An introduction to Nori's fundamental group

Huy Dang

Vietnam Institute of Mathematics, VAST

August 26, 2021

Huy Dang (Vietnam Institute of Mathematic<mark>s An introduction to Nori's fundamental group</mark>

< □ > < 同 > < 回 > < 回 > < 回 >

イロト イ部ト イヨト イヨト 二日

O Principal bundles (or torsors), which generalize étale Galois covers.

A D N A B N A B N A B N

 Principal bundles (or torsors), which generalize étale Galois covers. Showing:

There is a bijective correspondence between $\{G\text{-torsors on } X\}$ and $\{\text{functors } \operatorname{Rep} G \to \mathscr{S}(X) \text{ satisfying certain conditions}\}.$

- Principal bundles (or torsors), which generalize étale Galois covers. Showing: There is a bijective correspondence between $\{G$ -torsors on $X\}$ and $\{$ functors $\operatorname{Rep} G \to \mathscr{S}(X)$ satisfying certain conditions $\}$.
- Introducing essentially finite vector bundles.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Principal bundles (or torsors), which generalize étale Galois covers. Showing:

There is a bijective correspondence between $\{G\text{-torsors on } X\}$ and $\{\text{functors } \operatorname{Rep} G \to \mathscr{S}(X) \text{ satisfying certain conditions}\}.$

Introducing essentially finite vector bundles. (EF(X), ⊗, x^* , \mathcal{O}_X) ($x \in X$) is a Tannaka category.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Principal bundles (or torsors), which generalize étale Galois covers.
 Showing:

There is a bijective correspondence between $\{G$ -torsors on $X\}$ and $\{$ functors $\operatorname{Rep} G \to \mathscr{S}(X)$ satisfying certain conditions $\}$.

- Introducing essentially finite vector bundles. (EF(X), ⊗, x^* , \mathcal{O}_X) ($x \in X$) is a Tannaka category.
- Sori's fundamental group.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Principal bundles (or torsors), which generalize étale Galois covers. Showing:

There is a bijective correspondence between $\{G$ -torsors on $X\}$ and $\{$ functors $\operatorname{Rep} G \to \mathscr{S}(X)$ satisfying certain conditions $\}$.

- Introducing essentially finite vector bundles. (EF(X), ⊗, x^* , \mathcal{O}_X) ($x \in X$) is a Tannaka category.
- Nori's fundamental group.

$$\operatorname{Rep} \pi_1^N(X, x) \to \operatorname{EF}(X)$$

is an equivalence of Tannaka categories.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Principal bundles (or torsors), which generalize étale Galois covers. Showing:

There is a bijective correspondence between $\{G$ -torsors on $X\}$ and $\{$ functors $\operatorname{Rep} G \to \mathscr{S}(X)$ satisfying certain conditions $\}$.

- Introducing essentially finite vector bundles. (EF(X), ⊗, x^* , \mathcal{O}_X) ($x \in X$) is a Tannaka category.
- Sori's fundamental group.

$$\operatorname{Rep} \pi_1^N(X, x) \to \operatorname{EF}(X)$$

is an equivalence of Tannaka categories. Moreover, $\pi_1^N(X, x)$ "classifies" isomorphism classes of torsors on X.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Principal bundles (torsors)

Let X be a k-scheme,

< □ > < 同 > < 回 > < 回 > < 回 >

Let X be a $k\text{-scheme},\,\mathscr{S}(X)\text{:}$ the category of quasi coherent sheaves on X,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3 / 35

Let X be a k-scheme, $\mathscr{S}(X)$: the category of quasi coherent sheaves on $X, \otimes : \mathscr{S}(X) \times \mathscr{S}(X) \to \mathscr{S}(X)$ the tensor product functor on sheaves.

Let X be a k-scheme, $\mathscr{S}(X)$: the category of quasi coherent sheaves on $X, \otimes : \mathscr{S}(X) \times \mathscr{S}(X) \to \mathscr{S}(X)$ the tensor product functor on sheaves. Let G be an affine group scheme defined over a field k.

Let X be a k-scheme, $\mathscr{S}(X)$: the category of quasi coherent sheaves on $X, \otimes : \mathscr{S}(X) \times \mathscr{S}(X) \to \mathscr{S}(X)$ the tensor product functor on sheaves. Let G be an affine group scheme defined over a field k.

Definition 1

 $j: P \to X$ is said to be a **principal** *G*-bundle or *G*-torsor on *X* if

- \bigcirc *j* is a surjective flat affine morphism,
- **2** $\Phi: P \times G \to P$ defines an action of G on P such that $j \circ \Phi = j \circ p_1$
- **③** $\Psi: P \times G \to P \times_X P$ by $\Psi = (p_1, \Phi)$ is an isomorphism.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let X be a k-scheme, $\mathscr{S}(X)$: the category of quasi coherent sheaves on $X, \otimes : \mathscr{S}(X) \times \mathscr{S}(X) \to \mathscr{S}(X)$ the tensor product functor on sheaves. Let G be an affine group scheme defined over a field k.

Definition 1

 $j: P \to X$ is said to be a **principal** *G*-bundle or *G*-torsor on *X* if

- 1 j is a surjective flat affine morphism,
- **2** $\Phi: P \times G \to P$ defines an action of G on P such that $j \circ \Phi = j \circ p_1$
- **3** $\Psi: P \times G \to P \times_X P$ by $\Psi = (p_1, \Phi)$ is an isomorphism.

P is said to be **trivial** if $P \cong X \times G$ (*G*-equivariant of *X*-schemes).

An X-scheme P is a G-torsor if there is a covering $\{U_i \rightarrow X\}$ called the **local trivialization**, such that the restriction of P to each U_i is a trivial G_{U_i} -torsor.

4 / 35

An X-scheme P is a G-torsor if there is a covering $\{U_i \rightarrow X\}$ called the local trivialization, such that the restriction of P to each U_i is a trivial G_{U_i} -torsor.

Example 2

Suppose A is a k-algebra, n prime to char(k), $X = \operatorname{Spec} A$, and $a \in A^{\times}$. Set $P := \operatorname{Spec} A[x]/(x^n - a)$. Then $\mu_n(A) = \operatorname{Spec} A[t]/(t^n - 1)$ acts on P by the rule $x \cdot u = xu$. The morphism $P \to X$ is μ_n -invariant.

An X-scheme P is a G-torsor if there is a covering $\{U_i \rightarrow X\}$ called the local trivialization, such that the restriction of P to each U_i is a trivial G_{U_i} -torsor.

Example 2

Suppose A is a k-algebra, n prime to char(k), $X = \operatorname{Spec} A$, and $a \in A^{\times}$. Set $P := \operatorname{Spec} A[x]/(x^n - a)$. Then $\mu_n(A) = \operatorname{Spec} A[t]/(t^n - 1)$ acts on P by the rule $x \cdot u = xu$. The morphism $P \to X$ is μ_n -invariant. If $a = b^n$, then $P \to X$ is a trivial torsor:

An X-scheme P is a G-torsor if there is a covering $\{U_i \rightarrow X\}$ called the local trivialization, such that the restriction of P to each U_i is a trivial G_{U_i} -torsor.

