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© The Main Theorem

@ Construction of the k-coalgebra B

© Construction of the k—algebra B

@ Construction of the affine group scheme G

© A criterion to be a rigid tensor category
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|. The Main Theorem

Theorem 1.1

Let (C,®) be a rigid abelian tensor category such that End(1) = k and let
w : C — Vecy be an exact faithful k-linear tensor functor. Then,

e the functor Aut®(w) of k-algebras is represented by an affine group
scheme G,

e the functor C — Rep.(G) defined by w is an equivalence of tensor
categories.

v
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Outline of a proof

@ The k—linear abelian structure on C implies that C is equivalent to
the category of B-comodules of finite dimension for some k—coalgebra
B.

Workshop on Tannakian Categories The Main Theorem 8/24/2021 4/45



Outline of a proof

@ The k—linear abelian structure on C implies that C is equivalent to
the category of B-comodules of finite dimension for some k—coalgebra
B.

@ The tensor structure on C induces a commutative k—algebra structure
on B, and hence B is a k—bialgebra.

Workshop on Tannakian Categories The Main Theorem 8/24/2021 4/45



Outline of a proof

@ The k—linear abelian structure on C implies that C is equivalent to

the category of B-comodules of finite dimension for some k—coalgebra
B.

@ The tensor structure on C induces a commutative k—algebra structure
on B, and hence B is a k—bialgebra.

@ The rigidity of C gives us a coinverse map on B, therefore B is a Hopf
algebra over k, and G := Spec(B) is the affine group scheme we need.
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Relation between modules and comodules

Let (A, m,e) be a k—algebra of finite dimension. The k—algebra maps
m:A®A— Aande:k— A

induces a k—coalgebra structure on AV with the comultiplication map
AV " (A9 A)Y > AV @AY

and the coidentity map

ke kY 2L A,
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Relation between modules and comodules

Let (A, m,e) be a k—algebra of finite dimension. The k—algebra maps
m:A®A—Aande:k— A

induces a k—coalgebra structure on AV with the comultiplication map
AV " (A9 A)Y > AV @AY

and the coidentity map s

k> kY s AY.
Further, the bijections
Homy(V, AY @, V) = Homy,(V, Hom(A, V)) = Homy(V @ 4,V)

(ev®id)ot
—

(p: VoAV o w:Ved @ AVeyga koV V)
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Relation between modules and comodules

Let (A, m,e) be a k—algebra of finite dimension. The k—algebra maps
m:A®A—Aande:k— A

induces a k—coalgebra structure on AV with the comultiplication map
AV " (A9 A)Y > AV @AY

and the coidentity map s

k> kY s AY.
Further, the bijections
Homy,(V, AY ®;, V) = Homy,(V, Hom(A4, V)) = Homg(V @ A, V)

i id)o
(p: VoA aV)s (v:Ved Y avgyga OO Loy )
determine a one-to-one correspondence between the left (resp. right) AY-
comodule structures on a finite dimensional vector space V' and the right
(resp. left) A-module structures on V.
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Category of comodules

Let B be a k—coalgebra . The bijection
Hom(V,V ® B) =2 Hom(VY,B® V")

defines a one-to-one correspondence between the right B—comodule
structure p on V and the left B—comodule structure p’ on V.
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Category of comodules

Let B be a k—coalgebra . The bijection
Hom(V,V ® B) =2 Hom(VY,B® V")

defines a one-to-one correspondence between the right B—comodule
structure p on V and the left B—comodule structure p’ on V.

When B is a Hopf algebra with the coinverse S, for any (V, p) € Comodp
we define p to be the composite

id®S

Vv—+B®VV—>VV®B VV ® B.

Then (VVY,pY) € Comodp and it is the dual of (V, p).
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Relation between modules and comodules

For every finite-dimensional comodule (V, p) over a k—coalgebra B, let
By be the smallest subspace of B such that p(V) C V ® By, it'is a
finite-dimensional sub-coalgebra of B. Then
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Relation between modules and comodules

For every finite-dimensional comodule (V, p) over a k—coalgebra B, let
By be the smallest subspace of B such that p(V) C V ® By, it'is a
finite-dimensional sub-coalgebra of B. Then

Proposition 1.2

Every finite-dimensional By -comodule (considered as a B-comodule) W is
isomorphic to a quotient of a sub-comodule of V™ for some n.
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Relation between modules and comodules

For every finite-dimensional comodule (V, p) over a k—coalgebra B, let
By be the smallest subspace of B such that p(V) C V ® By, it'is a
finite-dimensional sub-coalgebra of B. Then

Proposition 1.2

Every finite-dimensional By -comodule (considered as a B-comodule) W is
isomorphic to a quotient of a sub-comodule of V™ for some n.

o Let A= B‘\ﬁ. Then V is a finite-dimensional faithful left A—module.
o Ifey,...,e, span V as a k-vector space, then a — (aeq,...,ae,) : A —
V™ is injective.

@ The proposition follows by writing W as a quotient of A™ for some m.
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Category of comodules

Let B be a coalgebra over a field k.

@ The finite-dimensional right comodules over B form an abelian category
Comodp and the forgetful functor to Vecy, is exact and faithful.

@ A bialgebra structure on B provides Comodpg with a tensor structure;
the forgetful functor preserves tensor products.

@ A Hopf algebra structure on B provides Comodp with a rigid tensor
structure and the forgetful functor preserves duals.
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lI. Construction of the k-coalgebra B

Proposition 2.1

Let C' be a k-linear abelian category, and let w : C' — Vecy be an exact
faithful k-linear functor. Then there exists a k—coalgebra B such that C' is
equivalent to the category of B-comodules of finite dimension over k, and
this equivalence carries w into the forgetful functor.
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lI. Construction of the k-coalgebra B

Proposition 2.1

Let C' be a k-linear abelian category, and let w : C' — Vecy be an exact
faithful k-linear functor. Then there exists a k—coalgebra B such that C' is
equivalent to the category of B-comodules of finite dimension over k, and
this equivalence carries w into the forgetful functor.

e w(idy) =0ifand only ifidx =0, and so w(X) =0 if and only if X =
0. It follows that, if w(u) is a monomorphism (resp. an epimorphism,
resp. an isomorphism), then so also is u. Further, if X C Y and w(X) =
w(Y), then X = Y. Thus, all objects of C' are both Artinian and
Noetherian, and hence of finite length.
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lI. Construction of the k-coalgebra B

Proposition 2.1

Let C' be a k-linear abelian category, and let w : C' — Vecy be an exact
faithful k-linear functor. Then there exists a k—coalgebra B such that C is
equivalent to the category of B-comodules of finite dimension over k, and
this equivalence carries w into the forgetful functor.

e w(idy) =0ifand only ifidx =0, and so w(X) =0 if and only if X =
0. It follows that, if w(u) is a monomorphism (resp. an epimorphism,
resp. an isomorphism), then so also is u. Further, if X C Y and w(X) =
w(Y), then X = Y. Thus, all objects of C' are both Artinian and
Noetherian, and hence of finite length.

e For objects X,Y of C, Hom(X,Y') has finite dimension over k since
it is a subspace of Hom(w(X),w(Y)).
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Construction of the k-coalgebra B

Definition 2.2

Let X be an object of C, and let S be a subset of w(X). The subobject of
X generated by S is the intersection of the subobjects Y of X such that
S C w(Y). This subobject exists, and it is the smallest subobject of X with

this property.

