as a k-algebra. Choose a basis $(e_i)_{i=1}^n$ for V. The restriction $r: G \to GL_n$ of the regular representation corresponds to a k-algebra homomorphism $\psi: k[\{T_{ij}\}_{i,i=1}^n, \det^{-1}] \to k[G]$.

Theorem

Let $G = \operatorname{Spec}(k[G], \Delta, \varepsilon)$ be an affine algebraic group over k. Then there is a faithful representation $G \to \operatorname{GL}_n$ for some positive integer n.

Proof. Let $V \subseteq k[G]$ be a finite-dimensional subrepresentation of the regular representation such that V generates k[G] as a k-algebra. Choose a basis $(e_i)_{i=1}^n$ for V. The restriction $r : G \to GL_n$ of the regular representation corresponds to a k-algebra homomorphism $\psi : k[\{T_{ij}\}_{i,j=1}^n, \det^{-1}] \to k[G]$. Let $g^{\text{univ}} \in G(k[G])$ be the universal element. Then $r(g^{\text{univ}})$ induces the k[G]-linear automorphism of $V \otimes k[G]$ given by the matrix $[\psi(T_{ij})]_{i,j=1}^n$ in the basis $(e_i \otimes 1)_{i=1}^n$. It follows that the coaction $\Delta|_V : V \to V \otimes k[G]$ is given by

$$\Delta(e_j) = r(g^{\operatorname{univ}})(e_j \otimes 1) = \sum_{i=1}^n e_i \otimes \psi(T_{ij}), \qquad j = 1, \dots, n$$

Theorem

Let $G = \operatorname{Spec}(k[G], \Delta, \varepsilon)$ be an affine algebraic group over k. Then there is a faithful representation $G \to \operatorname{GL}_n$ for some positive integer n.

Proof. Let $V \subseteq k[G]$ be a finite-dimensional subrepresentation of the regular representation such that V generates k[G] as a k-algebra. Choose a basis $(e_i)_{i=1}^n$ for V. The restriction $r: G \to GL_n$ of the regular representation corresponds to a k-algebra homomorphism $\psi: k[\{T_{ij}\}_{i,j=1}^n, \det^{-1}] \to k[G]$. Let $g^{\text{univ}} \in G(k[G])$ be the universal element. Then $r(g^{\text{univ}})$ induces the k[G]-linear automorphism of $V \otimes k[G]$ given by the matrix $[\psi(T_{ij})]_{i,j=1}^n$ in the basis $(e_i \otimes 1)_{i=1}^n$. It follows that the coaction $\Delta|_V: V \to V \otimes k[G]$ is given by

$$\Delta(e_j) = r(g^{ ext{univ}})(e_j \otimes 1) = \sum_{i=1}^n e_i \otimes \psi(\mathcal{T}_{ij}), \qquad j = 1, \dots, n.$$

Hence

$$e_j = (\varepsilon \otimes \mathrm{id}_{k[G]})(\Delta(e_j)) = \sum_{i=1}^n \varepsilon(e_i)\psi(T_{ij}), \qquad j = 1, \dots, n.$$

We deduce from this that ψ is surjective, *i.e.* that r is a closed immersion,

Example

Recall that the additive group $\mathbb{G}_a = \operatorname{Spec} k[T]$ has the comultiplication

$$\Delta: k[T] \rightarrow k[T] \otimes k[T], \qquad T \mapsto 1 \otimes T + T \otimes 1.$$

It is isomorphic to the subgroup of GL_2 formed by matrices of the form $\begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix}$.

