Vo Quoc Bao Institute of Mathematics of Vietnam, Hanoi City

August, 2021

1 Introduction

Category of Separable A-algebras

2 Automorphism Group of Functor

- Topological Properties of Automorphism Group of Functor
- Profinite Completion

3 Galois Category

- Galois Object
- Pro-representable Functor
- The main theorem of Galois category

4 References

subgroups of G. More precisely, the maps

 $\phi : \{E | E \text{ is a subfield of } L \text{ containing } k\} \rightarrow \{H | H \text{ is a closed subgroup of } G\}$ $E \mapsto \operatorname{Aut}_{E}(L)$

and

 $\psi : \{H|H \text{ is a closed subgroup of } G\} \rightarrow \{E|E \text{ is a subfield of } L \text{ containing } k\}$ $H \mapsto L^H$

are bijective and inverse to each other. This correspondence reverves the inclusion relations, K corresponds to G and L to $\{id_L\}$.

Let k be a field, and L a subfield of \overline{k} containing k. Denote by I the set of subfields E of L for which E is a finite Galois extension of k. Then I, when partially ordered by inclusion, is a directed partially ordered set. Moreover, the following four assertions are equivalent:

- 1) L is a Galois extension of k
- 2) L is normal and separable over k
- There is a set F ⊂ k[X] \ {0} of separable polynomials such that L is the splitting field F over k.
- U_{E⊂I} E = L. Finally, if these conditions are satisfied, then there is a group isomorphism

 $\operatorname{Gal}(L/k) \cong \varprojlim_{E \in I} \operatorname{Gal}(E/k).$

Let L be a finite separable extension of k. We consider the following map

$$\operatorname{Gal}(k^{sep}/k) \times \operatorname{Mor}(L, k^{sep}) \to \operatorname{Mor}(L, k^{sep})$$
$$\sigma.\phi \mapsto \sigma \circ \phi$$

Let L be a finite separable extension of k. We consider the following map

$$\operatorname{Gal}(k^{sep}/k) \times \operatorname{Mor}(L, k^{sep}) \to \operatorname{Mor}(L, k^{sep})$$
$$\sigma.\phi \mapsto \sigma \circ \phi$$

Lemma (Szamuely)

The above left action of $\operatorname{Gal}(k^{sep}/k)$ on $\operatorname{Mor}(L, k^{sep})$ is continuous and transitive, hence $\operatorname{Mor}(L, k^{sep})$ as a $\operatorname{Gal}(k^{sep}/k)$ -set is isomorphic to the left coset space of some open subgroup in $\operatorname{Gal}(k^{sep}/k)$. For L Galois over k this coset space is in fact a quotient by an open normal subgroup.

Introduction

Category of Separable A-algebras

Theorem (Main Theorem of Galois Theory - Grothendieck's version)

Let k be a field. Then the functor mapping a finite étale k-algebra A to the finite set $Mor(A, k^{sep})$ gives an anti-equivalence between the category of finite étale k-algebras and the category of finite sets with continuous left $Gal(k^{sep}/k)$ -action. Here separable field extensions give rise to sets with transitive $Gal(k^{sep}/k)$ -action and Galois extensions to $Gal(k^{sep}/k)$ -sets isomorphic to finite quotients of $Gal(k^{sep}/k)$.

- Introduction

Category of Separable A-algebras

Theorem (Main Theorem of Galois Theory - Grothendieck's version)

Let k be a field. Then the functor mapping a finite étale k-algebra A to the finite set $Mor(A, k^{sep})$ gives an anti-equivalence between the category of finite étale k-algebras and the category of finite sets with continuous left $Gal(k^{sep}/k)$ -action. Here separable field extensions give rise to sets with transitive $Gal(k^{sep}/k)$ -action and Galois extensions to $Gal(k^{sep}/k)$ -sets isomorphic to finite quotients of $Gal(k^{sep}/k)$.

Theorem (Szamuely)

Let k be a field with fixed separable closure k^{sep} . The contravariant functor mapping a finite separable extension L|k to the finite $\operatorname{Gal}(k^{sep}/k)$ -set gives an anti-equivalence between the category of finite separable extensions of k and the category of finite sets with continuous and transitive left $\operatorname{Gal}(k^{sep}/k)$ -action. Here Galois extensions give rise to $\operatorname{Gal}(k^{sep}/k)$ - sets isomorphic to some finite quotient of $\operatorname{Gal}(k^{sep}/k)$.