Example 2

Suppose A is a k-algebra, n prime to char(k), $X = \operatorname{Spec} A$, and $a \in A^{\times}$. Set $P := \operatorname{Spec} A[x]/(x^n - a)$. Then $\mu_n(A) = \operatorname{Spec} A[t]/(t^n - 1)$ acts on P by the rule $x \cdot u = xu$. The morphism $P \to X$ is μ_n -invariant. If $a = b^n$, then $P \to X$ is a trivial torsor: the isomorphism $P \cong X \times \mu_n$ sends x to bt.

・ 何 ト ・ ヨ ト ・ ヨ ト

An X-scheme P is a G-torsor if there is a covering $\{U_i \rightarrow X\}$ called the local trivialization, such that the restriction of P to each U_i is a trivial G_{U_i} -torsor.

Example 2

Suppose A is a k-algebra, n prime to char(k), $X = \operatorname{Spec} A$, and $a \in A^{\times}$. Set $P := \operatorname{Spec} A[x]/(x^n - a)$. Then $\mu_n(A) = \operatorname{Spec} A[t]/(t^n - 1)$ acts on P by the rule $x \cdot u = xu$. The morphism $P \to X$ is μ_n -invariant. If $a = b^n$, then $P \to X$ is a trivial torsor: the isomorphism $P \cong X \times \mu_n$ sends x to bt.

<u>Note</u>: every μ_n -torsor is locally of this form (Kummer theory).

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A

Proposition 3

A G-torsor P over X is trivial if and only if P(X) := Mor(X, P) is nonempty.

< □ > < 同 > < 回 > < 回 > < 回 >

3

5/35

Proposition 3

A G-torsor P over X is trivial if and only if P(X) := Mor(X, P) is nonempty.

Proof.

If there is $s:X\to P,$ then $X\times G\to P, (x,g)\mapsto s(x)\cdot g$ is an isomorphism.

・ 同 ト ・ ヨ ト ・ ヨ

Proposition 4

Let G be an algebraic group. There is a canonical bijection

 $\{G\text{-torsors on }X\}/\sim \longleftrightarrow \check{H}^1(X,G)$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

3

6 / 35

Proposition 4

Let G be an algebraic group. There is a canonical bijection

 $\{G\text{-torsors on } X\}/ \sim \longleftrightarrow \check{H}^1(X,G)$

Remark

Line bundles are \mathbb{G}_m -torsor

A (1) > A (2) > A

Proposition 4

Let G be an algebraic group. There is a canonical bijection

 $\{G\text{-torsors on } X\}/ \sim \longleftrightarrow \check{H}^1(X,G)$

Remark

Line bundles are \mathbb{G}_m -torsor because $\check{H}^1(X, \mathbb{G}_m) \cong H^1(X, \mathcal{O}_X^{\times})$.

Proposition 4

Let G be an algebraic group. There is a canonical bijection

$$\{G\text{-torsors on } X\}/ \sim \longleftrightarrow \check{H}^1(X,G)$$

Remark

Line bundles are \mathbb{G}_m -torsor because $\check{H}^1(X, \mathbb{G}_m) \cong H^1(X, \mathcal{O}_X^{\times})$.

Sketch of proof.

Let P be a G-torsor with a local trivialization $\{U_i \to X\}$ in étale topology.

Proposition 4

Let G be an algebraic group. There is a canonical bijection

$$\{G\text{-torsors on } X\}/ \sim \longleftrightarrow \check{H}^1(X,G)$$

Remark

Line bundles are \mathbb{G}_m -torsor because $\check{H}^1(X, \mathbb{G}_m) \cong H^1(X, \mathcal{O}_X^{\times})$.

Sketch of proof.

Let P be a G-torsor with a local trivialization $\{U_i \to X\}$ in étale topology. A trivial torsor admits a section: thus there are elements $s_i \in P(U_i)$. Fixing s_i , we can write uniquely $s_i g_{ij} = s_j$ on U_{ij} with $g_{ij} \in G(U_{ij})$.

Proposition 4

Let G be an algebraic group. There is a canonical bijection

$$\{G\text{-torsors on } X\}/ \sim \longleftrightarrow \check{H}^1(X,G)$$

Remark

Line bundles are \mathbb{G}_m -torsor because $\check{H}^1(X, \mathbb{G}_m) \cong H^1(X, \mathcal{O}_X^{\times})$.

Sketch of proof.

Let P be a G-torsor with a local trivialization $\{U_i \to X\}$ in étale topology. A trivial torsor admits a section: thus there are elements $s_i \in P(U_i)$. Fixing s_i , we can write uniquely $s_ig_{ij} = s_j$ on U_{ij} with $g_{ij} \in G(U_{ij})$. $g_{kj}g_{ji}s_i = s_k = g_{ki}s_i \Rightarrow g_{kj}g_{ji} = g_{ki} \Rightarrow g_{ij}$ are 1-cocycles, and different choices of s_i , i.e., $s'_i = s_ig_i$,

Proposition 4

Let G be an algebraic group. There is a canonical bijection

$$\{G\text{-torsors on } X\}/ \sim \longleftrightarrow \check{H}^1(X,G)$$

Remark

Line bundles are \mathbb{G}_m -torsor because $\check{H}^1(X, \mathbb{G}_m) \cong H^1(X, \mathcal{O}_X^{\times})$.

Sketch of proof.

Let P be a G-torsor with a local trivialization $\{U_i \to X\}$ in étale topology. A trivial torsor admits a section: thus there are elements $s_i \in P(U_i)$. Fixing s_i , we can write uniquely $s_ig_{ij} = s_j$ on U_{ij} with $g_{ij} \in G(U_{ij})$. $g_{kj}g_{ji}s_i = s_k = g_{ki}s_i \Rightarrow g_{kj}g_{ji} = g_{ki} \Rightarrow g_{ij}$ are 1-cocycles, and different choices of s_i , i.e., $s'_i = s_ig_i$, then $g_i \in G(U_i)$ leads to a cohomologous cocycle.

Proposition 5

Let S be a connected scheme, and G a finite étale group scheme over S. Then

Proposition 5

Let S be a connected scheme, and G a finite étale group scheme over S. Then

 If G is a constant group scheme Γ_S, then a G-torsor is the same as a finite étale Galois cover with group Γ.

Proposition 5

Let S be a connected scheme, and G a finite étale group scheme over S. Then

- If G is a constant group scheme Γ_S, then a G-torsor is the same as a finite étale Galois cover with group Γ.
- If there is a morphism S → Spec k, and G arises from an étale k-group scheme Gk by base change to S, then every G-torsor Y → S is a finite étale cover of S. Moreover, there is a finite separable extension L/k such that Y × Spec k Spec L → S × Spec k Spec L is a Galois étale cover.

