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In this talk, k is a fixed field.

If V is a vector space, we have k-group functors

Va : k-Alg→ Grp, A 7→ V ⊗ A,

GLV : k-Alg→ Grp, AutA(V ⊗ A).

If dimV = n is finite, the choice of a basis for V defines isomorphisms

Va ' Gn
a = Spec k[T1, . . . ,Tn],

GLV ' GLn = Spec k[{Tij}16i,j6n, det−1].

Definition

Let G be a k-group functor. A representation of a G is a morphism
r : G → GLV of k-group functors, where V is a vector space.

To give a representation of G on V is to give a natural transformation
G × Va → Va such that for all commutative k-algebra A, the induced map

G (A)× (V ⊗ A)→ V ⊗ A

is an A-linear action of G (A) on V ⊗ A.
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Example

1 If V is a vector space, GLV acts tautologically on V . This gives the
standard representation of GLV .

2 Let G be a k-group functor. A 1-dimensional representation χ : G → Gm

is called a character of G .

3 Let G be a k-group scheme. The action given by (g · f )(x) := f (xg), for
all commutative k-algebra A, f ∈ A[G ] and x , g ∈ G (A), defines the
regular representation G → GLk[G ] of G .

Definition

Let V and W be representations of a k-group functors G . A linear map
φ : V →W is called a G -module homomorphism if φ⊗ idA : V ⊗ A→W ⊗ A
is G (A)-equivariant for all commutative k-algebra A.

Let HomG (V ,W ) be the space of G -module homomorphisms. We then have a
category Repk(G ) of representations of G .
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Let A be a (not necessarily commutative) k-algebra. A (left) A-module is a
vector space M equipped with a linear map λ : A⊗M → M such that

λ(a⊗ λ(b ⊗m)) = λ(ab ⊗m), λ(α1A ⊗m) = αm

for all a, b ∈ A, m ∈ M and α ∈ k.

If µ : A⊗A→ A denotes the multiplication
and u : k → A denotes the unit (i.e. u(α) = α1A), then the diagrams

A⊗ A⊗M
µ⊗idM //

idA ⊗λ
��

A⊗M

λ

��

k ⊗M

u⊗idM

��

'

''
A⊗M

λ // M A⊗M
λ // M

commute. Dually, let (C ,∆ : C → C ⊗ C , ε : C → k) be a k-coalgebra. A
(right) A-comodule is a vector space V equipped with a linear map
ρ : V → V ⊗ C (the coaction) such that the following diagrams commute.

C
ρ //

ρ

��

V ⊗ C

ρ⊗idC

��

V
ρ //

'

''

V ⊗ C

1V⊗ε
��

V ⊗ C
idV ⊗∆ // V ⊗ C ⊗ C V ⊗ k.
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A linear map ρ : V → V ⊗ C defines a comodule over (C ,∆, ε) iff

∀v ∈ V , ρ(v) =
∑
i

vi ⊗ ci , vi ∈ V , ci ∈ C

then∑
i

ρ(vi )⊗ ci =
∑
i

vi ⊗∆(ci ) ∈ V ⊗ C ⊗ C and v =
∑
i

ε(ci )vi .

Example

1 C is a comodule over itself via ∆ : C → C ⊗ C .

2 A subspace W ⊆ V is called a subcomodule if ρ(W ) ⊆W ⊗ C .
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Definition

Let (V , ρ) and (W , σ) be C -comodules. A linear map φ : V →W is called a
C -comodule homomorphisms if the diagram

V
ρ //

φ

��

V ⊗ C

φ⊗idC

��
W

σ // W ⊗ C

commutes.

This amounts to requiring that for any v ∈ V , if

ρ(v) =
∑
i

vi ⊗ ci , vi ∈ V , ci ∈ C

then
σ(φ(v)) =

∑
i

φ(vi )⊗ ci .

Let ComodC denote the category of right C -comodules and C -comodule
homomorphisms between them.
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Let G = Spec(k[G ],∆, ε) be an affine k-group scheme.

