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Hodge structures

Let V be a finite dimensional R-vector space, and VC := C⊗R V
be its complexification. A Hodge decomposition of V is a
decomposition of VC into C-linear subspaces

VC =
⊕

(p,q)∈Z2

V p,q

such that the complex-conjugate action c ⊗ v 7→ c ⊗ v on VC
swaps the summands V p,q and V q,p for each (p, q) ∈ Z2.

An R-Hodge structure is a finite dimensional R-vector space
together with a Hodge decomposition.



Pure Hodge structures

Definition

The Hodge structure on V is said to be pure of weight n, if we
have V p,q = 0 for all pairs (p, q) with p + q 6= n.

More generally, for a subset T ⊆ Z2 we say that a Hodge structure
is of type T if all the summands V p,q with (p, q) /∈ T are zero.

For each n ∈ Z, the C-subspace ⊕p+q=nV
p,q of VC is stable under

the complex conjugation action, hence descends to an R-subspace
Vn of V , and we have V = ⊕n∈ZVn. Each Vn is then naturally
endowed with a real Hodge structure which is pure of weight n, so
it is harmless to restrict our attention to pure Hodge structures.
The decomposition V = ⊕n∈ZVn is called the weight
decomposition of V .



Rational and integral Hodge structures

A Q-Hodge structure (resp. a Z-Hodge structure) is a finite
dimensional Q-vector space (resp. a finite free Z-module) V
together with an R-Hodge structure on VR.

Remark

Some authors require that the weight decomposition of VR for a
Q-Hodge structure V is defined over Q. As we will mostly work
with pure Hodge structures, this remark will not concern us.



The Hodge filtration

Given a Hodge structure on V , the Hodge filtration on VC is given
by the decreasing chain of C-subspaces

F pV :=
⊕
p′≥p
q′∈Z

V p′,q′ .

indexed by p ∈ Z. We have F pV ∩ F qV = ⊕p′≥p,q′≥qV
p′,q′ . In

particular, if V is pure of weight n, then V p,q = F pV ∩ F qV
whenever p + q = n. Thus, in the pure case, the Hodge structure
can be recovered from the Hodge filtration.



Morphisms of Hodge structures

By definition, a morphism of Hodge structures is a linear map
V →W such that the induced C-linear map VC →WC maps in
V p,q into W p,q for all (p, q) ∈ Z2. In particular, all morphisms
between pure Hodge structures of different weights are zero. With
this notion of morphism, we obtain the category of Hodge
structures (over R,Q and Z) which we denote by HSR, etc.



Operations on Hodges structures

As in representation theory, there are natural notions of morphism,
tensor product, and dual among Hodge structures (over R,Q and
Z). For example, if U and U ′ are R-Hodge structures and V = UC
and V ′ = U ′C , then by definition the Hodge structures on U ⊗ U ′

and U∨ satisfy (V ∨)p,q = (V−p,−q)∨ (viewed as a subspace of V ∨

via the natural projection V � V−p,−q) and

(V ⊗C V ′)p,q =
⊕

a+a′=p
b+b′=q

V a,b ⊗C V ′a
′,b′ .

In particular, if U and U ′ are pure of weight n and m, respectively,
then U∨ is pure of weight −n, while U ⊗ U ′ is pure of weight
n + m. The corresponding Hodge filtrations are
F pV ∨ = (F 1−pV )⊥ and F p(V ⊗ V ′) =

∑
a+a′=p F

aV ⊗ F a′V ′.



Operations on Hodge structures

In view of the natural identification Hom(U,U ′) = U∨ ⊗ U ′, we
see that Hom(U,U ′) is naturally equipped with a Hodge structure,
which is pure of weight m − n if U and U ′ are pure of weights n
and m, respectively. For instance, we have

Hom(V ,V ′)0,0 =
⊕

a+a′=0
b+b′=0

(V ∨)a,b ⊗ V ′a
′,b′

=
⊕

(a,b)∈Z×Z

(V a,b)∨ ⊗ V ′a,b

=
⊕

(a,b)∈Z×Z

Hom(V a,b,V ′a,b)

= {T ∈ Hom(V ,V ′) | T (V a,b) ⊆ V ′a,b for all (a, b)}.



