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6.1. The structure of affine group schemes

Aim: Every affine k-group scheme is a directed inverse limit of affine
algebraic groups over k .

Proposition: (Prop 2.6,[Deligne-Milne 82])

Let A be a Hopf algebra over a field k . Every finite subset of A is
contained in Hopf subalgebra that is generated as k-algebra.

Proof:
A finite subset of A ⊂ a comodule V over A (or
∆(V ) ⊂ V ⊗ A), and dim kV < +∞ (local finiteness property).

Choose a basis for V , {vj}: ∆(vj) =
∑

i vj ⊗ aij . Using
conditions of comodule, we obtain:

∆(aij) =
∑
l

ail ⊗ alj

Let U := Span{vj , ai ,j∀ i , j}, ∆(U) ⊂ U ⊗ A.
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For every a ∈ A, ∆(a) =
∑

b ⊗ c ⇒ ∆(Sa) =
∑

Sb ⊗ Sc
(using property of S , S : antipode of A).

W := Span{U , S(U)} ⇒ ∆(W ) ⊂ W ⊗W . Then
k[vj , aij , S(vi), S(aij)] = k[W ] is Hopf subalgebra of A which is
finitely generated as k-algebra.
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Theorem: (Corollary 2.7, [Deligne-Milne 82])

Every affine k-group scheme G is a directed inverse limit G = lim←−Gj

of affine algebraic groups over k in which tranlation maps Gj −→ Gi ,
(j ≥ i), are surjective.

Proof:
A = ∪Ai , Ai : finitely generated as k-algebra and Ai ⊂ Aj , (j ≥ i)

For every (j ≥ i), Ai is Hopf subalgebra of Aj ⇒
Aj is faithfully flat over over Ai .

A = lim−→Ai
Spec7→ G = lim←−Gj and tranlations maps Gj −→ Gi ,

(j ≥ i)), are surjective by faithful flatness.
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6.2. Recovering an affine group scheme

Aim: Recovering an affine group scheme from its representations
Notations:

G : an affine group scheme over k ,
RepkG : the category of finite dimension representations ≡ the
category of comodules (comodules have finite dimension over k
as k-vector space)

ω := ωG : RepkG −→ Veck is forgetful funtor

Algk : the category of commutative algebras over k

ModR : the category of finitely generated modules over R ∈ Algk .

For R ∈ Algk , we define Aut⊗(ω)(R) to be the collection of tensor
preserving automorphisms of the functor

ωR : RepkG −→ ModR ,X 7→ X ⊗ R .

where ωR factors through Veck .
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More explicit, we have the following definition.

Definition
An element of Aut⊗(ω)(R) is a family (λX ) (X ∈ Ob(RepkG ), where
(λX ) is an R-linear automorphism of X ⊗ R subject to

1 λI is the identity map on R ∼= k ⊗ R ;

2 λX⊗Y = λX ⊗ λY ;
3 For all G -equivariant α : X −→ Y , the following diagram

commutes:

X ⊗ R
λX //

α⊗id
��

X ⊗ R

α⊗id
��

Y ⊗ R
λY
// Y ⊗ R .
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Every g ∈ G (R) defines an element of Aut⊗(ω)(R). Indeed, for
X ∈ RepkG we write gX for the R-automorphism:

X ⊗ R −→ X ⊗ R

defined by the representation G −→ GL(X ).

Then three conditions
are all satisfied. Thus we have a natural map from G to Aut⊗(ω).
We can state one half of the principle of Tannakian duality.

Theorem: (Proposition 2.8, [Deligne-Milne 82])

The natural map G −→ Aut⊗(ω) is an isomorphism of functors of
k-algebras.
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Proof:
X ∈ RepkG , CX := full subcategory RepkG consists:
Objects ∼= subquotient of P(X ,X∨)(or subquotient of directed
sum of objects form Ta,b(X ) := X⊗a ⊗ X∨⊗b.)

The map

Aut⊗(ω|CX )(R) −→ GL(X ⊗ R)

λ 7→ λX

identifies Aut⊗(ω|CX ) with subgroup of GLX .

