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I. The Main Theorem

Theorem 1.1

Let (C,⊗) be a rigid abelian tensor category such that End(1) = k and let
ω : C → Veck be an exact faithful k-linear tensor functor. Then,

the functor Aut⊗(ω) of k-algebras is represented by an affine group
scheme G;

the functor C → Repk(G) defined by ω is an equivalence of tensor
categories.
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Outline of a proof

The k−linear abelian structure on C implies that C is equivalent to
the category of B-comodules of finite dimension for some k−coalgebra
B.

The tensor structure on C induces a commutative k−algebra structure
on B, and hence B is a k−bialgebra.

The rigidity of C gives us a coinverse map on B, therefore B is a Hopf
algebra over k, and G := Spec(B) is the affine group scheme we need.
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Relation between modules and comodules

Let (A,m, e) be a k−algebra of finite dimension. The k−algebra maps

m : A⊗A→ A and e : k → A

induces a k−coalgebra structure on A∨ with the comultiplication map

A∨
m∨−−→ (A⊗A)∨ ∼= A∨ ⊗A∨

and the coidentity map

k ∼= k∨
e∨−→ A∨.

Further, the bijections

Homk(V,A
∨ ⊗k V ) ∼= Homk(V,Hom(A, V )) ∼= Homk(V ⊗k A, V )

(ρ : V → A∨⊗ V ) 7→ (ν : V ⊗A ρ⊗id−−−→ A∨⊗ V ⊗A (ev⊗id)◦t−−−−−−→ k⊗ V ∼= V )

determine a one-to-one correspondence between the left (resp. right) A∨-
comodule structures on a finite dimensional vector space V and the right
(resp. left) A-module structures on V .
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Category of comodules

Let B be a k−coalgebra . The bijection

Hom(V, V ⊗B) ∼= Hom(V ∨, B ⊗ V ∨)

defines a one-to-one correspondence between the right B−comodule
structure ρ on V and the left B−comodule structure ρ′ on V ∨.

When B is a Hopf algebra with the coinverse S, for any (V, ρ) ∈ ComodB
we define ρ∨ to be the composite

V ∨
ρ′−→ B ⊗ V ∨ t−→ V ∨ ⊗B id⊗S−−−→ V ∨ ⊗B.

Then (V ∨, ρ∨) ∈ ComodB and it is the dual of (V, ρ).
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Relation between modules and comodules

For every finite-dimensional comodule (V, ρ) over a k−coalgebra B, let
BV be the smallest subspace of B such that ρ(V ) ⊂ V ⊗BV , it is a
finite-dimensional sub-coalgebra of B. Then

Proposition 1.2

Every finite-dimensional BV -comodule (considered as a B-comodule) W is
isomorphic to a quotient of a sub-comodule of V n for some n.

Let A = B∨V . Then V is a finite-dimensional faithful left A−module.

If e1, ..., en span V as a k-vector space, then a 7→ (ae1, ..., aen) : A→
V n is injective.

The proposition follows by writing W as a quotient of Am for some m.
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Category of comodules

Remark

Let B be a coalgebra over a field k.

The finite-dimensional right comodules over B form an abelian category
ComodB and the forgetful functor to Veck is exact and faithful.

A bialgebra structure on B provides ComodB with a tensor structure;
the forgetful functor preserves tensor products.

A Hopf algebra structure on B provides ComodB with a rigid tensor
structure and the forgetful functor preserves duals.
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II. Construction of the k-coalgebra B

Proposition 2.1

Let C be a k-linear abelian category, and let ω : C → Veck be an exact
faithful k-linear functor. Then there exists a k−coalgebra B such that C is
equivalent to the category of B-comodules of finite dimension over k, and
this equivalence carries ω into the forgetful functor.

ω(idX) = 0 if and only if idX = 0, and so ω(X) = 0 if and only if X =
0. It follows that, if ω(u) is a monomorphism (resp. an epimorphism,
resp. an isomorphism), then so also is u. Further, ifX ⊂ Y and ω(X) =
ω(Y ), then X = Y . Thus, all objects of C are both Artinian and
Noetherian, and hence of finite length.

For objects X,Y of C, Hom(X,Y ) has finite dimension over k since
it is a subspace of Hom(ω(X), ω(Y )).
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Construction of the k-coalgebra B

Definition 2.2

Let X be an object of C, and let S be a subset of ω(X). The subobject of
X generated by S is the intersection of the subobjects Y of X such that
S ⊂ ω(Y ). This subobject exists, and it is the smallest subobject of X with
this property.