Proposition 5

Let S be a connected scheme, and G a finite étale group scheme over S. Then

- If G is a constant group scheme Γ_S, then a G-torsor is the same as a finite étale Galois cover with group Γ.
- If there is a morphism S → Spec k, and G arises from an étale k-group scheme Gk by base change to S, then every G-torsor Y → S is a finite étale cover of S. Moreover, there is a finite separable extension L/k such that Y × Spec Spec L → S × Spec Spec L is a Galois étale cover.

Remark

Let G be the constant group scheme on S defined by Γ . Then

 $\check{H}^1(X,G) \cong \operatorname{Hom}_{\operatorname{cts}}(\pi_1^{\operatorname{\acute{e}t}}(X,x),\Gamma).$

The functor $F : \operatorname{Rep} G \to \mathscr{S}(X)$

Huy Dang (Vietnam Institute of Mathematics An introduction to Nori's fundamental group August 26, 2021

イロト イ部ト イヨト イヨト 二日

<u>Goal</u>: Showing there is a bijective correspondence between $\{G$ -torsors on $X\}$ and $\{$ functors $\operatorname{Rep} G \to \mathscr{S}(X)$ satisfying certain conditions $\}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

<u>Goal</u>: Showing there is a bijective correspondence between $\{G$ -torsors on $X\}$ and $\{$ functors $\operatorname{Rep} G \to \mathscr{S}(X)$ satisfying certain conditions $\}$.

From torsor to fuctor: Fix a G-torsor $j : P \to X$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

From torsor to fuctor: Fix a G-torsor $j: P \to X$. Left representation V of G

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

<u>From torsor to fuctor</u>: Fix a *G*-torsor $j : P \rightarrow X$. Left representation *V* of $G \Rightarrow G$ -sheaf on *P*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

<u>From torsor to fuctor</u>: Fix a *G*-torsor $j : P \to X$. Left representation *V* of $G \Rightarrow G$ -sheaf on $P \Rightarrow$ sheaf on *X* (taking *G*-variant),

- ロ ト - (周 ト - (日 ト - (日 ト -)日

<u>From torsor to fuctor</u>: Fix a *G*-torsor $j : P \to X$. Left representation V of $G \Rightarrow G$ -sheaf on $P \Rightarrow$ sheaf on X (taking *G*-variant), denoted by F(P)V.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

<u>From torsor to fuctor</u>: Fix a *G*-torsor $j: P \to X$. Left representation V of $G \Rightarrow G$ -sheaf on $P \Rightarrow$ sheaf on X (taking *G*-variant), denoted by F(P)V.

 \Rightarrow obtain a functor F(P) : Rep $G \rightarrow \mathscr{S}(X)$, $V \mapsto F(P)V$.

<u>From torsor to fuctor</u>: Fix a *G*-torsor $j: P \to X$. Left representation V of $G \Rightarrow G$ -sheaf on $P \Rightarrow$ sheaf on X (taking *G*-variant), denoted by F(P)V.

 $\Rightarrow \text{ obtain a functor } F(P): \operatorname{Rep} G \to \mathscr{S}(X), \quad V \mapsto F(P)V.$ Set

$$F := F(P).$$

Tannaka category $(\mathscr{S}, \hat{\otimes}, T, L_0)$

- **2** $Obj \mathscr{S}$ is a set.
- $\begin{tabular}{ll} \hline \end{tabular} S \end{tabular} T: \mathscr{S} \to \operatorname{Rep} k \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} k \end{tabular} \end{tabular}$
- $\textcircled{9} \ \hat{\otimes}: \mathscr{S} \times \mathscr{S} \to \mathscr{S} \text{ is a functor which is } k\text{-linear in each variable, and}$

 $T \circ \hat{\otimes} = \otimes \circ (T \times T).$

- ${f 0}\ \hat{\otimes}$ is associative, preserving T, in some sense
- **(**) $\hat{\otimes}$ is commutative, preserving T, in the above sense
- **②** There is an object L_0 of \mathscr{S} , and an isomorphism $\varphi: K \to TL_0$, such that L_0 is an identity object of \mathscr{S} , preserving T.
- For every object L of \mathscr{S} such that TL has dimension equal to one, there is an object L^{-1} such that $L \hat{\otimes} L^{-1}$ is isomorphic to L_0 .

F acts like a forgetful functor (of a Tannaka category)

Proposition 6

The followings are true for $F : \operatorname{Rep} G \to \mathscr{S}(X)$

- Is a k-additive exact functor,
- **③** The obvious statements parallel to \mathscr{C}_5 , \mathscr{C}_6 , \mathscr{C}_7 ; in particular, $FL_0 = \mathcal{O}_X$, where L_0 is the trivial representation, and finally,
- If rk V = n, then FV is locally free of rank n; in particular, F is faithful.

F acts like a forgetful functor (of a Tannaka category)

Proposition 6

The followings are true for $F : \operatorname{Rep} G \to \mathscr{S}(X)$

- Is a k-additive exact functor,
- So The obvious statements parallel to $\mathscr{C}5$, $\mathscr{C}6$, $\mathscr{C}7$; in particular, $FL_0 = \mathcal{O}_X$, where L_0 is the trivial representation, and finally,
- If $\operatorname{rk} V = n$, then FV is locally free of rank n; in particular, F is faithful.

The main result of this part is the following.

F acts like a forgetful functor (of a Tannaka category)

Proposition 6

The followings are true for $F : \operatorname{Rep} G \to \mathscr{S}(X)$

- Is a k-additive exact functor,
- So The obvious statements parallel to $\mathscr{C}5$, $\mathscr{C}6$, $\mathscr{C}7$; in particular, $FL_0 = \mathcal{O}_X$, where L_0 is the trivial representation, and finally,
- If $\operatorname{rk} V = n$, then FV is locally free of rank n; in particular, F is faithful.

The main result of this part is the following.

Proposition 7

There is a bijective correspondence between $\{G\text{-torsors on } X\}$ and $\{functors F : \operatorname{Rep} G \to \mathscr{S}(X) \text{ such that } F1 \text{ to } F4 \text{ hold}\}.$

From now on, F will denote a functor where F1 to F4 hold.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From now on, F will denote a functor where F1 to F4 hold. We would like to associate with it a G-torsor P.

(日) (四) (日) (日) (日)

From now on, F will denote a functor where F1 to F4 hold. We would like to associate with it a G-torsor P.

Lemma 8

There is a unique functor \overline{F} : Rep' $G \to \mathscr{S}(X)$ (taking direct limit), such that

- The statement F1, F2, F3 hold for \overline{F} .
- $\ 2 \ \overline{F} | \operatorname{Rep} G = F$
- **③** $\overline{F}V$ is flat for all V, and faithfully flat if $V \neq 0$, and
- \bullet \overline{F} preserves direct limit

From now on, F will denote a functor where F1 to F4 hold. We would like to associate with it a G-torsor P.

Lemma 8

There is a unique functor \overline{F} : Rep' $G \to \mathscr{S}(X)$ (taking direct limit), such that

• The statement F1, F2, F3 hold for \overline{F} .

$$\overline{F} | \operatorname{Rep} G = F$$

- **③** $\overline{F}V$ is flat for all V, and faithfully flat if $V \neq 0$, and
- \bullet \overline{F} preserves direct limit

We will put $\overline{F} = F$.