Automorphism Group of Functor

Let $F : \mathcal{C} \to \text{Sets}$ be a functor. An automorphims of F is an invertible natural transformation of functors $F \to F$. Equivalently, an automorphims of F is a collection of bijection $\sigma_X : F(X) \to F(X)$, one for each $X \in \text{Ob}(\mathcal{C})$ such that for each morphism $f : Y \to Z$ the diagram

is commutative.

v غ ۱۰

- Automorphism Group of Functor

O A'

- Topological Properties of Automorphism Group of Functor

Automorphism Group of Functor

Topological Properties of Automorphism Group of Functor

There is a canonical injective map

 $\operatorname{Aut}(F) \to \Pi_{X \in \operatorname{Ob}(\mathcal{C})} \operatorname{Aut}(F(X))$ $\sigma \mapsto (\sigma_X)_{X \in \operatorname{Ob}(\mathcal{C})}.$

(1)

م ≣.

- Automorphism Group of Functor

OA'

└─ Topological Properties of Automorphism Group of Functor

Automorphism Group of Functor

Topological Properties of Automorphism Group of Functor

There is a canonical injective map

 $\operatorname{Aut}(F) \to \Pi_{X \in \operatorname{Ob}(\mathcal{C})} \operatorname{Aut}(F(X))$ $\sigma \mapsto (\sigma_X)_{X \in \operatorname{Ob}(\mathcal{C})}.$

For any $X \in \mathcal{C}$, we consider the following map

 $\operatorname{Aut}(F) imes F(X) o F(X)$ $\sigma.t \mapsto \sigma_X(t).$ (1)

Topological Properties of Automorphism Group of Functor

Automorphism Group of Functor

Topological Properties of Automorphism Group of Functor

There is a canonical injective map

 $\operatorname{Aut}(F) \to \Pi_{X \in \operatorname{Ob}(\mathcal{C})} \operatorname{Aut}(F(X))$ $\sigma \mapsto (\sigma_X)_{X \in \operatorname{Ob}(\mathcal{C})}.$

(1)

For any $X \in \mathcal{C}$, we consider the following map

 $\operatorname{Aut}(F) imes F(X) o F(X)$ $\sigma.t \mapsto \sigma_X(t).$

The universal property of our topology on $\operatorname{Aut}(F)$ is the following: suppose that *G* is a topological group and $G \to \operatorname{Aut}(F)$ is a group homomorphism such that the induced actions $G \times F(X) \to F(X)$ are continuous for all $X \in \operatorname{Ob}(\mathcal{C})$ where F(X) has the discrete topology. Then $G \to \operatorname{Aut}(F)$ is continuous.

└─ Topological Properties of Automorphism Group of Functor

Proposition

Let C be a category and let $F : C \to \text{Sets}$ be a functor. The map (1) identifies Aut(F) with a closed subgroup of $\prod_{X \in \text{Ob}(C)} \text{Aut}(F(X))$ In particular, if F(X) is finite for all X, then Aut(F) is a profinite group.

Topological Properties of Automorphism Group of Functor

Proposition

Let C be a category and let $F : C \to \text{Sets}$ be a functor. The map (1) identifies Aut(F) with a closed subgroup of $\prod_{X \in \text{Ob}(C)} \text{Aut}(F(X))$ In particular, if F(X) is finite for all X, then Aut(F) is a profinite group.

Proof.

• For each morphism $g: Y \rightarrow Z$, we define a subset as

$$\Gamma_g = \{(\sigma_X) \in \prod_{X \in \mathcal{C}} \operatorname{Aut}(F(X)) | \sigma_Z F(g) = F(g) \sigma_Y \}.$$

 Γ_g is closed in product topology of $\operatorname{Aut}(F)$.

L Topological Properties of Automorphism Group of Functor

Proposition

Let C be a category and let $F : C \to \text{Sets}$ be a functor. The map (1) identifies Aut(F) with a closed subgroup of $\prod_{X \in \text{Ob}(C)} \text{Aut}(F(X))$ In particular, if F(X) is finite for all X, then Aut(F) is a profinite group.

Proof.

• For each morphism $g: Y \rightarrow Z$, we define a subset as

$$\Gamma_g = \{(\sigma_X) \in \prod_{X \in \mathcal{C}} \operatorname{Aut}(F(X)) | \sigma_Z F(g) = F(g) \sigma_Y \}.$$

 Γ_g is closed in product topology of Aut(F).