To a k[G ]-comodule ρ : V → V ⊗ k[G ] one associates a representation
rρ : G → GLV as follows. Let A be a commutative k-algebra and g ∈ G (A)
(which corresponds to a k-algebra homomorphism g∗ : k[G ]→ A). Then
rρ(g) : V ⊗ A→ V ⊗ A is the A-linear map induced by the composition

V
ρ−→ V ⊗ k[G ]

idV ⊗g∗
−−−−−→ V ⊗ A. Thus if v ∈ V and a ∈ A and

ρ(v) =
∑
i

vi ⊗ fi , vi ∈ V , fi ∈ k[G ]

then rρ(g)(v ⊗ a) =
∑
i

vi ⊗ fi (g)a ∈ V ⊗ A.

Let g , h ∈ G (A). For v ∈ V , a ∈ A and vi , fi as above, write

ρ(vi ) =
∑
j

vij ⊗ fij , ∆(fi ) =
∑
`

f ′i` ⊗ f ′′i` , vij ∈ V , fij , f
′
i`, f

′′
i` ∈ k[G ].

Then rρ(gh) = rρ(g) ◦ rρ(h) since rρ(g)(rρ(h)(v ⊗ a)) =
∑
i

rρ(g)(vi ⊗ fi (h)a)

=
∑
i,j

vij⊗fij (g)fi (h)a =
∑
i,`

vi⊗f ′i`(g)f ′′i` (h)a =
∑
i

vi⊗fi (gh)a = rρ(gh)(v⊗a).
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rρ : G → GLV as follows. Let A be a commutative k-algebra and g ∈ G (A)
(which corresponds to a k-algebra homomorphism g∗ : k[G ]→ A). Then
rρ(g) : V ⊗ A→ V ⊗ A is the A-linear map induced by the composition

V
ρ−→ V ⊗ k[G ]

idV ⊗g∗
−−−−−→ V ⊗ A. Thus if v ∈ V and a ∈ A and

ρ(v) =
∑
i

vi ⊗ fi , vi ∈ V , fi ∈ k[G ]

then rρ(g)(v ⊗ a) =
∑
i

vi ⊗ fi (g)a ∈ V ⊗ A.

Let g , h ∈ G (A). For v ∈ V , a ∈ A and vi , fi as above, write

ρ(vi ) =
∑
j

vij ⊗ fij , ∆(fi ) =
∑
`

f ′i` ⊗ f ′′i` , vij ∈ V , fij , f
′
i`, f

′′
i` ∈ k[G ].

Then rρ(gh) = rρ(g) ◦ rρ(h) since rρ(g)(rρ(h)(v ⊗ a)) =
∑
i

rρ(g)(vi ⊗ fi (h)a)

=
∑
i,j

vij⊗fij (g)fi (h)a =
∑
i,`

vi⊗f ′i`(g)f ′′i` (h)a =
∑
i

vi⊗fi (gh)a = rρ(gh)(v⊗a).
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Let eA ∈ G (A) be the identity element. Again, let v ∈ V , a ∈ A and write

ρ(v) =
∑
i

vi ⊗ fi , vi ∈ V , fi ∈ k[G ].

Then rρ(eA) = idV⊗A since

rρ(eA)(v ⊗ a) =
∑
i

vi ⊗ fi (eA)a =
∑
i

vi ⊗ ε(fi )a =

(∑
i

ε(fi )vi

)
⊗ a = v ⊗ a.

We show functoriality in A. To this end, let ψ : A→ B be k-algebra
homomorphism. Let g ∈ G (A) corresponding to a k-algebra homomorphism
g∗ : k[G ]→ A (then ψ∗g ∈ G (B) corresponds to ψ ◦ g∗). Then the diagram

V ⊗ A
rρ(g) //

idV ⊗ψ
��

V ⊗ A

idV ⊗ψ
��

V ⊗ B
rρ(ψ∗g) // V ⊗ B

commutes since v ⊗ a maps to
∑
i

vi ⊗ ψ(fi (g)a) by both compositions.
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Conversely, to a representation r : G → GLV one associates a coaction
ρr : V → V ⊗ k[G ] as follows.

