Mumford-Tate groups I

Pham Ngo Thanh Dat

Sorbonne Université

August 26, 2021

2 Describe Hodge structures using the Deligne torus

Let V be a finite dimensional \mathbb{R} -vector space, and $V_{\mathbb{C}} := \mathbb{C} \otimes_{\mathbb{R}} V$ be its complexification. A *Hodge decomposition* of V is a decomposition of $V_{\mathbb{C}}$ into \mathbb{C} -linear subspaces

$$V_{\mathbb{C}} = igoplus_{(p,q)\in\mathbb{Z}^2} V^{p,q}$$

such that the complex-conjugate action $c \otimes v \mapsto \overline{c} \otimes v$ on $V_{\mathbb{C}}$ swaps the summands $V^{p,q}$ and $V^{q,p}$ for each $(p,q) \in \mathbb{Z}^2$.

An \mathbb{R} -Hodge structure is a finite dimensional \mathbb{R} -vector space together with a Hodge decomposition.

Definition

The Hodge structure on V is said to be *pure of weight n*, if we have $V^{p,q} = 0$ for all pairs (p,q) with $p + q \neq n$.

More generally, for a subset $T \subseteq \mathbb{Z}^2$ we say that a Hodge structure is of type T if all the summands $V^{p,q}$ with $(p,q) \notin T$ are zero.

For each $n \in \mathbb{Z}$, the \mathbb{C} -subspace $\bigoplus_{p+q=n} V^{p,q}$ of $V_{\mathbb{C}}$ is stable under the complex conjugation action, hence descends to an \mathbb{R} -subspace V_n of V, and we have $V = \bigoplus_{n \in \mathbb{Z}} V_n$. Each V_n is then naturally endowed with a real Hodge structure which is pure of weight n, so it is harmless to restrict our attention to pure Hodge structures. The decomposition $V = \bigoplus_{n \in \mathbb{Z}} V_n$ is called the *weight decomposition* of V. A \mathbb{Q} -Hodge structure (resp. a \mathbb{Z} -Hodge structure) is a finite dimensional \mathbb{Q} -vector space (resp. a finite free \mathbb{Z} -module) V together with an \mathbb{R} -Hodge structure on $V_{\mathbb{R}}$.

Remark

Some authors require that the weight decomposition of $V_{\mathbb{R}}$ for a \mathbb{Q} -Hodge structure V is defined over \mathbb{Q} . As we will mostly work with pure Hodge structures, this remark will not concern us.

Given a Hodge structure on V, the Hodge filtration on $V_{\mathbb{C}}$ is given by the decreasing chain of \mathbb{C} -subspaces

$$F^{p}V := igoplus_{\substack{p' \ge p \ q' \in \mathbb{Z}}} V^{p',q'}$$

indexed by $p \in \mathbb{Z}$. We have $F^{p}V \cap \overline{F^{q}V} = \bigoplus_{p' \ge p, q' \ge q} V^{p',q'}$. In particular, if V is pure of weight *n*, then $V^{p,q} = F^{p}V \cap \overline{F^{q}V}$ whenever p + q = n. Thus, in the pure case, the Hodge structure can be recovered from the Hodge filtration.

By definition, a morphism of Hodge structures is a linear map $V \to W$ such that the induced \mathbb{C} -linear map $V_{\mathbb{C}} \to W_{\mathbb{C}}$ maps in $V^{p,q}$ into $W^{p,q}$ for all $(p,q) \in \mathbb{Z}^2$. In particular, all morphisms between pure Hodge structures of different weights are zero. With this notion of morphism, we obtain the category of Hodge structures (over \mathbb{R}, \mathbb{Q} and \mathbb{Z}) which we denote by $\mathrm{HS}_{\mathbb{R}}$, etc.