Example

Recall that the additive group $\mathbb{G}_a = \operatorname{Spec} k[T]$ has the comultiplication

$$\Delta: k[T] \rightarrow k[T] \otimes k[T], \qquad T \mapsto 1 \otimes T + T \otimes 1.$$

It is isomorphic to the subgroup of GL_2 formed by matrices of the form $\begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix}$. "Abstract nonsense" proof. One considers the *k*-algebra homomorphism

$$\psi: k[T_{11}, T_{12}, T_{21}, T_{22}, (T_{11}T_{22} - T_{12}T_{21})^{-1}] \to k[T]$$

$$T_{11} \mapsto 1, \ T_{12} \mapsto T, \ T_{21} \mapsto 0, \ T_{22} \mapsto 1.$$

Then ψ is a (surjective) homomorphism of Hopf algebras since

$$\begin{split} \Delta(\psi(T_{11})) &= \Delta(1) = 1 \otimes 1 = (\psi \otimes \psi)(T_{11} \otimes T_{11} + T_{12} \otimes T_{21}), \\ \Delta(\psi(T_{12})) &= \Delta(T) = 1 \otimes T + T \otimes 1 = (\psi \otimes \psi)(T_{11} \otimes T_{12} + T_{12} \otimes T_{22}), \\ \Delta(\psi(T_{21})) &= \Delta(0) = 0 = (\psi \otimes \psi)(T_{21} \otimes T_{11} + T_{22} \otimes T_{21}), \\ \Delta(\psi(T_{22})) &= \Delta(1) = 1 \otimes 1 = (\psi \otimes \psi)(T_{21} \otimes T_{12} + T_{22} \otimes T_{22}). \end{split}$$

Remark

Every algebraic group G over k has the largest affine quotient G^{aff} , and every representation of G factors through G^{aff} .

Remark

Every algebraic group G over k has the largest affine quotient G^{aff} , and every representation of G factors through G^{aff} .

Remark

Let (V, ρ) be a *n*-dimensional representation of an affine *k*-group scheme $G = \text{Spec}(k[G], \Delta, \varepsilon)$. Let V_0 be the underlying vector space of V. Then $V_0 \otimes k[G]$ is a k[G]-comodule with the coaction

$$\operatorname{id}_{V_0} \otimes \Delta : V_0 \otimes k[G] \to V_0 \otimes k[G] \otimes k[G].$$

Remark

Every algebraic group G over k has the largest affine quotient G^{aff} , and every representation of G factors through G^{aff} .

Remark

Let (V, ρ) be a *n*-dimensional representation of an affine *k*-group scheme $G = \text{Spec}(k[G], \Delta, \varepsilon)$. Let V_0 be the underlying vector space of V. Then $V_0 \otimes k[G]$ is a k[G]-comodule with the coaction

$$\mathsf{id}_{V_0} \otimes \Delta : V_0 \otimes k[G] \to V_0 \otimes k[G] \otimes k[G].$$

That ρ is a coaction implies $(\rho \otimes id_{k[G]}) \circ \rho = (id_{V_0} \otimes \Delta) \circ \rho$ commutes, *i.e.* that $\rho : V \to V_0 \otimes k[G]$ is a k[G]-comodule homomorphism. Further, since $(id_V \otimes \varepsilon) \circ \rho : V \to V \otimes k$ is the canonical isomorphism, ρ is injective.

・ 同 ト ・ ヨ ト ・ モ ト・

Remark

Every algebraic group G over k has the largest affine quotient G^{aff} , and every representation of G factors through G^{aff} .

Remark

Let (V, ρ) be a *n*-dimensional representation of an affine *k*-group scheme $G = \text{Spec}(k[G], \Delta, \varepsilon)$. Let V_0 be the underlying vector space of V. Then $V_0 \otimes k[G]$ is a k[G]-comodule with the coaction

$$\mathsf{id}_{V_0} \otimes \Delta : V_0 \otimes k[G] \to V_0 \otimes k[G] \otimes k[G].$$

That ρ is a coaction implies $(\rho \otimes \operatorname{id}_{k[G]}) \circ \rho = (\operatorname{id}_{V_0} \otimes \Delta) \circ \rho$ commutes, *i.e.* that $\rho : V \to V_0 \otimes k[G]$ is a k[G]-comodule homomorphism. Further, since $(\operatorname{id}_V \otimes \varepsilon) \circ \rho : V \to V \otimes k$ is the canonical isomorphism, ρ is injective. It follows that (V, ρ) is isomorphic to a subrepresentation of $(k[G], \Delta)^n$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall that the multiplicative group $\mathbb{G}_m = \operatorname{Spec} k[T, T^{-1}]$ has the comultiplication $T \mapsto T \otimes T$ and counit $T \mapsto 1$.

