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Introduction

Main Theorem of Galois Theory

Theorem (Lenstra)
Let k ⊂ L be a Galois extension of fields with Galois group G . Then the set of
immediate fields of K ⊂ L corresponds bijectively to the set of closed
subgroups of G . More precisely, the maps

φ : {E |E is a subfield of L containing k} → {H|H is a closed subgroup of G}
E 7→ AutE (L)

and

ψ : {H|H is a closed subgroup of G} → {E |E is a subfield of L containing k}

H 7→ LH

are bijective and inverse to each other. This correspondence reverves the
inclusion relations, K corresponds to G and L to {idL}.
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Profinite Groups

Theorem (Lenstra)
Let k be a field, and L a subfield of k̄ containing k. Denote by I the set of
subfields E of L for which E is a finite Galois extension of k. Then I, when
partially ordered by inclusion, is a directed partially ordered set. Moreover, the
following four assertions are equivalent:
1) L is a Galois extension of k
2) L is normal and separable over k
3) There is a set F ⊂ k[X ] \ {0} of separable polynomials such that L is the

splitting field F over k.
4)

⋃
E⊂I E = L. Finally, if these conditions are satisfied, then there is a group

isomorphism
Gal(L/k) ∼= lim←−

E∈I
Gal(E/k).
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Continuous Action

Let L be a finite separable extension of k. We consider the following map

Gal(ksep/k)×Mor(L, ksep)→ Mor(L, ksep)
σ.φ 7→ σ ◦ φ

.

Lemma (Szamuely)
The above left action of Gal(ksep/k) on Mor(L, ksep) is continuous and
transitive, hence Mor(L, ksep) as a Gal(ksep/k)-set is isomorphic to the left
coset space of some open subgroup in Gal(ksep/k). For L Galois over k this
coset space is in fact a quotient by an open normal subgroup.
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Category of Separable A-algebras

Theorem (Main Theorem of Galois Theory - Grothendieck’s version)
Let k be a field. Then the functor mapping a finite étale k-algebra A to the
finite set Mor(A, ksep) gives an anti-equivalence between the category of finite
étale k-algebras and the category of finite sets with continuous left
Gal(ksep/k)-action. Here separable field extensions give rise to sets with
transitive Gal(ksep/k)-action and Galois extensions to Gal(ksep/k)-sets
isomorphic to finite quotients of Gal(ksep/k).

Theorem (Szamuely)
Let k be a field with fixed separable closure ksep. The contravariant functor
mapping a finite separable extension L|k to the finite Gal(ksep/k)-set gives an
anti-equivalence between the category of finite separable extensions of k and
the category of finite sets with continuous and transitive left
Gal(ksep/k)-action. Here Galois extensions give rise to Gal(ksep/k)- sets
isomorphic to some finite quotient of Gal(ksep/k).
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Automorphism Group of Functor

Automorphism Group of Functor

Definition
Let F : C → Sets be a functor. An automorphims of F is an invertible natural
transformation of functors F → F . Equivalently, an automorphims of F is a
collection of bijection σX : F (X)→ F (X), one for each X ∈ Ob(C) such that
for each morphism f : Y → Z the diagram

F (Y ) F (Z)

F (Y ) F (Z)

F (f )

σY σZ

F (f )

is commutative.
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Automorphism Group of Functor

Topological Properties of Automorphism Group of Functor

There is a canonical injective map

Aut(F )→ ΠX∈Ob(C)Aut(F (X))
σ 7→ (σX )X∈Ob(C).

(1)

For any X ∈ C, we consider the following map

Aut(F )× F (X)→ F (X)
σ.t 7→ σX (t).

The universal property of our topology on Aut(F ) is the following: suppose
that G is a topological group and G → Aut(F ) is a group homomorphism such
that the induced actions G × F (X)→ F (X) are continuous for all X ∈ Ob(C)
where F (X) has the discrete topology. Then G → Aut(F ) is continuous.
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Topological Properties of Automorphism Group of Functor

Proposition
Let C be a category and let F : C → Sets be a functor. The map (1) identifies
Aut(F ) with a closed subgroup of ΠX∈Ob(C)Aut(F (X)) In particular, if F (X) is
finite for all X , then Aut(F ) is a profinite group.

Proof.
• For each morphism g : Y → Z , we define a subset as

Γg = {(σX ) ∈
∏
X∈C

Aut(F (X))|σZF (g) = F (g)σY }.