Lemma 9

F induces a functor from affine G-schemes to affine X-schemes.

• • • • • • • • • •

Lemma 9

F induces a functor from affine G-schemes to affine X-schemes.

Proof.

Let $Y = \operatorname{Spec} A$ be a scheme on which G operates,

Lemma 9

F induces a functor from affine G-schemes to affine X-schemes.

Proof.

Let $Y = \operatorname{Spec} A$ be a scheme on which G operates, $m : A \otimes_k A \to A$ be the multiplication map on A. Since A is a k-algebra with identity, by F2 and F3, FA is a commutative associative sheaf of \mathcal{O}_X -algebra with identity.

Lemma 9

F induces a functor from affine G-schemes to affine X-schemes.

Proof.

Let $Y = \operatorname{Spec} A$ be a scheme on which G operates, $m : A \otimes_k A \to A$ be the multiplication map on A. Since A is a k-algebra with identity, by F2 and F3, FA is a commutative associative sheaf of \mathcal{O}_X -algebra with identity. \Rightarrow There is an affine morphism $j : Z \to X$ such that $j_*(\mathcal{O}_Z)$ is isomorphic to FA as a sheaf of \mathcal{O}_X -algebras.

Lemma 9

F induces a functor from affine G-schemes to affine X-schemes.

Proof.

Let $Y = \operatorname{Spec} A$ be a scheme on which G operates, $m : A \otimes_k A \to A$ be the multiplication map on A. Since A is a k-algebra with identity, by F2 and F3, FA is a commutative associative sheaf of \mathcal{O}_X -algebra with identity. \Rightarrow There is an affine morphism $j : Z \to X$ such that $j_*(\mathcal{O}_Z)$ is isomorphic to FA as a sheaf of \mathcal{O}_X -algebras. We shall denote Z by FYfrom now on.

Frame Title

Definition 10

Let G operate on itself by the left. Put P(F) = FG, and let $j: P(F) \to X$ be the canonical morphism. Denote P(F) by P.

Lemma 11

P is a G-torsors on X.

Proof.

Recall that we need to show the followings:

① *j* is a surjective flat affine morphism,

2 $\Phi: P \times G \to P$ defines an action of G on P such that $j \circ \Phi = j \circ p_1$

3 $\Psi: P \times G \to P \times_X P$ by $\Psi = (p_1, \Phi)$ is an isomorphism.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The first condition holds because $j_*(\mathcal{O}_P)$ is faithfully flat, which in turn follows from

Lemma 12

The unique functor $\overline{F} : \operatorname{Rep}' G \to \mathscr{S}(X)$ verifies

• The statement F1, F2, F3 hold for \overline{F} .

$$\ 2 \ \overline{F} | \operatorname{Rep} G = F$$

- **③** $\overline{F}V$ is flat for all V, and faithfully flat if $V \neq 0$, and
- \bullet \overline{F} preserves direct limit

The first condition holds because $j_*(\mathcal{O}_P)$ is faithfully flat, which in turn follows from

Lemma 12

The unique functor $\overline{F} : \operatorname{Rep}' G \to \mathscr{S}(X)$ verifies

• The statement F1, F2, F3 hold for \overline{F} .

 $\ \, @ \ \, \overline{F} | \operatorname{Rep} G = F$

- **③** $\overline{F}V$ is flat for all V, and faithfully flat if $V \neq 0$, and
- \bullet \overline{F} preserves direct limit

Lemma 13

If Y and Z are schemes on which G operates, $F(Y \times Z) = FY \times_X FZ$. Furthermore, if G acts trivially on Y, then $FY = X \times Y$.

< □ > < □ > < □ > < □ > < □ > < □ >

P is a G-torsor

Denote by G' the same scheme as G, equipped with trivial action of G. Let

$$\begin{split} \varphi : G \times G' \to G, \quad (x,y) \mapsto xy \\ \psi : G \times G \to G \times G, \quad (x,y) \mapsto (x,\varphi(x,y)) \end{split}$$

Taking F, one obtains:

$$\Phi = F\varphi : P \times G \to P$$

$$\Psi = F\psi : P \times G \to P \times_X P.$$

The rest is straightforward to check.

Finally, given a functor $F : \operatorname{Rep} G \to \mathscr{S}(X)$, we would like to show that F is the functor naturally associated to P, that is:

P is a G-torsor

Denote by G' the same scheme as G, equipped with trivial action of G. Let

$$\begin{split} \varphi:G\times G'\to G, \quad (x,y)\mapsto xy\\ \psi:G\times G\to G\times G, \quad (x,y)\mapsto (x,\varphi(x,y)) \end{split}$$

Taking F, one obtains:

$$\Phi = F\varphi : P \times G \to P$$

$$\Psi = F\psi : P \times G \to P \times_X P.$$

The rest is straightforward to check. Finally, given a functor $F : \operatorname{Rep} G \to \mathscr{S}(X)$, we would like to show that F is the functor naturally associated to P, that is:

Proposition 14

$$F = F(P).$$

Proposition 15

There is a bijective correspondence between $\{G\text{-torsors on } X\}$ and $\{functors F : \operatorname{Rep} G \to \mathscr{S}(X) \text{ such that } F1 \text{ to } F4 \text{ hold}\}$. Furthermore

A D N A B N A B N A B N

Proposition 15

There is a bijective correspondence between $\{G\text{-torsors on } X\}$ and $\{functors F : \operatorname{Rep} G \to \mathscr{S}(X) \text{ such that } F1 \text{ to } F4 \text{ hold}\}$. Furthermore

• Let $f: Y \to X$ be a morphism and assume that $F: \operatorname{Rep} G \to \mathscr{S}(X)$ satisfies F1 to F4. Then F1 to F4 hold for $f^* \circ F$ also, and $P(f^* \circ F) = f^*(P(F)).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition 15

There is a bijective correspondence between $\{G\text{-torsors on } X\}$ and $\{functors F : \operatorname{Rep} G \to \mathscr{S}(X) \text{ such that } F1 \text{ to } F4 \text{ hold}\}$. Furthermore

- Let $f: Y \to X$ be a morphism and assume that $F: \operatorname{Rep} G \to \mathscr{S}(X)$ satisfies F1 to F4. Then F1 to F4 hold for $f^* \circ F$ also, and $P(f^* \circ F) = f^*(P(F)).$
- 2 Let $X = \operatorname{Spec} k$, and $F : \operatorname{Rep} G \to \operatorname{Rep} k$ the forgetful functor. Then P(F) = G.

