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Some important definitions and results

Let k be a field, X be a scheme over k, G be a group scheme over k.

Definition

A G-torsor (principal G-bundle) is a scheme T over X, T → X finite,
faithfully flat, with a G-action such that G×k T ' T ×X T .

Given an OX -module F and a polynomial f(x) = anx
n + . . .+ a0 with ai ∈ N,

we define:

f(F) =

n⊕
i=0

(F⊗i)⊕ai .

Definition

A locally free sheaf E is called finite if there exist polynomials f 6= g with
non-negative integer coefficients such that f(E) = g(E).

Remark. We use the term ”locally free sheaf” for ’locally free sheaf of finite
rank’.
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Definition

A locally free sheaf is called indecomposable if it is not isomorphic to a direct
sum of nonzero locally free sheaves.

For a locally free sheaf E , denote by I(E) the set of isomorphism classes of
indecomposable locally free sheaves E ′ for which there exists a locally free E”
with E ∼= E ′ ⊕ E”.

Proposition 1

For X is proper over k, the set I(E) is finite.

Denote by S(E) the union of finite sets I(E⊗i) for all i > 0.

Proposition 2

X is proper over k. A locally free sheaf E is finite iff S(E) is a finite set.

Corollary

The category of finite sheaves is closed under direct sums, direct summands,
tensor products and duals.
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Now the category of finite locally free sheaves on a proper X is a rigid tensor
category with unit OX . If X has a k-rational point x : Spec k → X, the functor

FShX → FVectk, E 7→ x∗E

is a faithful tensor functor to the category of finite dimensional k-vector spaces
FVectk.

Definition

C is an integral proper normal curve over a field k, E is a locally free sheaf of
rank r on C. The slope of E is defined as

µ(E) :=
d

r
,

where d is the degree of the divisor corresponding to the determinant sheaf
det(E).

Definition

E is semistable if µ(E ′) ≤ µ(E) for all nonzero subbundles E ′ of E .
Equivalently, E is semistable if µ(E”) ≥ µ(E) for all nonzero quotient bundles
E” of E .
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Proposition 3

A finite locally free sheaf E on an integral proper normal curve is semistable of
slope 0.

For higher dimension:

Definition

Let X be a proper integral scheme over a field k. A locally free sheaf E on X
is semistable of slope 0 if for all integral closed subschemes C of dimension 1
with normalization C̃ → C the pullback of E via the composition C̃ → C → X
is a semistable sheaf of slope 0 on the proper normal curve C̃.

Definition

A locally free sheaf E on X is called essentially finite if it is semistable of
slope 0 and is a subquotient of a finite locally free sheaf.
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Definition of fundamental group scheme

Proposition 4

Assume moreover that X has a k-rational point x : Spec k → X. Then the full
subcategory EFX of the category of locally free sheaves spanned by essentially
finite sheaves, together with the usual tensor product of sheaves and the
functor E 7→ x∗E , is a neutral Tannakian category.

Definition (Fundamental group scheme)

X is an integral proper scheme over a field k and x : Spec k → X is a
k-rational point of X. The fundamental group scheme of X with base point
x is the affine k-group scheme whose representation category is equivalent to
the neutral Tannakian category EFX with fiber functor x∗. We denote it by
πN

1 (X,x).
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Interpretation of isomorphism RepπN
1 (X,x) ' EFX

I Here we consider G an affine k-group scheme; f : T → X a G-torsor. We
have an isomorphism of QCohX with the category of G-sheaves on T :

F 7→ f∗F .

Every representation V of G corresponds to a G-sheaf on T . Taking
G-invariants, we obtain a sheaf on X, denoted by F (T )V , and hence a
functor

F (T ) : RepG → QCohX .

I F (P ) has the properties:
1. A k-linear exact tensor functor,
2. If rankV = n, F (T )V is locally free of rank n; in particular, F (T ) is

faithful.