The Tate twists

Denote by Z(1) the rank 1 free Z-module 2πiZ ⊆ C with Hodge
structure of type (−1,−1). For n ∈ Z, define Z(n) := Z(1)⊗n if
n ≥ 0 and Z(n) := (Z(−n))∨ if n ≤ 0. Explicitly, Z(n) has
underlying module (2πi)nZ and type (−n,−n) (so it is purely of
weight −2n). Similarly, we have the notions of Q(n) and R(n).

If V is a Z-Hodge structure, define the nth Tate twist of V by
V (n) := V ⊗ Z(n), and similarly in the Q-case and R-case.



Examples of Hodge structures

Example 1

Let V be a finite dimensional R-vector space. Then to give an
R-Hodge structure of type {(−1, 0), (0,−1)} on V is the same as
giving a complex structure on V . Indeed, given a Hodge structure
VC = V−1,0 ⊕ V 0,−1, the natural R-linear map
V → VC/V

−1,0 = V 0,−1 is an isomorphism so that V inherits a
C-linear structure from V 0,−1. Conversely, assume that we have a
complex structure on V . Denote by J the multiplication by i ∈ C,
viewed as an R-linear map V → V . On VC, we have
J2 + Id = (J + i)(J − i) = 0, hence a decomposition
VC = V−1,0 ⊕ V 0,−1 into i- and (−i)-eigenspaces. Since J
commutes with the complex conjugation on VC, it is easy to see
that V−1,0 = V 0,−1 so that V has a Hodge structure of the
required type.



Example 1 (Cont.)

By definition, to give a Q-Hodge structure of type
{(−1, 0), (0,−1)} then amounts to giving a Q-vector space V and
a complex structure on VR, and to give a Z-Hodge structure of
type {(−1, 0), (0,−1)} is to give a C-vector space V and a lattice
Λ ⊆ V (i.e., a Z-submodule generated by an R-basis for V ).



Example 2

Let X/C be a smooth projective variety. Then the Hodge
decomposition

Hn(X (C),Z)⊗Z C =
⊕

p+q=n

Hp,q, where Hp,q := Hq(X ,Ωp
X )

equips Hn(X (C),Z) with a pure integral Hodge structure of weight
n. Moreover, under the canonical comparison isomorphism
Hn(X (C),C) ∼= Hn

dR(X/C) the corresponding Hodge filtration
matches the filtration on Hn

dR(X/C) induced from the degeneration
at the E1 page of the Hodge-to-de Rham spectral sequence

E i ,j
1 = H j(X ,Ωi

X )⇒ H i+j(X ,Ω•X ) =: H i+j
dR (X/C).



The Deligne torus

The Deligne torus S is an algebraic group over R, defined by

S := ResC/RGm,C.

By definition, this means that for any R-algebra A we have

S(A) = (A⊗R C)× = {(a, b) ∈ A× A | a2 + b2 ∈ A×}

with multiplication given by (a, b)(a′, b′) = (aa′ − bb′, ab′ + a′b).
In particular, S(R) = C× via (a, b) 7→ a + ib.

Via the identification (a, b) 7→
(

a b
−b a

)
, we may also regard S as a

closed commutative R-subgroup of GL2,R. For later use, we also
introduce the weight cocharacter w : Gm,R → S given on points by
A× → (A⊗R C)×.



The Deligne torus

If A is a C-algebra, then S(A)
∼−→ A× × A× via

(a, b) 7→ (a + ib, a− ib).

The Yoneda lemma therefore implies that

(z , z) : SC
∼−→ Gm,C ×Gm,C.

Thus, S is a (non-split) torus of rank 2 over R, whose character
group X ∗(S) := HomC(SC,Gm,C) is freely generated by two
characters z and z which are interchanged by the complex
conjugation c ∈ Gal(C/R). In view of the usual equivalence
between tori over a field k and finite free abelian groups equipped
with a linear action of Gk = Gal(ks/k), we see that this latter
property in fact characterizes S uniquely as a torus over R.