< □ > < □ > < □ > < □ > < □ > < □ >

Proposition 15

There is a bijective correspondence between $\{G\text{-torsors on } X\}$ and $\{functors F : \operatorname{Rep} G \to \mathscr{S}(X) \text{ such that } F1 \text{ to } F4 \text{ hold}\}$. Furthermore

- Let $f: Y \to X$ be a morphism and assume that $F: \operatorname{Rep} G \to \mathscr{S}(X)$ satisfies F1 to F4. Then F1 to F4 hold for $f^* \circ F$ also, and $P(f^* \circ F) = f^*(P(F)).$
- 2 Let $X = \operatorname{Spec} k$, and $F : \operatorname{Rep} G \to \operatorname{Rep} k$ the forgetful functor. Then P(F) = G.
- Let $\varphi : H \to G$ be a morphism of affine group schemes. Let P be a H-torsor on X and P' the quotient of $P \times G$ by H. Let $R_{\varphi} : \operatorname{Rep} G \to \operatorname{Rep} H$ be the restriction functor. Then $F(P) \circ R_{\varphi} = F(P')$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

X be a complete connected reduced k-schemes, where k is a perfect field.

X be a complete connected reduced k-schemes, where k is a perfect field. Let Vect(X) denote the set of isomorphism classes, [V], of vector bundles V, on X.

X be a complete connected reduced k-schemes, where k is a perfect field. Let Vect(X) denote the set of isomorphism classes, [V], of vector bundles V, on X. Then Vect(X) has the operations:

$$\bullet \quad [V] + [V'] = [V \oplus V'], \text{ and}$$

$$[V] \cdot [V'] = [V \otimes V'].$$

X be a complete connected reduced k-schemes, where k is a perfect field. Let Vect(X) denote the set of isomorphism classes, [V], of vector bundles V, on X. Then Vect(X) has the operations:

●
$$[V] + [V'] = [V \oplus V']$$
, and

$$[V] \cdot [V'] = [V \otimes V'].$$

 \Rightarrow Given $f \in \mathbb{N}[x]$, f(V) makes sense.

Example 16

If $f(x) = 1 + 2x^3$, then

$$f(V) = 1 \oplus V^{\otimes 3} \oplus V^{\otimes 3}.$$

Definition 17

An object E of $\operatorname{Vect} X$ is **finite** if there exists f and g in $\mathbb{N}[x]$ with $f \neq g$ and $f(E) \cong g(E)$.

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition 17

An object E of Vect X is **finite** if there exists f and g in $\mathbb{N}[x]$ with $f \neq g$ and $f(E) \cong g(E)$.

<u>Recall</u>: The Krull-Schmidt theorem holds for Vect X (Atiyah). That is, every object of Vect X decomposes as a direct sum of indecomposable objects, and this decomposition is unique up to isomorphisms.

An object E of $\operatorname{Vect} X$ is finite if and only if the set of the indecomposable components of all the powers $E^{\otimes n}$ is finite. Hence,

Lemma 18

- $\ \, {\bf 0} \ \, V_1,V_2 \ \, {\it finite} \Rightarrow V_1\oplus V_2, \, V_1\otimes V_2, V_1^* \ \, {\it finite}.$
- $2 V_1 \oplus V_2 \ \textit{finite} \Rightarrow V_1 \ \textit{finite}.$
- A line bundle L is finite $\iff L^{\otimes m}$ is isomorphic to \mathcal{O}_X for some positive integer m (Kummer order m torsor).

Definition 19

A **slope** of a holomorphic vector bundle W over a nonsingular algebraic *curve* (or over a Riemann surface) is a rational number $\mu(W) := \deg(W)/\operatorname{rk}(W)$. A bundle W is **stable** if and only if

 $\mu(V) < \mu(W)$

for all proper non-zero subbundles V of W and is **semistable** if

 $\mu(V) \le \mu(W).$

Huy Dang (Vietnam Institute of Mathematic<mark>: An introduction to Nori's fundamental group</mark>

Definition 20

A vector bundle on X is **semistable** if and only if it is semistable of degree zero restricted to each curve in X.

• • • • • • • • • • • •

Definition 20

A vector bundle on X is **semistable** if and only if it is semistable of degree zero restricted to each curve in X.

Proposition 21

Any finite vector bundle V on a smooth projective curve X is semistable of degree zero.

Definition 20

A vector bundle on X is **semistable** if and only if it is semistable of degree zero restricted to each curve in X.

Proposition 21

Any finite vector bundle V on a smooth projective curve X is semistable of degree zero.

Corollary 22 A finite vector bundle on X is semistable.

Lemma 23

- If V is a semistable vector bundle on X, and W is either a subbundle or a quotient bundle of V, such that W|Y has degree zero for each curve Y in X, then W is semistable.
- The full subcategory S(X) with objects as semistable vector bundles on X is an abelian category.

Lemma 23

- If V is a semistable vector bundle on X, and W is either a subbundle or a quotient bundle of V, such that W|Y has degree zero for each curve Y in X, then W is semistable.
- The full subcategory S(X) with objects as semistable vector bundles on X is an abelian category.

Definition 24

Denote by $\mathrm{SS}(X)$ the full subcategory of $\mathscr{S}(X)$ with objects as semistable vector bundles.

• • • • • • • • • • • •

Lemma 23

- If V is a semistable vector bundle on X, and W is either a subbundle or a quotient bundle of V, such that W|Y has degree zero for each curve Y in X, then W is semistable.
- The full subcategory S(X) with objects as semistable vector bundles on X is an abelian category.

Definition 24

Denote by SS(X) the full subcategory of $\mathscr{S}(X)$ with objects as semistable vector bundles.Let F be the collection of finite vector bundles, a subset of Obj SS(X), and let EF(X) be the full subcategory of SS(X) with $Obj EF(X) = \overline{F}$.

3

< □ > < □ > < □ > < □ > < □ > < □ >

Lemma 23

- If V is a semistable vector bundle on X, and W is either a subbundle or a quotient bundle of V, such that W|Y has degree zero for each curve Y in X, then W is semistable.
- The full subcategory S(X) with objects as semistable vector bundles on X is an abelian category.

Definition 24

Denote by SS(X) the full subcategory of $\mathscr{S}(X)$ with objects as semistable vector bundles.Let F be the collection of finite vector bundles, a subset of Obj SS(X), and let EF(X) be the full subcategory of SS(X) with $Obj EF(X) = \overline{F}$. The objects of EF(X) will be called **essentially finite vector bundle**.

< □ > < □ > < □ > < □ > < □ > < □ >

Essentially finite vector bundles is an abelian category

 $\overline{F} = \{ W \in \operatorname{Obj} \operatorname{SS}(X) : \exists P_i \text{ finite, } 1 \leq i \leq t; V_1, V_2 \in \operatorname{Obj} \operatorname{SS}(X) \\ \text{s.t. } V_1 \subset V_2 \subset \oplus_{i=1}^t P_i, \text{ and } W \cong V_2/V_1 \}$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Essentially finite vector bundles is an abelian category

 $\overline{F} = \{ W \in \operatorname{Obj} \operatorname{SS}(X) : \exists P_i \text{ finite, } 1 \le i \le t; V_1, V_2 \in \operatorname{Obj} \operatorname{SS}(X) \\ \text{s.t. } V_1 \subset V_2 \subset \bigoplus_{i=1}^t P_i, \text{ and } W \cong V_2/V_1 \}$

Proposition 25

- If V is an essentially finite vector bundle on X, and W is either a subbundle or a quotient bundle of V such that W|Y has degree zero for each curve Y in X, then W is essentially finite.
- **2** $\operatorname{EF}(X)$ is an abelian k-category
- **③** If V_1 and V_2 are essentially finite, so are $V_1 \otimes V_2$ and V^* .