8/24/2021 10/45
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Construction of the k-coalgebra B

Definition 2.2

Let X be an object of C, and let S be a subset of w(X). The subobject of
X generated by S is the intersection of the subobjects Y of X such that
S C w(Y). This subobject exists, and it is the smallest subobject of X with

this property.

v

Definition 2.3
An object Y is monogenic if it is generated by a single element, i.e., there
exists a y € w(Y) such that if Y/ C Y and y € w(Y’) then Y/ =Y.

v
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Construction of the k-coalgebra B

Definition 2.2

Let X be an object of C, and let S be a subset of w(X). The subobject of
X generated by S is the intersection of the subobjects Y of X such that
S C w(Y). This subobject exists, and it is the smallest subobject of X with
this property.

v

Definition 2.3

An object Y is monogenic if it is generated by a single element, i.e., there
exists a y € w(Y) such that if Y/ C Y and y € w(Y’) then Y/ =Y.

v

For X in C, let (X) denote the full subcategory of C' whose objects are
the quotients of subobjects of direct sums of copies of X.
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Proof in the case C' = (X)

We assume that C' = (X) for some X.

For every monogenic object (Y,y) of C,

dimy, w(Y) < (dimy w(X))2
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Proof in the case C' = (X)

We assume that C' = (X) for some X.

For every monogenic object (Y,y) of C,

dimy, w(Y) < (dimy w(X))2

@ There are maps Y « Y] — X,

e Take y; € w(Y7) whose image y € w(Y'), and let Z be the subobject
of Y1 generated by y;.

@ The image of Z in Y contains y and so equals Y. Hence it suffices to
prove the lemma for Y «— X™.
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Proof in the case C' = (X)

We assume that C' = (X) for some X.

For every monogenic object (Y,y) of C,

dimy, w(Y) < (dimy w(X))2

@ There are maps Y « Y] — X,

e Take y; € w(Y7) whose image y € w(Y'), and let Z be the subobject
of Y1 generated by y;.

@ The image of Z in Y contains y and so equals Y. Hence it suffices to
prove the lemma for Y «— X™.

o It suffices show that ¥ < X" for some m’ < dimy, w(X).

@ Suppose that m > dimgw(X). Since y € w(Y) C w(X)™, y =
(Y15 Ym) € w(X)™.
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Proof in the case C' = (X)

e As m > dimpw(X), there exist a; € k, not all zero, such that

m
Zaiyi = 0. We assume that a1 # 0 and let

=1
010 ..0
001 .. 0
A=1|. . . | € Mat((m — 1) x m, k).
0 00 1
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Proof in the case C' = (X)

e As m > dimpw(X), there exist a; € k, not all zero, such that

m
Zaiyi = 0. We assume that a1 # 0 and let

=1
010 .. 0
001 .. 0
A=1|. . . | € Mat((m — 1) x m, k).
000 .. 1

@ (ay,..,am) and A induce epimorphisms
xm ety and xm Ay xmel
The kernel N of (ay, ..., a,,) is isomorphic to X™~! via
N < X™ — X™m L

@ Since y € w(N), we have Y ¢ N = X™~1,
o Keep doing until Y ¢ X" with m’ < dimy w(X), and so

dimy w(Y) < m/ dimy, w(X) < (dimyg w(X))%
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The existence of projective generators

There exists a monogenic (P, p) for which dimy, w(P) is maximal.

(a) The pair (P,p) represents the functor w., i.e., w(_) = Hom(P, ).

(b) The object P is a projective generator for C = (X), i.e., the functor
Hom(P, ) is exact and faithful.
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The existence of projective generators

There exists a monogenic (P, p) for which dimy, w(P) is maximal.

(a) The pair (P,p) represents the functor w., i.e., w(_) = Hom(P, ).

(b) The object P is a projective generator for C = (X), i.e., the functor
Hom(P, ) is exact and faithful.

@ For each Y € C, we define a map Hom(P,Y) — w(Y') which sends f
to w(f)(p)-

@ For every y € w(Y'), we need to show that there exists a unique mor-
phism f: P — Y such that w(f)(p) = v.
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The existence of projective generators

There exists a monogenic (P, p) for which dimy, w(P) is maximal.

(a) The pair (P,p) represents the functor w., i.e., w(_) = Hom(P, ).

(b) The object P is a projective generator for C = (X), i.e., the functor
Hom(P, ) is exact and faithful.

@ For each Y € C, we define a map Hom(P,Y) — w(Y') which sends f
to w(f)(p)-

@ For every y € w(Y'), we need to show that there exists a unique mor-
phism f: P — Y such that w(f)(p) = v.

o Let @ be the smallest subobject of P x Y such that w(Q) contains
(p,y). Thus, the projection map pr; : Q — P is an epimorphism since
p € w(pri(Q)), and so dimg w(Q) > dimy, w(P).
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The existence of projective generators

@ Since dimy w(P) is maximal, dimy w(Q) = dimy w(P), and so pry :

—1
Q = P. The composition map P LI Q P2, X is the desired map.

@ To prove the uniqueness, let E be the equalizer of two f’s. It is a
subobject of P and w(E) is also the equalizer of two w(f)’s. Therefore
p € w(E), and then £ = P.

0 » B P Y

0 — w(E) — w(P) /= w(Y)
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The existence of projective generators
For every Y € C, there exists an exact sequence P° — P" —Y — 0. \

@ For Y # 0, there exists a nonzero morphism ¢; : P — Y since
Hom(P,Y) = w(Y) # 0. If ¢1 is not an epimorphism, there exists
a nonzero morphism P — Y/im(¢).
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The existence of projective generators
For every Y € C, there exists an exact sequence P° — P" —Y — 0. \

@ For Y # 0, there exists a nonzero morphism ¢; : P — Y since
Hom(P,Y) = w(Y) # 0. If ¢1 is not an epimorphism, there exists
a nonzero morphism P — Y/im(¢).

@ Since P is projective, this morphism lifts to a morphism ¢ : P — Y.

@ The image of ¢1 ® @2 : P® P — Y is then strictly larger than im(¢q).
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The existence of projective generators
For every Y € C, there exists an exact sequence P° — P" —Y — 0. \

@ For Y # 0, there exists a nonzero morphism ¢; : P — Y since
Hom(P,Y) = w(Y) # 0. If ¢1 is not an epimorphism, there exists
a nonzero morphism P — Y/im(¢).

Since P is projective, this morphism lifts to a morphism ¢s : P — Y.
The image of ¢1 @ ¢2 : P® P — Y is then strictly larger than im(¢;).

Keep continuing the procedure we get an epimorphism ¢ : P" — Y.