I Every functor F : RepG → QCohX satisfying above conditions has the
form F = F (T ), T is some G-torsor.

I When G is finite, F (T ) : RepG → EFX ↪→ QCohX .
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Fundamental group scheme as the limit of finite group schemes

Proposition 5

The group scheme πN
1 (X,x) is an inverse limit of finite k-group schemes.

Proof.

I For C is an abelian k-linear category with finite direct sums and ObC is a
set; S is a subset of objects of C, denote by S̄ the set:

W ∈ S̄ ⇐⇒W ∈ Ob C : ∃Pi ∈ S, 1 ≤ i ≤ t and U, V ∈ Ob C

such that U ⊆ V ⊆
t⊕
i=1

Pi and W ∼= V/U

Denote by C(S) the full subcategory of C with Ob C(S) = S. S is called
to generate C if Ob C = S̄.
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I A is a finite set of finite locally free sheaves on X. Denote:

A∗ = {F ∗ : F ∈ A}
A1 = A ∪A∗

A2 = {F1 ⊗ . . .⊗ Fm : Fi ∈ S1}.

Let Ob EFX(A) = A2. EFX is closed under tensor products and duals,
therefore, EFX(A) is the full Tannakian subcategory of EFX , denoted by
〈A〉⊗.

I There exists a group scheme π(X,A, x) such that there is an equivalence
of categories:

〈A〉⊗ ' Repπ(X,A,x)

Let E be the direct sum of all elements of A and its duals. Then E is a
finite locally free sheaf and S(E) is finite. Note that S(E) generates the
category 〈A〉⊗, by Tannaka duality, π(X,A, x) is a finite group scheme.

I Note that EFX is the direct limit of the full Tannakian subcategories
〈A〉⊗, therefore the fundamental group scheme πN

1 (X,x) is the inverse
limit of finite k-group schemes π(X,A, x).
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Remarks

I If A is a subset of B, there is a functor 〈A〉⊗ → 〈B〉⊗, which determines a
natural surjective homomorphism

ρBA : π(X,B, x)→ π(X,A, x).

I When char k = 0, every essentially finite locally free sheaf is finite. Indeed,
by Cartier’s theorem, because char k = 0, every finite group scheme over k
is etale. On the other hand, for a finite etale group scheme G the regular
representation k[G] is semisimple, hence RepG is a semisimple category.
Applying this to the category 〈A〉⊗ which is equivalent to RepG, G finite,
we see that each object is the direct sum of object in S(E), and therefore
a finite locally free sheaf. Recall E is the direct sum of all elements in A
and its duals.
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Comparison with Grothendieck’s group (using Tannaka duality)

Definition

Let FTors(X,x) be the category in which:

I Objects: (T,G, t), where G is a finite group scheme over k, T is a
G-torsor over X, t is a k-point in the fiber of T above x.

I Morphisms: (T,G, t)→ (T ′, G′, t′) in this category is a pair of morphisms
φ : G→ G′, ψ : T → T ′ such that
• ψ is compatible with the G-action on T and G′-action on T ′:

G× T T

G′ × T ′ T ′

(φ,ψ) ψ

• ψ(t) = t′.

Theorem 1

There is an equivalence of categories between FTors(X,x) and the category of
finite group schemes G over k equipped with a k-group scheme homomorphism

πN
1 (X,x)→ G.
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We need the special case of theorem stating the equivalence of torsors and
(nonneutral) fiber functors (Theorem 3.2, Deligne-Milne 2012):

Lemma

Let G be a finite k-group scheme. Consider the neutral Tannakian category
RepG with the fiber functor ω : RepG → FVectk.
Given a non-neutral fiber functor η : RepG → LFShX , LFShX is the category
of locally free sheaves on X. Then the functor of SchX :

Hom⊗(η, ω) : Y 7→ Hom⊗(η ⊗OX OY , ω ⊗k OY )

is representable by a G-torsor over X.

