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LCategory of Separable A-algebras

Introduction

<0A
s oV
N | Main Theorem of Galois Theory

s an
Theorem (Lenstra)

Let k C L be a Galois extension of fields with Galois group G. Then the set of
immediate fields of K C L corresponds bijectively to the set of closed
subgroups of G. More precisely, the maps

¢ : {E|E is a subfield of L containing k} — {H|H is a closed subgroup of G}
E — AutE(L)

and

v : {H|H is a closed subgroup of G} — {E|E is a subfield of L containing k}
H e L"

are bijective and inverse to each other. This correspondence reverves the
inclusion relations, K corresponds to G and L to {id, }.
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Introduction

<0OA
s o

Profinite Groups

Theorem (Lenstra)

Let k be a field, and L a subfield of k containing k. Denote by | the set of
subfields E of L for which E is a finite Galois extension of k. Then |, when
partially ordered by inclusion, is a directed partially ordered set. Moreover, the
following four assertions are equivalent:

1) L is a Galois extension of k

2) L is normal and separable over k

3) There is a set F C k[X]\ {0} of separable polynomials such that L is the
splitting field F over k.

4 U ec) E = L. Finally, if these conditions are satisfied, then there is a group
isomorphism
Gal(L/k) = lim Gal(E/k).

Eecl
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Let L be a finite separable extension of k. We consider the following map

Gal(k** /k) x Mor(L, k**) — Mor(L, k**)
opr>ocop
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Let L be a finite separable extension of k. We consider the following map

Gal(k** /k) x Mor(L, k**) — Mor(L, k**)
opr>ocop

Lemma (Szamuely)

The above left action of Gal(k** /k) on Mor(L, k*P) is continuous and
transitive, hence Mor(L, k**) as a Gal(k** /k)-set is isomorphic to the left
coset space of some open subgroup in Gal(k** /k). For L Galois over k this
coset space is in fact a quotient by an open normal subgroup.
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Introduction

LCategory of Separable A-algebras

Theorem (Main Theorem of Galois Theory - Grothendieck's version)

Let k be a field. Then the functor mapping a finite étale k-algebra A to the
finite set Mor(A, k*F) gives an anti-equivalence between the category of finite
étale k-algebras and the category of finite sets with continuous left

Gal(k** / k)-action. Here separable field extensions give rise to sets with
transitive Gal(k** / k)-action and Galois extensions to Gal(k*% / k)-sets
isomorphic to finite quotients of Gal(k** /k).
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Introduction

LCategory of Separable A-algebras

Theorem (Main Theorem of Galois Theory - Grothendieck's version)

Let k be a field. Then the functor mapping a finite étale k-algebra A to the
finite set Mor(A, k*) gives an anti-equivalence between the category of finite
étale k-algebras and the category of finite sets with continuous left

Gal(k*P /k)-action. Here separable field extensions give rise to sets with
transitive Gal(k** / k)-action and Galois extensions to Gal(k*% / k)-sets
isomorphic to finite quotients of Gal(k** /k).

Theorem (Szamuely)

Let k be a field with fixed separable closure k*P. The contravariant functor
mapping a finite separable extension L|k to the finite Gal(k* /k)-set gives an
anti-equivalence between the category of finite separable extensions of k and
the category of finite sets with continuous and transitive left

Gal(k*®" /k)-action. Here Galois extensions give rise to Gal(k** /k)- sets
isomorphic to some finite quotient of Gal(k*®" /k).
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Automorphism Group of Functor

<0OA
s oV
w1 g Automorphism Group of Functor
> fTL

Let F : C — Sets be a functor. An automorphims of F is an invertible natural
transformation of functors F — F. Equivalently, an automorphims of F is a
collection of bijection ox : F(X) — F(X), one for each X € Ob(C) such that
for each morphism f : Y — Z the diagram

F(f)

F(Y) 5 F(2)
F(Y) i 5 F(2)

is commutative. )
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Automorphism Group of Functor

L]
I'I'Iqeq'!g!a canonical injective map

Aut(F) — HXGOb(C)Aut(F(X))

o — (ox)xeob(c)-
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Automorphism Group of Functor

LTupoIogical Properties of Automorphism Group of Functor

Automorphism Group of Functor

L]
I'I'Iqeq'!g!a canonical injective map

Aut(F) — I_IXGOb(C)Aut(F(X))

o — (ox)xeob(c)-

For any X € C, we consider the following map

Aut(F) x F(X) — F(X)
o.t — ox(t).
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Automorphism Group of Functor