Let GX := image of G in GLX , GX is closed algebraic subgroup
of GLX .
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It is easy to see that

GX (R) ⊂ Aut⊗(ω|CX )(R) ⊂ GL(X ⊗ R)

If V ∈ Ob(CX ) and t is fixed by GX ie t ∈ V GX , then the map
multiplication by t, α : k −→ V is a G -equivarant:

⇒ k ⊗ R
λI //

α⊗id
��

k ⊗ R

α⊗id
��

V ⊗ R
λV
// V ⊗ R .

⇒ λV (t ⊗ 1) = (α⊗ id)λI(1) = t ⊗ 1

Conclusion: Aut⊗(ω|CX ) is subgroup of GLX fixing all tensors in
Repk(GX ) fixed by GX :

⇒ GX = Aut⊗(ω|CX )

as algebraic groups. This is inferred from:
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Claim: if G −→ GLX is a faithful representation of algebraic group G ,
H is subgroup G and H ⊂ H ′:= subgroup of G fixing all tensors
occurring in subquotient of Ta,b(X ) := X⊗a ⊗ X∨⊗b that are fixed by
H ,then H = H ′. (Corollary of Chevalley’s theorem, Remark 3.2 in
[Deligne-Milne 82])

If X ′ = X ⊕ Y , then CX ⊂ CX ′ :

GX ′
∼= //

��

Aut⊗(ω|CX ′)

��
GX

∼= // Aut⊗(ω|CX ).

Passing to the inverse limit over diagrams:

⇒ lim←−GX
∼= lim←−Aut⊗(ω|CX )

G ∼= Aut⊗(ω) as k-functors.

Nguyễn Đại Dương Workshop: Tannakian category Đà Nẵng-2021 10 / 18



Claim: if G −→ GLX is a faithful representation of algebraic group G ,
H is subgroup G and H ⊂ H ′:= subgroup of G fixing all tensors
occurring in subquotient of Ta,b(X ) := X⊗a ⊗ X∨⊗b that are fixed by
H ,then H = H ′. (Corollary of Chevalley’s theorem, Remark 3.2 in
[Deligne-Milne 82])

If X ′ = X ⊕ Y , then CX ⊂ CX ′ :

GX ′
∼= //

��

Aut⊗(ω|CX ′)

��
GX

∼= // Aut⊗(ω|CX ).

Passing to the inverse limit over diagrams:

⇒ lim←−GX
∼= lim←−Aut⊗(ω|CX )

G ∼= Aut⊗(ω) as k-functors.

Nguyễn Đại Dương Workshop: Tannakian category Đà Nẵng-2021 10 / 18



Let f : G −→ G ′ be a homomorphism. For every X ∈ RepkG
′, the

compositon G
f−→ G ′ −→ GLX defines X ∈ RepkG . So f induces a

tensor functor: ωf : RepkG
′ −→ RepkG such that ωG ′

= ωG ◦ ωf .

Corollary: (Corolllary 2.9, [Deligne-Milne 82])

Let G ,G ′ be affine k-groups schemes and let F : RepkG
′ −→ RepkG

be a tensor functor such that ωG ′
= ωG ◦ F . Then there exists a

unique homomorphism f : G −→ G ′ such that F = ωf .

Proof:
For every R ∈ Algk , F define a homomorphism

F ∗(R) : G ∼= Aut⊗(ωG )(R) −→ G ′ ∼=Aut⊗(ωG ′
)(R)

(λX ) 7→ (λF (X ))

Above theorem and Yoneda lemma allow us to identify:
F ∗≡a homomorphism G −→ G ′.