It follows that there exists an epimorhism P* — ker(¢), and then we
obtain an exact sequence

PP =P =Y —0.
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Proof in the case C' = (X)

Let A = End(P) and let A" : C' = (X) — Vecy, be the functor
Y — Hom(P,Y).

Thus A is a k-algebra of finite dimension over k and h¥(Y) is a right
A—module via the composition maps P — P — Y for every Y € C.
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Proof in the case C' = (X)

Let A = End(P) and let A" : C' = (X) — Vecy, be the functor
Y — Hom(P,Y).

Thus A is a k-algebra of finite dimension over k and h¥(Y) is a right
A—module via the composition maps P — P — Y for every Y € C.

Lemma 2.8

o The functor h¥ factors through Mod 4, the category of right A-modules
of finite dimension over k.

o The functor h¥ is an equivalence from C' to Mod 4. Its composite with
the forgetful functor is isomorphic to w.
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Proof in the case C' = (X)

Let A = End(P) and let A" : C' = (X) — Vecy, be the functor
Y — Hom(P,Y).

Thus A is a k-algebra of finite dimension over k and h¥(Y) is a right
A—module via the composition maps P — P — Y for every Y € C.

Lemma 2.8

o The functor h¥ factors through Mod 4, the category of right A-modules
of finite dimension over k.

o The functor h¥ is an equivalence from C' to Mod 4. Its composite with
the forgetful functor is isomorphic to w.

eForY,ZeC, f:Y —>Z ac A=End(P), u: P —Y we have
(h"(f)oa)(u) = fo(uoa)=(fou)oa=(aoh”(f))(u).

Thus, hf(Hom(Y, Z)) € Homa (kP (Y), hF(2)).
o It remains to prove that h” is essentially surjective and full.
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Proof in the case C' = (X)

o Let M € Mody, and choose a finite presentation for M,
UYLy V)
@ Here ¢ is defined by multiplication with an s x r matrix of elements in
A = End(P). This matrix induces a morphism v : P® — P" satisfying
R (1)) = 4, and so
hP (coker (1)) 2 coker(¢)) = M,

i.e., ht is essential surjective.
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Proof in the case C' = (X)

o Let M € Mody, and choose a finite presentation for M,
A8 A % o,

@ Here ¢ is defined by multiplication with an s x r matrix of elements in
A = End(P). This matrix induces a morphism ¢ : P* — P" satisfying
R (1)) = 4, and so

hP (coker (1)) 2 coker(¢)) = M,

i.e., ht is essential surjective.
o LetY,Z € C, we have

Hom(P™, Z) = hP(Z)™ = Homy (hF (P™), kY (2)).
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Proof in the case C' = (X)

There is an exact sequence
P" - P"—Y =0,

and then we have the follwing commutative diagram with exact rows

0 —— Hom(Y, Z) ——— Hom(P", Z) —— Hom(P™, Z)

- [

0 —— Homu (h*(Y),hf(Z)) ——— Homa(A™, hF'(Z)) —— Homa(A™, WY (2))

Thus, Hom(Y, Z) — Homy (hP(Y), h"(Z)) is an isomorphism and so h’
is full.
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Proof in the case C' = (X)

Let B = AY. Using the Yoneda lemma, we obtain
A = End(P) = End(h”) = End(w), and so B = End(w)".

We note that via the isomorphim h¥ 22 w, the right A—module h¥(Y")
corresponds to the natural left End(w)—module w(Y') for every
Y € C = (X). Together with Lemma 2.8, we obtain

(C,w) = (gnd(wyMod, forget) = (Comodgpq v, forget).
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Proof in the general case

o For each object X € C, let Ax = End(w| (X)), and let Bx = AY..
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Proof in the general case

e For each object X € C, let Ax = End(w| (X)), and let Bx = AY%.We

have
((X),w| (X)) = (Comodpg,, forget).

@ Define a partial ordering on the set of isomorphism classes of objects

in C' by the rule:
[X] <[Y]if (X)C(Y).

Since [X],[Y] < [X @ Y], we get a directed set. Further, if [X] < [Y],
then restriction defines a k—algebra homomorphism Ay — Ax. On
passing to the dual, we get a k—coalgebra homomorphism Bx — By.
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Proof in the general case

e For each object X € C, let Ax = End(w| (X)), and let Bx = AY%.We
have
((X),w| (X)) = (Comodpg,, forget).

@ Define a partial ordering on the set of isomorphism classes of objects
in C' by the rule:
[X] <[Y]if (X)C(Y).

Since [X],[Y] < [X @ Y], we get a directed set. Further, if [X] < [Y],
then restriction defines a k—algebra homomorphism Ay — Ax. On
passing to the dual, we get a k—coalgebra homomorphism Bx — By.
@ Passing to the direct limit over the isomorphism classes, we obtain

Proposition 2.1 with B =1lim  By.
—[X]
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lI1. Construction of the k—algebra B

Proposition 3.1

Let (C,®) be an abelian tensor category such that End(1) = k and let w :
C' — Vecy, be an exact faithful k-linear tensor functor, and let B = lim Bx .

—
Then B has a unique structure of a commutative k-bialgebra such that
the equivalence of categories in Proposition 2.1 is compatible with tensor
Structures. )
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Categories of comodules over a coalgebra

Let B be a k—coalgebra, and let w : Comodp — Vec; be the forgetful
functor. For an arbitrary k-vector space V, denote by w ® V' the functor
M~ w(M)®V from Comodp — Vecy.
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Categories of comodules over a coalgebra

Let B be a k—coalgebra, and let w : Comodp — Vec; be the forgetful
functor. For an arbitrary k-vector space V, denote by w ® V' the functor
M~ w(M)®V from Comodp — Vecy.

The underlying k-vector space of B represents the functor V
Homy(w,w ® V') on Vecy, i.e.,

Homy (B, V) = Homy(w,w ® V') that is functorial in V.
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Categories of comodules over a coalgebra

@ We define a map
Uy : Homy (B, V) - Hom(w,w ® V)

¢ (@ar: M2 Mo B 2% MoV,

whence a natural transformation ¥ : Homy (B, ) — Hom(w,w® ).
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Categories of comodules over a coalgebra

@ We define a map
Uy : Homy (B, V) - Hom(w,w ® V)

¢ (@ar: M2 Mo B 2% MoV,

whence a natural transformation ¥ : Homy (B, ) — Hom(w,w® ).
o We define a map

Zy : Hom(w,w ® V') — Homy (B, V)
o (¢: BBV 2NV kv =),

and hence a natural transformation = : Hom(w,w® ) — Homg(B, ).
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Categories of comodules over a coalgebra

@ We define a map
Uy : Homy (B, V) - Hom(w,w ® V)

¢ (@ar: M2 Mo B 2% MoV,

whence a natural transformation ¥ : Homy (B, ) — Hom(w,w® ).
o We define a map

Zy : Hom(w,w ® V') — Homy (B, V)
o (¢: BBV 2NV kv =),

and hence a natural transformation = : Hom(w,w® ) — Homg(B, ).
@ Zo W = id since for each ¢ € Hom(B,V), (Eo¥)(¢) : B — V'is
the composition of the horizontal maps

B-2,.BoB 2% pgy EW Loy ~s v
@idg  idy®d P
idp
k9B —~ B
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Categories of comodules over a coalgebra

e Vo= =id. Indeed, fix (N, p) € Comodp and & € Hom(w,w ® V).
We need to show that & : N — N ® V equals the composition map

N3 NoBY¥ NoBov' @ NoreV — NoV.
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Categories of comodules over a coalgebra

e Vo= =id. Indeed, fix (N, p) € Comodp and & € Hom(w,w ® V).
We need to show that & : N — N ® V equals the composition map

N3 NoBY¥ NoBov' @ NoreV — NoV.