As in representation theory, there are natural notions of morphism, tensor product, and dual among Hodge structures (over \mathbb{R}, \mathbb{Q} and \mathbb{Z}). For example, if U and U' are \mathbb{R} -Hodge structures and $V = U_{\mathbb{C}}$ and $V' = U'_{\mathbb{C}}$, then by definition the Hodge structures on $U \otimes U'$ and U^{\vee} satisfy $(V^{\vee})^{p,q} = (V^{-p,-q})^{\vee}$ (viewed as a subspace of V^{\vee} via the natural projection $V \twoheadrightarrow V^{-p,-q}$) and

$$(V \otimes_{\mathbb{C}} V')^{p,q} = \bigoplus_{\substack{a+a'=p\\b+b'=q}} V^{a,b} \otimes_{\mathbb{C}} V'^{a',b'}$$

In particular, if U and U' are pure of weight n and m, respectively, then U^{\vee} is pure of weight -n, while $U \otimes U'$ is pure of weight n + m. The corresponding Hodge filtrations are $F^{p}V^{\vee} = (F^{1-p}V)^{\perp}$ and $F^{p}(V \otimes V') = \sum_{a+a'=p} F^{a}V \otimes F^{a'}V'$.

In view of the natural identification $\operatorname{Hom}(U, U') = U^{\vee} \otimes U'$, we see that $\operatorname{Hom}(U, U')$ is naturally equipped with a Hodge structure, which is pure of weight m - n if U and U' are pure of weights n and m, respectively. For instance, we have

$$\begin{split} \operatorname{Hom}(V,V')^{0,0} &= \bigoplus_{\substack{a+a'=0\\b+b'=0}} (V^{\vee})^{a,b} \otimes V'^{a',b'} \\ &= \bigoplus_{\substack{(a,b) \in \mathbb{Z} \times \mathbb{Z}}} (V^{a,b})^{\vee} \otimes V'^{a,b} \\ &= \bigoplus_{\substack{(a,b) \in \mathbb{Z} \times \mathbb{Z}}} \operatorname{Hom}(V^{a,b},V'^{a,b}) \\ &= \{T \in \operatorname{Hom}(V,V') \mid T(V^{a,b}) \subseteq V'^{a,b} \text{ for all } (a,b) \}. \end{split}$$

Denote by $\mathbb{Z}(1)$ the rank 1 free \mathbb{Z} -module $2\pi i\mathbb{Z} \subseteq \mathbb{C}$ with Hodge structure of type (-1, -1). For $n \in \mathbb{Z}$, define $\mathbb{Z}(n) := \mathbb{Z}(1)^{\otimes n}$ if $n \geq 0$ and $\mathbb{Z}(n) := (\mathbb{Z}(-n))^{\vee}$ if $n \leq 0$. Explicitly, $\mathbb{Z}(n)$ has underlying module $(2\pi i)^n\mathbb{Z}$ and type (-n, -n) (so it is purely of weight -2n). Similarly, we have the notions of $\mathbb{Q}(n)$ and $\mathbb{R}(n)$. If V is a \mathbb{Z} -Hodge structure, define the *n*th Tate twist of V by $V(n) := V \otimes \mathbb{Z}(n)$, and similarly in the \mathbb{Q} -case and \mathbb{R} -case.

Example 1

Let V be a finite dimensional \mathbb{R} -vector space. Then to give an \mathbb{R} -Hodge structure of type $\{(-1,0), (0,-1)\}$ on V is the same as giving a complex structure on V. Indeed, given a Hodge structure $V_{\mathbb{C}} = V^{-1,0} \oplus V^{0,-1}$, the natural \mathbb{R} -linear map $V
ightarrow V_{\Bbb C}/V^{-1,0} = V^{0,-1}$ is an isomorphism so that V inherits a \mathbb{C} -linear structure from $V^{0,-1}$. Conversely, assume that we have a complex structure on V. Denote by J the multiplication by $i \in \mathbb{C}$, viewed as an \mathbb{R} -linear map $V \to V$. On $V_{\mathbb{C}}$, we have $J^2 + \text{Id} = (J + i)(J - i) = 0$, hence a decomposition $V_{\mathbb{C}} = V^{-1,0} \oplus V^{0,-1}$ into *i*- and (-i)-eigenspaces. Since J commutes with the complex conjugation on $V_{\mathbb{C}}$, it is easy to see that $\overline{V^{-1,0}} = V^{0,-1}$ so that V has a Hodge structure of the required type.

Example 1 (Cont.)