<0OA
s oV
. 1 . Topological Properties of Automorphism Group of Functor
> fTL

L]
I'I'Iqeq'!g!a canonical injective map

Aut(F) — I_IXGOb(C)Aut(F(X))

o — (ox)xeob(c)-

(1)

For any X € C, we consider the following map

Aut(F) x F(X) = F(X)
o.t — ox(t).
The universal property of our topology on Aut(F) is the following: suppose
that G is a topological group and G — Aut(F) is a group homomorphism such

that the induced actions G x F(X) — F(X) are continuous for all X € Ob(C)
where F(X) has the discrete topology. Then G — Aut(F) is continuous.
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Automorphism Group of Functor

LTupoIogical Properties of Automorphism Group of Functor

Proposition

Let C be a category and let F : C — Sets be a functor. The map (1) identifies
Aut(F) with a closed subgroup of MxconcyAut(F(X)) In particular, if F(X) is
finite for all X, then Aut(F) is a profinite group.
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Automorphism Group of Functor

LTupoIogical Properties of Automorphism Group of Functor

Proposition

Let C be a category and let F : C — Sets be a functor. The map (1) identifies
Aut(F) with a closed subgroup of MxconcyAut(F(X)) In particular, if F(X) is
finite for all X, then Aut(F) is a profinite group.

Proof.

e For each morphism g : Y — Z, we define a subset as

Mg ={(ox) € H Aut(F(X))lozF(g) = F(g)ov}-
Xec

Iz is closed in product topology of Aut(F).
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Automorphism Group of Functor

LTupoIogical Properties of Automorphism Group of Functor

Proposition

Let C be a category and let F : C — Sets be a functor. The map (1) identifies
Aut(F) with a closed subgroup of MxconcyAut(F(X)) In particular, if F(X) is
finite for all X, then Aut(F) is a profinite group.

Proof

e For each morphism g : Y — Z, we define a subset as

My = {(ox) € [ [ Aunt(F(X))lozF(g) = F(g)ov}.
XecC

Iz is closed in product topology of Aut(F).
e We have
Aut(F)= [ Te

gY—~Z

is a closed subproup of profinite group Mxcon(c)Aut(F (X)) hence is
profinite.
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:

Definition
Let G be a topological group. The profinite completion of G will be the
profinite group

G= lim G/U

UC G open, normal, finite index

with its profinite topology
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Automorphism Group of Functor

(- Profinite Completion

Definition
Let G be a topological group. The profinite completion of G will be the
profinite group .

G= lim G/U

UC G open, normal, finite index

with its profinite topology

Example

Let Fy be a finite field, with |F4| = g and with algebraic closure F, and with
algebraic closure Fy. The only finite extension of IF, in F, are the fields

Fgn = {a € Fyla? = a} for n € Z,n > 1. Each Fgn is Galois over Fy, with
Gal(Fqn /Fy) = Z/nZ, the generator of Z/nZ corresponding to the Frobenius
automorphism F with F(«) = af for all . Taking projective limits, we see that
the absolute Galois group of Fy is isomorphic to Z, withleZ corresponding
to F € Gal(F,/F,).
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[ Profinite Completion

Let G be a topological group. We consider the forgetful functor
F¢ : Finite — G — sets — Sets, (2)
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Automorphism Group of Functor

(- Profinite Completion

Let G be a topological group. We consider the forgetful functor
F¢ : Finite — G — sets — Sets, (2)

Proposition

Consider the forgetful functor (2). Then
G = Aut(F¢)

as topological groups.
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Automorphism Group of Functor

(- Profinite Completion

Let G be a topological group. We consider the forgetful functor
F¢ : Finite — G — sets — Sets, (2)

Proposition
Consider the forgetful functor (2). Then

G = Aut(F¢)

as topological groups.

| \

Proof.

e There exists a continuous map v : G — Aut(Fg).
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Automorphism Group of Functor

(- Profinite Completion

Let G be a topological group. We consider the forgetful functor
F¢ : Finite — G — sets — Sets, (2)

Proposition
Consider the forgetful functor (2). Then

G = Aut(F¢)

as topological groups.

Proof.

e There exists a continuous map v : G — Aut(Fg).

o We get G — Aut(F¢) because Aut(Fg) is profinite and universal property.