We have

$$\operatorname{Aut}(F) = \bigcap_{g:Y \to Z} \Gamma_g.$$

is a closed subproup of profinite group $\prod_{X \in Ob(\mathcal{C})} Aut(F(X))$ hence is profinite.

Profinite Completion

Definition

Let G be a topological group. The **profinite completion** of G will be the profinite group

$$G = \lim_{U \subset G \text{ open, normal, finite index}} G/U$$

with its profinite topology

Profinite Completion

Definition

Let G be a topological group. The **profinite completion** of G will be the profinite group

$$\widehat{G} = \lim_{U \subset G \text{ open, normal, finite index}} G/U$$

with its profinite topology

Example

Let \mathbb{F}_q be a finite field, with $|\mathbb{F}_q| = q$ and with algebraic closure \mathbb{F}_q and with algebraic closure \mathbb{F}_q . The only finite extension of \mathbb{F}_q in \mathbb{F}_q are the fields $\mathbb{F}_{q^n} = \{\alpha \in \mathbb{F}_q | \alpha^{q^n} = \alpha\}$ for $n \in \mathbb{Z}, n \ge 1$. Each \mathbb{F}_{q^n} is Galois over \mathbb{F}_q , with $\operatorname{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q) \cong \mathbb{Z}/n\mathbb{Z}$, the generator of $\mathbb{Z}/n\mathbb{Z}$ corresponding to the Frobenius automorphism F with $F(\alpha) = \alpha^q$ for all α . Taking projective limits, we see that the absolute Galois group of \mathbb{F}_q is isomorphic to \hat{Z} , with $1 \in \hat{Z}$ corresponding to $F \in \operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_q)$.

Profinite Completion

Let G be a topological group. We consider the forgetful functor

 F_G : Finite – G – sets \rightarrow Sets,

(2)

Automorphism Group of Functor

Profinite Completion

Let G be a topological group. We consider the forgetful functor

$$F_G$$
: Finite – G – sets \rightarrow Sets, (2)

Proposition

Consider the forgetful functor (2). Then

$$\widehat{G} \cong \operatorname{Aut}(F_G)$$

as topological groups.

- Automorphism Group of Functor

Profinite Completion

Let G be a topological group. We consider the forgetful functor

$$F_G$$
: Finite – G – sets \rightarrow Sets, (2)

Proposition

Consider the forgetful functor (2). Then

 $\widehat{G} \cong \operatorname{Aut}(F_G)$

as topological groups.

Proof.

• There exists a continuous map $\gamma : G \to \operatorname{Aut}(F_G)$.

- Automorphism Group of Functor

Profinite Completion

Let G be a topological group. We consider the forgetful functor

$$F_G$$
: Finite – G – sets \rightarrow Sets, (2)

Proposition

Consider the forgetful functor (2). Then

 $\widehat{G} \cong \operatorname{Aut}(F_G)$

as topological groups.

- There exists a continuous map $\gamma : G \to \operatorname{Aut}(F_G)$.
- We get $\widehat{G} \to \operatorname{Aut}(F_G)$ because $\operatorname{Aut}(F_G)$ is profinite and universal property.

Profinite Completion

Proof.

• Show that $\widehat{G} \to \operatorname{Aut}(F_G)$ is injective. To see this, if $U \triangleleft G$ is open and finite index, then X = G/U belongs to Finite-G-sets. Since G/U acts faithfully on G/U the map $\beta : \widehat{G} \to \operatorname{Aut}(F_G)$ is injective.

Profinite Completion

- Show that $\widehat{G} \to \operatorname{Aut}(F_G)$ is injective. To see this, if $U \triangleleft G$ is open and finite index, then X = G/U belongs to Finite-G-sets. Since G/U acts faithfully on G/U the map $\beta : \widehat{G} \to \operatorname{Aut}(F_G)$ is injective.
- Let $a \in \operatorname{Aut}(F_G)$ and let $X \in \operatorname{Ob}(\mathcal{C})$. We will show there is a $g \in G$ such that a and g induce the same action on $F_G(X)$.

Profinite Completion

Proposition

Let G be a topological group. Let F: Finite-G-sets \rightarrow Sets be an exact functor with F(X) finite for all X. Then F is isomorphic to the forgetful functor (2).