Real Hodge structures via the Deligne torus

Let V be a finite dimensional R-vector space. By definition, an
algebraic representation of S on V is a morphism of R-algebraic
groups S→ GL(V ). Equivalently, this is the data of an A-linear
representation S(A)→ GLA(VA), functorial in R-algebras A.

Theorem

To equip V with an R-Hodge structure is equivalent to specifying
an algebraic representation h : S→ GL(V ). Under this
equivalence, the Hodge structure on V is pure of weight n precisely
if the restriction h ◦ w : Gm,R → GL(V ) is given on points by
x 7→ x−n · id.

Before proving the theorem, let us recall the representation theory
of algebraic tori over a general base field. Specializing to the case
of the Deligne torus S over R then gives the desired result.



Representations of algebraic tori

Fix a base field k and a choice of ks . Recall a k-torus T is called
split (over k) if T ∼= (Gm,k)r for some r ≥ 0. Representations of
split tori are simple to understand: they are just direct sums of
characters. More precisely, given such a representation
ρ : T → GL(V ), we have

V =
⊕

χ∈X∗(T )

V χ,

where V χ is the subspace on which T acts through the character
χ:

ρ(g).v = χ(g).v



More concretely, if T has rank r (i.e. T ∼= (Gm,k)r ), then any
representation (ρ,V ) of T can be decomposed canonically as

V =
⊕

(n1,...,nr )∈Zr

V n1,...,nr

where (x1, . . . , xr ) ∈ Gr
m,k acts on V n1,...,nr via multiplication by

xn1
1 . . . xnrr .



Representations of algebraic tori

Now let T be a general k-torus. Then Tks = (Gm,ks )r for some
r ≥ 0.

Given a representation ρ : T → GL(V ), the base change
ρks : Tks → GL(Vks ) is a representation of Tks . By our preceding
paragraph, to give such a representation is to specify a Zr -grading
on Vks :

Vks =
⊕

χ∈X∗(T )=Zr

V χ.

However, not all such gradings on Vks come from a representation
defined over k . From the theory of Galois descent (for morphisms),
we know that the right condition to put on the map ρks is that it
is equivariant for the natural actions of Gk = Gal(ks/k) on Tks

and GL(Vks ). We now check that this latter condition is
equivalent to the condition that

σ(V χ) = V σ(χ) for all σ ∈ Gk and χ ∈ X ∗(T ).



Representations of algebraic tori

First, assume that ρks is Galois equivariant. Then for each v ∈ V χ,
g(σ(v)) = σ(gv) = σ(χ(g)v) = (σχ)(g)σ(v), and hence
σ(v) ∈ V σ(χ) by definition. Thus, σ(V χ) ⊆ V σ(χ). Replace σ by
σ−1 and χ by σ(χ), we deduce that σ(V χ) = V σ(χ). Conversely, if
this last equality holds for all σ and χ, then since the V χ’s
generate V we deduce by the same argument that ρks is indeed
Galois equivariant.

In summary, we have the following equivalence of categories

Repk(T )→


finite dimensional k-vector spaces V

with X ∗(T ) -grading Vks = ⊕χ∈X∗(T )V
χ

s.t. σ(V χ) = V σ(χ) for all σ and χ

 .

where Repk(T ) is the category of algebraic representations T on
finite dimensional k-vector spaces.



Real Hodge structrues as representations of the Deligne
torus

We now apply the preceding discussion for the Deligne torus.
Recall that X ∗(S) = Zz ⊕ Zz for a pair of complex-conjugate
characters {z , z}. Thus, given an algebraic representation
h : S→ GL(V ), we get a corresponding Hodge structure on V :

VC =
⊕

(p,q)∈Z2

V p,q,

where V p,q is the eigenspace for the character z−pz−q. This
Hodge structure is pure of weight n precisely if the restriction
h ◦ w : Gm,R → GL(V ) is given on points by x 7→ x−n · id.