Γg is closed in product topology of Aut(F ).
• We have

Aut(F ) =
⋂

g :Y→Z

Γg .

is a closed subproup of profinite group ΠX∈Ob(C)Aut(F (X)) hence is
profinite.

�
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Profinite Completion

Definition
Let G be a topological group. The profinite completion of G will be the
profinite group

Ĝ = lim
U⊂G open, normal, finite index

G/U

with its profinite topology

Example
Let Fq be a finite field, with |Fq| = q and with algebraic closure F̄q and with
algebraic closure F̄q. The only finite extension of Fq in F̄q are the fields
Fqn = {α ∈ F̄q|αqn

= α} for n ∈ Z, n ≥ 1. Each Fqn is Galois over Fq, with
Gal(Fqn/Fq) ∼= Z/nZ, the generator of Z/nZ corresponding to the Frobenius
automorphism F with F (α) = αq for all α. Taking projective limits, we see that
the absolute Galois group of Fq is isomorphic to Ẑ , with 1 ∈ Ẑ corresponding
to F ∈ Gal(F̄q/Fq).
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Profinite Completion

Let G be a topological group. We consider the forgetful functor
FG : Finite−G− sets→ Sets, (2)

Proposition
Consider the forgetful functor (2). Then

Ĝ ∼= Aut(FG )

as topological groups.

Proof.
• There exists a continuous map γ : G → Aut(FG ).
• We get Ĝ → Aut(FG ) because Aut(FG ) is profinite and universal property.

G Ĝ

Aut(F )

∧

βγ

.
�
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Automorphism Group of Functor

Profinite Completion

Proof.
• Show that Ĝ → Aut(FG ) is injective. To see this, if U / G is open and
finite index, then X = G/U belongs to Finite-G-sets. Since G/U acts
faithfully on G/U the map β : Ĝ → Aut(FG ) is injective.

• Let a ∈ Aut(FG ) and let X ∈ Ob(C). We will show there is a g ∈ G such
that a and g induce the same action on FG (X).

�
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Profinite Completion

Proposition
Let G be a topological group. Let F : Finite-G-sets→ Sets be an exact functor
with F (X) finite for all X . Then F is isomorphic to the forgetful functor (2).

Proof.
• Let be an non-empty object of X ∈ Finite-G-sets. We can show that F (X)
is non-empty.
• Let U ⊂ G be an open, normal subgroup with finite index. Observe that

G/U × G/U =
∐

gU∈G/U

G/U,

where gU corresponds to the orbit of (eU, gU). Hence |F (G/U) = |G/U|.
Thus we see that

A = lim←−
U⊂G open, normal, finite index

F (G/U)

is non-empty.
�
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Profinite Completion

Proof.
• We can identify FG with the functor

X 7→ lim−→
U

Mor(G/U,X)

where f : G/U → X corresponds to f (eU) ∈ X = FG (X).

• Pick γ = (γU) an element in A, we define a map

t : FG → F .

Namely, given x ∈ X choose U and f : G/U → X sending eU to x and
then set tX (x) = F (f )(γU).

�
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Galois Category

Definition
Let C be a category and let F : C → Sets be a functor. The pair (C,F ) is a
Galois category if
G1 There is a terminal object in C, and the fibred product of any objects over

a third one exists in C
G2 Finite coproducts exists in C, and for any object in C the quotient by a

finite group of automorphism exists
G3 Any morphism u in C can be written as u = u′u′′ where u′′ is an

epimorphism and u′ a monomorphism, and any monomorphism u : X → Y
in C is an isomorphism of X with a direct summand of Y

G4 The functor F transforms terminal objects in terminal objects and
commutes with fibred products

G5 The functor F commutes with finite sums, transforms epimorphism in
epimorphism and commutes with passage to the quotient by a finite group
of autmorphisms.

G6 If u is a morphism in C such that F (u) is an isomorphism, then u is an
isomorphism.
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Galois Category

Galois Category

Definition (Stacks 0BMQ)
Let C be a category and let F : C → Sets be a functor. The pair (C,F ) is a
Galois category if
i) C has finite limits and finite colimits
ii) Every object of C is a finite (possibly empty) coproduct of connected

objects,
iii) F (X) is finite for all X ∈ Ob(C), and
iv) F reflects isomorphisms and is exact.
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Galois Category

Examples of Galois category

1) The category of finite sets, Finsets, with the identity functor to itself.