< ∃ > < ∃ >

< A >

Recall that the multiplicative group $\mathbb{G}_m = \operatorname{Spec} k[T, T^{-1}]$ has the comultiplication $T \mapsto T \otimes T$ and counit $T \mapsto 1$. Let $G = \operatorname{Spec}(k[G], \Delta, \varepsilon)$ be an affine k-group scheme. To give a character $\chi : G \to \mathbb{G}_m$ is to give an element $e \in k[G]^{\times}$ such that $\Delta(e) = e \otimes e$ (it is then automatic that $\varepsilon(e) = 1$). Such an element is called group-like.

ヨト・イヨト

Recall that the multiplicative group $\mathbb{G}_m = \operatorname{Spec} k[T, T^{-1}]$ has the comultiplication $T \mapsto T \otimes T$ and counit $T \mapsto 1$. Let $G = \operatorname{Spec}(k[G], \Delta, \varepsilon)$ be an affine k-group scheme. To give a character $\chi : G \to \mathbb{G}_m$ is to give an element $e \in k[G]^{\times}$ such that $\Delta(e) = e \otimes e$ (it is then automatic that $\varepsilon(e) = 1$). Such an element is called group-like. The group-like elements of k[G] form a subgroup of $k[G]^{\times}$, which is isomorphic to the group $X^*(G)$ of characters of G. This group is functorial in G.

(E) < E)</p>

Recall that the multiplicative group $\mathbb{G}_m = \operatorname{Spec} k[T, T^{-1}]$ has the comultiplication $T \mapsto T \otimes T$ and counit $T \mapsto 1$. Let $G = \operatorname{Spec}(k[G], \Delta, \varepsilon)$ be an affine k-group scheme. To give a character $\chi : G \to \mathbb{G}_m$ is to give an element $e \in k[G]^{\times}$ such that $\Delta(e) = e \otimes e$ (it is then automatic that $\varepsilon(e) = 1$). Such an element is called group-like. The group-like elements of k[G] form a subgroup of $k[G]^{\times}$, which is isomorphic to the group $X^*(G)$ of characters of G. This group is functorial in G.

Lemma

The group-like elements of k[G] are linearly independent.

< ∃> < ∃>

Recall that the multiplicative group $\mathbb{G}_m = \operatorname{Spec} k[T, T^{-1}]$ has the comultiplication $T \mapsto T \otimes T$ and counit $T \mapsto 1$. Let $G = \operatorname{Spec}(k[G], \Delta, \varepsilon)$ be an affine k-group scheme. To give a character $\chi : G \to \mathbb{G}_m$ is to give an element $e \in k[G]^{\times}$ such that $\Delta(e) = e \otimes e$ (it is then automatic that $\varepsilon(e) = 1$). Such an element is called group-like. The group-like elements of k[G] form a subgroup of $k[G]^{\times}$, which is isomorphic to the group $X^*(G)$ of characters of G. This group is functorial in G.

Lemma

The group-like elements of k[G] are linearly independent.

Proof. Suppose that $e \in k[G]$ is a group-like element which can be written as $e = \sum_i \alpha_i e_i$, where each $e_i \in k[G]$ is group-like, $e_i \neq e$, and $\alpha_i \in k$. Then

$$\sum_{i} \alpha_{i}(\mathbf{e}_{i} \otimes \mathbf{e}_{i}) = \Delta\left(\sum_{i} \alpha_{i} \mathbf{e}_{i}\right) = \Delta(\mathbf{e}) = \mathbf{e} \otimes \mathbf{e} = \sum_{i,j} \alpha_{i} \alpha_{j}(\mathbf{e}_{i} \otimes \mathbf{e}_{j}).$$

It follows that $\alpha_i = \alpha_i^2$ for all i and $\alpha_i \alpha_j = 0$ for all $i \neq j$. Furthermore, $1 = \varepsilon(e) = \varepsilon(\sum_i \alpha_i e_i) = \sum_i \alpha_i \varepsilon(e_i) = \sum_i \alpha_i$, thus $\alpha_i = 1$ for exactly one index i, and $\alpha_j = 0$ for $j \neq i$. It follows that $e = e_i$, contradiction.