Profinite Completion

Proposition

Let G be a topological group. Let F: Finite-G-sets \rightarrow Sets be an exact functor with F(X) finite for all X. Then F is isomorphic to the forgetful functor (2).

Proof.

• Let be an non-empty object of $X \in \text{Finite-}G\text{-sets}$. We can show that F(X) is non-empty.

Profinite Completion

Proposition

Let G be a topological group. Let $F : Finite-G-sets \to Sets$ be an exact functor with F(X) finite for all X. Then F is isomorphic to the forgetful functor (2).

Proof.

- Let be an non-empty object of $X \in Finite-G$ -sets. We can show that F(X) is non-empty.
- Let $U \subset G$ be an open, normal subgroup with finite index. Observe that

$$G/U imes G/U = \prod_{gU \in G/U} G/U,$$

where gU corresponds to the orbit of (eU, gU). Hence |F(G/U) = |G/U|. Thus we see that

$$A = \varprojlim_{U \subset G \text{ open, normal, finite index}} F(G/U)$$

is non-empty.

Profinite Completion

Proof.

• We can identify F_G with the functor

$$X\mapsto \varinjlim_U Mor(G/U,X)$$

where $f : G/U \to X$ corresponds to $f(eU) \in X = F_G(X)$.

Profinite Completion

Proof.

• We can identify F_G with the functor

$$X \mapsto \varinjlim_U Mor(G/U, X)$$

where $f : G/U \to X$ corresponds to $f(eU) \in X = F_G(X)$.

• Pick $\gamma = (\gamma_U)$ an element in A, we define a map

$$t: F_G \to F.$$

Namely, given $x \in X$ choose U and $f : G/U \to X$ sending eU to x and then set $t_X(x) = F(f)(\gamma_U)$.

Definition

Let \mathcal{C} be a category and let $F : \mathcal{C} \to Sets$ be a functor. The pair (\mathcal{C}, F) is a **Galois category** if

- G1 There is a terminal object in ${\cal C},$ and the fibred product of any objects over a third one exists in ${\cal C}$
- G2 Finite coproducts exists in C, and for any object in C the quotient by a finite group of automorphism exists
- G3 Any morphism u in C can be written as u = u'u'' where u'' is an epimorphism and u' a monomorphism, and any monomorphism $u : X \to Y$ in C is an isomorphism of X with a direct summand of Y
- G4 The functor *F* transforms terminal objects in terminal objects and commutes with fibred products
- G5 The functor F commutes with finite sums, transforms epimorphism in epimorphism and commutes with passage to the quotient by a finite group of autmorphisms.
- G6 If u is a morphism in C such that F(u) is an isomorphism, then u is an isomorphism.

Galois Category

Definition (Stacks 0BMQ)

Let \mathcal{C} be a category and let $F : \mathcal{C} \to Sets$ be a functor. The pair (\mathcal{C}, F) is a **Galois category** if

- i) \mathcal{C} has finite limits and finite colimits
- ii) Every object of C is a finite (possibly empty) coproduct of connected objects,
- iii) F(X) is finite for all $X \in Ob(\mathcal{C})$, and
- iv) F reflects isomorphisms and is exact.

へ」「「

TOAN

Galois Category

Examples of Galois category

The category of finite sets, Finsets, with the identity functor to itself.

*N*غ ۱۱

O A'

Galois Category

Examples of Galois category

The category of finite sets, Finsets, with the identity functor to itself.

- 2) The category of G Finsets, where G is profinite groups and the fundamental functor (fiber functor) is forgetful functor.
- Let C be a category of finite coverings of a connected topological space X. Fix x ∈ X, we define the fiber functor as follows

 $F_x : \mathcal{C} \to \operatorname{Sets}$ $(f: Y \to X) \mapsto f^{-1}(x).$ V i EV

Galois Category

Examples of Galois category

The category of finite sets, Finsets, with the identity functor to itself.