Remark

We can see the above equivalence between real Hodge structures
and representations of the Deligne torus more directly (i.e. without
invoking the general theory of algebraic tori). Namely, given a
Hodge structure

VC =
⊕

(p,q)∈Z2

V p,q,

we define a C-linear action of C× on VC by letting z ∈ C× acts on
V p,q as multiplication by z−pz−q. Then using our hypothesis that
V q,p = V p,q, it is easy to see that this action commutes with the
complex conjugation on VC, hence descends to an R-linear action
C× → GL(V ). Since this action is given by polynomials, we can
see that it arises (as the induced map on R-valued points) from a
unique algebraic representation S→ GL(V ).



The natural operations on Hodge structures that we introduced
earlier agree, under the above equivalence, with the corresponding
operations in representation theory. For instance, if V and V ′ are
R-Hodge structures given by homomorphisms h : S→ GL(V ) and
h′ : S→ GL(V ′), the Hodge structure on V ⊗ V ′ is given by the
representation (h ⊗ h′,V ⊗ V ′).



Now let V be a finite dimensional Q-vector space. By definition,
to give a Q-Hodge structure on V is to give an R-Hodge structure
on VR, which is then the same as giving a representation
h : S→ GL(VR). Note that despite both the source and target are
defined over Q, in general such homomorphism is only defined over
R. In a sense, the Mumford-Tate group of V is defined so as to
measure how far this homomorphism is from being defined over Q.

Remark

As mentioned earlier, some authors require the weight
decomposition of VR for a Q-Hodge structure V to be actually
defined over Q. With this modified definition, to give a Q-Hodge
structure on V is to give a representation h : S→ GL(VR) such
that the restriction h ◦ w : Gm,R → GL(VR) is defined over Q.



Polarizations

Let H be a pure Q-Hodge structure of weight n. By definition, a
polarization on H is a morphism of Q-Hodge structures

ψ : H ⊗Q H → Q(−n)

such that the R-bilinear form HR × HR → R given by
(x , y) 7→ (2πi)nψR(x , h(i)y) is symmetric and positive definite. In
particular, the form ψ is non-degenerate on H.

A Hodge structure is said to be polarizable if it admits a
polarization. The key property of polarizable Hodge structures is
the following.

Proposition

Let (H, ψ) be a polarizable Q-Hodge structure and W ⊆ H be a
sub-Hodge structure. Then ψ restricts to a polarization on W .
Moreover, the orthogonal complement W⊥ of W in H with
respect to ψ is again a sub-Hodge structure, and H ∼= W ⊕W⊥ as
Q-Hodge structures. Hence, the category of polarizable Q-Hodge
structures is semi-simple.



Proof

That ψ restricts to a polarization on W is clear. Let’s look at
ψC : HC × HC → C. For z ∈ C×, x ∈ Hp,q and y ∈ Hp′,q′ ,

(zz)−nψC(x , y) = ψC(h(z)x , h(z)y)

= ψC(z−pz−qx , z−p
′
z−q

′
y)

= z−p−p
′
z−q−q

′
ψC(x , y).

Thus, ψC(x , y) = 0 if (p′, q′) 6= (q, p). So, if we set
ψC (x , y) := inψC(x , h(i)y), then ψC (x , y) = 0 for all x ∈ Hp,q and
y ∈ Hp′,q′ with (p, q) 6= (p′, q′). Using this, we see easily that
(WC)⊥ = ⊕(p,q)((WC)⊥ ∩ Hp,q) where (WC)⊥ is the orthogonal

complement of WC in HC with respect to ψC . To check that W⊥

is sub-Hodge structure of H, it is therefore enough to show that
(W⊥)C = (WC)⊥, which is true since

(WC)⊥ = HomC(HC/WC,C) = HomQ(H/W ,Q)C = (W⊥)C.



Proof (Cont.)

It remains to check the equality H = W ⊕W⊥ (this equality is
then automatically an identification of Hodge structures). For this,
we need to show that the restriction ψ|W is non-degenerate, or
equivalently, ψC |WC is non-degenerate, which is true since ψC is
even definite on HC (this follows from our hypothesis that the form
(x , y) 7→ (2πi)nψR(x , h(i)y) is symmetric and definite on VR). �



Mumford-Tate groups

We will now define our objects of main interest.