2) The category of G − Finsets, where G is profinite groups and the
fundamental functor (fiber functor) is forgetful functor.

3) Let C be a category of finite coverings of a connected topological space X .
Fix x ∈ X , we define the fiber functor as follows

Fx : C → Sets

(f : Y → X) 7→ f −1(x).

4) Let C be the opposite of the category of kSAlg of separable k−algebras.
Given B ∈ C, we define the fiber functor as follows

F : C → Sets
B 7→ Mor(B, ksep).

17 / 28
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Lemma
Let (C,F ) be a Galois category. Let f : X → Y ∈ Arrows(C). Then
1) F is faithful
2) f : X → Y is a monomorphism if and only if F (f ) : F (X)→ F (Y ) is

injective
3) f : X → Y is a epimorphism if and only if F (f ) : F (X)→ F (Y ) is

surjective
4) An object A of C is initial if and only if F (A) = ∅
5) An object Z of C is final if and only if F (Z) is a singleton
6) If X and Y are connected, then X → Y is an epimorphism
7) If X is a connected object and a, b : X → Y are two morphisms then

a = b as soon as F (a) and F (b) agree on one element of F (X)
8) If X =

∐
i=1,...,n Xi and Y =

∐
j=1,...,m Xj (Xi and Yj are connected) then

there is a map α : 1, ..., n→ 1, ...,m such that f : X → Y comes from a
collection of morphisms Xi → Yα(i).
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Galois Object

Galois Category

Connected Object

Definition
Let C be a category with an initial object. An object X is called connected if it
has precisely two distinct subobjects, namely 0C → X , and id : X → X .

Example
1) Let G be a profinite group and E is a finite G-set. E is connected if and

only if the action of G on E is transitive.
2) Let X be a connected topological space and Y → X a finite covering.

Y → X is connected if and only if Y is connected.
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Galois Object

Lemma
Let (C,F ) be a Galois category and X ∈ C is a connected object. Then we
have
1) Any u ∈ Mor(X ,X) is an automorphism.

2) For any object X ,Aut(X) acts on F (X) by
u.a = F (u)(a),∀u ∈ Aut(X), ∀a ∈ F (X). For any a ∈ F (X) the map

θa : Aut(X)→ F (X)
u 7→ F (u)(a) = u.a

is injective.

Definition
A connected object X is Galois if for any a ∈ F (X), the map

θa : Aut(X)→ F (X)
u 7→ F (u)(a) = u.a

is bijective.
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θa : Aut(X)→ F (X)
u 7→ F (u)(a) = u.a

is injective.

Definition
A connected object X is Galois if for any a ∈ F (X), the map

θa : Aut(X)→ F (X)
u 7→ F (u)(a) = u.a

is bijective.
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Galois Object

Proposition
Let (C,F ) be a Galois category. For any connected object X of C there exists a
Galois object Y and a morphism Y → X .

Proof.
Let n = |F (X)|. Consider X n endowed with natural action of Sn. Let

X n =
∐
t∈T

Zt

be the decomposition into connected objects. Pick a t such that F (Zt)
contains (s1, . . . , sn) with si pairwise distinct.
Let G ⊂ Sn be the subgroup of elements with g(Zt) = Zt . We can see that the
action of G on F (Zt) is transitive. �
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Galois Category

Pro-representable Functor

Definition
Let C be a category and F be functor from C to Sets. We say that F is
prorepresentable if there exists a directed set I, a projective system (Ai , φij )i∈I
of objects in C and elements ai ∈ F (Ai ) such that
1) ai = F (φij (aj )) for j ≥ i .
2) For any X ∈ C, the natural map

lim←−
i∈I

MorC(Ai ,X)→ F (X)

induced by ai is bijective.
In addition, if the φij are epimorphism of C, we say that F is strictly
pro-representable.
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Pro-representable Functor

Proposition
Let (C,F ) be a Galois category. For any connected object X in C, the action of
G = Aut(F ) on F (X) is transitive.

Proof.
• Let I be a set of isomorphism clases of Galois objects in C. Fpr each i ∈ I,
pick a representative Xi .

• i ≥ i ′ if and only if there exist fii′ : Xi → Xi′ .