@ We note that the mapidy ® A: N® B — N ® B® B defines a right
B-comodule structure on N ® B and p: N - N ® B is a morphism
of B—comodules.
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Categories of comodules over a coalgebra

e Vo= =id. Indeed, fix (N, p) € Comodp and & € Hom(w,w ® V).
We need to show that & : N — N ® V equals the composition map

N3 NoB NegBa V' NgrkeV —~s NaV.
@ We note that the mapidy ® A: N® B — N ® B® B defines a right
B-comodule structure on N ® B and p: N — N ® B is a morphism
of B—comodules.
@ As @ is a morphism of functors, we have a commutative diagram

N—" NeB-—9% Nok—>" N

l‘I’N l‘bN@B lch
NoV 224 NeBaV'@C Nokey —~5 NoV

where the composites of the maps in the horizontal lines are identity
maps by the comodule axioms.
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Categories of comodules over a coalgebra

@ It remains to show that ®ngp = idy @ Pp.

@ Since the k—comodule structure on N® B comes from the k—coalgebra
structure on B, we can write the B—comodule N ® B as a finite direct
sum of copies of B. The Lemma 3.2 then follows from the fact that ®

commutes with direct sums.
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Categories of comodules over a coalgebra

Example 3.3

In Lemma 3.2, let B is a k—coalgebra, and let V = k.

v
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Categories of comodules over a coalgebra

Example 3.3

In Lemma 3.2, let B is a k—coalgebra, and let V = k.

o If B is finite over k, we obtain the isomorphism in the Proposition 2.1
for (C' = Comodp,w = forget)

B = BV ~ End(w)".

@ In the general case, for each (X, p) € C, recall that Bx denotes the
smallest subspace of B such that p(X) € X ® Bx. Then we have
(X) = Comodp,, and hence

End(w| (X)) = BY.

v
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Categories of comodules over a coalgebra

Example 3.3

In Lemma 3.2, let B is a k—coalgebra, and let V = k.

o If B is finite over k, we obtain the isomorphism in the Proposition 2.1
for (C' = Comodp,w = forget)

B = BV ~ End(w)".

@ In the general case, for each (X, p) € C, recall that Bx denotes the
smallest subspace of B such that p(X) € X ® Bx. Then we have
(X) = Comodp,, and hence

End(w| (X)) = BY.
Since B = |Jy By, by passing to the limit we obtain

B 2 lim Bx 2 lim End(w| (X))".
— —

v
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Categories of comodules over a coalgebra

Let u : B — B’ be a homomorphism of k—coalgebras. A coaction V' —
V ® B on V defines a coaction V — V ® B 3w, V ® B on V. Thus, u
defines a functor

F : (Comodp,wp = forget) — (Comodp/,wp = forget)

such that wp o F' = wp.

8/24/2021  27/45
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Categories of comodules over a coalgebra

Let u : B — B’ be a homomorphism of k—coalgebras. A coaction V' —
V ® B on V defines a coaction V — V ® B 3w, V ® B on V. Thus, u
defines a functor

F : (Comodp,wp = forget) — (Comodp/,wp = forget)

such that wgr o F' = wp.Conversely, we have

Every functor F' : Comodp — Comodp: satisfying wg: o F' = wpg arises, as
above, from a unique homomorphism of k-coalgebra B — B’.
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Categories of comodules over a coalgebra

Let u : B — B’ be a homomorphism of k—coalgebras. A coaction V' —
V ® B on V defines a coaction V — V ® B 3w, V ® B on V. Thus, u

defines a functor

F : (Comodp,wp = forget) — (Comodp/,wp = forget)

such that wgr o F' = wp.Conversely, we have

Every functor F' : Comodp — Comodp: satisfying wg: o F' = wpg arises, as
above, from a unique homomorphism of k-coalgebra B — B’.

For each X € Comodp, we have a k—algebra homomorphism
End(wp| (FX)) — End(ws| (X)),
and hence a k—coalgebra homomorphism
End(wp| (X))Y — End(wp/| (FX))".
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Categories of comodules over a coalgebra

Passing to the limit, we obtain

lim End(wg| (X)HY — lim End(wp | (FX))Y.
(x] [X]

Workshop on Tannakian Categories The Main Theorem



Categories of comodules over a coalgebra

Passing to the limit, we obtain

lim End(wg| (X)HY — lim End(wp | (FX))Y.
(x] [X]

Further, we have a natural homomorphism

li_n}lEnd(wB/| <FX>)\/ — hi>nEnd(wB/| <Y>)V
(X] [¥]
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Categories of comodules over a coalgebra

Passing to the limit, we obtain

lim End(wg| (X)HY — lim End(wp | (FX))Y.
(x] [X]

Further, we have a natural homomorphism

hi>nEnd(wB/| <FX>)\/ — hi>nEnd(wB/| <Y>)V
(X] [¥]

Thus, we have a homomorphism

lim End(ws| (X)HY — lim End(wp| (Y)Y,
(x] Y]

and then a homomorphism u : B — B’. The uniqueness of u follows from
the following lemma.
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Categories of comodules over a coalgebra

Let (B, A, €) be a k—coalgebra, and let V' be a vector space over k. Let u
and u' be k-linear maps B — V such that

(idy @u)op=(idy @u)op: M = MRB—- MV

for all B—comodules (M, p). Then u = u'.
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Categories of comodules over a coalgebra

Let (B, A, €) be a k—coalgebra, and let V' be a vector space over k. Let u
and u' be k-linear maps B — V such that

(idy @u)op=(idy @u)op: M = MRB—- MV

for all B—comodules (M, p). Then u = u'.

@ For each (M, p), we have
(idM®u’BM)Op:(idM®’U,/’BM)Op:M—>M®BM—>M®V.

We observe that if u|p,, = u'|p,, for all (M,p), then u = u’ since
B = J,; Bu. Thus, it suffices to assume that B is finite over k.
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Categories of comodules over a coalgebra

Let (B, A, €) be a k—coalgebra, and let V' be a vector space over k. Let u
and u' be k-linear maps B — V such that

(idy @u)op=(idy @u)op: M = MRB—- MV

for all B—comodules (M, p). Then u = u'.

@ For each (M, p), we have
(idM®u’BM)Op:(idM®’U,/’BM)Op:M—>M®BM—>M®V.