Definition

Let V be a Q-Hodge structure, with corresponding representation
h : S→ GL(VR). The Mumford-Tate group of V , denoted
MF(V ), is defined to be the smallest (closed) Q-algebraic
subgroup M of GL(V ) such that h factors through the subgroup
MR ⊆ GL(VR).



Properties of Mumford-Tate groups

The key property of the Mumford-Tate group is that it cuts out
precisely the sub-Hodge structure inside any tensor construction
obtained from H. To explain rigorously what we mean by this, we
need some notation. For a finite collection of pairs of nonnegative
integers v = {(ai , bi )}, we define

T v :=
⊕
i

H⊗ai ⊗ (H∨)⊗bi .

Then T v inherits from H a Q-Hodge structure. We often refer to
spaces of the form T v as tensor spaces obtained from H.



Proposition

Let W ⊆ T v be a Q-subspace. Then W is a sub-Hodge structure
if and only if it is stable the action of MT(V ) on T v .

Proof

If W is stable under the action of MT(V ), it is a representation of
MT(V ) and therefore a sub-Hodge structure. Conversely, suppose
that W ⊆ T v is a Q-sub-Hodge structure. Let GW ⊆ GL(V ) be
the subgroup of those elements that preserve W . Then GW is a
closed Q-algebraic subgroup of GL(V ), and its set of real points
contains the image of ρ because V is a sub-Hodge structure.
Thus, MT(V ) ⊆ GW by definition, and hence W is preserved by
MT(V ) as wanted.�



Definition

Let H be a Q-Hodge structure. An element ξ ∈ H is called a
Hodge class if ξ is purely of type (0, 0) in the Hodge
decomposition HC = ⊕(p,q)H

p,q.

Remark

The space of Hodge classes in H has an alternative description,
namely it can be naturally identified with HomHSQ(Q(0),H).

Proposition

An element t ∈ T v is a Hodge class in T v if and only if t is
invariant under the action of MT(V ) on T v .



Proof

Let L ⊆ T v ⊕Q(0) be the line generated by (t, 1). Then t is
Hodge class in T v if and only if L is sub-Hodge structure of
T v ⊕Q(0). By the preceding result, the latter holds precisely if L
is stable under the action of MT(V ) on T v , which in turn holds if
and only if t is fixed by MT(V ) (keep in mind that MT(V ) acts
trivially on Q(0)). �

Example

Given Q-Hodge structures H and H ′, we have seen earlier that the
Hodge classes in Hom(H,H ′) = H∨ ⊗ H ′ are precisely those which
are morphisms of Hodge structures. In particular, it follows from
the previous proposition that

EndHSQ(H) = (EndQ(H))MT(V ).



Proposition

Let H be a pure Q-structure of weight n.

(i) Assume in addition that H is polarizable. Then MT(H) is a
connected reductive subgroup of GL(H).

(ii) If n = 0, then MT(H) is contained in SL(H). If n 6= 0,
MT(H) contains Gm.idH ⊆ GL(H).

Proof

(i) That MT(H) is connected is true even if H is not polarizable.
To see this, let MT0(H) be the connected component of the
identity in MT(H). Then it is a standard fact that MT0(H) is a
closed subgroup of MT(H). Moreover, the map S→ MT(H)
factors through MT0(H) ⊆ MT(H) as S is connected. Hence,
MT0(H) = MT(H) by definition of the latter. It remains to show
that MT(H) is reductive provided H is polarizable.



Proof (Cont.)

For this, we will make use of the fact that, over a field of
characteristic 0, a connected linear algebraic group is reductive if
and only if has a faithful semisimple representation. Consider the
tautological representation MT(H) ↪→ GL(H). Its
sub-representations are exactly the sub-Hodge structures of H.
The desired conclusion then follows from the fact that the category
of polarizable Q-Hodge structures is semisimple.

(ii) This follows from the definition of MT(H). �

Corollary

MT(Q(n)) = Gm,Q if n 6= 0, and MT(Q(0)) = 1.



Thank you for your attention!
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