Fix a k-rational point x of X, denote by $x^* : \mathscr{S}(X) \to \operatorname{Rep} k$ the functor which associates to a sheaf on X its fibre at the point x. Note that x^* is faithful and exact when restricted to the category of semistable bundles.

Fix a k-rational point x of X, denote by $x^* : \mathscr{S}(X) \to \operatorname{Rep} k$ the functor which associates to a sheaf on X its fibre at the point x. Note that x^* is faithful and exact when restricted to the category of semistable bundles. It is now straightforward to see that $(\operatorname{EF}(X), \otimes, x^*, \mathcal{O}_X)$ (category, tensor, forgetful, trivial) is a Tannaka category!

Tannaka category $(\mathscr{S}, \hat{\otimes}, T, L_0)$

- **2** $Obj \mathscr{S}$ is a set.
- $\begin{tabular}{ll} \hline \end{tabular} S \end{tabular} T: \mathscr{S} \to \operatorname{Rep} k \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} k \end{tabular} \end{tabular}$
- $\textcircled{9} \ \hat{\otimes}: \mathscr{S} \times \mathscr{S} \to \mathscr{S} \text{ is a functor which is } k\text{-linear in each variable, and}$

 $T \circ \hat{\otimes} = \otimes \circ (T \times T).$

- $oldsymbol{\circ}$ $\hat{\otimes}$ is associative, preserving T, in the some sense
- **(**) $\hat{\otimes}$ is commutative, preserving T, in the above sense
- **②** There is an object L_0 of \mathscr{S} , and an isomorphism $\varphi: K \to TL_0$, such that L_0 is an identity object of \mathscr{S} , preserving T.
- For every object L of \mathscr{S} such that TL has dimension equal to one, there is an object L^{-1} such that $L \hat{\otimes} L^{-1}$ is isomorphic to L_0 .

(ロ) (同) (三) (三)

Recall the key result of Tannaka categories.

Theorem 26

Any Tannaka category is the category of finite-dimensional left representations of an affine group scheme G, and this sets up a bijective correspondence between affine group schemes and Tannaka categories.

Recall the key result of Tannaka categories.

Theorem 26

Any Tannaka category is the category of finite-dimensional left representations of an affine group scheme G, and this sets up a bijective correspondence between affine group schemes and Tannaka categories.

Definition 27

There is a group scheme G such that $\operatorname{Rep} G$ can be identified with $\operatorname{EF}(X)$ in such a way that x^* becomes the forgetful functor. We shall call the group scheme G above the **Nori's fundamental group scheme of** X at x, and denote it by $\pi_1^N(X, x)$.

Nori's fundamental group

Corollary 28

The functor $\operatorname{Rep} \pi_1^N(X, x) \to (\operatorname{EF}(X), \otimes, x^*, \mathcal{O}_X)$ is an equivalence of Tannaka categories.

Proposition 29

Let G be a finite group scheme and $j: X' \to X$ a G-torsor. Then for any functor $F(X'): \operatorname{Rep} G \to \mathscr{S}(X)$, F(X')V is always an essentially finite vector bundle.

We would like to prove that.

Theorem 30

For any finite group scheme G over k, there is a functorial correspondence between homomorphism $\pi_1^N(X, x) \to G$ and isomorphism classes of G-torsors $P \to X$, with a fixed rational point $p \in P(k)$ over x.

For a subset S of $\operatorname{Obj} \operatorname{EF}(X)$, let $S^* = \{V^* : V \in S\}$. Let $S_1 = S \cup S^*$, and $S_2 = \{V_1 \otimes V_2 \ldots \otimes V_m : V_i \in S_1\}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For a subset S of $\operatorname{Obj} \operatorname{EF}(X)$, let $S^* = \{V^* : V \in S\}$. Let $S_1 = S \cup S^*$, and $S_2 = \{V_1 \otimes V_2 \ldots \otimes V_m : V_i \in S_1\}$. Let $\operatorname{EF}(X, S) := \overline{S}_2$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For a subset S of $\operatorname{Obj} \operatorname{EF}(X)$, let $S^* = \{V^* : V \in S\}$. Let $S_1 = S \cup S^*$, and $S_2 = \{V_1 \otimes V_2 \ldots \otimes V_m : V_i \in S_1\}$. Let $\operatorname{EF}(X, S) := \overline{S}_2$. As before, this determines an affine group scheme called $\pi_1^N(X, S, x)$, such that

$$G_S : \operatorname{EF}(X, S) \to \operatorname{Rep} \pi_1^N(X, S, x)$$

is an equivalence.

For a subset S of $\operatorname{Obj} \operatorname{EF}(X)$, let $S^* = \{V^* : V \in S\}$. Let $S_1 = S \cup S^*$, and $S_2 = \{V_1 \otimes V_2 \ldots \otimes V_m : V_i \in S_1\}$. Let $\operatorname{EF}(X, S) := \overline{S}_2$. As before, this determines an affine group scheme called $\pi_1^N(X, S, x)$, such that

$$G_S : \operatorname{EF}(X, S) \to \operatorname{Rep} \pi_1^N(X, S, x)$$

is an equivalence. Let $F_S := G_S^{-1}$; i.e., a functor $\operatorname{Rep} \pi_1^N(X, S, x)$ to $\mathscr{S}(X)$ such that the composite $x^* \cdot F_S$ is the forgetful functor.

For a subset S of $\operatorname{Obj} \operatorname{EF}(X)$, let $S^* = \{V^* : V \in S\}$. Let $S_1 = S \cup S^*$, and $S_2 = \{V_1 \otimes V_2 \ldots \otimes V_m : V_i \in S_1\}$. Let $\operatorname{EF}(X, S) := \overline{S}_2$. As before, this determines an affine group scheme called $\pi_1^N(X, S, x)$, such that

$$G_S : \operatorname{EF}(X, S) \to \operatorname{Rep} \pi_1^N(X, S, x)$$

is an equivalence. Let $F_S := G_S^{-1}$; i.e., a functor $\operatorname{Rep} \pi_1^N(X, S, x)$ to $\mathscr{S}(X)$ such that the composite $x^* \cdot F_S$ is the forgetful functor. By Proposition 15, there is a $\pi_1^N(X, S, x)$ -torsor \tilde{X}_S on X such that $F_S = F(\tilde{X}_S)$.