First, let g univ ∈ G (k[G ]) correspond to the
identity k[G ]→ k[G ] (the universal element of G ). Then we define

∀v ∈ V , ρr (v) := r(g univ)(v ⊗ 1).

By functoriality, if

ρr (v) = r(g univ)(v ⊗ 1) =
∑
i

vi ⊗ fi , vi ∈ V , fi ∈ k[G ]

then for all commutative k-algebra A, g ∈ G (A) and a ∈ A, one has

r(g)(v ⊗ a) =
∑
i

vi ⊗ fi (g)a ∈ V ⊗ A.

Let us show that ρr is indeed a coaction.
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Let A = k[G ]⊗ k[G ] and g , h ∈ G (A) corresponding to

g∗ : k[G ]→ A, f 7→ f ⊗ 1,

h∗ : k[G ]→ A, f 7→ 1⊗ f

respectively. Then gh ∈ G (A) corresponds to ∆ : k[G ]→ A.

For v ∈ V , write

ρr (v) = r(g univ)(v ⊗ 1) =
∑
i

vi ⊗ fi , ρr (vi ) =
∑
j

vij ⊗ fij

where vi , vij ∈ V and fi , fij ∈ k[G ]. Then∑
i

vi ⊗∆(fi ) = r(gh)(v ⊗ 1⊗ 1) = r(g)(r(h)(v ⊗ 1⊗ 1)) =
∑
i

r(g)(vi ⊗ fi (h))

=
∑
i

r(g)(vi ⊗ 1⊗ f ) =
∑
i,j

vij ⊗ fij (g)(1⊗ fi )

=
∑
i,j

vij ⊗ (fij ⊗ 1)(1⊗ fi ) =
∑
i,j

vij ⊗ fij ⊗ fi =
∑
i

ρr (vi )⊗ fi .

Since the identity element e ∈ G (k) corresponds to ε : k[G ]→ k, one has

v = r(e)(v) =
∑
i

ε(fi )vi .
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Theorem

Let G = Spec k[G ] be an affine k-group scheme. The constructions r 7→ ρr and
ρ 7→ rρ above are inverse to each other.

Proof. Let ρ : V → V ⊗ k[G ] be a coaction. Then the coaction ρ′

corresponding to the representation rρ : G → GLV is given by
ρ′(v) = rρ(g univ)(v ⊗ 1) for all v ∈ V , where g univ ∈ G (k[G ]) corresponds to
the identity k[G ]→ k[G ]. Write

ρ(v) =
∑
i

vi ⊗ fi , vi ∈ V , fi ∈ k[G ].

Then ρ′ = ρ, since

ρ′(v) = rρ(g univ)(v ⊗ 1) =
∑
i

vi ⊗ fi (g
univ) =

∑
i

vi ⊗ fi = ρ(v).
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Theorem

Let G = Spec k[G ] be an affine k-group scheme. The constructions r 7→ ρr and
ρ 7→ rρ above are inverse to each other.

Conversely, let r : G → GLV be a representation. Then the representation r ′

corresponding to the coaction ρr : V → V ⊗ k[G ] is described as follows. Let A
be a commutative k-algebra and g ∈ G (A). For v ∈ V and a ∈ A, write

ρr (v) = r(g univ)(v ⊗ 1) =
∑
i

vi ⊗ fi , vi ∈ V , fi ∈ k[G ].

Then, for v ∈ V and a ∈ A, one has

r ′(g)(v ⊗ a) =
∑
i

vi ⊗ fi (g)a = r(g)(v ⊗ a).

It follows that r = r ′.
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Diagonalizable and unipotent groups

Theorem

Let G = Spec k[G ] be an affine k-group scheme. The categories Repk(G ) and
Comodk[G ] are isomorphic.