- The category of G Finsets, where G is profinite groups and the fundamental functor (fiber functor) is forgetful functor.
- Let C be a category of finite coverings of a connected topological space X. Fix x ∈ X, we define the fiber functor as follows

 $F_x: \mathcal{C} o \operatorname{Sets}$ $(f: Y o X) \mapsto f^{-1}(x).$

 4) Let C be the opposite of the category of kSAlg of separable k-algebras. Given B ∈ C, we define the fiber functor as follows

 $F: \mathcal{C} \to \text{Sets}$ $B \mapsto \text{Mor}(B, k^{sep}).$

Lemma

Let (\mathcal{C}, F) be a Galois category. Let $f : X \to Y \in \operatorname{Arrows}(\mathcal{C})$. Then

- 1) F is faithful
- 2) $f: X \to Y$ is a monomorphism if and only if $F(f): F(X) \to F(Y)$ is injective
- 3) $f : X \to Y$ is a epimorphism if and only if $F(f) : F(X) \to F(Y)$ is surjective
- 4) An object A of C is initial if and only if $F(A) = \emptyset$
- 5) An object Z of C is final if and only if F(Z) is a singleton
- 6) If X and Y are connected, then $X \rightarrow Y$ is an epimorphism
- 7) If X is a connected object and $a, b : X \to Y$ are two morphisms then a = b as soon as F(a) and F(b) agree on one element of F(X)
- If X = ∐_{i=1,...,n} X_i and Y = ∐_{j=1,...,m} X_j (X_i and Y_j are connected) then there is a map α : 1, ..., n → 1, ..., m such that f : X → Y comes from a collection of morphisms X_i → Y_{α(i)}.

Galois Categories └─ Galois Category └─ Galois Object	
	Calaia Catagony

Definition

Let C be a category with an initial object. An object X is called **connected** if it has precisely two distinct subobjects, namely $0_C \rightarrow X$, and $id : X \rightarrow X$.

Galois Categories └─ Galois Category └─ Galois Object	

Definition

Let C be a category with an initial object. An object X is called **connected** if it has precisely two distinct subobjects, namely $0_C \to X$, and $id : X \to X$.

Example

1) Let G be a profinite group and E is a finite G-set. E is connected if and only if the action of G on E is transitive.

Calois Catogorios	
Galois Categories	
Galois Category	
Galois Object	

Definition

Let C be a category with an initial object. An object X is called **connected** if it has precisely two distinct subobjects, namely $0_C \to X$, and $id : X \to X$.

Example

- 1) Let G be a profinite group and E is a finite G-set. E is connected if and only if the action of G on E is transitive.
- Let X be a connected topological space and Y → X a finite covering.
 Y → X is connected if and only if Y is connected.

Calois Catogorios	
Galois Categories	
Galois Category	
Galois Object	

Definition

Let C be a category with an initial object. An object X is called **connected** if it has precisely two distinct subobjects, namely $0_C \to X$, and $id : X \to X$.

Example

- 1) Let G be a profinite group and E is a finite G-set. E is connected if and only if the action of G on E is transitive.
- Let X be a connected topological space and Y → X a finite covering.
 Y → X is connected if and only if Y is connected.

Lemma

Let (\mathcal{C},F) be a Galois category and $X\in\mathcal{C}$ is a connected object. Then we have

1) Any $u \in Mor(X, X)$ is an automorphism.

− Galois Category Galois Object

Lemma

Let (\mathcal{C}, F) be a Galois category and $X \in \mathcal{C}$ is a connected object. Then we have

- 1) Any $u \in Mor(X, X)$ is an automorphism.
- 2) For any object X, Aut(X) acts on F(X) by $u.a = F(u)(a), \forall u \in Aut(X), \forall a \in F(X)$. For any $a \in F(X)$ the map

 $heta_a : \operatorname{Aut}(X) o F(X)$ $u \mapsto F(u)(a) = u.a$

is injective.

− Galois Category Galois Object

Lemma

Let (\mathcal{C}, F) be a Galois category and $X \in \mathcal{C}$ is a connected object. Then we have

- 1) Any $u \in Mor(X, X)$ is an automorphism.
- 2) For any object X, Aut(X) acts on F(X) by $u.a = F(u)(a), \forall u \in Aut(X), \forall a \in F(X)$. For any $a \in F(X)$ the map

 $heta_a : \operatorname{Aut}(X) o F(X)$ $u \mapsto F(u)(a) = u.a$

is injective.

Definition

A connected object X is Galois if for any $a \in F(X)$, the map

 $heta_a : \operatorname{Aut}(X) o F(X)$ $u \mapsto F(u)(a) = u.a$

is bijective.

− Galois Category └─ Galois Object

Proposition

Let (\mathcal{C}, F) be a Galois category. For any connected object X of \mathcal{C} there exists a Galois object Y and a morphism $Y \to X$.

Proposition

Let (\mathcal{C}, F) be a Galois category. For any connected object X of \mathcal{C} there exists a Galois object Y and a morphism $Y \to X$.