Remark. Denote the coherent sheaf G := η(P )∗⊗End(P ) ω(P ), P is the regular
representation of G. Then Hom⊗(η, ω) is represented by SpecG, the scheme
associated to the sheaf G, moreover SpecG → X is an affine morphism.
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Proof of the theorem

I A G-torsor T over X corresponds to a finite locally free sheaf:

ET := f∗OT , f : T → X the structure morphism.

Remark. E⊗2
T
∼= E⊕nT , where n is the order of G(k̄), k̄ is an algebraic

closure of k. Hence E is finite.

I The full Tannakian subcategory 〈ET 〉⊗ is equivalent to the category RepG
for some finite group scheme G. Consider the fiber functor on RepG:

RepG
∼−→ 〈ET 〉⊗

x∗−→ FVectk,

where x∗ is considered as the restriction of the fiber functor E → x∗E of
EFX . The inclusion functor 〈ET 〉⊗ → EFX corresponds to a group
scheme homomorphism πN

1 (X,x)→ G.
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Proof of the theorem

Conversely,

I A homomorphism φ : πN
1 (X,x)→ G induces a tensor functor

φ∗ : RepG → EFX . Consider the non-neutral fiber functor and the neutral
fiber functor:

η : RepG
φ∗
−−→ EFX → LFShX ,

ω : RepG
φ∗
−−→ EFX

x∗−→ FVectk,

where LFShX is the category of locally free sheaves on X.

I Applying the lemma we obtain a G-torsor Tφ over X. However we only
obtain X when applying the lemma to the forgetful fiber functor

F : RepG → FVectk.

Hence we have to prove there exists an isomorphism ω ∼= F .

I We will prove that this existence is equivalent to the existence of a k-point
in the fiber of T above x.
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Existence of the isomorphism ω ∼= F ⇔ existence of a k-point in the fiber of T
above x:

I ”⇒”: Recall Hom⊗(η, ω) is represented by SpecG, G is the coherent
sheaf η(P )∗ ⊗End(P ) ω(P ), P is the regular representation of G. Consider
the fiber functor

x∗ : ShX → Vectk,F 7→ x∗F .

We can pick a point of Spec(x∗G), which is a k-point of the scheme
Hom⊗(η, ω). Therefore we obtain a k-point of the scheme
Hom⊗(η, F ) ∼= T above x from the isomorphism ω ∼= F .

I ”⇐”: From a k-point in the fiber of T above x, we obtain a trivialization
of the G-torsor Tx over k and hence we have the isomorphism ω ∼= F .
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Comparison theorem

Theorem 2

Assume k is algebraically closed and fix a k-valued geometric point x = x̄ of
X. The Grothendieck’s geometric fundamental group π1(X, x̄) is canonically
isomorphic to the group of k-points of the inverse limit of quotients of
πN

1 (X,x) that are finite etale k-group schemes.

Proof.

I We have an equivalence: a torsor under finite etale k-group scheme G
⇐⇒ a finite etale Galois cover with Galois group G(k).

Lemma
I (Szamuely, Prop 5.2.9) X connected scheme, f : P → X affine surjective. Then
f is a finite etale cover iff ∃ψ : Q→ X finite, locally free, surjective such that
P ×X Q→ Q is a trivial cover.

I (Szamuely, Prop 5.3.13) X connected scheme, G→ X a finite etale group
scheme, T is an X-scheme equipped a G-action. Then T is a G-torsor iff
∃U → X finite, locally free, surjective such that T ×X U → U is isomorphic to
the trivial torsor U ×X G→ U .
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I (Szamuely, Prop 5.4.6) From the construction of π1(X, x̄), finite etale
Galois covers of X forms an inverse system (Pα, φαβ), where
• Pα → X is a finite etale cover,
• A point pα ∈ FibX(Pα),
• Morphisms φαβ : Pβ → Pα such that φαβ(pβ) = pα.