By definition, to give a \mathbb{Q} -Hodge structure of type $\{(-1,0), (0,-1)\}$ then amounts to giving a \mathbb{Q} -vector space V and a complex structure on $V_{\mathbb{R}}$, and to give a \mathbb{Z} -Hodge structure of type $\{(-1,0), (0,-1)\}$ is to give a \mathbb{C} -vector space V and a lattice $\Lambda \subseteq V$ (i.e., a \mathbb{Z} -submodule generated by an \mathbb{R} -basis for V).

Example 2

Let X/\mathbb{C} be a smooth projective variety. Then the Hodge decomposition

$$H^n(X(\mathbb{C}),\mathbb{Z})\otimes_{\mathbb{Z}}\mathbb{C}=igoplus_{p+q=n}H^{p,q}, ext{ where } H^{p,q}:=H^q(X,\Omega^p_X)$$

equips $H^n(X(\mathbb{C}), \mathbb{Z})$ with a pure integral Hodge structure of weight *n*. Moreover, under the canonical comparison isomorphism $H^n(X(\mathbb{C}), \mathbb{C}) \cong H^n_{dR}(X/\mathbb{C})$ the corresponding Hodge filtration matches the filtration on $H^n_{dR}(X/\mathbb{C})$ induced from the degeneration at the E_1 page of the Hodge-to-de Rham spectral sequence

$$E_1^{i,j} = H^j(X, \Omega_X^i) \Rightarrow H^{i+j}(X, \Omega_X^{\bullet}) =: H^{i+j}_{\mathrm{dR}}(X/\mathbb{C}).$$

The Deligne torus ${\mathbb S}$ is an algebraic group over ${\mathbb R},$ defined by

 $\mathbb{S} := \operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_{m,\mathbb{C}}.$

By definition, this means that for any \mathbb{R} -algebra A we have

$$\mathbb{S}(A) = (A \otimes_{\mathbb{R}} \mathbb{C})^{ imes} = \{(a,b) \in A imes A \mid a^2 + b^2 \in A^{ imes}\}$$

with multiplication given by (a, b)(a', b') = (aa' - bb', ab' + a'b). In particular, $S(\mathbb{R}) = \mathbb{C}^{\times}$ via $(a, b) \mapsto a + ib$.

Via the identification $(a, b) \mapsto \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, we may also regard \mathbb{S} as a closed commutative \mathbb{R} -subgroup of $\operatorname{GL}_{2,\mathbb{R}}$. For later use, we also introduce the *weight cocharacter* $w : \mathbb{G}_{m,\mathbb{R}} \to \mathbb{S}$ given on points by $A^{\times} \to (A \otimes_{\mathbb{R}} \mathbb{C})^{\times}$.

If A is a \mathbb{C} -algebra, then $\mathbb{S}(A) \xrightarrow{\sim} A^{\times} \times A^{\times}$ via

 $(a, b) \mapsto (a + ib, a - ib).$

The Yoneda lemma therefore implies that

$$(z,\overline{z}): \mathbb{S}_{\mathbb{C}} \xrightarrow{\sim} \mathbb{G}_{m,\mathbb{C}} \times \mathbb{G}_{m,\mathbb{C}}.$$

Thus, S is a (non-split) torus of rank 2 over \mathbb{R} , whose character group $X^*(S) := \operatorname{Hom}_{\mathbb{C}}(S_{\mathbb{C}}, \mathbb{G}_{m,\mathbb{C}})$ is freely generated by two characters z and \overline{z} which are interchanged by the complex conjugation $c \in \operatorname{Gal}(\mathbb{C}/\mathbb{R})$. In view of the usual equivalence between tori over a field k and finite free abelian groups equipped with a linear action of $G_k = \operatorname{Gal}(k^s/k)$, we see that this latter property in fact characterizes S uniquely as a torus over \mathbb{R} . Let V be a finite dimensional \mathbb{R} -vector space. By definition, an algebraic representation of \mathbb{S} on V is a morphism of \mathbb{R} -algebraic groups $\mathbb{S} \to \operatorname{GL}(V)$. Equivalently, this is the data of an A-linear representation $\mathbb{S}(A) \to \operatorname{GL}_A(V_A)$, functorial in \mathbb{R} -algebras A.