• Pick γi ∈ F (Xi ), for i ≥ i ′ pick fii′ : Xi → Xi′ such that F (fii′)(γi ) = (γi′).
(This morphism is uniquely determined).
• Ai = Aut(Xi ) acts transitively on F (Xi ). Suppose

Xi Xi′

Xi Xi′

fii′

a hii′ (a)

fii′
.

�
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Pro-representable Functor

Proof.
• The collection of Ai and transitive maps hii′ : Ai → Ai′ forms an inverse
system of finite groups over (I,≥).

• A = lim←−Ai is profinite group and morphisms A→ Ai are surjective.
• There exists Aopp → Aut(F ) by proving that the functor F ′ is ismorphic to
F where

F ′ : C → Finite− G − sets
X 7→ lim−→Mor(Xi ,X).

• A→ Ai is surjective we conclude that G acts transitively on F (Xi ) for all
i . Since every connected object is dominated by one of the Xi we conclude
the proposition is true.

�

24 / 28



Galois Categories
Galois Category

Pro-representable Functor

Proof.
• The collection of Ai and transitive maps hii′ : Ai → Ai′ forms an inverse
system of finite groups over (I,≥).
• A = lim←−Ai is profinite group and morphisms A→ Ai are surjective.

• There exists Aopp → Aut(F ) by proving that the functor F ′ is ismorphic to
F where

F ′ : C → Finite− G − sets
X 7→ lim−→Mor(Xi ,X).

• A→ Ai is surjective we conclude that G acts transitively on F (Xi ) for all
i . Since every connected object is dominated by one of the Xi we conclude
the proposition is true.

�

24 / 28



Galois Categories
Galois Category

Pro-representable Functor

Proof.
• The collection of Ai and transitive maps hii′ : Ai → Ai′ forms an inverse
system of finite groups over (I,≥).
• A = lim←−Ai is profinite group and morphisms A→ Ai are surjective.
• There exists Aopp → Aut(F ) by proving that the functor F ′ is ismorphic to
F where

F ′ : C → Finite− G − sets
X 7→ lim−→Mor(Xi ,X).

• A→ Ai is surjective we conclude that G acts transitively on F (Xi ) for all
i . Since every connected object is dominated by one of the Xi we conclude
the proposition is true.

�

24 / 28



Galois Categories
Galois Category

Pro-representable Functor

Proof.
• The collection of Ai and transitive maps hii′ : Ai → Ai′ forms an inverse
system of finite groups over (I,≥).
• A = lim←−Ai is profinite group and morphisms A→ Ai are surjective.
• There exists Aopp → Aut(F ) by proving that the functor F ′ is ismorphic to
F where

F ′ : C → Finite− G − sets
X 7→ lim−→Mor(Xi ,X).

• A→ Ai is surjective we conclude that G acts transitively on F (Xi ) for all
i . Since every connected object is dominated by one of the Xi we conclude
the proposition is true.

�

24 / 28



Galois Categories
Galois Category

The main theorem of Galois category

Theorem
Let (C,F ) be a Galois category. Then the functor

H : C → Finite− G − sets
X 7→ F (X).

is an equivalence.

Proof.
• H is faithful
• Let X ,Y ∈ Ob(C) and s : H(X)→ H(Y ), we can assume that X ,Y are
connected object. Then the graph Γs ⊂ H(X)× H(Y ) = H(X × Y ) is a
union of orbits. There exists Z ⊂ X × Y which is a coproduct of
connected components pf X × Y such that H(Z) = Γs . This implies
pr1|Z : Z → X is an isomorphism because H(pr1|Z ) is bijective. Then Z is
the graph of a morphism X → Y (with H(f ) = s)

X Y

Z

f

pr2|Z(pr1|Z )−1

.
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The main theorem of Galois category

Proof.
• Enough to construct X with F (X) ∼= Aut(F )/K , for K ⊂ Aut(F ) an open
subgroup.

• Can find Y Galois with U = Ker(G →
∐

i Aut(F (Xi ))) is contained in H.
• Then by fully faithfulness

Aut(Y ) ∼= AutG−sets(F (Y ))
∼= AutG−sets(Aut(F )/U)
∼= (Aut(F )/U)opp

which contains (K/U)opp.

• Get M ↔ (K/U)opp.

• Let X = Y /M , i.e., X is the coequalizer of the arrows
m : Y → Y ,m ∈ M. Since F is exact we see that F (X) = G/H and the
proof is complete.
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