Hence π1(X, x̄) is the fundamental group of this inverse system.

I We proved: a Gα-torsor Pα determines an object of EFX ; an equivalence
of categories:

〈Pα〉⊗ ' RepGα , where 〈Pα〉⊗ ⊂ EFX full Tannakian subcategory.

Denote

Fα : RepGα → Vectk the neutral fiber functor given by the forgetful functor,

ηα : RepGα
∼−→ 〈Pα〉⊗ → EFX → LFX the non-neutral fiber functor.

By the above lemma, Hom⊗(ηα, Fα) is represented by a Gα-torsor over
X and we have an isomorphism of Pα and this torsor. Fix points pα as
above, the functors Hom⊗(ηα, Fα) forms an inverse system.

I Passing to automorphisms, we have an inverse system of the Gα whose
lim←−Gα is an affine k-group scheme, and (lim←−Gα)(k) = π1(X, x̄). But

lim←−Gα = πN
1 (X,x).
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Corollary

k is algebraically closed of characteristic 0, there is a canonical isomorphism

πN
1 (X,x)(k)

∼−→ π1(X, x̄)

for each k-geometric point x = x̄ of X.

Proof. This corollary follows from

I The comparison theorem,

I Nori’s fundamental group scheme is an inverse limit of finite k-group
schemes,

I In characteristic 0, all finite group schemes are etale.
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Comparison with Grothendieck’s group (using Nori’s direct construction)

In this section, we always assume char k = p > 0.

Recall

Let FTors(X,x) be the category in which:

I Objects: (T,G, t), where G is a finite group scheme over k, T is a
G-torsor over X, t is a k-point in the fiber of T above x.

I Morphisms: (T,G, t)→ (T ′, G′, t′) in this category is a pair of morphisms
ρ : G→ G′, f : T → T ′ such that
• f is compatible with the G-action on T and G′-action on T ′.
• f(t) = t′.

We denote by PTors(X,x) the category of triples as above except that we allow
G to be a profinite group scheme.

Definition

A profinite group πN
1 (X,x) is a fundamental group scheme of X if there

exists a triple (T̃ , πN
1 (X,x), t̃) in PTors(X,x) such that for every object

(T,G, t) there is a unique morphism

(T̃ , πN
1 (X,x), t̃)→ (T,G, t).

We call T̃ the universal torsor of X.
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Existence of fundamental group schemes

Definition

FTors(X,x) is called to be closed under finite products if

(T1 ×T T2, G1 ×G G2, t1 × t2) = (T×, G×, t×)

is an object of FTors(X,x) for every pair of morphisms:

(fi, ρi) : (Ti, Gi, ti)→ (T,G, t), i = 1, 2.

Proposition 6

1. X has a fundamental group scheme iff FTors(X,x) is closed under finite
products.

2. If X is connected and reduced, it has a fundamental group scheme.
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Important result

Proposition 7

With notations as above, T× is a torsor over a closed subscheme Y of X such
that x ∈ Y .

Proof. We prove the following claims:

1. G× × T× ' T× ×X T×.
I Denote T = T1 ×X T2, T is a G = G1 ×G2-torsor and we have a map
T× → T equivariant with respect to G× → G.

I Let pi be the composition:

pi : T → Ti → T.

By Yoneda lemma, there exists a unique morphism z : T → G such that
p1 = z · p2.

I Hence if ε : Spec k → G is the identity, we have T× → T is the closed

subscheme z−1(ε). Hence the isomorphism G× T ∼−→ T ×X T identifies
closed subschemes G× × T× and T× ×X T×.

G× T T ×X T

G×G G×G

id
G
×z

∼

z×z

h
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closed subschemes G× × T× and T× ×X T×.
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2. There exists a scheme Y and a morphism T× → Y making T× a
G×-torsor.