Theorem

To equip V with an \mathbb{R} -Hodge structure is equivalent to specifying an algebraic representation $h : \mathbb{S} \to \operatorname{GL}(V)$. Under this equivalence, the Hodge structure on V is pure of weight n precisely if the restriction $h \circ w : \mathbb{G}_{m,\mathbb{R}} \to \operatorname{GL}(V)$ is given on points by $x \mapsto x^{-n} \cdot \operatorname{id}$.

Before proving the theorem, let us recall the representation theory of algebraic tori over a general base field. Specializing to the case of the Deligne torus \mathbb{S} over \mathbb{R} then gives the desired result.

Fix a base field k and a choice of k^s . Recall a k-torus T is called *split* (over k) if $T \cong (\mathbb{G}_{m,k})^r$ for some $r \ge 0$. Representations of split tori are simple to understand: they are just direct sums of characters. More precisely, given such a representation $\rho: T \to \operatorname{GL}(V)$, we have

$$V = \bigoplus_{\chi \in X^*(T)} V^{\chi},$$

where V^{χ} is the subspace on which T acts through the character χ :

$$\rho(g).v = \chi(g).v$$

More concretely, if T has rank r (i.e. $T \cong (\mathbb{G}_{m,k})^r$), then any representation (ρ, V) of T can be decomposed canonically as

$$V = \bigoplus_{(n_1,\ldots,n_r) \in \mathbb{Z}^r} V^{n_1,\ldots,n_r}$$

where $(x_1, \ldots, x_r) \in \mathbb{G}_{m,k}^r$ acts on V^{n_1, \ldots, n_r} via multiplication by $x_1^{n_1} \ldots x_r^{n_r}$.

Representations of algebraic tori

Now let T be a general k-torus. Then $T_{k^s} = (\mathbb{G}_{m,k^s})^r$ for some $r \ge 0$.

Given a representation $\rho : T \to \operatorname{GL}(V)$, the base change $\rho_{k^s} : T_{k^s} \to \operatorname{GL}(V_{k^s})$ is a representation of T_{k^s} . By our preceding paragraph, to give such a representation is to specify a \mathbb{Z}^r -grading on V_{k^s} :

$$V_{k^s} = \bigoplus_{\chi \in X^*(T) = \mathbb{Z}^r} V^{\chi}.$$

However, not all such gradings on V_{k^s} come from a representation defined over k. From the theory of Galois descent (for morphisms), we know that the right condition to put on the map ρ_{k^s} is that it is equivariant for the natural actions of $G_k = \operatorname{Gal}(k^s/k)$ on T_{k^s} and $\operatorname{GL}(V_{k^s})$. We now check that this latter condition is equivalent to the condition that

$$\sigma(V^{\chi}) = V^{\sigma(\chi)}$$
 for all $\sigma \in G_k$ and $\chi \in X^*(T)$.

First, assume that ρ_{k^s} is Galois equivariant. Then for each $v \in V^{\chi}$, $g(\sigma(v)) = \sigma(gv) = \sigma(\chi(g)v) = (\sigma\chi)(g)\sigma(v)$, and hence $\sigma(v) \in V^{\sigma(\chi)}$ by definition. Thus, $\sigma(V^{\chi}) \subseteq V^{\sigma(\chi)}$. Replace σ by σ^{-1} and χ by $\sigma(\chi)$, we deduce that $\sigma(V^{\chi}) = V^{\sigma(\chi)}$. Conversely, if this last equality holds for all σ and χ , then since the $V^{\chi'}$'s generate V we deduce by the same argument that ρ_{k^s} is indeed Galois equivariant.

In summary, we have the following equivalence of categories

$$\operatorname{Rep}_{k}(\mathcal{T}) \to \begin{cases} \text{finite dimensional } k \text{-vector spaces } V \\ \text{with } X^{*}(\mathcal{T}) \text{-grading } V_{k^{s}} = \bigoplus_{\chi \in X^{*}(\mathcal{T})} V^{\chi} \\ \text{s.t. } \sigma(V^{\chi}) = V^{\sigma(\chi)} \text{ for all } \sigma \text{ and } \chi \end{cases} \end{cases}$$

where $\operatorname{Rep}_k(T)$ is the category of algebraic representations T on finite dimensional k-vector spaces.