We observe that if u|p,, = u'|p,, for all (M,p), then u = u’ since
B = J,; Bu. Thus, it suffices to assume that B is finite over k.
@ Take duals, we obtain, for any BY—modules (M", p"),
VoM — (VoMY " BYeMY £ MY
. ;

e, p¥ou @idyv) =p" oW @idyv).
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Categories of comodules over a coalgebra

Take (MY, p¥) = (BY,AY), we obtain
AV o (u ®idpv)(v®1pv) =u'(v).1gv = u"(v),

and
AV o (Y ®@idpv)(v®1pv) = u'" (v).15v = v’ (v)

Vv
for all v € VV. Thus u¥ = u'", and hence u = /.
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Categories of comodules over a coalgebra

Let B be a k—coalgebra, then B ® B is again a k—coalgebra. A coalgebra
homomorphism m : B ® B — B defines a functor

¢™ : Comodpg x Comodp — Comodpg

sending (V, W) to V @ W with the coaction

(id®m)ot

Vaw X2 v o BoW o B VeWweB.
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Categories of comodules over a coalgebra

Proposition 3.6

The map m — ¢™ defines a one-to-one correspondence between the set
of k-coalgebra homomorphisms m : B ® B — B and the set of k-bilinear
functors ¢ : Comodp x Comodp — Comodp such that p(V,W) =V W
as k—vector spaces.

v
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Categories of comodules over a coalgebra

Proposition 3.6

The map m — ¢™ defines a one-to-one correspondence between the set
of k-coalgebra homomorphisms m : B ® B — B and the set of k-bilinear
functors ¢ : Comodp x Comodp — Comodp such that p(V,W) =V W
as k—vector spaces.
(a) m is associative iff the canonical isomorphisms of vector spaces
u@ (VRw)—~ (URV)QW: UR(VROW) = (UV)W
are isomorphisms of B-comodules for all B-comodules U, V, W.

v
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Categories of comodules over a coalgebra

Proposition 3.6

The map m — ¢™ defines a one-to-one correspondence between the set
of k-coalgebra homomorphisms m : B ® B — B and the set of k-bilinear
functors ¢ : Comodp x Comodp — Comodp such that p(V,W) =V W
as k—vector spaces.
(a) m is associative iff the canonical isomorphisms of vector spaces
u@ (VRw)—~ (URV)QW: UR(VROW) = (UV)W

are isomorphisms of B-comodules for all B-comodules U, V, W.

(b) m is commutative iff the canonical isomorphisms of vector spaces
vRQW: VW WV
are isomorphisms of B-comodules for all B-comodules U,V .

v
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Categories of comodules over a coalgebra

Proposition 3.6

The map m — ¢™ defines a one-to-one correspondence between the set
of k-coalgebra homomorphisms m : B ® B — B and the set of k-bilinear
functors ¢ : Comodp x Comodp — Comodp such that p(V,W) =V W
as k—vector spaces.
(a) m is associative iff the canonical isomorphisms of vector spaces
u@ VW)~ (URV) QW :UR(VRW)>(UQV)W

are isomorphisms of B-comodules for all B-comodules U, V, W.

(b) m is commutative iff the canonical isomorphisms of vector spaces
vRQW: VW WV
are isomorphisms of B-comodules for all B-comodules U,V .

(c) There is an identity map e : k — B iff there is an B-comodule U with
underlying vector space k st the canonical isomorphisms k @ V =V
2V ® k are isomorphisms of B-comodules for all B—comodules V.
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Categories of comodules over a coalgebra

The pair (Comodp x Comodp,w ® w), with (w @ w)(X,Y) = w(X) ®
w(Y), satisfies the conditions of Proposition 2.1, i.e., Comodp x Comodp

is a k—linear abelian category and w ® w : C' — Vecy, is an exact faithful
k—linear functor.
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Categories of comodules over a coalgebra

The pair (Comodp x Comodp,w ® w), with (w @ w)(X,Y) = w(X) ®
w(Y), satisfies the conditions of Proposition 2.1, i.e., Comodp x Comodp

is a k—linear abelian category and w ® w : C' — Vecy, is an exact faithful
k—linear functor.

We note that for all X,Y € Comodp, we have
End(w ®@ w| {(X,Y))) 2 End(w| (X)) ® End(w| (Y)).
Thus,

lim End(w@w| (X, Y)Y = lim End (w] <X>)V®ligl End(w| (Y))" =2 B®B,
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Categories of comodules over a coalgebra

The pair (Comodp x Comodp,w ® w), with (w @ w)(X,Y) = w(X) ®
w(Y), satisfies the conditions of Proposition 2.1, i.e., Comodp x Comodp

is a k—linear abelian category and w ® w : C' — Vecy, is an exact faithful
k—linear functor.

We note that for all X,Y € Comodp, we have

End(w ®@ w| {(X,Y))) 2 End(w| (X)) ® End(w| (Y)).
Thus,
. Vo~ T \Y : Vo~
thEnd(w@)w] (X, V)" = hglEnd(w] (X)) ®h£>lEnd(w| (Y))" = B®B,
and hence we have an equivalence

(Comodp x Comodp,wp ® wp) = (Comodpgp,wneB)-

Workshop on Tannakian Categories The Main Theorem 8/24/2021 33 /45



Categories of comodules over a coalgebra

The pair (Comodp x Comodp,w ® w), with (w @ w)(X,Y) = w(X) ®
w(Y), satisfies the conditions of Proposition 2.1, i.e., Comodp x Comodp

is a k—linear abelian category and w ® w : C' — Vecy, is an exact faithful
k—linear functor.

We note that for all X,Y € Comodp, we have
End(w®@w| {((X,Y))) = End(w| (X)) ® End(w| (Y)).
Thus,
lim End(w@w| (X, Y)Y = lim End (| <X>>v®h£>l End(w| (Y))" =2 B®B,
and hence we have an equivalence
(Comodp x Comodp,wp ® wp) = (Comodpgp,wneB)-

Therefore the bijection {m : B ® B — B} & {¢ : Comodpgp —

Comodp} AL {¢ : Comodp x Comodp — Comodp} follows from
Lemma 3.4.
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Categories of comodules over a coalgebra

Now we check the part (a). Suppose that m is associative, i.e., the following
diagram commutes

B®B

BRB®B B
>
id®@m
B®B
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Categories of comodules over a coalgebra

Now we check the part (a). Suppose that m is associative, i.e., the following
diagram commutes

B® B
N
BRB®B B
e
im
B® B

The B—comodule structure on U ® (V ® W) is the composition of maps

Uk (VeW) U (VeW)®B
lﬂu@(ﬂv@ﬂw) id®mT
UB®(Ve®BW®B) U (VeW)®eB®B

= id®idp®m
/
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Categories of comodules over a coalgebra

Similarly, we have a commutative diagram for B—comodule structure on
(U®V)®W, and from these above diagrams, we obtain the B—comodule
isomorphism U@ (VW)= (U V)x W.