Definition
Let G be a group scheme acting on the left on T .
I q : T → Y is a categorical quotient if for every T → Z is G-invariant, there

exists a unique morphism Z → Y such that

T Y

Z

q

I Denote G \ T the space of orbits with the quotient topology. Taking the
G-invariants of OT we obtain the structure sheaf OGT of G \ T ; the canonical
projection T → G \ T is a morphism of ringed spaces.

I The G-action is called free if G× T → T × T, (g, t) 7→ (g, gt) is a closed
immersion.

Proposition 8

G is an affine group scheme. T is a scheme equipped a G-action. Suppose the
orbit of any point is contained in an affine open set of T .
I If Y = G \ T is a scheme, hence T → Y is a categorical quotient.
I If the action is free then q is flat and q : T → Y is a G-torsor.
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2. There exists a scheme Y and a morphism T× → Y making T× a
G×-torsor.

I T× → X is G×-invariant and affine. Indeed, for U ⊂ X affine, its inverse
image in T× is open, affine and G×-invariant. Hence the orbit of any point
is contained in an affine open subset of T×.

I T× ×X T× → T× × T× is a closed immersion and
G× × T× → T× ×X T× is an isomorphism. Since T× → X is
G×-invariant and T× → Y is a categorical quotient, we obtain a morphism
Y → X. Hence the action is free.

3. Y → X is a closed immersion.
I T× → X is finite, hence Y → X is finite.

Lemma
The finite morphism Y → X is a closed immersion iff ∆ : Y → Y ×X Y is an
isomorphism.

It suffices to check that ∆ is an isomorphism. Consider the commutative
diagram:

G× × T× T× ×X T×

Y Y ×X Y

∼

∆
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3. Y → X is a closed immersion.

I T× ×X T× → Y ×X Y is a G× ×G×-torsor. Consider the action of
G× ×G× on G× × T×:

(g1, g2)× (g, t) 7→ (g2gg
−1
1 , g1t).

This action makes G× × T× a torsor over Y : G× × T× → Y is faithfully
flat and affine because T× → Y is faithfully flat and affine; there is an
isomorphism:

(G× ×G×)× (G× × T×) ' (G× × T×)×Y (G× × T×).

I G× × T× → T× ×X T× is G× ×G×-equivariant, hence ∆ : Y → Y ×X Y
is an isomorphism.

4. t ∈ Y because t1 × t2 is a point of T× over x.
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Proof of the first statement

Proposition 9

X has a fundamental group scheme iff FTors(X,x) is closed under finite
products.

Proof.

I ”⇒” Suppose (T̃ , πN
1 (X,x), t̃) is an initial object of PTors(X,x). Recall

the pair of morphisms

(fi, ρi) : (Ti, Gi, ti)→ (T,G, t), i = 1, 2

and T× = T1 ×T T2 the torsor over a closed subscheme Y → X. By
definition, there exists

(ri, si) : (T̃ , πN
1 (X,x), t̃)→ (Ti, Gi, ti), i = 1, 2,

by uniqueness,

(f1 ◦ r1, ρ1 ◦ s1) = (f2 ◦ r2, ρ2 ◦ s2) : (T̃ , πN
1 (X,x), t̃)→ (T,G, t).

Recall T = T1 ×X T2, the morphism T̃ → T factors through T× ↪→ T ,
hence Y = X and T× is a torsor over X.



Proof of the first statement

Proposition 9

X has a fundamental group scheme iff FTors(X,x) is closed under finite
products.

Proof.

I ”⇒” Suppose (T̃ , πN
1 (X,x), t̃) is an initial object of PTors(X,x). Recall

the pair of morphisms

(fi, ρi) : (Ti, Gi, ti)→ (T,G, t), i = 1, 2

and T× = T1 ×T T2 the torsor over a closed subscheme Y → X.