We now apply the preceding discussion for the Deligne torus. Recall that $X^*(\mathbb{S}) = \mathbb{Z}z \oplus \mathbb{Z}\overline{z}$ for a pair of complex-conjugate characters $\{z, \overline{z}\}$. Thus, given an algebraic representation $h : \mathbb{S} \to \operatorname{GL}(V)$, we get a corresponding Hodge structure on V:

$$V_{\mathbb{C}} = igoplus_{(p,q)\in\mathbb{Z}^2} V^{p,q},$$

where $V^{p,q}$ is the eigenspace for the character $z^{-p}\overline{z}^{-q}$. This Hodge structure is pure of weight *n* precisely if the restriction $h \circ w : \mathbb{G}_{m,\mathbb{R}} \to \mathrm{GL}(V)$ is given on points by $x \mapsto x^{-n} \cdot \mathrm{id}$.

Remark

We can see the above equivalence between real Hodge structures and representations of the Deligne torus more directly (i.e. without invoking the general theory of algebraic tori). Namely, given a Hodge structure

$$\mathcal{V}_{\mathbb{C}} = igoplus_{(p,q)\in\mathbb{Z}^2} \mathcal{V}^{p,q}$$

we define a \mathbb{C} -linear action of \mathbb{C}^{\times} on $V_{\mathbb{C}}$ by letting $z \in \mathbb{C}^{\times}$ acts on $V^{p,q}$ as multiplication by $z^{-p}\overline{z}^{-q}$. Then using our hypothesis that $\overline{V^{q,p}} = V^{p,q}$, it is easy to see that this action commutes with the complex conjugation on $V_{\mathbb{C}}$, hence descends to an \mathbb{R} -linear action $\mathbb{C}^{\times} \to \operatorname{GL}(V)$. Since this action is given by polynomials, we can see that it arises (as the induced map on \mathbb{R} -valued points) from a unique algebraic representation $\mathbb{S} \to \operatorname{GL}(V)$.

The natural operations on Hodge structures that we introduced earlier agree, under the above equivalence, with the corresponding operations in representation theory. For instance, if V and V' are \mathbb{R} -Hodge structures given by homomorphisms $h : \mathbb{S} \to \operatorname{GL}(V)$ and $h' : \mathbb{S} \to \operatorname{GL}(V')$, the Hodge structure on $V \otimes V'$ is given by the representation $(h \otimes h', V \otimes V')$.

Now let V be a finite dimensional \mathbb{Q} -vector space. By definition, to give a \mathbb{Q} -Hodge structure on V is to give an \mathbb{R} -Hodge structure on $V_{\mathbb{R}}$, which is then the same as giving a representation $h: \mathbb{S} \to \operatorname{GL}(V_{\mathbb{R}})$. Note that despite both the source and target are defined over \mathbb{Q} , in general such homomorphism is only defined over \mathbb{R} . In a sense, the Mumford-Tate group of V is defined so as to measure how far this homomorphism is from being defined over \mathbb{Q} .

Remark

As mentioned earlier, some authors require the weight decomposition of $V_{\mathbb{R}}$ for a Q-Hodge structure V to be actually defined over Q. With this modified definition, to give a Q-Hodge structure on V is to give a representation $h : \mathbb{S} \to \operatorname{GL}(V_{\mathbb{R}})$ such that the restriction $h \circ w : \mathbb{G}_{m,\mathbb{R}} \to \operatorname{GL}(V_{\mathbb{R}})$ is defined over Q.

Let *H* be a pure \mathbb{Q} -Hodge structure of weight *n*. By definition, a *polarization* on *H* is a morphism of \mathbb{Q} -Hodge structures

 $\psi: H \otimes_{\mathbb{Q}} H \to \mathbb{Q}(-n)$

such that the \mathbb{R} -bilinear form $H_{\mathbb{R}} \times H_{\mathbb{R}} \to \mathbb{R}$ given by $(x, y) \mapsto (2\pi i)^n \psi_{\mathbb{R}}(x, h(i)y)$ is symmetric and positive definite. In particular, the form ψ is non-degenerate on H.