Definition 2.3

An object Y is monogenic if it is generated by a single element, i.e., there
exists a y ∈ ω(Y ) such that if Y ′ ⊂ Y and y ∈ ω(Y ′) then Y ′ = Y.

For X in C, let 〈X〉 denote the full subcategory of C whose objects are
the quotients of subobjects of direct sums of copies of X.
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Proof in the case C = 〈X〉

We assume that C = 〈X〉 for some X.

Lemma 2.4

For every monogenic object (Y, y) of C,

dimk ω(Y ) ≤ (dimk ω(X))2.

There are maps Y � Y1 ↪→ Xm.

Take y1 ∈ ω(Y1) whose image y ∈ ω(Y ), and let Z be the subobject
of Y1 generated by y1.

The image of Z in Y contains y and so equals Y . Hence it suffices to
prove the lemma for Y ↪→ Xm.

It suffices show that Y ↪→ Xm′ for some m′ ≤ dimk ω(X).

Suppose that m > dimk ω(X). Since y ∈ ω(Y ) ⊂ ω(X)m, y =
(y1, ..., ym) ∈ ω(X)m.
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Proof in the case C = 〈X〉
As m > dimk ω(X), there exist ai ∈ k, not all zero, such that
m∑
i=1

aiyi = 0. We assume that a1 6= 0 and let

A =


0 1 0 ... 0
0 0 1 ... 0
...

...
... ...

...
0 0 0 ... 1

 ∈ Mat((m− 1)×m, k).

(a1, .., am) and A induce epimorphisms

Xm X
(a1,...,am)

and Xm Xm−1A .

The kernel N of (a1, ..., am) is isomorphic to Xm−1 via

N ↪→ Xm � Xm−1.

Since y ∈ ω(N), we have Y ⊂ N ∼= Xm−1.
Keep doing until Y ⊂ Xm′ with m′ ≤ dimk ω(X), and so

dimk ω(Y ) ≤ m′ dimk ω(X) ≤ (dimk ω(X))2.
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The existence of projective generators

Corrolary 2.5

There exists a monogenic (P, p) for which dimk ω(P ) is maximal.

Lemma 2.6

(a) The pair (P, p) represents the functor ω., i.e., ω(_) ∼= Hom(P,_) .

(b) The object P is a projective generator for C = 〈X〉, i.e., the functor
Hom(P,_) is exact and faithful.

For each Y ∈ C, we define a map Hom(P, Y )→ ω(Y ) which sends f
to ω(f)(p).

For every y ∈ ω(Y ), we need to show that there exists a unique mor-
phism f : P → Y such that ω(f)(p) = y.

Let Q be the smallest subobject of P × Y such that ω(Q) contains
(p, y). Thus, the projection map pr1 : Q→ P is an epimorphism since
p ∈ ω(pr1(Q)), and so dimk ω(Q) ≥ dimk ω(P ).
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The existence of projective generators

Since dimk ω(P ) is maximal, dimk ω(Q) = dimk ω(P ), and so pr1 :

Q
∼−→ P . The composition map P

pr−1
1−−−→ Q

pr2−−→ X is the desired map.

To prove the uniqueness, let E be the equalizer of two f ′s. It is a
subobject of P and ω(E) is also the equalizer of two ω(f)′s. Therefore
p ∈ ω(E), and then E = P .

0 E P Y

0 ω(E) ω(P ) ω(Y )
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The existence of projective generators

Lemma 2.7

For every Y ∈ C, there exists an exact sequence P s → P r → Y → 0.

For Y 6= 0, there exists a nonzero morphism φ1 : P → Y since
Hom(P, Y ) ∼= ω(Y ) 6= 0. If φ1 is not an epimorphism, there exists
a nonzero morphism P → Y/im(φ).

Since P is projective, this morphism lifts to a morphism φ2 : P → Y .

The image of φ1⊕φ2 : P ⊕P → Y is then strictly larger than im(φ1).

Keep continuing the procedure we get an epimorphism φ : P r � Y.

It follows that there exists an epimorhism P s � ker(φ), and then we
obtain an exact sequence

P s → P r → Y → 0.
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Proof in the case C = 〈X〉
Let A = End(P ) and let hP : C = 〈X〉 → Veck be the functor

Y 7→ Hom(P, Y ).