Proof.

Let n = |F(X)|. Consider X^n endowed with natural action of S_n . Let

$$X^n = \coprod_{t \in T} Z_t$$

be the decomposition into connected objects. Pick a t such that $F(Z_t)$ contains (s_1, \ldots, s_n) with s_i pairwise distinct.

Proposition

Let (\mathcal{C}, F) be a Galois category. For any connected object X of \mathcal{C} there exists a Galois object Y and a morphism $Y \to X$.

Proof.

Let n = |F(X)|. Consider X^n endowed with natural action of S_n . Let

$$X^n = \coprod_{t \in T} Z_t$$

be the decomposition into connected objects. Pick a *t* such that $F(Z_t)$ contains (s_1, \ldots, s_n) with s_i pairwise distinct. Let $G \subset S_n$ be the subgroup of elements with $g(Z_t) = Z_t$. We can see that the action of *G* on $F(Z_t)$ is transitive.

Pro-representable Functor

Let C be a category and F be functor from C to Sets. We say that F is **prorepresentable** if there exists a directed set I, a projective system $(A_i, \phi_{ij})_{i \in I}$ of objects in C and elements $a_i \in F(A_i)$ such that

- 1) $a_i = F(\phi_{ij}(a_j))$ for $j \ge i$.
- 2) For any $X \in C$, the natural map

$$\varprojlim_{i\in I} \operatorname{Mor}_{\mathcal{C}}(A_i, X) \to F(X)$$

induced by a_i is bijective.

In addition, if the ϕ_{ij} are epimorphism of C, we say that F is strictly pro-representable.

Pro-representable Functor

Proposition

Let (\mathcal{C}, F) be a Galois category. For any connected object X in \mathcal{C} , the action of $G = \operatorname{Aut}(F)$ on F(X) is transitive.

Proof.

Let *I* be a set of isomorphism clases of Galois objects in C. Fpr each *i* ∈ *I*, pick a representative X_i.

Pro-representable Functor

Proposition

Let (\mathcal{C}, F) be a Galois category. For any connected object X in \mathcal{C} , the action of $G = \operatorname{Aut}(F)$ on F(X) is transitive.

- Let *I* be a set of isomorphism clases of Galois objects in C. Fpr each *i* ∈ *I*, pick a representative X_i.
- $i \ge i'$ if and only if there exist $f_{ii'} : X_i \to X_{i'}$.

Pro-representable Functor

Proposition

Let (\mathcal{C}, F) be a Galois category. For any connected object X in \mathcal{C} , the action of $G = \operatorname{Aut}(F)$ on F(X) is transitive.

- Let *I* be a set of isomorphism clases of Galois objects in C. Fpr each *i* ∈ *I*, pick a representative X_i.
- $i \ge i'$ if and only if there exist $f_{ii'} : X_i \to X_{i'}$.
- Pick $\gamma_i \in F(X_i)$, for $i \ge i'$ pick $f_{ii'} : X_i \to X_{i'}$ such that $F(f_{ii'})(\gamma_i) = (\gamma_{i'})$. (This morphism is uniquely determined).

Pro-representable Functor

Proposition

Let (\mathcal{C}, F) be a Galois category. For any connected object X in \mathcal{C} , the action of $G = \operatorname{Aut}(F)$ on F(X) is transitive.

- Let *I* be a set of isomorphism clases of Galois objects in C. Fpr each *i* ∈ *I*, pick a representative X_i.
- $i \ge i'$ if and only if there exist $f_{ii'} : X_i \to X_{i'}$.
- Pick $\gamma_i \in F(X_i)$, for $i \ge i'$ pick $f_{ii'} : X_i \to X_{i'}$ such that $F(f_{ii'})(\gamma_i) = (\gamma_{i'})$. (This morphism is uniquely determined).
- $A_i = \operatorname{Aut}(X_i)$ acts transitively on $F(X_i)$. Suppose

Pro-representable Functor

Proof.

The collection of A_i and transitive maps h_{ii}: A_i → A_i forms an inverse system of finite groups over (I, ≥).

Pro-representable Functor

- The collection of A_i and transitive maps h_{ii}: A_i → A_i forms an inverse system of finite groups over (I, ≥).
- $A = \lim_{i \to \infty} A_i$ is profinite group and morphisms $A \to A_i$ are surjective.