Definition

An affine k-group scheme G is said to be diagonalizable if the group-like elements of k[G] form a basis for the k-vector space k[G].

∃ > < ∃ >

Definition

An affine k-group scheme G is said to be diagonalizable if the group-like elements of k[G] form a basis for the k-vector space k[G].

Let *M* be an abelian group (whose operation is written multiplicatively. The group algebra k[M] has a natural Hopf algebra structure given by the comultiplication $e \mapsto e \otimes e$ and the counit $e \mapsto 1$ for all $e \in M$.

Definition

An affine k-group scheme G is said to be diagonalizable if the group-like elements of k[G] form a basis for the k-vector space k[G].

Let *M* be an abelian group (whose operation is written multiplicatively. The group algebra k[M] has a natural Hopf algebra structure given by the comultiplication $e \mapsto e \otimes e$ and the counit $e \mapsto 1$ for all $e \in M$. The group-like elements of k[M] are precisely the elements of *M*. The affine *k*-group scheme $D(M) := \operatorname{Spec} k[M]$ is thus diagonalizable and $X^*(D(M)) \simeq M$. Furthermore, it is an algebraic group over *k* iff *M* is finitely generated.

Definition

An affine k-group scheme G is said to be diagonalizable if the group-like elements of k[G] form a basis for the k-vector space k[G].

Let *M* be an abelian group (whose operation is written multiplicatively. The group algebra k[M] has a natural Hopf algebra structure given by the comultiplication $e \mapsto e \otimes e$ and the counit $e \mapsto 1$ for all $e \in M$. The group-like elements of k[M] are precisely the elements of *M*. The affine *k*-group scheme $D(M) := \operatorname{Spec} k[M]$ is thus diagonalizable and $X^*(D(M)) \simeq M$. Furthermore, it is an algebraic group over *k* iff *M* is finitely generated. Conversely, an affine *k*-group scheme *G* is diagonalizable iff $G \simeq D(X^*(G))$.

Definition

An affine k-group scheme G is said to be diagonalizable if the group-like elements of k[G] form a basis for the k-vector space k[G].

Let *M* be an abelian group (whose operation is written multiplicatively. The group algebra k[M] has a natural Hopf algebra structure given by the comultiplication $e \mapsto e \otimes e$ and the counit $e \mapsto 1$ for all $e \in M$. The group-like elements of k[M] are precisely the elements of *M*. The affine *k*-group scheme $D(M) := \operatorname{Spec} k[M]$ is thus diagonalizable and $X^*(D(M)) \simeq M$. Furthermore, it is an algebraic group over *k* iff *M* is finitely generated. Conversely, an affine *k*-group scheme *G* is diagonalizable iff $G \simeq D(X^*(G))$.

Theorem

The constructions $G \mapsto X^*(G)$ and $M \mapsto D(M)$ establish an equivalence

{diagonalizable group schemes over k} \longleftrightarrow {abelian groups},

of categories, under which diagonalizable algebraic groups over k correspond to finitely generated abelian groups.