Thus A is a k-algebra of finite dimension over k and hP (Y ) is a right
A−module via the composition maps P → P → Y for every Y ∈ C.

Lemma 2.8

The functor hP factors through ModA, the category of right A-modules
of finite dimension over k.

The functor hP is an equivalence from C to ModA. Its composite with
the forgetful functor is isomorphic to ω.

For Y,Z ∈ C, f : Y → Z, a ∈ A = End(P ), u : P → Y we have

(hP (f) ◦ a)(u) = f ◦ (u ◦ a) = (f ◦ u) ◦ a = (a ◦ hP (f))(u).

Thus, hP (Hom(Y,Z)) ⊂ HomA(hP (Y ), hP (Z)).

It remains to prove that hP is essentially surjective and full.
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Proof in the case C = 〈X〉

Let M ∈ ModA, and choose a finite presentation for M ,

As
ψ−→ Ar

φ−→M → 0.

Here ψ is defined by multiplication with an s× r matrix of elements in
A = End(P ). This matrix induces a morphism ψ : P s → P r satisfying
hP (ψ) = ψ, and so

hP (coker(ψ)) ∼= coker(ψ) = M,

i.e., hP is essential surjective.

Let Y,Z ∈ C, we have

Hom(Pm, Z) ∼= hP (Z)m ∼= HomA(hP (Pm), hP (Z)).
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Proof in the case C = 〈X〉

There is an exact sequence

Pm → Pn → Y → 0,

and then we have the follwing commutative diagram with exact rows

0 Hom(Y,Z) Hom(Pn, Z) Hom(Pm, Z)

0 HomA(hP (Y ), hP (Z)) HomA(An, hP (Z)) HomA(Am, hP (Z))

∼ ∼

Thus, Hom(Y,Z)→ HomA(hP (Y ), hP (Z)) is an isomorphism and so hP

is full.

Workshop on Tannakian Categories The Main Theorem 8/24/2021 18 / 45



Proof in the case C = 〈X〉

Let B = A∨. Using the Yoneda lemma, we obtain

A = End(P ) ∼= End(hP ) ∼= End(ω), and so B ∼= End(ω)∨.

We note that via the isomorphim hP ∼= ω, the right A−module hP (Y )
corresponds to the natural left End(ω)−module ω(Y ) for every
Y ∈ C = 〈X〉 . Together with Lemma 2.8, we obtain

(C,ω) ∼= (End(ω)Mod, forget) ∼= (ComodEnd(ω)∨ , forget).
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Proof in the general case

For each object X ∈ C, let AX = End(ω| 〈X〉), and let BX = A∨X .

We
have

(〈X〉 , ω| 〈X〉) ∼= (ComodBX
, forget).

Define a partial ordering on the set of isomorphism classes of objects
in C by the rule:

[X] ≤ [Y ] if 〈X〉 ⊂ 〈Y 〉 .

Since [X], [Y ] ≤ [X ⊕ Y ], we get a directed set. Further, if [X] ≤ [Y ],
then restriction defines a k−algebra homomorphism AY → AX . On
passing to the dual, we get a k−coalgebra homomorphism BX → BY .

Passing to the direct limit over the isomorphism classes, we obtain
Proposition 2.1 with B = lim

−→ [X]
BX .
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III. Construction of the k−algebra B

Proposition 3.1

Let (C,⊗) be an abelian tensor category such that End(1) = k and let ω :
C → Veck be an exact faithful k-linear tensor functor, and let B = lim

−→
BX .

Then B has a unique structure of a commutative k-bialgebra such that
the equivalence of categories in Proposition 2.1 is compatible with tensor
structures.
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Categories of comodules over a coalgebra

Let B be a k−coalgebra, and let ω : ComodB → Veck be the forgetful
functor. For an arbitrary k-vector space V , denote by ω ⊗ V the functor
M 7→ ω(M)⊗ V from ComodB → Veck.

Lemma 3.2

The underlying k-vector space of B represents the functor V 7→
Homk(ω, ω ⊗ V ) on Veck, i.e.,

Homk(B, V ) ∼= Homk(ω, ω ⊗ V ) that is functorial in V.
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Categories of comodules over a coalgebra

We define a map

ΨV : Homk(B, V )→ Hom(ω, ω ⊗ V )

φ 7→ (ΦM : M
ρM−−→M ⊗B id⊗φ−−−→M ⊗ V )M

whence a natural transformation Ψ : Homk(B,_)→ Hom(ω, ω ⊗_).