By
definition, there exists

(ri, si) : (T̃ , πN
1 (X,x), t̃)→ (Ti, Gi, ti), i = 1, 2,

by uniqueness,

(f1 ◦ r1, ρ1 ◦ s1) = (f2 ◦ r2, ρ2 ◦ s2) : (T̃ , πN
1 (X,x), t̃)→ (T,G, t).

Recall T = T1 ×X T2, the morphism T̃ → T factors through T× ↪→ T ,
hence Y = X and T× is a torsor over X.



Proof of the first statement

Proposition 9

X has a fundamental group scheme iff FTors(X,x) is closed under finite
products.

Proof.

I ”⇒” Suppose (T̃ , πN
1 (X,x), t̃) is an initial object of PTors(X,x). Recall

the pair of morphisms

(fi, ρi) : (Ti, Gi, ti)→ (T,G, t), i = 1, 2

and T× = T1 ×T T2 the torsor over a closed subscheme Y → X. By
definition, there exists

(ri, si) : (T̃ , πN
1 (X,x), t̃)→ (Ti, Gi, ti), i = 1, 2,

by uniqueness,

(f1 ◦ r1, ρ1 ◦ s1) = (f2 ◦ r2, ρ2 ◦ s2) : (T̃ , πN
1 (X,x), t̃)→ (T,G, t).

Recall T = T1 ×X T2, the morphism T̃ → T factors through T× ↪→ T ,
hence Y = X and T× is a torsor over X.



Proof of the first statement

Proposition 9

X has a fundamental group scheme iff FTors(X,x) is closed under finite
products.

Proof.

I ”⇒” Suppose (T̃ , πN
1 (X,x), t̃) is an initial object of PTors(X,x). Recall

the pair of morphisms

(fi, ρi) : (Ti, Gi, ti)→ (T,G, t), i = 1, 2

and T× = T1 ×T T2 the torsor over a closed subscheme Y → X. By
definition, there exists

(ri, si) : (T̃ , πN
1 (X,x), t̃)→ (Ti, Gi, ti), i = 1, 2,

by uniqueness,

(f1 ◦ r1, ρ1 ◦ s1) = (f2 ◦ r2, ρ2 ◦ s2) : (T̃ , πN
1 (X,x), t̃)→ (T,G, t).

Recall T = T1 ×X T2, the morphism T̃ → T factors through T× ↪→ T ,
hence Y = X and T× is a torsor over X.



I ”⇐” Suppose FTors(X,x) is closed under finite products.

FTors(X,x)
is cofiltered:
• FTors(X,x) is nonempty, X → X is a torsor.
• If T1, T2 are finite torsors, T1 ×X T2 is finite torsor and we have morphisms
T1 ×X T2 → T1, T1 ×X T2 → T2.

• For two morphisms of torsors f, g : T ′ → T , two compositions
f ◦ p1, g ◦ p2 : T ′ ×T T ′ → T ′ → T are equal.

We can take the inverse limit in FTors(X,x):

T̃ = lim←−T, G̃ = lim←−G, t̃ = lim←− t.

In details:
• O = lim−→O(G) is the Hopf algebra which is the union of its finite

dimensional Hopf subalgebras. Hence G̃ = SpecO is the inverse limit of
finite group schemes.

• For ET = f∗OT , f : T → X morphism, denote E = lim−→ET is a locally free

sheaf (of OX -algebras), thus there is a flat affine morphism f̃ : T̃ → X

such that T̃ = Spec E.

From isomorphisms G× T ∼−→ T ×X T , we have isomorphisms of
coordinate rings:

E(T )⊗OX E(T )
∼−→ O(G)⊗k E(T ),

taking limits,
E ⊗OX E

∼−→ O ⊗k E ,

hence G̃× T̃ → T̃ ×X T̃ is an isomorphism.
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Proof of the second statement

Proposition 10

If X is connected and reduced, it has a fundamental group scheme.

Proof.

