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Outline

1 Principal bundles (or torsors), which generalize étale Galois covers.
Showing:
There is a bijective correspondence between {G-torsors on X} and
{functors RepG→ S (X) satisfying certain conditions}.

2 Introducing essentially finite vector bundles. (EF(X),⊗, x∗,OX)
(x ∈ X) is a Tannaka category.

3 Nori’s fundamental group.

RepπN1 (X,x)→ EF(X)

is an equivalence of Tannaka categories. Moreover, πN1 (X,x)
“classifies” isomorphism classes of torsors on X.
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Principal bundles (torsors)

Let X be a k-scheme,

S (X): the category of quasi coherent sheaves on
X, ⊗ : S (X)×S (X)→ S (X) the tensor product functor on sheaves.
Let G be an affine group scheme defined over a field k.

Definition 1

j : P → X is said to be a principal G-bundle or G-torsor on X if

1 j is a surjective flat affine morphism,

2 Φ : P ×G→ P defines an action of G on P such that j ◦ Φ = j ◦ p1
3 Ψ : P ×G→ P ×X P by Ψ = (p1,Φ) is an isomorphism.

P is said to be trivial if P ∼= X ×G (G-equivariant of X-schemes).
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Kummer torsor

Remark

An X-scheme P is a G-torsor if there is a covering {Ui → X} called the
local trivialization, such that the restriction of P to each Ui is a trivial
GUi-torsor.

Example 2

Suppose A is a k-algebra, n prime to char(k), X = SpecA, and a ∈ A×.
Set P := SpecA[x]/(xn − a). Then µn(A) = SpecA[t]/(tn − 1) acts on
P by the rule x · u = xu. The morphism P → X is µn-invariant.
If a = bn, then P → X is a trivial torsor: the isomorphism P ∼= X × µn
sends x to bt.

Note: every µn-torsor is locally of this form (Kummer theory).
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Torsors and Ȟ1

Proposition 3

A G-torsor P over X is trivial if and only if P (X) := Mor(X,P ) is
nonempty.

Proof.

If there is s : X → P , then X ×G→ P, (x, g) 7→ s(x) · g is an
isomorphism.
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Torsor and Ȟ1

Proposition 4

Let G be an algebraic group. There is a canonical bijection

{G-torsors on X}/ ∼←→ Ȟ1(X,G)

Remark

Line bundles are Gm-torsor because Ȟ1(X,Gm) ∼= H1(X,O×X).

Sketch of proof.

Let P be a G-torsor with a local trivialization {Ui → X} in étale topology.
A trivial torsor admits a section: thus there are elements si ∈ P (Ui).
Fixing si, we can write uniquely sigij = sj on Uij with gij ∈ G(Uij).
gkjgjisi = sk = gkisi ⇒ gkjgji = gki ⇒ gij are 1-cocycles, and different
choices of si, i.e., s′i = sigi, then gi ∈ G(Ui) leads to a cohomologous
cocycle.
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G-torsors and G-étale covers

Proposition 5

Let S be a connected scheme, and G a finite étale group scheme over S.
Then

1 If G is a constant group scheme ΓS , then a G-torsor is the same as a
finite étale Galois cover with group Γ.

2 If there is a morphism S → Spec k, and G arises from an étale
k-group scheme Gk by base change to S, then every G-torsor Y → S
is a finite étale cover of S. Moreover, there is a finite separable
extension L/k such that Y ×Spec k SpecL→ S ×Spec k SpecL is a
Galois étale cover.

Remark

Let G be the constant group scheme on S defined by Γ. Then

Ȟ1(X,G) ∼= Homcts(π
et
1 (X,x),Γ).
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The functor F : RepG→ S (X)

Goal: Showing there is a bijective correspondence between {G-torsors on
X} and {functors RepG→ S (X) satisfying certain conditions}.

From torsor to fuctor: Fix a G-torsor j : P → X.
Left representation V of G ⇒ G-sheaf on P ⇒ sheaf on X (taking
G-variant), denoted by F (P )V .