For the converse, apply Lemm 3.5.
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Categories of comodules over a coalgebra

Similarly, we have a commutative diagram for B—comodule structure on
(U®V)®W, and from these above diagrams, we obtain the B—comodule
isomorphism U@ (VW)= (U V)x W.

For the converse, apply Lemm 3.5.

Proof of Proposition

Proposition 2.1 give us the equivalence (C,w) = (Comodp, forget). Thus,
the tensor structure on C' induces a tensor structure on Comodp such
that the forgetful functor is a tensor functor. By Proposition 3.6, this tensor
structure corresponds to coalgebra homomorphisms (m,e) such that m is
commutative and associative and e is an identity, and then B is a commu-
tative k—bialgebra.
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IV. Construction of the affine group scheme G

We note that if B is a k—bialgebra, Comodp is a tensor category by defining
B—comodule structure on M ® N via

M®N 229N yro BeNe@BE2MoN®B®B Y™ Mo NoB.

In this case, when V = R is a commutative k—algebra, we consider w ® R
as a tensor functor from Comodpg — Modg.
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IV. Construction of the affine group scheme G

We note that if B is a k—bialgebra, Comodp is a tensor category by defining
B—comodule structure on M ® N via

M@N 22N vro BoN@BEMoN®B®B 99 Mo N B.

In this case, when V = R is a commutative k—algebra, we consider w ® R
as a tensor functor from Comodpg — Modg.

Definition 4.1

We define functors End(w) (resp. End®(w)) on the category of commuta-
tive k-algebras by sending R to End(w ® R) (resp. End®(w ® R)).
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IV. Construction of the affine group scheme G

We note that if B is a k—bialgebra, Comodp is a tensor category by defining
B—comodule structure on M ® N via

M@N 22N pro BeNeBEMoN®BoB 9™ Mo N o B.

In this case, when V = R is a commutative k—algebra, we consider w ® R
as a tensor functor from Comodpg — Modg.

Definition 4.1

We define functors End(w) (resp. End®(w)) on the category of commuta-
tive k-algebras by sending R to End(w ® R) (resp. End®(w ® R)).

Corrolary 4.2

Let B be a k—bialgera, then
Homy (B, R) = End(w ® R),
Homy,_q14(B, R) = End(w ® R).

v
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Categories of comodules over a bialgebra

(i) We have
Homy (B, R) 2 Hompg(B ®; R,R),(¢ : B— R) — (¢ ®idRg)

and
Homy (w,w ® R) 2 Homp(w ® R,w ® R)
W(X): X > X®R)x— W(X)®R: X®R—> X ® R)x.
Together with Lemma 3.2, we obtain Homy (B, R) = End(w ® R).

Workshop on Tannakian Categories The Main Theorem 8/24/2021 37/45



Categories of comodules over a bialgebra

(i) We have
Homy (B, R) = Homg(B ®k R, R), (¢ : B — R) — (¢ ®1idgr)
and
Homy (w,w ® R) 2 Homp(w ® R,w ® R)
VX)X > XR)x— VX)) ®R: X®R— X®R)x.

Together with Lemma 3.2, we obtain Homy (B, R) = End(w ® R).

(i) A morphism ® : w ® R — w ® R is a morphism of tensor functors if
the following diagram is commutative

w(_®_)®R 2 vw( ® )®R

@(_)®R)@r (w(_)®R) 2223 (w(_) @ R) ®r (w(_) ® R)
where cxy : X @, Y @, R = (X ® R) ®@g (Y ® R).
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Categories of comodules over a bialgebra

o ® ®r P can be considered as a endomorphism of
wpegp ® R : Comodpgp — Modpg

since (Comodp x Comodp,wp ® wp) = (Comodpgp, wpgB)-
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Categories of comodules over a bialgebra

o ® ®r P can be considered as a endomorphism of
wpegp ® R : Comodpgp — Modpg

since (Comodp x Comodp,wp ® wp) = (Comodpgp, wpgB)-
@ By Lemma 3.2, ® and P®pr P correspond to k—linear maps ¢ : B — R
va ¢ : B® B — R. Therefore for all B—comodules M and N, when

we consider M ® N as a B—comodule, ® ;g is the composition of
maps

M®N®R —M9NEdR o N9 Bo B® R
/

id@m®idgr

M@N®B®R ideo@R—— M QN @ R
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Categories of comodules over a bialgebra

@ Similarly, for all B ® B—comodule M ® N, (® ®r ®)yen is the
composition of maps

pPMeN®idR id®¢'®R
— 5

M&N®R MAIN@BKBRR —— M®NQ®R.
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Categories of comodules over a bialgebra

@ Similarly, for all B ® B—comodule M ® N, (® ®r ®)yen is the
composition of maps

. L
MoN@R LR o No Bo Bo R4 Mo N o R,

o It follows from Lemma 3.5 that ¢’ = ¢pom : B® B — R.
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Categories of comodules over a bialgebra

@ Similarly, for all B ® B—comodule M ® N, (® ®r ®)yen is the
composition of maps

‘d . /
MoN@R LR o No Bo Bo R4 Mo N o R,
o It follows from Lemma 3.5 that ¢’ = ¢pom: B® B — R.

@ Since ® ®p P also correspond to (¢ ® R) @r (¢ ® R), we obtain
#OR=(0®R)@r(0®R): BRB®R - R®r R=R.
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Categories of comodules over a bialgebra

@ Similarly, for all B ® B—comodule M ® N, (® ®r ®)yen is the
composition of maps

. L
MoN@R LR o No Bo Bo R4 Mo N o R,

o It follows from Lemma 3.5 that ¢’ = ¢pom : B® B — R.
@ Since ® ®p P also correspond to (¢ ® R) @r (¢ ® R), we obtain

#OR=(0®R)@r(0®R): BRB®R - R®r R=R.
@ Forb,c € B andr € R, we have (¢ @ R)(b®r) = ¢(b)r,
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Categories of comodules over a bialgebra

@ Similarly, for all B ® B—comodule M ® N, (® ®r ®)yen is the
composition of maps

. L
MoN@R LR o No Bo Bo R4 Mo N o R,

o It follows from Lemma 3.5 that ¢’ = ¢pom : B® B — R.
@ Since ® ®p P also correspond to (¢ ® R) @r (¢ ® R), we obtain

(

¢ OR=(¢®R)Qr (¢ @ R)

@ For b,c € B and r € R, we have (¢ ® R)(b®r) = ¢(b)r,s0
)

B B®R—RRrR=R.

(IR (b@car)=(d@R)(mbc)@71)=0d(m(b®c))r,

and
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Categories of comodules over a bialgebra

@ Similarly, for all B ® B—comodule M ® N, (® ®r ®)yen is the
composition of maps

. L
MoN@R LR o No Bo Bo R4 Mo N o R,

o It follows from Lemma 3.5 that ¢’ = ¢pom : B® B — R.
@ Since ® ®p P also correspond to (¢ ® R) @r (¢ ® R), we obtain

(

¢ OR=(¢®R)Qr (¢ @ R)

@ For b,c € B and r € R, we have (¢ ® R)(b®r) = ¢(b)r,s0
)

B B®R—RRrR=R.