Proof. It remains to show that if (V , r) and (W , s) are representations of G ,
then a linear map φ : V →W is a G -module homomorphism iff it is a
k[G ]-comodule homomorphism. Let ρ : V → V ⊗ k[G ] and
σ : W →W ⊗ k[G ] be the corresponding coactions.
Suppose that φ is a G -module homomorphism. Then the diagram

V
v 7→v⊗1

//

φ

��

ρ **
V ⊗ k[G ]

r(guniv)

//

φ⊗idk[G ]

��

V ⊗ k[G ]

φ⊗idk[G ]

��
W

w 7→w⊗1 //

σ
44W ⊗ k[G ]

s(guniv) // W ⊗ k[G ]

commutes (where g univ ∈ G (k[G ]) is the universal element), i.e. φ is a
k[G ]-comodule homomorphism.
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Theorem

Let G = Spec k[G ] be an affine k-group scheme. The categories Repk(G ) and
Comodk[G ] are isomorphic.

Conversely, suppose that φ is a k[G ]-comodule homomorphism. Let A be a
commutative k-algebra and g ∈ G (A). For v ∈ V and a ∈ A, write

ρ(v) = r(g univ)(v ⊗ 1) =
∑
i

vi ⊗ fi , vi ∈ V , fi ∈ k[G ].

Then σ(φ(v)) = s(g univ)(φ(v)⊗ 1) =
∑
i

φ(vi )⊗ fi . On the other hand, one

has
r(g)(v ⊗ a) =

∑
i

vi ⊗ fi (g)a ∈ V ⊗ A,

s(g)(φ(v)⊗ a) =
∑
i

φ(vi )⊗ fi (g) ∈W ⊗ A.

It follows that (φ⊗ idA) ◦ r(g) = s(g) ◦ (φ⊗ idA) for all g ∈ G (A), i.e. that
φ⊗ idA is G (A)-equivariant. Thus φ is a G -module homomorphism.

Manh-Linh Nguyen Representations and comodules



Representations of group functors
Comodules

Relation between representations and comodules
Affine algebraic groups are linear

Diagonalizable and unipotent groups

Example

1 Let V be a representation of an affine k-group scheme G corresponding
to the coaction ρ : V → V ⊗ k[G ]. A subspace W ⊆ V is a G -submodule
(i.e. the A-submodule W ⊗A ⊆ V ⊗A is G (A)-stable for all commutative
k-algebra A) iff it is a k[G ]-subcomodule (i.e. ρ(W ) ⊆W ⊗ k[G ]).

2 The standard reprensetation of G = GLn = Spec k[{Tij}16i,j6n, det−1]
on V = kn (with the standard basis (e1, . . . , en)). has the corresponding
coaction ρ : V → V ⊗ k[G ] given by

ρ(ej ) =

n∑
i=1

ei ⊗ Tij , j = 1, . . . , n.

3 The regular representation G → GLk[G ] has the correponding coaction
given by the comultiplication ∆ : k[G ]→ k[G ]⊗ k[G ].
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Proposition

Let G = Spec(k[G ],∆, ε) be an affine k-group scheme. Then every
representation of G is the union of its finite-dimensional subrepresentations.

Proof. Choose a basis (fi )i for the k-vector space k[G ] and write

∆(fi ) =
∑
j,`

αij`(fj ⊗ f`), αij` ∈ k.

Let ρ : V → V ⊗ k[G ] be a k[G ]-comodule and v ∈ V . Write

ρ(v) =
∑
i

vi ⊗ fi , vi ∈ V ,

where vi = 0 for all but finitely many i ’s. Then∑
`

ρ(v`)⊗ f` =
∑
i

vi ⊗∆(fi ) =
∑
i,j,`

αij`(vi ⊗ fj ⊗ f`).

By linear independece of the family (f`)`, we obtain

ρ(v`) =
∑
i,j

αij`(vi ⊗ fj ).

Thus the subspace spanned by v and the vi ’s is a subrepresentation.
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Theorem

Let G = Spec(k[G ],∆, ε) be an affine algebraic group over k. Then there is a
faithful representation G → GLn for some positive integer n.