⇒ obtain a functor F (P ) : RepG→ S (X), V 7→ F (P )V .
Set

F := F (P ).
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Tannaka category (S , ⊗̂, T, L0)

1 S is an abelian k-category

2 Obj S is a set.

3 T : S → Rep k is a k-additive faithful exact functor.

4 ⊗̂ : S ×S → S is a functor which is k-linear in each variable, and

T ◦ ⊗̂ = ⊗ ◦ (T × T ).

5 ⊗̂ is associative, preserving T , in some sense

6 ⊗̂ is commutative, preserving T , in the above sense

7 There is an object L0 of S , and an isomorphism ϕ : K → TL0, such
that L0 is an identity object of S , preserving T .

8 For every object L of S such that TL has dimension equal to one,
there is an object L−1 such that L⊗̂L−1 is isomorphic to L0.
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F acts like a forgetful functor (of a Tannaka category)

Proposition 6

The followings are true for F : RepG→ S (X)

1 F is a k-additive exact functor,

2 F ◦ ⊗̂ = ⊗ ◦ (F × F ),

3 The obvious statements parallel to C 5, C 6, C 7; in particular,
FL0 = OX , where L0 is the trivial representation, and finally,

4 If rkV = n, then FV is locally free of rank n; in particular, F is
faithful.

The main result of this part is the following.

Proposition 7

There is a bijective correspondence between {G-torsors on X} and
{functors F : RepG→ S (X) such that F1 to F4 hold}.
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Torsor associated with a given fuctor

From now on, F will denote a functor where F1 to F4 hold.

We would like
to associate with it a G-torsor P .

Lemma 8

There is a unique functor F : Rep′G→ S (X) (taking direct limit), such
that

1 The statement F1, F2, F3 hold for F .

2 F |RepG = F

3 FV is flat for all V , and faithfully flat if V 6= 0, and

4 F preserves direct limit

We will put F = F .
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Torsor associated with a given fuctor

Lemma 9

F induces a functor from affine G-schemes to affine X-schemes.

Proof.

Let Y = SpecA be a scheme on which G operates, m : A⊗k A→ A be
the multiplication map on A. Since A is a k-algebra with identity, by F2
and F3, FA is a commutative associative sheaf of OX -algebra with
identity. ⇒ There is an affine morphism j : Z → X such that j∗(OZ) is
isomorphic to FA as a sheaf of OX -algebras. We shall denote Z by FY
from now on.
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Frame Title

Definition 10

Let G operate on itself by the left. Put P (F ) = FG, and let
j : P (F )→ X be the canonical morphism. Denote P (F ) by P .

Lemma 11

P is a G-torsors on X.

Proof.

Recall that we need to show the followings:

1 j is a surjective flat affine morphism,

2 Φ : P ×G→ P defines an action of G on P such that j ◦ Φ = j ◦ p1
3 Ψ : P ×G→ P ×X P by Ψ = (p1,Φ) is an isomorphism.
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P is a G-torsor

The first condition holds because j∗(OP ) is faithfully flat, which in turn
follows from

Lemma 12

The unique functor F : Rep′G→ S (X) verifies

1 The statement F1, F2, F3 hold for F .

2 F |RepG = F

3 FV is flat for all V , and faithfully flat if V 6= 0, and

4 F preserves direct limit

Lemma 13

If Y and Z are schemes on which G operates, F (Y × Z) = FY ×X FZ.
Furthermore, if G acts trivially on Y , then FY = X × Y .
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P is a G-torsor

Denote by G′ the same scheme as G, equipped with trivial action of G.
Let

ϕ : G×G′ → G, (x, y) 7→ xy

ψ : G×G→ G×G, (x, y) 7→ (x, ϕ(x, y))

Taking F , one obtains:

Φ = Fϕ : P ×G→ P

Ψ = Fψ : P ×G→ P ×X P.