We define a map

ΞV : Hom(ω, ω ⊗ V )→ Homk(B, V )

Φ 7→ (φ : B
ΦB−−→ B ⊗ V ε⊗idV−−−−→ k ⊗ V ∼= V ),

and hence a natural transformation Ξ : Hom(ω, ω⊗_)→ Homk(B,_).
Ξ ◦ Ψ = id since for each φ ∈ Homk(B, V ), (Ξ ◦ Ψ)(φ) : B → V is
the composition of the horizontal maps

B B ⊗B B ⊗ V k ⊗ V V

k ⊗B B

idB

∆

ε⊗idB

id⊗φ ε⊗idV ∼

idk⊗φ

∼

φ
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Categories of comodules over a coalgebra

Ψ ◦ Ξ = id. Indeed, fix (N, ρ) ∈ ComodB and Φ ∈ Hom(ω, ω ⊗ V ).
We need to show that ΦN : N → N ⊗ V equals the composition map

N N ⊗B N ⊗B ⊗ V N ⊗ k ⊗ V N ⊗ V.ρ id⊗ΦB id⊗ε⊗id ∼

We note that the map idN ⊗∆ : N ⊗B → N ⊗B⊗B defines a right
B-comodule structure on N ⊗ B and ρ : N → N ⊗ B is a morphism
of B−comodules.

As Φ is a morphism of functors, we have a commutative diagram

N N ⊗B N ⊗ k N

N ⊗ V N ⊗B ⊗ V N ⊗ k ⊗ V N ⊗ V

ΦN

ρ

ΦN⊗B

id⊗ε ∼

ΦN

ρ⊗id id⊗ε⊗id ∼

where the composites of the maps in the horizontal lines are identity
maps by the comodule axioms.
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Categories of comodules over a coalgebra

It remains to show that ΦN⊗B = idN ⊗ ΦB.

Since the k−comodule structure onN⊗B comes from the k−coalgebra
structure on B, we can write the B−comodule N⊗B as a finite direct
sum of copies of B. The Lemma 3.2 then follows from the fact that Φ
commutes with direct sums.
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Categories of comodules over a coalgebra

Example 3.3

In Lemma 3.2, let B is a k−coalgebra, and let V = k.

If B is finite over k, we obtain the isomorphism in the Proposition 2.1
for (C = ComodB, ω = forget)

B ∼= B∨∨ ∼= End(ω)∨.

In the general case, for each (X, ρ) ∈ C, recall that BX denotes the
smallest subspace of B such that ρ(X) ⊂ X ⊗ BX . Then we have
〈X〉 = ComodBX

, and hence

End(ω| 〈X〉) ∼= B∨X .

Since B =
⋃
X BX , by passing to the limit we obtain

B ∼= lim
−→

BX ∼= lim
−→

End(ω| 〈X〉)∨.
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Categories of comodules over a coalgebra

Let u : B → B′ be a homomorphism of k−coalgebras. A coaction V →
V ⊗ B on V defines a coaction V → V ⊗ B id⊗u−−−→ V ⊗ B′ on V. Thus, u
defines a functor

F : (ComodB, ωB = forget)→ (ComodB′ , ωB′ = forget)

such that ωB′ ◦ F = ωB.

Conversely, we have

Lemma 3.4

Every functor F : ComodB → ComodB′ satisfying ωB′ ◦F = ωB arises, as
above, from a unique homomorphism of k-coalgebra B → B′.

For each X ∈ ComodB, we have a k−algebra homomorphism

End(ωB′ | 〈FX〉)→ End(ωB| 〈X〉),

and hence a k−coalgebra homomorphism

End(ωB| 〈X〉)∨ → End(ωB′ | 〈FX〉)∨.
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Categories of comodules over a coalgebra

Passing to the limit, we obtain

lim
−→
[X]

End(ωB| 〈X〉)∨ → lim
−→
[X]

End(ωB′ | 〈FX〉)∨.

Further, we have a natural homomorphism

lim
−→
[X]

End(ωB′ | 〈FX〉)∨ → lim
−→
[Y ]

End(ωB′ | 〈Y 〉)∨.