Proof. Let V ⊆ k[G ] be a finite-dimensional subrepresentation of the regular
representation such that V generates k[G ] as a k-algebra. Choose a basis
(ei )

n
i=1 for V . The restriction r : G → GLn of the regular representation

corresponds to a k-algebra homomorphism ψ : k[{Tij}ni,j=1, det−1]→ k[G ].
Let g univ ∈ G (k[G ]) be the universal element. Then r(g univ) induces the
k[G ]-linear automorphism of V ⊗ k[G ] given by the matrix [ψ(Tij )]ni,j=1 in the
basis (ei ⊗ 1)ni=1. It follows that the coaction ∆|V : V → V ⊗ k[G ] is given by

∆(ej ) = r(g univ)(ej ⊗ 1) =

n∑
i=1

ei ⊗ ψ(Tij ), j = 1, . . . , n.

Hence

ej = (ε⊗ idk[G ])(∆(ej )) =

n∑
i=1

ε(ei )ψ(Tij ), j = 1, . . . , n.

We deduce from this that ψ is surjective, i.e. that r is a closed immersion.
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Example

Recall that the additive group Ga = Spec k[T ] has the comultiplication

∆ : k[T ]→ k[T ]⊗ k[T ], T 7→ 1⊗ T + T ⊗ 1.

It is isomorphic to the subgroup of GL2 formed by matrices of the form
[
1 ∗
0 1

]
.

"Abstract nonsense" proof. One considers the k-algebra homomorphism

ψ :k[T11,T12,T21,T22, (T11T22 − T12T21)−1]→ k[T ]

T11 7→ 1, T12 7→ T , T21 7→ 0, T22 7→ 1.

Then ψ is a (surjective) homomorphism of Hopf algebras since

∆(ψ(T11)) = ∆(1) = 1⊗ 1 = (ψ ⊗ ψ)(T11 ⊗ T11 + T12 ⊗ T21),

∆(ψ(T12)) = ∆(T ) = 1⊗ T + T ⊗ 1 = (ψ ⊗ ψ)(T11 ⊗ T12 + T12 ⊗ T22),

∆(ψ(T21)) = ∆(0) = 0 = (ψ ⊗ ψ)(T21 ⊗ T11 + T22 ⊗ T21),

∆(ψ(T22)) = ∆(1) = 1⊗ 1 = (ψ ⊗ ψ)(T21 ⊗ T12 + T22 ⊗ T22).
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Remark

Every algebraic group G over k has the largest affine quotient G aff , and every
representation of G factors through G aff .

Remark

Let (V , ρ) be a n-dimensional representation of an affine k-group scheme
G = Spec(k[G ],∆, ε). Let V0 be the underlying vector space of V . Then
V0 ⊗ k[G ] is a k[G ]-comodule with the coaction

idV0 ⊗∆ : V0 ⊗ k[G ]→ V0 ⊗ k[G ]⊗ k[G ].

That ρ is a coaction implies (ρ⊗ idk[G ]) ◦ ρ = (idV0 ⊗∆) ◦ ρ commutes, i.e.
that ρ : V → V0 ⊗ k[G ] is a k[G ]-comodule homomorphism. Further, since
(idV ⊗ε) ◦ ρ : V → V ⊗ k is the canonical isomorphism, ρ is injective.
It follows that (V , ρ) is isomorphic to a subrepresentation of (k[G ],∆)n.
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Recall that the multiplicative group Gm = Spec k[T ,T−1] has the
comultiplication T 7→ T ⊗ T and counit T 7→ 1.

Let G = Spec(k[G ],∆, ε) be an affine k-group scheme. To give a character
χ : G → Gm is to give an element e ∈ k[G ]× such that ∆(e) = e ⊗ e (it is
then automatic that ε(e) = 1). Such an element is called group-like.
The group-like elements of k[G ] form a subgroup of k[G ]×, which is isomorphic
to the group X ∗(G ) of characters of G . This group is functorial in G .

Lemma

The group-like elements of k[G ] are linearly independent.

Proof. Suppose that e ∈ k[G ] is a group-like element which can be written as
e =

∑
i αiei , where each ei ∈ k[G ] is group-like, ei 6= e, and αi ∈ k. Then

∑
i

αi (ei ⊗ ei ) = ∆

(∑
i

αiei

)
= ∆(e) = e ⊗ e =

∑
i,j

αiαj (ei ⊗ ej ).