The rest is straightforward to check.
Finally, given a functor F : RepG→ S (X), we would like to show that F
is the functor naturally associated to P , that is:

Proposition 14

F = F (P ).
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G-torsors and F -functors

Proposition 15

There is a bijective correspondence between {G-torsors on X} and
{functors F : RepG→ S (X) such that F1 to F4 hold}. Furthermore

1 Let f : Y → X be a morphism and assume that F : RepG→ S (X)
satisfies F1 to F4. Then F1 to F4 hold for f∗ ◦ F also, and
P (f∗ ◦ F ) = f∗(P (F )).

2 Let X = Spec k, and F : RepG→ Rep k the forgetful functor. Then
P (F ) = G.

3 Let ϕ : H → G be a morphism of affine group schemes. Let P be a
H-torsor on X and P ′ the quotient of P ×G by H. Let
Rϕ : RepG→ RepH be the restriction functor. Then
F (P ) ◦Rϕ = F (P ′).
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Isomorphism classes of vector bundles

X be a complete connected reduced k-schemes, where k is a perfect field.

Let Vect(X) denote the set of isomorphism classes, [V ], of vector bundles
V , on X. Then Vect(X) has the operations:

1 [V ] + [V ′] = [V ⊕ V ′], and

2 [V ] · [V ′] = [V ⊗ V ′].
⇒ Given f ∈ N[x], f(V ) makes sense.

Example 16

If f(x) = 1 + 2x3, then

f(V ) = 1⊕ V ⊗3 ⊕ V ⊗3.
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Finite vector bundle

Definition 17

An object E of VectX is finite if there exists f and g in N[x] with f 6= g
and f(E) ∼= g(E).

Recall: The Krull-Schmidt theorem holds for VectX (Atiyah). That is,
every object of VectX decomposes as a direct sum of indecomposable
objects, and this decomposition is unique up to isomorphisms.
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Finite vector bundle

An object E of VectX is finite if and only if the set of the
indecomposable components of all the powers E⊗n is finite. Hence,

Lemma 18

1 V1, V2 finite ⇒ V1 ⊕ V2, V1 ⊗ V2, V ∗1 finite.

2 V1 ⊕ V2 finite ⇒ V1 finite.

3 A line bundle L is finite ⇐⇒ L⊗m is isomorphic to OX for some
positive integer m (Kummer order m torsor).
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Semistable vector bundle

Definition 19

A slope of a holomorphic vector bundle W over a nonsingular algebraic
curve (or over a Riemann surface) is a rational number
µ(W ) := deg(W )/ rk(W ). A bundle W is stable if and only if

µ(V ) < µ(W )

for all proper non-zero subbundles V of W and is semistable if

µ(V ) ≤ µ(W ).
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Semistable vector bundle

Definition 20

A vector bundle on X is semistable if and only if it is semistable of
degree zero restricted to each curve in X.

Proposition 21

Any finite vector bundle V on a smooth projective curve X is semistable
of degree zero.

Corollary 22

A finite vector bundle on X is semistable.
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Essentially finite vector bundles

Lemma 23

1 If V is a semistable vector bundle on X, and W is either a subbundle
or a quotient bundle of V , such that W |Y has degree zero for each
curve Y in X, then W is semistable.

2 The full subcategory S (X) with objects as semistable vector bundles
on X is an abelian category.

Definition 24

Denote by SS(X) the full subcategory of S (X) with objects as semistable
vector bundles.Let F be the collection of finite vector bundles, a subset of
Obj SS(X), and let EF(X) be the full subcategory of SS(X) with
Obj EF(X) = F . The objects of EF(X) will be called essentially finite
vector bundle.
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or a quotient bundle of V , such that W |Y has degree zero for each
curve Y in X, then W is semistable.

2 The full subcategory S (X) with objects as semistable vector bundles
on X is an abelian category.
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Essentially finite vector bundles is an abelian category

F = {W ∈ Obj SS(X) : ∃Pi finite, 1 ≤ i ≤ t;V1, V2 ∈ Obj SS(X)

s.t. V1 ⊂ V2 ⊂ ⊕t
i=1Pi, and W ∼= V2/V1}

Proposition 25

1 If V is an essentially finite vector bundle on X, and W is either a
subbundle or a quotient bundle of V such that W |Y has degree zero
for each curve Y in X, then W is essentially finite.