A Hodge structure is said to be *polarizable* if it admits a polarization. The key property of polarizable Hodge structures is the following.

Proposition

Let (H, ψ) be a polarizable \mathbb{Q} -Hodge structure and $W \subseteq H$ be a sub-Hodge structure. Then ψ restricts to a polarization on W. Moreover, the orthogonal complement W^{\perp} of W in H with respect to ψ is again a sub-Hodge structure, and $H \cong W \oplus W^{\perp}$ as \mathbb{Q} -Hodge structures. Hence, the category of polarizable \mathbb{Q} -Hodge structures is semi-simple.

Proof

That ψ restricts to a polarization on W is clear. Let's look at $\psi_{\mathbb{C}}: H_{\mathbb{C}} \times H_{\mathbb{C}} \to \mathbb{C}$. For $z \in \mathbb{C}^{\times}, x \in H^{p,q}$ and $y \in H^{p',q'}$,

$$(z\overline{z})^{-n}\psi_{\mathbb{C}}(x,y) = \psi_{\mathbb{C}}(h(z)x,h(z)y)$$

= $\psi_{\mathbb{C}}(z^{-p}\overline{z}^{-q}x,z^{-p'}\overline{z}^{-q'}y)$
= $z^{-p-p'}\overline{z}^{-q-q'}\psi_{\mathbb{C}}(x,y).$

Thus, $\psi_{\mathbb{C}}(x, y) = 0$ if $(p', q') \neq (q, p)$. So, if we set $\psi_{C}(x, y) := i^{n}\psi_{\mathbb{C}}(x, h(i)\overline{y})$, then $\psi_{C}(x, y) = 0$ for all $x \in H^{p,q}$ and $y \in H^{p',q'}$ with $(p,q) \neq (p',q')$. Using this, we see easily that $(W_{\mathbb{C}})^{\perp} = \bigoplus_{(p,q)}((W_{\mathbb{C}})^{\perp} \cap H^{p,q})$ where $(W_{\mathbb{C}})^{\perp}$ is the orthogonal complement of $W_{\mathbb{C}}$ in $H_{\mathbb{C}}$ with respect to ψ_{C} . To check that W^{\perp} is sub-Hodge structure of H, it is therefore enough to show that $(W^{\perp})_{\mathbb{C}} = (W_{\mathbb{C}})^{\perp}$, which is true since

 $(W_{\mathbb{C}})^{\perp} = \operatorname{Hom}_{\mathbb{C}}(H_{\mathbb{C}}/W_{\mathbb{C}},\mathbb{C}) = \operatorname{Hom}_{\mathbb{Q}}(H/W,\mathbb{Q})_{\mathbb{C}} = (W^{\perp})_{\mathbb{C}}.$

Proof (Cont.)

It remains to check the equality $H = W \oplus W^{\perp}$ (this equality is then automatically an identification of Hodge structures). For this, we need to show that the restriction $\psi|_W$ is non-degenerate, or equivalently, $\psi_C|_{W_{\mathbb{C}}}$ is non-degenerate, which is true since ψ_C is even definite on $H_{\mathbb{C}}$ (this follows from our hypothesis that the form $(x, y) \mapsto (2\pi i)^n \psi_{\mathbb{R}}(x, h(i)y)$ is symmetric and definite on $V_{\mathbb{R}}$). \Box We will now define our objects of main interest.

Definition

Let V be a \mathbb{Q} -Hodge structure, with corresponding representation $h : \mathbb{S} \to \operatorname{GL}(V_{\mathbb{R}})$. The Mumford-Tate group of V, denoted $\operatorname{MF}(V)$, is defined to be the smallest (closed) \mathbb{Q} -algebraic subgroup M of $\operatorname{GL}(V)$ such that h factors through the subgroup $M_{\mathbb{R}} \subseteq \operatorname{GL}(V_{\mathbb{R}})$.

The key property of the Mumford-Tate group is that it cuts out precisely the sub-Hodge structure inside any tensor construction obtained from H. To explain rigorously what we mean by this, we need some notation. For a finite collection of pairs of nonnegative integers $v = \{(a_i, b_i)\}$, we define

$$T^{\mathbf{v}} := \bigoplus_{i} H^{\otimes \mathbf{a}_{i}} \otimes (H^{\vee})^{\otimes \mathbf{b}_{i}}.$$

Then T^{ν} inherits from H a Q-Hodge structure. We often refer to spaces of the form T^{ν} as tensor spaces obtained from H.