111/28



e
Galois Categories

Automorphism Group of Functor

(- Profinite Completion

e Show that G — Aut(Fg) is injective. To see this, if U< G is open and
finite index, then X = G/U belongs to Finite-G-sets. Since G/U acts

faithfully on G/U the map 3 : G — Aut(Fg) is injective.
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Galois Categories

Automorphism Group of Functor

(- Profinite Completion

e Show that G — Aut(Fg) is injective. To see this, if U< G is open and
finite index, then X = G/U belongs to Finite-G-sets. Since G/U acts
faithfully on G/U the map 3 : G — Aut(Fg) is injective.

e Let a € Aut(Fg) and let X € Ob(C). We will show there is a g € G such
that a and g induce the same action on Fg(X).

|

v
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Automorphism Group of Functor

(- Profinite Completion

Proposition

Let G be a topological group. Let F : Finite-G-sets — Sets be an exact functor
with F(X) finite for all X. Then F is isomorphic to the forgetful functor (2).
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Automorphism Group of Functor

(- Profinite Completion

Let G be a topological group. Let F : Finite-G-sets — Sets be an exact functor
with F(X) finite for all X. Then F is isomorphic to the forgetful functor (2).

e Let be an non-empty object of X € Finite-G-sets. We can show that F(X)
is non-empty.
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Galois Categories
Automorphism Group of Functor

(- Profinite Completion

Let G be a topological group. Let F : Finite-G-sets — Sets be an exact functor
with F(X) finite for all X. Then F is isomorphic to the forgetful functor (2).

Proof.

e Let be an non-empty object of X € Finite-G-sets. We can show that F(X)
is non-empty.

e Let U C G be an open, normal subgroup with finite index. Observe that
G/uxe/u= ][ ¢/,
gUeG/U

where gU corresponds to the orbit of (eU, gU). Hence |F(G/U) = |G/U|.
Thus we see that

A= lim F(G/U)

UC G open, normal, finite index

is non-empty.

13 /28
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(- Profinite Completion

e We can identify F¢ with the functor

X — Ii7mMor(G/U,X)

where f : G/U — X corresponds to f(elU) € X = Fg(X).
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Automorphism Group of Functor

(- Profinite Completion

e We can identify F¢ with the functor

X — I|7m Mor(G/U, X)
where f : G/U — X corresponds to f(elU) € X = Fg(X).
e Pick v = (vu) an element in A, we define a map
t: Fc — F.

Namely, given x € X choose U and f : G/U — X sending eU to x and
then set tx(x) = F(F)(yu)-

14 /28
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Galois Category

Let C be a category and let F : C — Sets be a functor. The pair (C,F) is a
Galois category if

Gl

G2

G3

G4

Gb

G6

There is a terminal object in C, and the fibred product of any objects over
a third one exists in C

Finite coproducts exists in C, and for any object in C the quotient by a
finite group of automorphism exists

Any morphism v in C can be written as u = v’u” where u” is an
epimorphism and v’ a monomorphism, and any monomorphism u: X — Y
in C is an isomorphism of X with a direct summand of Y

The functor F transforms terminal objects in terminal objects and
commutes with fibred products

The functor F commutes with finite sums, transforms epimorphism in
epimorphism and commutes with passage to the quotient by a finite group
of autmorphisms.

If uis a morphism in C such that F(u) is an isomorphism, then u is an
isomorphism.
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Definition (Stacks 0BMQ)

Let C be a category and let F : C — Sets be a functor. The pair (C,F) is a
Galois category if

i) C has finite limits and finite colimits

ii) Every object of C is a finite (possibly empty) coproduct of connected
objects,

iii) F(X) is finite for all X € Ob(C), and

iv) F reflects isomorphisms and is exact.
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3

Examples of Galois category

h'%icategory of finite sets, Finsets, with the identity functor to itself.
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Examples of Galois category

h'%icategory of finite sets, Finsets, with the identity functor to itself.
2) The category of G — Finsets, where G is profinite groups and the

fundamental functor (fiber functor) is forgetful functor.
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Examples of Galois category

h'%icategory of finite sets, Finsets, with the identity functor to itself.
2) The category of G — Finsets, where G is profinite groups and the

fundamental functor (fiber functor) is forgetful functor.

3) Let C be a category of finite coverings of a connected topological space X.
Fix x € X, we define the fiber functor as follows

Fy : C — Sets
(F:Y = X)— f(x).
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Galois Category
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Examples of Galois category

h'%icategory of finite sets, Finsets, with the identity functor to itself.
2) The category of G — Finsets, where G is profinite groups and the

fundamental functor (fiber functor) is forgetful functor.

3) Let C be a category of finite coverings of a connected topological space X.
Fix x € X, we define the fiber functor as follows

Fy : C — Sets
(F:Y = X)— f(x).

4) Let C be the opposite of the category of kSAlg of separable k—algebras.
Given B € C, we define the fiber functor as follows

F : C — Sets
B +— Mor(B, k*").