2 EF(X) is an abelian k-category

3 If V1 and V2 are essentially finite, so are V1 ⊗ V2 and V ∗.
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Nori’s fundamental group

Fix a k-rational point x of X, denote by x∗ : S (X)→ Rep k the functor
which associates to a sheaf on X its fibre at the point x. Note that x∗ is
faithful and exact when restricted to the category of semistable bundles.

It is now straightforward to see that (EF(X),⊗, x∗,OX) (category, tensor,
forgetful, trivial) is a Tannaka category!
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Tannaka category (S , ⊗̂, T, L0)

1 S is an abelian k-category

2 Obj S is a set.

3 T : S → Rep k is a k-additive faithful exact functor.

4 ⊗̂ : S ×S → S is a functor which is k-linear in each variable, and

T ◦ ⊗̂ = ⊗ ◦ (T × T ).

5 ⊗̂ is associative, preserving T , in the some sense

6 ⊗̂ is commutative, preserving T , in the above sense

7 There is an object L0 of S , and an isomorphism ϕ : K → TL0, such
that L0 is an identity object of S , preserving T .

8 For every object L of S such that TL has dimension equal to one,
there is an object L−1 such that L⊗̂L−1 is isomorphic to L0.
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Nori’s fundamental group

Recall the key result of Tannaka categories.

Theorem 26

Any Tannaka category is the category of finite-dimensional left
represenations of an affine group scheme G, and this sets up a bijective
correspondence between affine group schemes and Tannaka categories.

Definition 27

There is a group scheme G such that RepG can be identified with EF(X)
in such a way that x∗ becomes the forgetful functor. We shall call the
group scheme G above the Nori’s fundamental group scheme of X at
x, and denote it by πN1 (X,x).
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Nori’s fundamental group

Corollary 28

The functor RepπN1 (X,x)→ (EF(X),⊗, x∗,OX) is an equivalence of
Tannaka categories.

Proposition 29

Let G be a finite group scheme and j : X ′ → X a G-torsor. Then for any
functor F (X ′) : RepG→ S (X), F (X ′)V is always an essentially finite
vector bundle.

We would like to prove that.

Theorem 30

For any finite group scheme G over k, there is a functorial correspondence
between homomorphism πN1 (X,x)→ G and isomorphism classes of
G-torsors P → X, with a fixed rational point p ∈ P (k) over x.
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The universal covering scheme

For a subset S of Obj EF(X), let S∗ = {V ∗ : V ∈ S}. Let S1 = S ∪ S∗,
and S2 = {V1 ⊗ V2 . . .⊗ Vm : Vi ∈ S1}.

Let EF(X,S) := S2. As before,
this determines an affine group scheme called πN1 (X,S, x), such that

GS : EF(X,S)→ RepπN1 (X,S, x)

is an equivalence. Let FS := G−1S ; i.e., a functor RepπN1 (X,S, x) to
S (X) such that the composite x∗ · FS is the forgetful functor. By
Proposition 15, there is a πN1 (X,S, x)-torsor X̃S on X such that
FS = F (X̃S). By Proposition 15 (1), the fuctor x∗ · FS and F (X̃S |x)
coincide, and by Proposition 15 (2), there is an isomorphism of X̃S |x with
G (as G-spaces), equivalent to specifying a rational point x̃S of X̃S |x.

In short: S ⊂ ObjEF (X) gives πN1 (X,S, x), X̃S , GS , FS , x̃S . In fact,
πN1 (X,S, x) plays the role of a quotient of πN1 (X,x).
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Nori’s fundamental group and torsor

For S = Obj EF(X), we denote X̃S , GS , FS , x̃S by X̃,G, F, x̃.

Definition 31

The πN1 (X,x)-torsor X̃ is the universal covering scheme of X.

The universal property is given by

Proposition 32

Let (X ′, G, u) be a triple such that X ′ is a G-torsor on X, u a k-rational
point in the fibre of X ′ over x, and G is a finite group scheme. There is a
unique homomorphism ρ : πN1 (X,x)→ G such that

1 X ′ is induced from X̃ by ρ, and

2 the image of x̃ in X ′ is u.