Example

9 If *M* and *N* are abelian groups, then $k[M \times N] \simeq k[M] \otimes k[N]$, hence

 $D(M \times N) \simeq D(M) \times D(N).$

< ∃ > < ∃ >

-77 ▶

Example

9 If *M* and *N* are abelian groups, then $k[M \times N] \simeq k[M] \otimes k[N]$, hence

 $D(M \times N) \simeq D(M) \times D(N).$

② We have $k[\mathbb{Z}] = k[T, T^{-1}]$ (isomorphism of Hopf algebras), hence

 $D(\mathbb{Z}) = \mathbb{G}_m.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

9 If *M* and *N* are abelian groups, then $k[M \times N] \simeq k[M] \otimes k[N]$, hence

 $D(M \times N) \simeq D(M) \times D(N).$

2 We have $k[\mathbb{Z}] = k[T, T^{-1}]$ (isomorphism of Hopf algebras), hence

 $D(\mathbb{Z}) = \mathbb{G}_m.$

Similarly, for a positive integer *n*, $k[\mathbb{Z}/n\mathbb{Z}] = k[T]/(T^n - 1)$, hence

 $D(\mathbb{Z}/n\mathbb{Z})=\mu_n.$

- 4 同 ト 4 ヨ ト - 4 ヨ ト -

3

Example

9 If *M* and *N* are abelian groups, then $k[M \times N] \simeq k[M] \otimes k[N]$, hence

$$D(M \times N) \simeq D(M) \times D(N).$$

② We have $k[\mathbb{Z}] = k[T, T^{-1}]$ (isomorphism of Hopf algebras), hence

$$D(\mathbb{Z}) = \mathbb{G}_m.$$

Similarly, for a positive integer *n*, $k[\mathbb{Z}/n\mathbb{Z}] = k[T]/(T^n - 1)$, hence

$$D(\mathbb{Z}/n\mathbb{Z})=\mu_n.$$

(日) (同) (日) (日)

Let (V, r) be a representation of an affine k-group scheme G and $\chi \in X^*(G)$. For $v \in V$, the condition that $r(g)(v \otimes 1) = v \otimes \chi(g)$ for all commutative k-algebra A and $g \in G(A)$ is equivalent to $\rho(v) = v \otimes e_{\chi}$, where $\rho : V \to V \otimes k[G]$ is the coaction corresponding to r, and $e_{\chi} \in k[G]$ is the group-like element corresponding to χ . The eigenspace corresponding to χ is

$$V_{\chi} := \{ v \in V : \rho(v) = v \otimes e_{\chi} \}.$$

Theorem

Let G be an affine k-group scheme. The following are equivalent.

• G is diagonalizable.

Theorem

Let G be an affine k-group scheme. The following are equivalent.

- G is diagonalizable.
- **2** Every representation of G is the sum of its eigenspaces.
- \bigcirc Every representation of G is the direct sum of its eigenspaces.
- Every representation of *G* is the sum of its one-dimensional subrepresentations.
- Every representation of *G* is the direct sum of its one-dimensional subrepresentations.

Theorem

Let G be an affine k-group scheme. The following are equivalent.

- G is diagonalizable.
- **2** Every representation of G is the sum of its eigenspaces.
- \bigcirc Every representation of G is the direct sum of its eigenspaces.
- Every representation of *G* is the sum of its one-dimensional subrepresentations.
- Every representation of G is the direct sum of its one-dimensional subrepresentations.
- Condition 2. for any finite-dimensional representation of G.
- \bigcirc Condition 3. for any finite-dimensional representation of G.
- **O** Condition 4. for any finite-dimensional representation of *G*.
- \bigcirc Condition 5. for any finite-dimensional representation of G.

Let V be a finite-dimensional vector space. Recall that an endomorphism $g: V \to V$ is called unipotent if $g - id_V$ is nilpotent.

∃ > < ∃ >

Let V be a finite-dimensional vector space. Recall that an endomorphism $g: V \to V$ is called unipotent if $g - id_V$ is nilpotent.

Theorem (Kolchin)

If $G \subseteq GL(V)$ is a subgroup consisting of unipotent endomorphisms, then there is a basis for V on which G acts by the matrices in the group

$$\mathbb{U}_n(k) := egin{bmatrix} 1 & * & * & \dots & * \ 0 & 1 & * & \dots & * \ 0 & 0 & 1 & \dots & * \ dots & dots & dots & \ddots & dots \ 0 & 0 & 0 & \dots & 1 \end{bmatrix}.$$

In particular, there exists a non-zero vector $v \in V$ fixed by G.