Thus, we have a homomorphism

lim
−→
[X]

End(ωB| 〈X〉)∨ → lim
−→
[Y ]

End(ωB′ | 〈Y 〉)∨,

and then a homomorphism u : B → B′. The uniqueness of u follows from
the following lemma.
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Categories of comodules over a coalgebra

Lemma 3.5

Let (B,∆, ε) be a k−coalgebra, and let V be a vector space over k. Let u
and u′ be k-linear maps B → V such that

(idM ⊗ u) ◦ ρ = (idM ⊗ u′) ◦ ρ : M →M ⊗B →M ⊗ V

for all B−comodules (M,ρ). Then u = u′.

For each (M,ρ), we have

(idM ⊗ u|BM
) ◦ ρ = (idM ⊗ u′|BM

) ◦ ρ : M →M ⊗BM →M ⊗ V.
We observe that if u|BM

= u′|BM
for all (M,ρ), then u = u′ since

B =
⋃
M BM . Thus, it suffices to assume that B is finite over k.

Take duals, we obtain, for any B∨−modules (M∨, ρ∨),

V ∨ ⊗M∨ (V ⊗M)∨ B∨ ⊗M∨ M∨,
ρ∨

i.e., ρ∨ ◦ (u∨ ⊗ idM∨) = ρ′∨ ◦ (u′∨ ⊗ idM∨).
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Categories of comodules over a coalgebra

Lemma 3.5

Let (B,∆, ε) be a k−coalgebra, and let V be a vector space over k. Let u
and u′ be k-linear maps B → V such that

(idM ⊗ u) ◦ ρ = (idM ⊗ u′) ◦ ρ : M →M ⊗B →M ⊗ V

for all B−comodules (M,ρ). Then u = u′.

For each (M,ρ), we have

(idM ⊗ u|BM
) ◦ ρ = (idM ⊗ u′|BM

) ◦ ρ : M →M ⊗BM →M ⊗ V.
We observe that if u|BM

= u′|BM
for all (M,ρ), then u = u′ since

B =
⋃
M BM . Thus, it suffices to assume that B is finite over k.

Take duals, we obtain, for any B∨−modules (M∨, ρ∨),

V ∨ ⊗M∨ (V ⊗M)∨ B∨ ⊗M∨ M∨,
ρ∨

i.e., ρ∨ ◦ (u∨ ⊗ idM∨) = ρ′∨ ◦ (u′∨ ⊗ idM∨).

Workshop on Tannakian Categories The Main Theorem 8/24/2021 29 / 45



Categories of comodules over a coalgebra

Lemma 3.5

Let (B,∆, ε) be a k−coalgebra, and let V be a vector space over k. Let u
and u′ be k-linear maps B → V such that

(idM ⊗ u) ◦ ρ = (idM ⊗ u′) ◦ ρ : M →M ⊗B →M ⊗ V

for all B−comodules (M,ρ). Then u = u′.

For each (M,ρ), we have

(idM ⊗ u|BM
) ◦ ρ = (idM ⊗ u′|BM

) ◦ ρ : M →M ⊗BM →M ⊗ V.
We observe that if u|BM

= u′|BM
for all (M,ρ), then u = u′ since

B =
⋃
M BM . Thus, it suffices to assume that B is finite over k.

Take duals, we obtain, for any B∨−modules (M∨, ρ∨),

V ∨ ⊗M∨ (V ⊗M)∨ B∨ ⊗M∨ M∨,
ρ∨

i.e., ρ∨ ◦ (u∨ ⊗ idM∨) = ρ′∨ ◦ (u′∨ ⊗ idM∨).
Workshop on Tannakian Categories The Main Theorem 8/24/2021 29 / 45



Categories of comodules over a coalgebra

Take (M∨, ρ∨) = (B∨,∆∨), we obtain

∆∨ ◦ (u∨ ⊗ idB∨)(v ⊗ 1B∨) = u∨(v).1B∨ = u∨(v),

and
∆∨ ◦ (u′

∨ ⊗ idB∨)(v⊗1B∨) = u′
∨

(v).1B∨ = u′
∨

(v)

for all v ∈ V ∨. Thus u∨ = u′∨, and hence u = u′.
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Categories of comodules over a coalgebra

Let B be a k−coalgebra, then B ⊗B is again a k−coalgebra. A coalgebra
homomorphism m : B ⊗B → B defines a functor

φm : ComodB × ComodB → ComodB

sending (V,W ) to V ⊗W with the coaction

V ⊗W V ⊗B ⊗W ⊗B V ⊗W ⊗B.ρV ⊗ρW (id⊗m)◦t
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Categories of comodules over a coalgebra

Proposition 3.6

The map m → φm defines a one-to-one correspondence between the set
of k-coalgebra homomorphisms m : B ⊗ B → B and the set of k-bilinear
functors φ : ComodB×ComodB → ComodB such that φ(V,W ) = V ⊗W
as k−vector spaces.