(IR (b@car)=(d@R)(mbc)@71)=0d(m(b®c))r,

and

(¢ @R)(b@c®@71) = ¢(b)p(c)r.
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Categories of comodules over a bialgebra

@ Similarly, for all B ® B—comodule M ® N, (® ®r ®)yen is the
composition of maps

. L
MoN@R LR o No Bo Bo R4 Mo N o R,

o It follows from Lemma 3.5 that ¢’ = ¢pom : B® B — R.
@ Since ® ®p P also correspond to (¢ ® R) @r (¢ ® R), we obtain

(
dOR=(p®R)Rr (6@ R)

@ For b,c € B and r € R, we have (¢ ® R)(b®r) = ¢(b)r,s0
(IR (b@car)=(d@R)(mbc)@71)=0d(m(b®c))r,

B B®R—RRrR=R.

and
(¢ @R)(b@c®@71) = ¢(b)p(c)r.

Thus, ¢(b)p(c)r = ¢(m(b® c))r, and take r = 1, we get ¢(b)p(c) =
d(m(b® c)). Thus ¢ is k-algebra homomorphism.
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Proof of the Main Theorem

Let B be lim End(w| (X)). Proposition 3.1 give us an equivalence (C,w) =
—

(Comodp,w = forget) and a commutative k—algebra structure on B.
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Proof of the Main Theorem

Let B be lim End(w| (X)). Proposition 3.1 give us an equivalence (C,w) =
—

(Comodp,w = forget) and a commutative k—algebra structure on B.Let
G = Spec(B) be the affine monoid scheme corresponding to B. Using
Lemma 3.2 we find that, for any commutative k-algebra R,

End®(w)(R) 2 Homy._g(B, R) = G(R).

Workshop on Tannakian Categories The Main Theorem 8/24/2021 40 /45



Proof of the Main Theorem

Let B be lim End(w| (X)). Proposition 3.1 give us an equivalence (C,w) =
—

(Comodp,w = forget) and a commutative k—algebra structure on B.Let
G = Spec(B) be the affine monoid scheme corresponding to B. Using
Lemma 3.2 we find that, for any commutative k-algebra R,

End®(w)(R) 2 Homy._g(B, R) = G(R).

Since C is rigid, then Comod is rigid, and we have End®(w) = Aut®(w).
Thus G is an affine group scheme, Aut(w) is representable by G and w
defines an equivalence of tensor categories

(C,w) = (Comodp, forget) = (Rep,(G), forget).
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V. A criterion to be a rigid tensor category

Let C be a k-linear abelian category, where k is a field, and let ® : Cx C —
C be a k-bilinear functor. Suppose that there are given a faithful exact k-
linear functor F': C'— Vecy, a functorial isomorphism ¢xyz: X @ (Y ®
Z) - (X®Y)®Z, and a functorial isomorphism ¢xy : X ®Y - Y ® X
with the following properties
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V. A criterion to be a rigid tensor category

Let C be a k-linear abelian category, where k is a field, and let ® : Cx C —
C be a k-bilinear functor. Suppose that there are given a faithful exact k-
linear functor F': C'— Vecy, a functorial isomorphism ¢xyz: X @ (Y ®
Z) - (X®Y)®Z, and a functorial isomorphism ¢xy : X ®Y - Y ® X
with the following properties

o F(X®Y)=F(X)® F(Y) for all X,Y;
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V. A criterion to be a rigid tensor category

Let C be a k-linear abelian category, where k is a field, and let ® : Cx C —
C be a k-bilinear functor. Suppose that there are given a faithful exact k-
linear functor F': C'— Vecy, a functorial isomorphism ¢xyz: X @ (Y ®
Z) - (X®Y)®Z, and a functorial isomorphism ¢xy : X ®Y - Y ® X
with the following properties

e F(X®Y)=F(X)®F(Y) for all X,Y;

e F(¢x,y,z) is the usual associativity isomorphism in Vecy;
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linear functor F': C'— Vecy, a functorial isomorphism ¢xyz: X @ (Y ®
Z) - (X®Y)®Z, and a functorial isomorphism ¢xy : X ®Y - Y ® X
with the following properties

e F(X®Y)=F(X)®F(Y) for all X,Y;

e F(¢x,y,z) is the usual associativity isomorphism in Vecy;

e F(ix,y) is the usual commutativity isomorphism in Vec;
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V. A criterion to be a rigid tensor category

Let C be a k-linear abelian category, where k is a field, and let ® : Cx C —
C be a k-bilinear functor. Suppose that there are given a faithful exact k-
linear functor F': C'— Vecy, a functorial isomorphism ¢xyz: X @ (Y ®
Z) - (X®Y)®Z, and a functorial isomorphism ¢xy : X ®Y - Y ® X
with the following properties

e F(X®Y)=F(X)®F(Y) for all X,Y;

e F(¢x,y,z) is the usual associativity isomorphism in Vecy;

e F(ix,y) is the usual commutativity isomorphism in Vec;

o there exists an identity object U in C such that k& — End(U) is an

isomorphism and F'(U) has dimension 1;
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V. A criterion to be a rigid tensor category

Let C be a k-linear abelian category, where k is a field, and let ® : Cx C —
C be a k-bilinear functor. Suppose that there are given a faithful exact k-
linear functor F': C'— Vecy, a functorial isomorphism ¢xyz: X @ (Y ®
Z) - (X®Y)®Z, and a functorial isomorphism ¢xy : X ®Y - Y ® X
with the following properties
e F(X®Y)=F(X)®F(Y) for all X,Y;
e F(¢x,y,z) is the usual associativity isomorphism in Vecy;
e F(ix,y) is the usual commutativity isomorphism in Vec;
o there exists an identity object U in C such that k& — End(U) is an
isomorphism and F'(U) has dimension 1;
e if F(L) has dimension 1, then there exists an object L=! in C such
that L@ L~! = U.
Then (C,®, ¢, 1) is a rigid abelian tensor category.
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A criterion to be a rigid tensor category

e Certainly (C,®,¢,1) is a tensor category, and Proposition 3.1 shows
that F defines an equivalence of tensor categories C' — Rep, (G) where
G is the affine monoid scheme representing End®(F). Thus, we may
assume (C, F) = (Rep,(G), forget).
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A criterion to be a rigid tensor category

e Certainly (C,®,¢,1) is a tensor category, and Proposition 3.1 shows
that F defines an equivalence of tensor categories C' — Rep, (G) where
G is the affine monoid scheme representing End®(F). Thus, we may
assume (C, F) = (Rep,(G), forget).lt remains to show that G is an
affine group scheme, i.e, for every commutative k—algebra R and for
every A € G(R), Ax : X ® R - X ® R is invertible for all X €
Rep,(G).