F 7→ F ∗, f 7→ ωf are inverse maps.
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6.3 Setting for the main theorem

The main theorem: (Theorem 2.11, [Deligne-Milne 82])
(C,⊗) : a rigid abenlian k-linear tensor category

k = End(I)
ω : C −→ Veck :exact faithful k-linear functor

⇒

{
i) G := Aut⊗(ωG ) : is an affine group scheme

ii) C ∼= RepkG

The first ideas to prove the main theorem:
Construct the coalgebra A of G without using tensor structure
on C
For a finite dimension algebras A, A∨ := Homk(A, k):

Homk(V ⊗ A,V ) ∼= Homk(V ,V ⊗ A∨)

⇒ A-module structures
1−1↔ A∨-comodule structures
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[Tannakian categories-Deligne-Milne 2012, p.21]

Let C be a k-linear abenlian category. Then there exists a functor
⊗′ : Veck × C −→ C such that:

1 HomC(V ⊗′ X ,T ) ∼= V ⊗′ HomC(X ,T );

2 HomC(T ,V ⊗′ X ) ∼= V ⊗′ HomC(T ,X );

3 For any k-linear functor F : C −→ C ′, F (V ⊗′ X ) ∼= V ⊗′ F (X ).

The construction of the functor ⊗′:
Vecs : the full subcategory of Veck whose objects are vector
spaces kn (a skeleton of the category Veck)

A skeleton of Veck ⇒ ∃ a unique functor Veck
γ−→ Vecs such

that γ is an equivalence of categories and γ ◦ ı = idVeck (where

Vecs
ı
↪→ Veck : the inclusion functor).

First, we define kn ⊗ X := X⊕n. Finally, for any V ∈ Veck ,
define V ⊗′ X := γ(V )⊗′ X .
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The transporter of a vector subspace to a subobject in C
We define Hom(V ,X ) := V ∨ ⊗′ X . If W ⊂ V as vector subspace
and Y ⊂ X as subobject then the transporter of W to Y is

(Y : W ) := ker(Hom(V ,X ) −→ Hom(W ,X/Y ))

Explain : We want to define a subspace of Hom(V ,X ) consisting of
all maps from W to Y as a subspace of all maps mapping W into Y
such that the composition W −→ X −→ X/Y is zero.

The k-linear functor and the transporter
For any k-linear functor F : C −→ C ′, we have

F (Hom(V ,X )) = Hom(V ,FX )

and if F is exact then F (Y : W ) = (FY : W ) and both equal:

{g ∈ (FY )∨ ⊗ V = Homk(FY ,W ) : g(W ) ⊂ FY )}
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6.4 Discussing on Hai’s a simple proof of injective lemma

Let k be a field, and A,B are k-algebra.
modfA,modfB : the categories of k-finite modules over A,B
respectively.
f : A −→ B is a homomorphism of algebras over k and B is
k-finite.
ω : modfB −→ modfA: is induced by f and is a faithfully exact
funtor.

Lemma 1: ([Hai], Lemma 1.1 and Remark 1.3)

Let f : A −→ B be a homomorphism of algebras over k and assume
that B is k-finite. Then f is surjective iff modfB is a full category of
modfA closed under taking submodules.

[Hai] Phùng Hô Hai, On an injective lemma in the proof of Tannakian
duality, Journal of Algebra and Its applications, 2015.
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We rephrase "closed under taking submodules" with diagram:

ω : modfB −→ modfA

X 7→ ω(X ) ⊃ Y

∃X ′ ⊂ X ,X ′ 99K ω(X ′) = Y

Proof : We only need to prove the converse statement:

For any X ∈ modfB and any submodule Y , we consider them as
are A-modules by mean of f ⇒ Y is stable under the action of
B (by the assumption).

If f is not surjective then imf is a strict subalgebra of B and is
also B-submodule of B . So imf ⊂ B ∈ modfB . On the other
hand, imf contains the unit of B ⇒ imf is not stable under the
action of B . This a contradiction.
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Let C ,D be coalgebras over k .
comodfC : the category of k-finite comodules over C
comodfD: the category of k-finite comodules over D.

We have a duality statement of Lemma 1:

Lemma 2: ([Hai], Lemma 1.2 and Remark 1.3)

Let f : C −→ D be a homomorphism of coalgebras over k and
assume that C is k-finite. Then f is injective iff comodfC is a full
category of comodfD closed under taking subcomodules.

.Conclusion : Since each coalgebra is the union of its subcoalgebras,
we have "the injective lemma" for any homomorphism between
coalgebras.

[Hai] Phùng Hô Hai, On an injective lemma in the proof of Tannakian
duality, Journal of Algebra and Its applications, 2015.
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XIN CẢM ƠN!
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