It follows that αi = α2
i for all i and αiαj = 0 for all i 6= j . Furthermore,

1 = ε(e) = ε
(∑

i αiei
)

=
∑

i αiε(ei ) =
∑

i αi , thus αi = 1 for exactly one
index i , and αj = 0 for j 6= i . It follows that e = ei , contradiction.
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Definition

An affine k-group scheme G is said to be diagonalizable if the group-like
elements of k[G ] form a basis for the k-vector space k[G ].

Let M be an abelian group (whose operation is written multiplicatively. The
group algebra k[M] has a natural Hopf algebra structure given by the
comultiplication e 7→ e ⊗ e and the counit e 7→ 1 for all e ∈ M. The group-like
elements of k[M] are precisely the elements of M. The affine k-group scheme
D(M) := Spec k[M] is thus diagonalizable and X ∗(D(M)) ' M. Furthermore,
it is an algebraic group over k iff M is finitely generated.
Conversely, an affine k-group scheme G is diagonalizable iff G ' D(X ∗(G )).

Theorem

The constructions G 7→ X ∗(G ) and M 7→ D(M) establish an equivalence

{diagonalizable group schemes over k} ←→ {abelian groups},

of categories, under which diagonalizable algebraic groups over k correspond to
finitely generated abelian groups.
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Definition

An affine k-group scheme G is said to be diagonalizable if the group-like
elements of k[G ] form a basis for the k-vector space k[G ].

Let M be an abelian group (whose operation is written multiplicatively. The
group algebra k[M] has a natural Hopf algebra structure given by the
comultiplication e 7→ e ⊗ e and the counit e 7→ 1 for all e ∈ M. The group-like
elements of k[M] are precisely the elements of M. The affine k-group scheme
D(M) := Spec k[M] is thus diagonalizable and X ∗(D(M)) ' M. Furthermore,
it is an algebraic group over k iff M is finitely generated.
Conversely, an affine k-group scheme G is diagonalizable iff G ' D(X ∗(G )).
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of categories, under which diagonalizable algebraic groups over k correspond to
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Example

1 If M and N are abelian groups, then k[M × N] ' k[M]⊗ k[N], hence

D(M × N) ' D(M)× D(N).

2 We have k[Z] = k[T ,T−1] (isomorphism of Hopf algebras), hence

D(Z) = Gm.

3 Similarly, for a positive integer n, k[Z/nZ] = k[T ]/(T n − 1), hence

D(Z/nZ) = µn.

4 It follows from the structure theorem for finitely generated abelian groups
that every diagonalizable algebraic group over k is a product of copies of
Gm and various µn.
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Let (V , r) be a representation of an affine k-group scheme G and χ ∈ X ∗(G ).
For v ∈ V , the condition that r(g)(v ⊗ 1) = v ⊗ χ(g) for all commutative
k-algebra A and g ∈ G (A) is equivalent to ρ(v) = v ⊗ eχ, where
ρ : V → V ⊗ k[G ] is the coaction corresponding to r , and eχ ∈ k[G ] is the
group-like element corresponding to χ. The eigenspace corresponding to χ is

Vχ := {v ∈ V : ρ(v) = v ⊗ eχ}.
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Theorem

Let G be an affine k-group scheme. The following are equivalent.

1 G is diagonalizable.

2 Every representation of G is the sum of its eigenspaces.

3 Every representation of G is the direct sum of its eigenspaces.

4 Every representation of G is the sum of its one-dimensional
subrepresentations.

5 Every representation of G is the direct sum of its one-dimensional
subrepresentations.

6 Condition 2. for any finite-dimensional representation of G .

7 Condition 3. for any finite-dimensional representation of G .

8 Condition 4. for any finite-dimensional representation of G .

9 Condition 5. for any finite-dimensional representation of G .
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Let V be a finite-dimensional vector space. Recall that an endomorphism
g : V → V is called unipotent if g − idV is nilpotent.

Theorem (Kolchin)

If G ⊆ GL(V ) is a subgroup consisting of unipotent endomorphisms, then there
is a basis for V on which G acts by the matrices in the group

Un(k) :=


1 ∗ ∗ . . . ∗
0 1 ∗ . . . ∗
0 0 1 . . . ∗
...