I We have to show that FTors(X,x) is closed under finite products.
Consider a pair of morphisms

(fi, ρi) : (Ti, Gi, ti)→ (T,G, t), i = 1, 2

and T× = T1 ×T T2 the torsor over a closed subscheme Y → X and we
have z : T = T1 ×X T2 → G such that T× = z−1(ε), ε : Spec k → G is
the identity.

I G finite, hence the connected component of identity G◦ is both open and
closed, hence z−1(G◦) is open and closed.



Proof of the second statement

Proposition 10

If X is connected and reduced, it has a fundamental group scheme.

Proof.

I We have to show that FTors(X,x) is closed under finite products.
Consider a pair of morphisms

(fi, ρi) : (Ti, Gi, ti)→ (T,G, t), i = 1, 2

and T× = T1 ×T T2 the torsor over a closed subscheme Y → X and we
have z : T = T1 ×X T2 → G such that T× = z−1(ε), ε : Spec k → G is
the identity.

I G finite, hence the connected component of identity G◦ is both open and
closed, hence z−1(G◦) is open and closed.



Proof of the second statement

Proposition 10

If X is connected and reduced, it has a fundamental group scheme.

Proof.

I We have to show that FTors(X,x) is closed under finite products.
Consider a pair of morphisms

(fi, ρi) : (Ti, Gi, ti)→ (T,G, t), i = 1, 2

and T× = T1 ×T T2 the torsor over a closed subscheme Y → X and we
have z : T = T1 ×X T2 → G such that T× = z−1(ε), ε : Spec k → G is
the identity.

I G finite, hence the connected component of identity G◦ is both open and
closed, hence z−1(G◦) is open and closed.



Lemma

T → X a G-torsor. If G = SpecA is of finite type over k, then T → X is
locally of finite presentation.

Proof of Proposition 10 (cont.)

I G is finite, therefore π : T → X is finite, flat and locally of finite
presentation, by (EGAIV-2, Theorem 2.4.6), π(z−1(G◦)) is open and
closed. This implies π(z−1(G◦)) = X because X is connected and Y is
nonempty. Since G is finite, ε = G◦ and

Y = π(T×) = π(z−1(ε)) = π(z−1(G◦)) = X.

I Y ⊂ X closed subscheme, Y = X as sets, X reduced, hence Y = X.
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Definition

A triple (T,G, t) in FTors(X,x) is called reduced if for any morphism
(T ′, G′, t′)→ (T,G, t), G′ → G is surjective.

Remark. IfX has a fundamental group scheme, (T,G, t) is reduced iff πN
1 (X,x)→

G is surjective.

Proposition 11

X is a complete, connected and reduced k-scheme with a k-point x. Let
(T,G, t) be an object of FTors(X,x). TFAE:

1. (T,G, t) is reduced.

2. The functor F (T ) : RepG → LFShX is fully faithful.

3. Γ(T,OT ) = k.
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Proof of Proposition 11

2⇒ 3 Let f : T → X be a torsor. Then
Γ(T,OT ) = Γ(X, f∗OT ) = Γ(X,F (T )(k[G])), k[G] is the regular
representation of G. This equals the fixed subspace of k[G] under the
G-action, hence it is k.

3⇒ 1 X connected and reduced, thus X has a fundamental group scheme.
There is a morphism

(f, ρ) : (T̃ , πN
1 (X,x), t̃)→ (T,G, t)

If ρ : πN
1 (X,x)→ G is not surjective, imρ is a proper closed

sub-groupscheme H � G. Moreover, the fixed subspace of k[G] under the
πN

1 (X,x)-action corresponds to the coordinate ring O(G/H). But
k ( O(G/H), Γ(T,OT ) = Γ(X,F (T )(k[G])) 
 k, contradiction.

1⇒ 2 X has a fundamental group scheme, therefore ρ : πN
1 (X,x)→ G is

surjective and thus RepG → RepπN
1 (X,x) is fully faithful.