(a) m is associative iff the canonical isomorphisms of vector spaces

u⊗ (v ⊗ w) 7→ (u⊗ v)⊗ w : U ⊗ (V ⊗W )→ (U ⊗ V )⊗W
are isomorphisms of B-comodules for all B-comodules U, V,W.

(b) m is commutative iff the canonical isomorphisms of vector spaces

v ⊗ w : V ⊗W →W ⊗ V
are isomorphisms of B-comodules for all B-comodules U, V .

(c) There is an identity map e : k → B iff there is an B-comodule U with
underlying vector space k st the canonical isomorphisms k ⊗ V ∼= V
∼= V ⊗ k are isomorphisms of B-comodules for all B−comodules V.
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Categories of comodules over a coalgebra

The pair (ComodB × ComodB, ω ⊗ ω), with (ω ⊗ ω)(X,Y ) := ω(X) ⊗k
ω(Y ), satisfies the conditions of Proposition 2.1, i.e., ComodB ×ComodB
is a k−linear abelian category and ω ⊗ ω : C → Veck is an exact faithful
k−linear functor.

We note that for all X,Y ∈ ComodB, we have

End(ω ⊗ ω| 〈(X,Y )〉) ∼= End(ω| 〈X〉)⊗ End(ω| 〈Y 〉).

Thus,

lim
−→

End(ω⊗ω| 〈(X,Y )〉)∨ ∼= lim
−→

End(ω| 〈X〉)∨⊗lim
−→

End(ω| 〈Y 〉)∨ ∼= B⊗B,

and hence we have an equivalence

(ComodB × ComodB, ωB ⊗ ωB) ∼= (ComodB⊗B, ωB⊗B).

Therefore the bijection {m : B ⊗ B → B} 1−1←−→ {φ : ComodB⊗B →
ComodB}

1−1←−→ {φ : ComodB × ComodB → ComodB} follows from
Lemma 3.4.
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Categories of comodules over a coalgebra

Now we check the part (a). Suppose that m is associative, i.e., the following
diagram commutes

B ⊗B

B ⊗B ⊗B B

B ⊗B

mm⊗id

id⊗m
m

The B−comodule structure on U ⊗ (V ⊗W ) is the composition of maps

U ⊗ (V ⊗W ) U ⊗ (V ⊗W )⊗B

U ⊗B ⊗ (V ⊗B ⊗W ⊗B) U ⊗ (V ⊗W )⊗B ⊗B

U ⊗ (V ⊗W )⊗B ⊗ (B ⊗B)

ρU⊗(ρV ⊗ρW )

∼
id⊗idB⊗m

id⊗m
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Categories of comodules over a coalgebra

Similarly, we have a commutative diagram for B−comodule structure on
(U ⊗V )⊗W , and from these above diagrams, we obtain the B−comodule
isomorphism U ⊗ (V ⊗W ) ∼= (U ⊗ V )⊗W.
For the converse, apply Lemm 3.5.

Proof of Proposition 3.1

Proposition 2.1 give us the equivalence (C,ω) ∼= (ComodB, forget). Thus,
the tensor structure on C induces a tensor structure on ComodB such
that the forgetful functor is a tensor functor. By Proposition 3.6, this tensor
structure corresponds to coalgebra homomorphisms (m, e) such that m is
commutative and associative and e is an identity, and then B is a commu-
tative k−bialgebra.
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IV. Construction of the affine group scheme G

We note that if B is a k−bialgebra, ComodB is a tensor category by defining
B−comodule structure on M ⊗N via

M ⊗N ρM⊗ρN−−−−−→M ⊗B ⊗N ⊗B ∼= M ⊗N ⊗B ⊗B id⊗m−−−→M ⊗N ⊗B.