...
...

. . .
...

0 0 0 . . . 1

 .

In particular, there exists a non-zero vector v ∈ V fixed by G .

Let G be an affine k-group scheme and (V , ρ) a representation of G . We call
the eigenspace corresponding to the trivial character of G ,

V G := {v ∈ V : ρ(v) = v ⊗ 1}

the fixed subspace of V by G .
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Definition

An affine algebraic group G over k is said to be unipotent if every non-zero
representation of G has a non-zero fixed vector.

Theorem

Let G = Spec(k[G ],∆, ε) be an affine algebraic group over k. The following
are equivalent.

1 G is unipotent.

2 For any closed immersion G → GLn of algebraic groups, G is conjugate
to Un via an element of GLn(k).

3 G is isomorphic to a closed subgroup of Un for some n.

4 The Hopf algebra k[G ] is coconnected, i.e. there exists a filtration
C0 ⊆ C1 ⊆ · · · of subspaces of k[G ] such that C0 = k,

⋃
r>0 Cr = k[G ]

and ∆(Cr ) ⊆
r∑

i=0
Ci ⊗ Cr−i for all r > 0.

Manh-Linh Nguyen Representations and comodules



Representations of group functors
Comodules

Relation between representations and comodules
Affine algebraic groups are linear

Diagonalizable and unipotent groups

Definition

An affine algebraic group G over k is said to be unipotent if every non-zero
representation of G has a non-zero fixed vector.

Theorem

Let G = Spec(k[G ],∆, ε) be an affine algebraic group over k. The following
are equivalent.

1 G is unipotent.

2 For any closed immersion G → GLn of algebraic groups, G is conjugate
to Un via an element of GLn(k).

3 G is isomorphic to a closed subgroup of Un for some n.

4 The Hopf algebra k[G ] is coconnected, i.e. there exists a filtration
C0 ⊆ C1 ⊆ · · · of subspaces of k[G ] such that C0 = k,

⋃
r>0 Cr = k[G ]

and ∆(Cr ) ⊆
r∑

i=0
Ci ⊗ Cr−i for all r > 0.

Manh-Linh Nguyen Representations and comodules



Representations of group functors
Comodules

Relation between representations and comodules
Affine algebraic groups are linear

Diagonalizable and unipotent groups

Example

1 An affine algebraic group is unipotent iff it admits a faithful
finite-dimensional representation on which it acts by unipotent matrices.

2 A closed subgroup G of GLn is unipotent iff every g ∈ G (k) is unipotent.

3 Closed subgroups of Ga ' U2 are unipotents. For example, if k has
characteristic p > 0, then the group αpn := Spec k[T ]/(T pn

) is unipotent
for all n > 1.

4 The group Un admits an descending central series of length n(n−1)
2 with

successive quotients isomorphic to Ga. When n = 3, the series is

U3 =


1 ∗ ∗
0 1 ∗
0 0 1

 ⊇

1 0 ∗
0 1 ∗
0 0 1

 ⊇

1 0 ∗
0 1 0
0 0 1

 ⊇ {e}.
It follows that every unipotent group admits a descending central series
with successive quotients isomorphic to closed subgroups of Ga. In
particular, unipotent groups are nilpotent and a fortiori solvable.
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Theorem

Assume that k has characteristic 0.

1 Unipotent algebraic groups over k are connected. In particular, there are
no non-trivial finite unipotent algebraic groups over k.

2 Let G be a unipotent algebraic group over k. The exponential map
exp : Lie(G )a → G is an isomorphism of algebraic varieties over k. It is an
isomorphism of algebraic groups over k iff G is commutative.

3 The constructions G 7→ Lie(G ) and V 7→ Va establish an equivalence
between the category of commutative unipotent algebraic groups and
that of finite-dimensional vector spaces over k.

4 The constructions G 7→ Lie(G ) and g 7→ gBCH (the group law on gBCH is
given by the Baker–Campbell–Hausdorff series) establish an equivalence
between the category of unipotent algebraic groups and that of
finite-dimensional nilpotent Lie algebras over k.
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Thank you for paying attention !
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