e If X = L has dimension 1, there exists L™! € Rep(G) of dimension 1
such that LQL~' 2 U, and then \L®grA; 1 = Apgr—1 = id.
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A criterion to be a rigid tensor category

e Certainly (C,®,¢,1) is a tensor category, and Proposition 3.1 shows
that F defines an equivalence of tensor categories C' — Rep, (G) where
G is the affine monoid scheme representing End®(F). Thus, we may
assume (C, F) = (Rep,(G), forget).lt remains to show that G is an
affine group scheme, i.e, for every commutative k—algebra R and for
every A € G(R), Ax : X ® R - X ® R is invertible for all X €
Rep,(G).

e If X = L has dimension 1, there exists L™! € Rep(G) of dimension 1
such that LQL~' 2 U, and then \L®gA;-1 = Apgr—1 = id. We write
L=ck, L' =€ekand A\p(e®1)=e®@7r, A\_1(¢/®1) =€ @1 for
somer,r’ € R.
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A criterion to be a rigid tensor category

e Certainly (C,®,¢,1) is a tensor category, and Proposition 3.1 shows
that F defines an equivalence of tensor categories C' — Rep, (G) where
G is the affine monoid scheme representing End®(F). Thus, we may
assume (C, F) = (Rep,(G), forget).lt remains to show that G is an
affine group scheme, i.e, for every commutative k—algebra R and for
every A € G(R), Ax : X ® R - X ® R is invertible for all X €
Rep,(G).

e If X = L has dimension 1, there exists L™! € Rep(G) of dimension 1
such that LQL~' 2 U, and then \L®gA;-1 = Apgr—1 = id. We write
L=ck, L' =€ekand A\p(e®1)=e®@7r, A\_1(¢/®1) =€ @1 for
somer, 7’ € R. Thus, e®e' @1 = (A\L®@A-1)(e®e' ®1) = e @rr/,
ie, rr’ =1
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A criterion to be a rigid tensor category

e Certainly (C,®,¢,1) is a tensor category, and Proposition 3.1 shows
that F defines an equivalence of tensor categories C' — Rep, (G) where
G is the affine monoid scheme representing End®(F). Thus, we may
assume (C, F) = (Repy(G), forget).It remains to show that G is an
affine group scheme, i.e, for every commutative k—algebra R and for
every A € G(R), Ax : X ® R - X ® R is invertible for all X €
Rep,(G).

e If X = L has dimension 1, there exists L™! € Rep(G) of dimension 1
such that LQL~' 2 U, and then \L®gA;-1 = Apgr—1 = id. We write
L=ck, L' =€ekand A\p(e®1)=e®@7r, A\_1(¢/®1) =€ @1 for
somer, 7’ € R. Thus, e®e' @1 = (A\L®@A-1)(e®e' ®1) = e @rr/,
i.e, 77’/ = land then B, : L& R — L®R, fr(e®1) =e®17' is an
inverse of Ag.
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A criterion to be a rigid tensor category

o If X has dimension d, let eq,...,eq be a k—basis of X, and then

d
Ax(e;®1) = Zq@nj for some r;; € R.
i=1
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A criterion to be a rigid tensor category

o If X has dimension d, let eq,...,eq be a k—basis of X, and then
d

Ax(e;®1) = Zq@nj for some 7;; € R.Consider the 1—dimensional
i=1
representation L := A% X, then

/\L(61 NeaN...Neg® 1) =e1NeaN...Neg® det(A)

with A := (Tij)g,j:l'
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A criterion to be a rigid tensor category

o If X has dimension d, let eq,...,eq be a k—basis of X, and then
d

Ax(e;®1) = Zq@nj for some 7;; € R.Consider the 1—dimensional
i=1

representation L := A% X, then
/\L(61 NeaN...Neg® 1) =e1NeaN...Neg® det(A)

with A := (ri;)f,_; Therefore, det(A) is invertible in R, and so there
exists A’ € Matgxq(R) such that A" A = A. A" =id.
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A criterion to be a rigid tensor category

o If X has dimension d, let eq,...,eq be a k—basis of X, and then
d

Ax(e;®1) = Zq@nj for some 7;; € R.Consider the 1—dimensional
i=1
representation L := A% X, then

/\L(61 NeaN...Neg® 1) =e1NeaN...Neg® det(A)

with A := (ri;)f,_; Therefore, det(A) is invertible in R, and so there
exists A" € Matgxq(R) such that A’ A = A.A" =id. Thus,

Bx : X®R—XQ®R, (ej ® 1)j:1,d — (ej ® 1)j:1,dA/

is an inverse of Ax.
e Since Rep,(G) is rigid, then so is C.

Workshop on Tannakian Categories The Main Theorem 8/24/2021 43 /45



A criterion to be a rigid tensor category

o If X has dimension d, let eq,...,eq be a k—basis of X, and then
d

Ax(e;®1) = Zq@nj for some 7;; € R.Consider the 1—dimensional
i=1
representation L := A% X, then

/\L(61 NeaN...Neg® 1) =e1NeaN...Neg® det(A)

with A := (ri;)f,_; Therefore, det(A) is invertible in R, and so there
exists A" € Matgxq(R) such that A’ A = A.A" =id. Thus,

Bx : X®R—XQ®R, (ej ® 1)j:1,d — (ej ® 1)j:1,dA/

is an inverse of Ax.
e Since Rep,(G) is rigid, then so is C.

The condition that U is an identity object is necessary. \
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A criterion to be a rigid tensor category

Example 5.1

Let M = Spec(%) be an affine sub-monoid of G,,, i.e., M(R) =

({r € R:7? =7}, x) and let F be the forgetful functor. Then Rep, (M)
is a tensor category but it is not rigid.
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A criterion to be a rigid tensor category

Example 5.1

k
Let M = Spec(%) be an affine sub-monoid of G,,, i.e., M(R) =
({r € R:7? =7}, x) and let F be the forgetful functor. Then Rep, (M)
is a tensor category but it is not rigid.

Let U = (k,0), i.e.,

idR if r= 1R'

0R(r) = {o if r £ 15,

Then End(U) = k and (L,l) ® U = U for any one-dimensional representa-
tion (L,1).

v
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Tannakian category over a field

Definition 5.2

A rigid abelian tensor category C' with End(1) = k is a neutral Tannakian
category over a field k if it admits an exact faithful k-linear tensor functor
w : C' — Vecg. Any such functor is said to be a fibre functor for C.
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Tannakian category over a field

Definition 5.2

A rigid abelian tensor category C' with End(1) = k is a neutral Tannakian
category over a field k if it admits an exact faithful k-linear tensor functor
w : C' — Vecg. Any such functor is said to be a fibre functor for C.

Definition 5.3

A rigid abelian tensor category C' with End(1) = k is a Tannakian category
over k if it admits a fibre functor with values in some nonzero k—algebra.
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Tannakian category over a field

Definition 5.2

A rigid abelian tensor category C' with End(1) = k is a neutral Tannakian
category over a field k if it admits an exact faithful k-linear tensor functor
w : C' — Vecg. Any such functor is said to be a fibre functor for C.

Definition 5.3

A rigid abelian tensor category C' with End(1) = k is a Tannakian category
over k if it admits a fibre functor with values in some nonzero k—algebra.

Theorem 5.4
Every Tannakian category over an algebraically closed field is neutral.
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