In this case, when V = R is a commutative k−algebra, we consider ω ⊗R
as a tensor functor from ComodB → ModR.

Definition 4.1

We define functors End(ω) (resp. End⊗(ω)) on the category of commuta-
tive k-algebras by sending R to End(ω ⊗R) (resp. End⊗(ω ⊗R)).

Corrolary 4.2

Let B be a k−bialgera, then
Homk(B,R) ∼= End(ω ⊗R),

Homk−alg(B,R) ∼= End(ω ⊗R).
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Categories of comodules over a bialgebra

(i) We have

Homk(B,R) ∼= HomR(B ⊗k R,R), (ϕ : B → R) 7→ (ϕ⊗ idR)

and
Homk(ω, ω ⊗R) ∼= HomR(ω ⊗R,ω ⊗R)

(ν(X) : X → X ⊗R)X 7→ (ν(X)⊗R : X ⊗R→ X ⊗R)X .

Together with Lemma 3.2, we obtain Homk(B,R) ∼= End(ω ⊗R).

(ii) A morphism Φ : ω ⊗ R → ω ⊗ R is a morphism of tensor functors if
the following diagram is commutative

ω(_⊗_)⊗R ω(_⊗_)⊗R

(ω(_)⊗R)⊗R (ω(_)⊗R) (ω(_)⊗R)⊗R (ω(_)⊗R)

Φ

c c

Φ⊗RΦ

where cX,Y : X ⊗k Y ⊗k R
∼−→ (X ⊗k R)⊗R (Y ⊗k R).
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Categories of comodules over a bialgebra

Φ⊗R Φ can be considered as a endomorphism of

ωB⊗B ⊗R : ComodB⊗B → ModR

since (ComodB × ComodB, ωB ⊗ ωB) ∼= (ComodB⊗B, ωB⊗B).

By Lemma 3.2, Φ and Φ⊗RΦ correspond to k−linear maps φ : B → R
và φ′ : B ⊗ B → R. Therefore for all B−comodules M and N , when
we consider M ⊗ N as a B−comodule, ΦM⊗N is the composition of
maps

M ⊗N ⊗R M ⊗N ⊗B ⊗B ⊗R

M ⊗N ⊗B ⊗R M ⊗N ⊗R

ρM⊗ρN⊗idR

id⊗φ⊗R

id⊗m⊗idR
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Categories of comodules over a bialgebra

Similarly, for all B ⊗ B−comodule M ⊗ N , (Φ ⊗R Φ)M⊗N is the
composition of maps

M ⊗N ⊗R M ⊗N ⊗B ⊗B ⊗R M ⊗N ⊗R.
ρM⊗N⊗idR id⊗φ′⊗R

It follows from Lemma 3.5 that φ′ = φ ◦m : B ⊗B → R.

Since Φ⊗R Φ also correspond to (φ⊗R)⊗R (φ⊗R), we obtain

φ′ ⊗R = (φ⊗R)⊗R (φ⊗R) : B ⊗B ⊗R→ R⊗R R ∼= R.

For b, c ∈ B and r ∈ R, we have (φ⊗R)(b⊗ r) = φ(b)r,so

(φ′ ⊗R)(b⊗ c⊗ r) = (φ⊗R)(m(b⊗ c)⊗ r) = φ(m(b⊗ c))r,

and
(φ′ ⊗R)(b⊗ c⊗ r) = φ(b)φ(c)r.

Thus, φ(b)φ(c)r = φ(m(b⊗ c))r, and take r = 1R, we get φ(b)φ(c) =
φ(m(b⊗ c)). Thus φ is k-algebra homomorphism.
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Proof of the Main Theorem

Let B be lim
−→

End(ω| 〈X〉). Proposition 3.1 give us an equivalence (C,ω) ∼=
(ComodB, ω = forget) and a commutative k−algebra structure on B.

Let
G = Spec(B) be the affine monoid scheme corresponding to B. Using
Lemma 3.2 we find that, for any commutative k-algebra R,

End⊗(ω)(R) ∼= Homk−alg(B,R) = G(R).