RepπN
1 (X,x) → LFShX is the fiber functor, hence it is fully faithful. Thus

RepG → LFShX is also fully faithful.
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Other properties

I Change of base points (Nori, 1982): if X has fundamental group scheme
at x, for y ∈ X another point, then πN

1 (X, y) exists and

• πN
1 (X, y) is an inner twist of πN

1 (X,x), consequently,

• πN
1 (X,x)×k k̄ ∼= πN

1 (X, y)×k k̄.

• πN
1 (X,x)ab and πN

1 (X, y)ab are isomorphic.

I Base change:
I (Nori, 1982) If X is complete, connected and reduced, L is a separable

algebraic extension of k, then

πN
1 (XL, x) ∼= πN

1 (X,x)×k L

.
I (Mehta, Subramanian, 2002) The general case is false, i.e. for k is

algebraically closed and k′ an arbitrary algebraically closed extension of k.

I Products (Mehta, Subramanian, 2002): if X and Y are complete, reduced
and connected over k algebraically closed, then

πN
1 (X ×k Y, (x, y)) ∼= πN

1 (X,x)×k πN
1 (Y, y).

I (Nori, 1983) X/k is an abelian variety, nX : X → X is the
multiplication-by-n map. Denote Xn = kernX . Then

πN
1 (X, 0) ∼= lim←−Xn.
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Comparison with Grothendieck’s group
(Esnault-Hai-Sun, 2007)

In this slide and the next slide, I will follow the presentation of Prof. Hai in the
conference Algebraic Geometry in East Asia 2008.

I char k = 0, as proved, πN
1 (X,x)×k k ∼= π1(X,x).

I char k = p > 0, the pro-etale quotient of πN
1 (X,x) is isomorphic to

π1(X,x).
I For H finite group scheme:

• The composition Hred → H → Het is isomorphism  H = H◦ oHet.
• The composition H◦ → H → Hloc is not an isomorphism, Hloc is maximal

local quotient.

I For πN
1 (X,x) profinite: Tannaka duality defines

• πN → πet: pro-etale quotient,
• πN → πF: pro-local quotient.
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X/k smooth, char k = 0
The fundamental groupoid scheme (Esnault-Hai, 2008)

I Problem: Construct the fundamental group scheme of scheme that is not
necessarily complete and without the existence of a k-point.

I Idea: Apply the general Tannaka duality to the category FConnX of
finite connections  fundamental groupoid scheme Π(X,x).

I A finite connection (E ,∇) is a locally free sheaf with a flat connection
which satisfies a polynomial equation:

∃f 6= g ∈ N[x] : f((E ,∇)) = g((E ,∇)).

I General Tannaka duality: deal with the non-existence of a k-point, i.e. for
ω non-neutral fiber functor, Aut⊗(ω) is representable by a groupoid
scheme Π over k.

I Advantage: Π(X,x) gives back to the arithmetic fundamental group
π1(X, x̄).
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Other generalizations

I (dos Santos, 2007) For X/k smooth, char k = p > 0, k algebraically
closed, apply Tannaka duality to the category of stratified bundles. A
stratified bundle ”is” a connection with Frobenius descents.

I (Gasbarri, 2003) For X is reduced over Dedekind scheme, Gasbarri
constructed fundamental group scheme and considered representations of
such a fundamental group scheme of:
• A smooth algebraic curve over a p-adic field,
• An arithmetic surface (regular scheme of Krull dimension two with a flat

projective morphism over the spectrum of the ring of integers of a number
field).

Unfortunately, his construction of fundamental group scheme is wrong.
I (Antei, Esmalem, Gasbarri, 2020) They fixed the mistake in the paper of

Gasbarri (2003): for X connected over S Dedekind, x : S → X a section:
• They constructed the fundamental group scheme when X has reduced

fibers or X is normal.
• They constructed the quasi-finite fundamental group scheme of X at x

which classifies all quasi-finite torsors of X.
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Thank you for listening!
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