17 /28
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Galois Category

Lemma

Let (C, F) be a Galois category. Let f : X — Y € Arrows(C). Then

1) F is faithful

2) f: X — Y is a monomorphism if and only if F(f): F(X) — F(Y) is
injective

3) f: X — Y is a epimorphism if and only if F(f) : F(X) — F(Y) is
surjective

4) An object A of C is initial if and only if F(A) =0

5) An object Z of C is final if and only if F(Z) is a singleton

6) If X and Y are connected, then X — Y is an epimorphism

7) If X is a connected object and a, b : X — Y are two morphisms then
a= b as soon as F(a) and F(b) agree on one element of F(X)

8) X =]]_, ,XiandY=][_, X (XiandY; are connected) then
there isamap «:1,....n— 1, ..., m such that f : X — Y comes from a
collection of morphisms Xi — Yo iy-

18 /28
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Connected Object

Definition

Let C be a category with an initial object. An object X is called connected if it
has precisely two distinct subobjects, namely 0¢c — X, and id : X — X.

190 /28
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Galois Category
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e Connected Object
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Let C be a category with an initial object. An object X is called connected if it
has precisely two distinct subobjects, namely 0¢c — X, and id : X — X.

v

Example

1) Let G be a profinite group and E is a finite G-set. E is connected if and
only if the action of G on E is transitive.
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Let C be a category with an initial object. An object X is called connected if it
has precisely two distinct subobjects, namely 0¢c — X, and id : X — X.

v

Example

1) Let G be a profinite group and E is a finite G-set. E is connected if and
only if the action of G on E is transitive.

2) Let X be a connected topological space and Y — X a finite covering.
Y — X is connected if and only if Y is connected.
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Let C be a category with an initial object. An object X is called connected if it
has precisely two distinct subobjects, namely 0¢c — X, and id : X — X.

v

Example

1) Let G be a profinite group and E is a finite G-set. E is connected if and
only if the action of G on E is transitive.

2) Let X be a connected topological space and Y — X a finite covering.
Y — X is connected if and only if Y is connected.
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Galois Category
L Galois Object

Let (C, F) be a Galois category and X € C is a connected object. Then we
have

1) Any u € Mor(X, X) is an automorphism.
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Galois Category
L Galois Object

Let (C, F) be a Galois category and X € C is a connected object. Then we
have

1) Any u € Mor(X, X) is an automorphism.

2) For any object X, Aut(X) acts on F(X) by
u.a = F(u)(a),Vu € Aut(X),Va € F(X). For any a € F(X) the map

0. Aut(X) — F(X)
u— F(u)(a) = uv.a

is injective.

20 /28
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Galois Category
L Galois Object

Let (C, F) be a Galois category and X € C is a connected object. Then we
have

1) Any u € Mor(X, X) is an automorphism.

2) For any object X, Aut(X) acts on F(X) by
u.a = F(u)(a),Vu € Aut(X),Va € F(X). For any a € F(X) the map

0. Aut(X) — F(X)
ur— F(u)(a) =u.a

is injective.

Definition

| \

A connected object X is Galois if for any a € F(X), the map

0, : Aut(X) — F(X)
u— F(u)(a) =u.a

is bijective.
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Proposition

Let (C, F) be a Galois category. For any connected object X of C there exists a
Galois object Y and a morphism Y — X.
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Proposition

Let (C, F) be a Galois category. For any connected object X of C there exists a
Galois object Y and a morphism Y — X.

Proof.
Let n = |F(X)|. Consider X" endowed with natural action of S,. Let

x":Hzt

teT

| \

be the decomposition into connected objects. Pick a t such that F(Z;)
contains (si,...,Ss,) with s; pairwise distinct.

21 /28
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Proposition

Let (C, F) be a Galois category. For any connected object X of C there exists a
Galois object Y and a morphism Y — X.

| \

Proof.
Let n = |F(X)|. Consider X" endowed with natural action of S,. Let

x":Hzt

teT

be the decomposition into connected objects. Pick a t such that F(Z;)
contains (si,...,Ss,) with s; pairwise distinct.

Let G C S, be the subgroup of elements with g(Z;) = Z;. We can see that the
action of G on F(Z;) is transitive. [ |

v
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Galois Category

<0OA
s oV

Pro-representable Functor

Definition

Let C be a category and F be functor from C to Sets. We say that F is
prorepresentable if there exists a directed set /, a projective system (A;, ¢ij)ic
of objects in C and elements a; € F(A;) such that

1) ai = F(¢i(a))) for j > i.
2) For any X € C, the natural map
Lirl; More(Ai, X) — F(X)
ie
induced by a; is bijective.