Since C is rigid, then ComodB is rigid, and we have End⊗(ω) = Aut⊗(ω).
Thus G is an affine group scheme, Aut(ω) is representable by G and ω
defines an equivalence of tensor categories

(C,ω) ∼= (ComodB, forget) ∼= (Repk(G), forget).
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V. A criterion to be a rigid tensor category

Let C be a k-linear abelian category, where k is a field, and let ⊗ : C×C →
C be a k-bilinear functor. Suppose that there are given a faithful exact k-
linear functor F : C → Veck, a functorial isomorphism φX,Y,Z : X ⊗ (Y ⊗
Z)→ (X ⊗Y )⊗Z, and a functorial isomorphism ψX,Y : X ⊗Y → Y ⊗X
with the following properties

F (X ⊗ Y ) = F (X)⊗ F (Y ) for all X,Y ;

F (φX,Y,Z) is the usual associativity isomorphism in Veck;

F (ψX,Y ) is the usual commutativity isomorphism in Veck;

there exists an identity object U in C such that k → End(U) is an
isomorphism and F (U) has dimension 1;

if F (L) has dimension 1, then there exists an object L−1 in C such
that L⊗ L−1 ∼= U .

Then (C,⊗, φ, ψ) is a rigid abelian tensor category.
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A criterion to be a rigid tensor category

Certainly (C,⊗, φ, ψ) is a tensor category, and Proposition 3.1 shows
that F defines an equivalence of tensor categories C → Repk(G) where
G is the affine monoid scheme representing End⊗(F ). Thus, we may
assume (C,F ) = (Repk(G), forget).

It remains to show that G is an
affine group scheme, i.e, for every commutative k−algebra R and for
every λ ∈ G(R), λX : X ⊗ R → X ⊗ R is invertible for all X ∈
Repk(G).

If X = L has dimension 1, there exists L−1 ∈ Repk(G) of dimension 1
such that L⊗L−1 ∼= U , and then λL⊗RλL−1 = λL⊗L−1 = id. We write
L = e.k, L−1 = e′.k and λL(e⊗ 1) = e⊗ r, λL−1(e′⊗ 1) = e′⊗ r′ for
some r, r′ ∈ R. Thus, e⊗e′⊗1 = (λL⊗λL−1)(e⊗e′⊗1) = e⊗e′⊗rr′,
i.e, rr′ = 1and then βL : L ⊗ R → L ⊗ R, βL(e ⊗ 1) = e ⊗ r′ is an
inverse of λR.
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A criterion to be a rigid tensor category

If X has dimension d, let e1, ..., ed be a k−basis of X, and then

λX(ej⊗1) =

d∑
i=1

ei⊗rij for some rij ∈ R.

Consider the 1−dimensional

representation L :=
∧dX, then

λL(e1 ∧ e2 ∧ ... ∧ ed ⊗ 1) = e1 ∧ e2 ∧ ... ∧ ed ⊗ det(A)

with A := (rij)
d
i,j=1.Therefore, det(A) is invertible in R, and so there

exists A′ ∈ Matd×d(R) such that A′.A = A.A′ = id. Thus,

βX : X ⊗R→ X ⊗R, (ej ⊗ 1)j=1,d 7→ (ej ⊗ 1)j=1,dA
′

is an inverse of λX .

Since Repk(G) is rigid, then so is C.

Remark

The condition that U is an identity object is necessary.
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A criterion to be a rigid tensor category

Example 5.1

Let M = Spec
( k[x]

x(x− 1)

)
be an affine sub-monoid of Gm, i.e., M(R) =

({r ∈ R : r2 = r},×) and let F be the forgetful functor. Then Repk(M)
is a tensor category but it is not rigid.

Let U = (k, 0), i.e.,

0R(r) =

{
0 if r 6= 1R,

idR if r = 1R.

Then End(U) ∼= k and (L, l)⊗U ∼= U for any one-dimensional representa-
tion (L, l).
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Let U = (k, 0), i.e.,

0R(r) =

{
0 if r 6= 1R,

idR if r = 1R.

Then End(U) ∼= k and (L, l)⊗U ∼= U for any one-dimensional representa-
tion (L, l).
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Tannakian category over a field

Definition 5.2

A rigid abelian tensor category C with End(1) = k is a neutral Tannakian
category over a field k if it admits an exact faithful k-linear tensor functor
ω : C → Veck. Any such functor is said to be a fibre functor for C.

Definition 5.3

A rigid abelian tensor category C with End(1) = k is a Tannakian category
over k if it admits a fibre functor with values in some nonzero k−algebra.

Theorem 5.4

Every Tannakian category over an algebraically closed field is neutral.
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