∃ > < ∃ >

Let V be a finite-dimensional vector space. Recall that an endomorphism $g: V \to V$ is called unipotent if $g - id_V$ is nilpotent.

Theorem (Kolchin)

If $G \subseteq GL(V)$ is a subgroup consisting of unipotent endomorphisms, then there is a basis for V on which G acts by the matrices in the group

$$\mathbb{U}_n(k) := \begin{bmatrix} 1 & * & * & \dots & * \\ 0 & 1 & * & \dots & * \\ 0 & 0 & 1 & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}.$$

In particular, there exists a non-zero vector $v \in V$ fixed by G.

Let G be an affine k-group scheme and (V, ρ) a representation of G. We call the eigenspace corresponding to the trivial character of G,

$$V^{\mathsf{G}} := \{ v \in V : \rho(v) = v \otimes 1 \}$$

the fixed subspace of V by G.

Definition

An affine algebraic group G over k is said to be unipotent if every non-zero representation of G has a non-zero fixed vector.

∃ > < ∃ >

Definition

An affine algebraic group G over k is said to be unipotent if every non-zero representation of G has a non-zero fixed vector.

Theorem

Let $G = \text{Spec}(k[G], \Delta, \varepsilon)$ be an affine algebraic group over k. The following are equivalent.

- **G** is unipotent.
- Gereic For any closed immersion G → GL_n of algebraic groups, G is conjugate to U_n via an element of GL_n(k).
- **(a)** G is isomorphic to a closed subgroup of \mathbb{U}_n for some n.
- The Hopf algebra k[G] is coconnected, *i.e.* there exists a filtration $C_0 \subseteq C_1 \subseteq \cdots$ of subspaces of k[G] such that $C_0 = k$, $\bigcup_{r \ge 0} C_r = k[G]$ and $\Delta(C_r) \subseteq \sum_{i=0}^r C_i \otimes C_{r-i}$ for all $r \ge 0$.

Example

- An affine algebraic group is unipotent iff it admits a faithful finite-dimensional representation on which it acts by unipotent matrices.
- **2** A closed subgroup G of GL_n is unipotent iff every $g \in G(k)$ is unipotent.
- Olosed subgroups of G_a ≃ U₂ are unipotents. For example, if k has characteristic p > 0, then the group α_{pⁿ} := Spec k[T]/(T^{pⁿ}) is unipotent for all n ≥ 1.
- The group \mathbb{U}_n admits an descending central series of length $\frac{n(n-1)}{2}$ with successive quotients isomorphic to \mathbb{G}_a . When n = 3, the series is

$$\mathbb{U}_3 = \left\{ \begin{bmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{bmatrix} \right\} \supseteq \left\{ \begin{bmatrix} 1 & 0 & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{bmatrix} \right\} \supseteq \left\{ \begin{bmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\} \supseteq \{e\}.$$

It follows that every unipotent group admits a descending central series with successive quotients isomorphic to closed subgroups of \mathbb{G}_a . In particular, unipotent groups are nilpotent and *a fortiori* solvable.

Theorem

Assume that k has characteristic 0.

- Unipotent algebraic groups over k are connected. In particular, there are no non-trivial finite unipotent algebraic groups over k.
- G Let G be a unipotent algebraic group over k. The exponential map exp : Lie(G)_a → G is an isomorphism of algebraic varieties over k. It is an isomorphism of algebraic groups over k iff G is commutative.
- O The constructions G → Lie(G) and V → V_a establish an equivalence between the category of commutative unipotent algebraic groups and that of finite-dimensional vector spaces over k.
- O The constructions G → Lie(G) and g → g_{BCH} (the group law on g_{BCH} is given by the Baker-Campbell-Hausdorff series) establish an equivalence between the category of unipotent algebraic groups and that of finite-dimensional nilpotent Lie algebras over k.

- 4 同 ト - 4 目 ト - 4 目 ト

Thank you for paying attention !

< ∃→