For a subset S of $\operatorname{Obj} \operatorname{EF}(X)$, let $S^* = \{V^* : V \in S\}$. Let $S_1 = S \cup S^*$, and $S_2 = \{V_1 \otimes V_2 \ldots \otimes V_m : V_i \in S_1\}$. Let $\operatorname{EF}(X, S) := \overline{S}_2$. As before, this determines an affine group scheme called $\pi_1^N(X, S, x)$, such that

$$G_S : \operatorname{EF}(X, S) \to \operatorname{Rep} \pi_1^N(X, S, x)$$

is an equivalence. Let $F_S := G_S^{-1}$; i.e., a functor $\operatorname{Rep} \pi_1^N(X, S, x)$ to $\mathscr{S}(X)$ such that the composite $x^* \cdot F_S$ is the forgetful functor. By Proposition 15, there is a $\pi_1^N(X, S, x)$ -torsor \tilde{X}_S on X such that $F_S = F(\tilde{X}_S)$. By Proposition 15 (1), the fuctor $x^* \cdot F_S$ and $F(\tilde{X}_S|x)$ coincide, and by Proposition 15 (2), there is an isomorphism of $\tilde{X}_S|x$ with G (as G-spaces), equivalent to specifying a rational point \tilde{x}_S of $\tilde{X}_S|x$.

For a subset S of $\operatorname{Obj} \operatorname{EF}(X)$, let $S^* = \{V^* : V \in S\}$. Let $S_1 = S \cup S^*$, and $S_2 = \{V_1 \otimes V_2 \ldots \otimes V_m : V_i \in S_1\}$. Let $\operatorname{EF}(X, S) := \overline{S}_2$. As before, this determines an affine group scheme called $\pi_1^N(X, S, x)$, such that

$$G_S : \operatorname{EF}(X, S) \to \operatorname{Rep} \pi_1^N(X, S, x)$$

is an equivalence. Let $F_S := G_S^{-1}$; i.e., a functor $\operatorname{Rep} \pi_1^N(X, S, x)$ to $\mathscr{S}(X)$ such that the composite $x^* \cdot F_S$ is the forgetful functor. By Proposition 15, there is a $\pi_1^N(X, S, x)$ -torsor \tilde{X}_S on X such that $F_S = F(\tilde{X}_S)$. By Proposition 15 (1), the fuctor $x^* \cdot F_S$ and $F(\tilde{X}_S|x)$ coincide, and by Proposition 15 (2), there is an isomorphism of $\tilde{X}_S|x$ with G (as G-spaces), equivalent to specifying a rational point \tilde{x}_S of $\tilde{X}_S|x$.

In short: $S \subset \text{Obj} EF(X)$ gives $\pi_1^N(X, S, x), \tilde{X}_S, G_S, F_S, \tilde{x}_S$. In fact, $\pi_1^N(X, S, x)$ plays the role of a quotient of $\pi_1^N(X, x)$.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

For S = Obj EF(X), we denote $\tilde{X}_S, G_S, F_S, \tilde{x}_S$ by $\tilde{X}, G, F, \tilde{x}$.

Image: A math a math

- 3

For S = Obj EF(X), we denote $\tilde{X}_S, G_S, F_S, \tilde{x}_S$ by $\tilde{X}, G, F, \tilde{x}$.

Definition 31

The $\pi_1^N(X, x)$ -torsor \tilde{X} is the **universal covering scheme** of X.

For S = Obj EF(X), we denote $\tilde{X}_S, G_S, F_S, \tilde{x}_S$ by $\tilde{X}, G, F, \tilde{x}$.

Definition 31

The $\pi_1^N(X, x)$ -torsor \tilde{X} is the **universal covering scheme** of X.

The universal property is given by

For S = Obj EF(X), we denote $\tilde{X}_S, G_S, F_S, \tilde{x}_S$ by $\tilde{X}, G, F, \tilde{x}$.

Definition 31

The $\pi_1^N(X, x)$ -torsor \tilde{X} is the **universal covering scheme** of X.

The universal property is given by

Proposition 32

Let (X', G, u) be a triple such that X' is a G-torsor on X, u a k-rational point in the fibre of X' over x, and G is a finite group scheme. There is a unique homomorphism $\rho : \pi_1^N(X, x) \to G$ such that

- X' is induced from \tilde{X} by ρ , and
- 2 the image of \tilde{x} in X' is u.

Consequently, there is a bijective correspondence of the above triples with homomorphisms $\rho: \pi_1^N(X, x) \to G$.

Any homomorphism of Tannaka categories from $(\text{Rep } G, \hat{\otimes}, T_k, L_0)$ to $(\text{Rep } H, \hat{\otimes}, T_k, L_0)$ is induced by a unique homomorphism (of affine group schemes) from H to G.

Any homomorphism of Tannaka categories from $(\text{Rep } G, \hat{\otimes}, T_k, L_0)$ to $(\text{Rep } H, \hat{\otimes}, T_k, L_0)$ is induced by a unique homomorphism (of affine group schemes) from H to G.

Key idea to prove Proposition 32.

Construct a morphism of Tannaka categories

$$\operatorname{Rep} G \to \operatorname{Rep} \pi_1^N(X, x),$$

Any homomorphism of Tannaka categories from $(\text{Rep } G, \hat{\otimes}, T_k, L_0)$ to $(\text{Rep } H, \hat{\otimes}, T_k, L_0)$ is induced by a unique homomorphism (of affine group schemes) from H to G.

Key idea to prove Proposition 32.

Construct a morphism of Tannaka categories

$$\operatorname{Rep} G \to \operatorname{Rep} \pi_1^N(X, x),$$

which maps to the information unique to (X', G, u).

Any homomorphism of Tannaka categories from $(\text{Rep } G, \hat{\otimes}, T_k, L_0)$ to $(\text{Rep } H, \hat{\otimes}, T_k, L_0)$ is induced by a unique homomorphism (of affine group schemes) from H to G.

Key idea to prove Proposition 32.

Construct a morphism of Tannaka categories

$$\operatorname{Rep} G \to \operatorname{Rep} \pi_1^N(X, x),$$

which maps to the information unique to (X', G, u). That morphism, by Theorem 33, induced by a homomorphism $\rho : \pi_1^N(X, x) \to G$, which is analogous to the quotient of étale fundamental group.

Proof of Proposition 32

Sketch of proof.

Recall that F(X') is a functor $\operatorname{Rep} G \to \operatorname{EF}(X)$.

< □ > < □ > < □ > < □ > < □ > < □ >

3

Recall that F(X') is a functor $\operatorname{Rep} G \to \operatorname{EF}(X)$. Now, $\operatorname{EF}(X)$ is identified with $\operatorname{Rep} \pi_1^N(X, x)$ in such a way that the forgetful functor T_k on $\operatorname{Rep} \pi_1^N(X, x)$ is equivalent to the functor x^* from $\operatorname{EF}(X)$ to $\operatorname{Rep} k$.

Recall that F(X') is a functor $\operatorname{Rep} G \to \operatorname{EF}(X)$. Now, $\operatorname{EF}(X)$ is identified with $\operatorname{Rep} \pi_1^N(X, x)$ in such a way that the forgetful functor T_k on $\operatorname{Rep} \pi_1^N(X, x)$ is equivalent to the functor x^* from $\operatorname{EF}(X)$ to $\operatorname{Rep} k$. Thus, the composite $T_k \cdot F(X')$ is simply $x^* \cdot F(X') = F(X'|x)$, by Proposition 15 (1).