Pro-representable Functor

Proof.

- The collection of A_i and transitive maps h_{ii}: A_i → A_i forms an inverse system of finite groups over (I, ≥).
- $A = \lim_{i \to \infty} A_i$ is profinite group and morphisms $A \to A_i$ are surjective.
- There exists $A^{opp} \to \operatorname{Aut}(F)$ by proving that the functor F' is ismorphic to F where

 $F': \mathcal{C} \to \mathsf{Finite} - \mathsf{G} - \mathsf{sets}$ $X \mapsto \varinjlim \operatorname{Mor}(X_i, X).$

A → A_i is surjective we conclude that G acts transitively on F(X_i) for all
 i. Since every connected object is dominated by one of the X_i we conclude
 the proposition is true.

Pro-representable Functor

Proof.

- The collection of A_i and transitive maps h_{ii}: A_i → A_i forms an inverse system of finite groups over (I, ≥).
- $A = \lim_{i \to \infty} A_i$ is profinite group and morphisms $A \to A_i$ are surjective.
- There exists $A^{opp} \to \operatorname{Aut}(F)$ by proving that the functor F' is ismorphic to F where

 $F': \mathcal{C} \to \mathsf{Finite} - \mathsf{G} - \mathsf{sets}$ $X \mapsto \varinjlim \operatorname{Mor}(X_i, X).$

A → A_i is surjective we conclude that G acts transitively on F(X_i) for all
 i. Since every connected object is dominated by one of the X_i we conclude
 the proposition is true.

The main theorem of Galois category

Theorem

Let (\mathcal{C}, F) be a Galois category. Then the functor

 $\begin{aligned} H: \mathcal{C} &\to \textit{Finite} - \textit{G} - \textit{sets} \\ X &\mapsto \textit{F}(X). \end{aligned}$

is an equivalence.

The main theorem of Galois category

Theorem

Let (\mathcal{C}, F) be a Galois category. Then the functor

 $\begin{aligned} H: \mathcal{C} &\rightarrow \textit{Finite} - \textit{G} - \textit{sets} \\ X &\mapsto \textit{F}(X). \end{aligned}$

is an equivalence.

Proof.

• *H* is faithful

The main theorem of Galois category

Theorem

Let (\mathcal{C}, F) be a Galois category. Then the functor

```
H: \mathcal{C} \rightarrow Finite - G - sets
X \mapsto F(X).
```

is an equivalence.

Proof.

• H is faithful

Let X, Y ∈ Ob(C) and s : H(X) → H(Y), we can assume that X, Y are connected object.

The main theorem of Galois category

Theorem

Let (\mathcal{C}, F) be a Galois category. Then the functor

 $H: \mathcal{C} \to Finite - G - sets$ $X \mapsto F(X).$

is an equivalence.

- H is faithful
- Let X, Y ∈ Ob(C) and s : H(X) → H(Y), we can assume that X, Y are connected object. Then the graph Γ_s ⊂ H(X) × H(Y) = H(X × Y) is a union of orbits. There exists Z ⊂ X × Y which is a coproduct of connected components pf X × Y such that H(Z) = Γ_s.

The main theorem of Galois category

Theorem

Let (\mathcal{C}, F) be a Galois category. Then the functor

 $\begin{aligned} H: \mathcal{C} &\to \textit{Finite} - \textit{G} - \textit{sets} \\ X &\mapsto \textit{F}(X). \end{aligned}$

is an equivalence.

- H is faithful
- Let X, Y ∈ Ob(C) and s : H(X) → H(Y), we can assume that X, Y are connected object. Then the graph Γ_s ⊂ H(X) × H(Y) = H(X × Y) is a union of orbits. There exists Z ⊂ X × Y which is a coproduct of connected components pf X × Y such that H(Z) = Γ_s. This implies pr₁|_Z : Z → X is an isomorphism because H(pr₁|_Z) is bijective. Then Z is the graph of a morphism X → Y (with H(f) = s)

$$X \xrightarrow{f} Y$$

$$(pr_1|_Z)^{-1} \xrightarrow{f} Z$$

The main theorem of Galois category

Proof.

Enough to construct X with F(X) ≅ Aut(F)/K, for K ⊂ Aut(F) an open subgroup.

└─ The main theorem of Galois category

- Enough to construct X with $F(X) \cong \operatorname{Aut}(F)/K$, for $K \subset \operatorname{Aut}(F)$ an open subgroup.
- Can find Y Galois with $U = \text{Ker}(G \to \coprod_i \text{Aut}(F(X_i)))$ is contained in H.