Consequently, there is a bijective correspondence of the above triples with
homomorphisms ρ : πN1 (X,x)→ G.
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Proof of Proposition 32

Theorem 33

Any homomorphism of Tannaka categories from (RepG, ⊗̂, Tk, L0) to
(RepH, ⊗̂, Tk, L0) is induced by a unique homomorphism (of affine group
schemes) from H to G.

Key idea to prove Proposition 32.

Construct a morphism of Tannaka categories

RepG→ RepπN1 (X,x),

which maps to the information unique to (X ′, G, u). That morphism, by
Theorem 33, induced by a homomorphism ρ : πN1 (X,x)→ G, which is
analogous to the quotient of étale fundamental group.
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Proof of Proposition 32

Sketch of proof.

Recall that F (X ′) is a functor RepG→ EF(X).

Now, EF(X) is
identified with RepπN1 (X,x) in such a way that the forgetful functor Tk
on RepπN1 (X,x) is equivalent to the functor x∗ from EF(X) to Rep k.
Thus, the composite Tk · F (X ′) is simply x∗ · F (X ′) = F (X ′|x), by
Proposition 15 (1). k-point u gives ϕ : G→ X ′|x unique isomorphism of
torsors s.t. ϕ(1) = u. By Proposition 15 (2), ϕ gives an equivalence of
F (X ′|x) with the forgetful functor RepG→ Rep k. ⇒ a morphism (of
Tannaka categories) RepG→ RepπN1 (X,x), which is induced by a
homomorphism ρ : πN1 (X,x)→ G. Proposition 15 (3) ⇒ X ′ is induced
from X̃ by ρ, and the image of x̃ in X ′ is u.
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identified with RepπN1 (X,x) in such a way that the forgetful functor Tk
on RepπN1 (X,x) is equivalent to the functor x∗ from EF(X) to Rep k.
Thus, the composite Tk · F (X ′) is simply x∗ · F (X ′) = F (X ′|x), by
Proposition 15 (1). k-point u gives ϕ : G→ X ′|x unique isomorphism of
torsors s.t. ϕ(1) = u. By Proposition 15 (2), ϕ gives an equivalence of
F (X ′|x) with the forgetful functor RepG→ Rep k. ⇒ a morphism (of
Tannaka categories) RepG→ RepπN1 (X,x),

which is induced by a
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Proposition 15

Proposition 34 (Proposition 15)

There is a bijective correspondence between G-torsors on X and functors
F : RepG→ S (X) such that F1 to F4 hold. Furthermore

1 Let f : Y → X be a morphism and assume that F : RepG→ S (X)
satisfies F1 to F4. Then F1 to F4 hold for f∗ ◦ F also, and
P (f∗ ◦ F ) = f∗(P (F )).

2 Let X = Spec k, and F : RepG→ Rep k the forgetful functor. Then
P (F ) = G.

3 Let ϕ : H → G be a morphism of affine group schemes. Let P be a
H-torsor on X and P ′ the quotient of P ×G by H. Let
Rϕ : RepG→ RepH be the restriction functor. Then
F (P ) ◦Rϕ = F (P ′).
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Concluding Remarks

1 With S as before, then, for any representation W of πN1 (X,S, x),
there exists f, g ∈ N[x], with f 6= g and f(W ) ∼= g(W ).

2 The structure of the fundamental group scheme:
1 For S ⊂ Q ⊂ Obj EF(X),

ρQS : πN
1 (X,Q, x)→ πN

1 (X,S, x) is surjective.

2 πN
1 (X,x) is the inverse limit of πN

1 (X,S, x), where S runs through all
finite collections of finite vector bundles on X.
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Summary

1 {G-torsors on X} ↔ {functors RepG→ S (X) verifying certain
conditions.}

2 There is a functorial correspondence between homomorphism
πN1 (X,x)→ G and isomorphism classes of G-torsors P → X with a
fixed rational point p ∈ P (k) over x.
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Fin
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