Proposition

Let $W \subseteq T^{\nu}$ be a Q-subspace. Then W is a sub-Hodge structure if and only if it is stable the action of MT(V) on T^{v} .

Proof

If W is stable under the action of MT(V), it is a representation of

MT(V) and therefore a sub-Hodge structure. Conversely, suppose that $W \subseteq T^{\vee}$ is a Q-sub-Hodge structure. Let $G_W \subseteq GL(V)$ be the subgroup of those elements that preserve W. Then G_W is a closed \mathbb{Q} -algebraic subgroup of GL(V), and its set of real points contains the image of ρ because V is a sub-Hodge structure. Thus, $MT(V) \subseteq G_W$ by definition, and hence W is preserved by MT(V) as wanted.

Definition

Let H be a \mathbb{Q} -Hodge structure. An element $\xi \in H$ is called a Hodge class if ξ is purely of type (0,0) in the Hodge decomposition $H_{\mathbb{C}} = \bigoplus_{(p,q)} H^{p,q}$.

Remark

The space of Hodge classes in H has an alternative description, namely it can be naturally identified with $\operatorname{Hom}_{HS_{\mathbb{O}}}(\mathbb{Q}(0), H)$.

Proposition

An element $t \in T^{\nu}$ is a Hodge class in T^{ν} if and only if t is invariant under the action of MT(V) on T^{ν} .

Proof

Let $L \subseteq T^{\nu} \oplus \mathbb{Q}(0)$ be the line generated by (t, 1). Then t is Hodge class in T^{ν} if and only if L is sub-Hodge structure of $T^{\nu} \oplus \mathbb{Q}(0)$. By the preceding result, the latter holds precisely if Lis stable under the action of MT(V) on T^{ν} , which in turn holds if and only if t is fixed by MT(V) (keep in mind that MT(V) acts trivially on $\mathbb{Q}(0)$). \Box

Example

Given Q-Hodge structures H and H', we have seen earlier that the Hodge classes in $\operatorname{Hom}(H, H') = H^{\vee} \otimes H'$ are precisely those which are morphisms of Hodge structures. In particular, it follows from the previous proposition that

 $\operatorname{End}_{\operatorname{HS}_{\mathbb{Q}}}(H) = (\operatorname{End}_{\mathbb{Q}}(H))^{\operatorname{MT}(V)}.$

Proposition

Let *H* be a pure \mathbb{Q} -structure of weight *n*.

- (i) Assume in addition that H is polarizable. Then MT(H) is a connected reductive subgroup of GL(H).
- (ii) If n = 0, then MT(H) is contained in SL(H). If $n \neq 0$, MT(H) contains \mathbb{G}_m .id_H \subseteq GL(H).

Proof

(i) That MT(H) is connected is true even if H is not polarizable. To see this, let $MT^{0}(H)$ be the connected component of the identity in MT(H). Then it is a standard fact that $MT^{0}(H)$ is a closed subgroup of MT(H). Moreover, the map $\mathbb{S} \to MT(H)$ factors through $MT^{0}(H) \subseteq MT(H)$ as \mathbb{S} is connected. Hence, $MT^{0}(H) = MT(H)$ by definition of the latter. It remains to show that MT(H) is reductive provided H is polarizable.

Proof (Cont.)

For this, we will make use of the fact that, over a field of characteristic 0, a connected linear algebraic group is reductive if and only if has a faithful semisimple representation. Consider the tautological representation $MT(H) \hookrightarrow GL(H)$. Its sub-representations are exactly the sub-Hodge structures of H. The desired conclusion then follows from the fact that the category of polarizable Q-Hodge structures is semisimple.

(ii) This follows from the definition of MT(H). \Box

Corollary

$$MT(\mathbb{Q}(n)) = \mathbb{G}_{m,\mathbb{Q}}$$
 if $n \neq 0$, and $MT(\mathbb{Q}(0)) = 1$.

Thank you for your attention!