└─ The main theorem of Galois category

Proof.

- Enough to construct X with $F(X) \cong \operatorname{Aut}(F)/K$, for $K \subset \operatorname{Aut}(F)$ an open subgroup.
- Can find Y Galois with $U = \operatorname{Ker}(G \to \coprod_i \operatorname{Aut}(F(X_i)))$ is contained in H.
- Then by fully faithfulness

 $\operatorname{Aut}(Y) \cong \operatorname{Aut}_{G-\mathsf{sets}}(F(Y))$ $\cong \operatorname{Aut}_{G-\mathsf{sets}}(\operatorname{Aut}(F)/U)$ $\cong (\operatorname{Aut}(F)/U)^{opp}$

which contains $(K/U)^{opp}$.

The main theorem of Galois category

Proof.

- Enough to construct X with $F(X) \cong \operatorname{Aut}(F)/K$, for $K \subset \operatorname{Aut}(F)$ an open subgroup.
- Can find Y Galois with $U = \operatorname{Ker}(G \to \coprod_i \operatorname{Aut}(F(X_i)))$ is contained in H.
- Then by fully faithfulness

 $\operatorname{Aut}(Y) \cong \operatorname{Aut}_{G-\mathsf{sets}}(F(Y))$ $\cong \operatorname{Aut}_{G-\mathsf{sets}}(\operatorname{Aut}(F)/U)$ $\cong (\operatorname{Aut}(F)/U)^{opp}$

which contains $(K/U)^{opp}$.

• Get $M \leftrightarrow (K/U)^{opp}$.

└─ The main theorem of Galois category

Proof.

- Enough to construct X with $F(X) \cong \operatorname{Aut}(F)/K$, for $K \subset \operatorname{Aut}(F)$ an open subgroup.
- Can find Y Galois with $U = \operatorname{Ker}(G \to \coprod_i \operatorname{Aut}(F(X_i)))$ is contained in H.
- Then by fully faithfulness

$$\operatorname{Aut}(Y) \cong \operatorname{Aut}_{G-\operatorname{sets}}(F(Y))$$
$$\cong \operatorname{Aut}_{G-\operatorname{sets}}(\operatorname{Aut}(F)/U)$$
$$\cong (\operatorname{Aut}(F)/U)^{opp}$$

which contains $(K/U)^{opp}$.

- Get $M \leftrightarrow (K/U)^{opp}$.
- Let X = Y/M, i.e., X is the coequalizer of the arrows $m: Y \to Y, m \in M$.

└─ The main theorem of Galois category

Proof.

- Enough to construct X with $F(X) \cong \operatorname{Aut}(F)/K$, for $K \subset \operatorname{Aut}(F)$ an open subgroup.
- Can find Y Galois with $U = \operatorname{Ker}(G \to \coprod_i \operatorname{Aut}(F(X_i)))$ is contained in H.
- Then by fully faithfulness

$$\operatorname{Aut}(Y) \cong \operatorname{Aut}_{G-\operatorname{sets}}(F(Y))$$
$$\cong \operatorname{Aut}_{G-\operatorname{sets}}(\operatorname{Aut}(F)/U)$$
$$\cong (\operatorname{Aut}(F)/U)^{opp}$$

which contains $(K/U)^{opp}$.

- Get $M \leftrightarrow (K/U)^{opp}$.
- Let X = Y/M, i.e., X is the coequalizer of the arrows $m: Y \to Y, m \in M$. Since F is exact we see that F(X) = G/H and the proof is complete.

へ」に

References LOA'N References H. Lenstra, Galois theory for schemes (2008), available online from http://websites.math.leidenuniv.nl/algebra/GSchemes.pdf. J. P. Murre, Lectures on an introduction to Grothendieck's theory of the

fundamental group, Tata Inst. of Fund. Res. Lectures on Mathematics 40, Bombay, 1967.

- Stacks project authors, Categories, available online from https://stacks.math.columbia.edu/tag/0011, 2021.
 - Stacks project authors, *Galois categories*, available online from https://stacks.math.columbia.edu/tag/OBMQ, 2021.

T.Szamuely, *Galois group and fundamental groups*, Cambridge Studies in Advanced Mathematics, 2009.

- References

THANK YOU FOR LISTENING