Recall that F(X') is a functor $\operatorname{Rep} G \to \operatorname{EF}(X)$. Now, $\operatorname{EF}(X)$ is identified with $\operatorname{Rep} \pi_1^N(X, x)$ in such a way that the forgetful functor T_k on $\operatorname{Rep} \pi_1^N(X, x)$ is equivalent to the functor x^* from $\operatorname{EF}(X)$ to $\operatorname{Rep} k$. Thus, the composite $T_k \cdot F(X')$ is simply $x^* \cdot F(X') = F(X'|x)$, by Proposition 15 (1). *k*-point *u* gives $\varphi : G \to X'|x$ unique isomorphism of torsors s.t. $\varphi(1) = u$.

Recall that F(X') is a functor $\operatorname{Rep} G \to \operatorname{EF}(X)$. Now, $\operatorname{EF}(X)$ is identified with $\operatorname{Rep} \pi_1^N(X, x)$ in such a way that the forgetful functor T_k on $\operatorname{Rep} \pi_1^N(X, x)$ is equivalent to the functor x^* from $\operatorname{EF}(X)$ to $\operatorname{Rep} k$. Thus, the composite $T_k \cdot F(X')$ is simply $x^* \cdot F(X') = F(X'|x)$, by Proposition 15 (1). *k*-point *u* gives $\varphi : G \to X'|x$ unique isomorphism of torsors s.t. $\varphi(1) = u$. By Proposition 15 (2), φ gives an equivalence of F(X'|x) with the forgetful functor $\operatorname{Rep} G \to \operatorname{Rep} k$.

Recall that F(X') is a functor $\operatorname{Rep} G \to \operatorname{EF}(X)$. Now, $\operatorname{EF}(X)$ is identified with $\operatorname{Rep} \pi_1^N(X, x)$ in such a way that the forgetful functor T_k on $\operatorname{Rep} \pi_1^N(X, x)$ is equivalent to the functor x^* from $\operatorname{EF}(X)$ to $\operatorname{Rep} k$. Thus, the composite $T_k \cdot F(X')$ is simply $x^* \cdot F(X') = F(X'|x)$, by Proposition 15 (1). *k*-point *u* gives $\varphi : G \to X'|x$ unique isomorphism of torsors s.t. $\varphi(1) = u$. By Proposition 15 (2), φ gives an equivalence of F(X'|x) with the forgetful functor $\operatorname{Rep} G \to \operatorname{Rep} k$. \Rightarrow a morphism (of Tannaka categories) $\operatorname{Rep} G \to \operatorname{Rep} \pi_1^N(X, x)$,

Recall that F(X') is a functor $\operatorname{Rep} G \to \operatorname{EF}(X)$. Now, $\operatorname{EF}(X)$ is identified with $\operatorname{Rep} \pi_1^N(X, x)$ in such a way that the forgetful functor T_k on $\operatorname{Rep} \pi_1^N(X, x)$ is equivalent to the functor x^* from $\operatorname{EF}(X)$ to $\operatorname{Rep} k$. Thus, the composite $T_k \cdot F(X')$ is simply $x^* \cdot F(X') = F(X'|x)$, by Proposition 15 (1). *k*-point *u* gives $\varphi : G \to X'|x$ unique isomorphism of torsors s.t. $\varphi(1) = u$. By Proposition 15 (2), φ gives an equivalence of F(X'|x) with the forgetful functor $\operatorname{Rep} G \to \operatorname{Rep} k$. \Rightarrow a morphism (of Tannaka categories) $\operatorname{Rep} G \to \operatorname{Rep} \pi_1^N(X, x)$, which is induced by a homomorphism $\rho : \pi_1^N(X, x) \to G$.

ヘロト 不得 トイヨト イヨト 二日

Recall that F(X') is a functor $\operatorname{Rep} G \to \operatorname{EF}(X)$. Now, $\operatorname{EF}(X)$ is identified with $\operatorname{Rep} \pi_1^N(X, x)$ in such a way that the forgetful functor T_k on $\operatorname{Rep} \pi_1^N(X, x)$ is equivalent to the functor x^* from $\operatorname{EF}(X)$ to $\operatorname{Rep} k$. Thus, the composite $T_k \cdot F(X')$ is simply $x^* \cdot F(X') = F(X'|x)$, by Proposition 15 (1). *k*-point *u* gives $\varphi : G \to X'|x$ unique isomorphism of torsors s.t. $\varphi(1) = u$. By Proposition 15 (2), φ gives an equivalence of F(X'|x) with the forgetful functor $\operatorname{Rep} G \to \operatorname{Rep} k$. \Rightarrow a morphism (of Tannaka categories) $\operatorname{Rep} G \to \operatorname{Rep} \pi_1^N(X, x)$, which is induced by a homomorphism $\rho : \pi_1^N(X, x) \to G$. Proposition 15 (3) $\Rightarrow X'$ is induced from \tilde{X} by ρ , and the image of \tilde{x} in X' is u.

Proposition 15

Proposition 34 (Proposition 15)

There is a bijective correspondence between G-torsors on X and functors $F : \operatorname{Rep} G \to \mathscr{S}(X)$ such that F1 to F4 hold. Furthermore

- Let $f: Y \to X$ be a morphism and assume that $F: \operatorname{Rep} G \to \mathscr{S}(X)$ satisfies F1 to F4. Then F1 to F4 hold for $f^* \circ F$ also, and $P(f^* \circ F) = f^*(P(F)).$
- Let $X = \operatorname{Spec} k$, and $F : \operatorname{Rep} G \to \operatorname{Rep} k$ the forgetful functor. Then P(F) = G.
- Let $\varphi : H \to G$ be a morphism of affine group schemes. Let P be a H-torsor on X and P' the quotient of $P \times G$ by H. Let $R_{\varphi} : \operatorname{Rep} G \to \operatorname{Rep} H$ be the restriction functor. Then $F(P) \circ R_{\varphi} = F(P')$.

< □ > < □ > < □ > < □ > < □ > < □ >

- With S as before, then, for any representation W of $\pi_1^N(X, S, x)$, there exists $f, g \in \mathbb{N}[x]$, with $f \neq g$ and $f(W) \cong g(W)$.
- In the structure of the fundamental group scheme:

• For $S \subset Q \subset \operatorname{Obj} EF(X)$,

$$\rho^Q_S:\pi^N_1(X,Q,x)\to\pi^N_1(X,S,x)$$
 is surjective.

2 $\pi_1^N(X, x)$ is the inverse limit of $\pi_1^N(X, S, x)$, where S runs through all finite collections of finite vector bundles on X.

イロト イ部ト イヨト イヨト 二日

• $\{G\text{-torsors on } X\} \leftrightarrow \{\text{functors } \operatorname{Rep} G \to \mathscr{S}(X) \text{ verifying certain conditions.}\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $\{G\text{-torsors on } X\} \leftrightarrow \{\text{functors } \operatorname{Rep} G \to \mathscr{S}(X) \text{ verifying certain conditions.} \}$
- ② There is a functorial correspondence between homomorphism $\pi_1^N(X, x) \rightarrow G$ and isomorphism classes of *G*-torsors *P* → *X* with a fixed rational point $p \in P(k)$ over *x*.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

34 / 35

Fin