In addition, if the ¢; are epimorphism of C, we say that F is strictly
pro-representable.
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(- Pro-representable Functor

Let (C, F) be a Galois category. For any connected object X in C, the action of
G = Aut(F) on F(X) is transitive.

e Let / be a set of isomorphism clases of Galois objects in C. Fpr each i € I,
pick a representative X;.
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(- Pro-representable Functor

Let (C, F) be a Galois category. For any connected object X in C, the action of
G = Aut(F) on F(X) is transitive.

e Let / be a set of isomorphism clases of Galois objects in C. Fpr each i € I,
pick a representative X;.

e i > i if and only if there exist fir : Xi — Xir.
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(- Pro-representable Functor

Let (C, F) be a Galois category. For any connected object X in C, the action of
G = Aut(F) on F(X) is transitive.

e Let / be a set of isomorphism clases of Galois objects in C. Fpr each i € I,
pick a representative X;.

e i > i if and only if there exist fir : Xi — Xir.
e Pick v; € F(X;), for i > i’ pick i : Xi — Xy such that F(fi)(vi) = (vir)-
(This morphism is uniquely determined).
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Galois Category

(- Pro-representable Functor

Let (C, F) be a Galois category. For any connected object X in C, the action of
G = Aut(F) on F(X) is transitive.

Proof.

e Let / be a set of isomorphism clases of Galois objects in C. Fpr each i € I,
pick a representative X;.

| A\

e i > i if and only if there exist fir : Xi — Xir.

e Pick v; € F(X;), for i > i’ pick i : Xi — Xy such that F(fi)(vi) = (vir)-
(This morphism is uniquely determined).

e A; = Aut(X;) acts transitively on F(X;). Suppose

Xi - V4 X,-/

x
N
x

1 23/28
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Galois Category
- Pro-representable Functor

e The collection of A; and transitive maps h;» : A; — Ay forms an inverse
system of finite groups over (/,>).
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e The collection of A; and transitive maps h;» : A; — Ay forms an inverse
system of finite groups over (/,>).

e A= I(i_rﬂA,- is profinite group and morphisms A — A; are surjective.
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Galois Category

(- Pro-representable Functor

e The collection of A; and transitive maps h;» : A; — Ay forms an inverse
system of finite groups over (/,>).

e A= I(i_rﬂA,- is profinite group and morphisms A — A; are surjective.

e There exists A°” — Aut(F) by proving that the functor F’ is ismorphic to
F where

F’:C — Finite — G — sets
X -+ lim Mor(X;, X).

e A — A; is surjective we conclude that G acts transitively on F(X;) for all
i. Since every connected object is dominated by one of the X; we conclude
the proposition is true.

4
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Galois Category

(- Pro-representable Functor

e The collection of A; and transitive maps h;» : A; — Ay forms an inverse
system of finite groups over (/,>).

e A= I(i_rﬂA,- is profinite group and morphisms A — A; are surjective.

e There exists A°” — Aut(F) by proving that the functor F’ is ismorphic to
F where

F’:C — Finite — G — sets
X -+ lim Mor(X;, X).

e A — A; is surjective we conclude that G acts transitively on F(X;) for all
i. Since every connected object is dominated by one of the X; we conclude
the proposition is true.

4
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LThe main theorem of Galois category

Let (C, F) be a Galois category. Then the functor

H : C — Finite — G — sets
X — F(X).

is an equivalence.
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Let (C, F) be a Galois category. Then the functor

H : C — Finite — G — sets
X — F(X).

is an equivalence.

e H is faithful
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LThe main theorem of Galois category

Let (C, F) be a Galois category. Then the functor

H : C — Finite — G — sets
X — F(X).

is an equivalence.

e H is faithful

e Let X, Y € Ob(C) and s : H(X) — H(Y), we can assume that X, Y are
connected object.

! 25 /28
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LThe main theorem of Galois category
:

Let (C, F) be a Galois category. Then the functor
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LThe main theorem of Galois category
:

Let (C, F) be a Galois category. Then the functor

H : C — Finite — G — sets
X — F(X).

is an equivalence.

| A\

Proof.

e H is faithful

o Let X, Y € Ob(C) and s : H(X) — H(Y'), we can assume that X, Y are
connected object. Then the graph I's C H(X) x H(Y) = H(X x Y) is a
union of orbits. There exists Z C X x Y which is a coproduct of
connected components pf X X Y such that H(Z) = I's. This implies
pri|lz : Z — X is an isomorphism because H(pri|z) is bijective. Then Z is
the graph of a morphism X — Y (with H(f) = s)

f
X—>Y

(P’l‘Z)i\l ﬂrzlz
Z
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e Enough to construct X with F(X) = Aut(F)/K, for K C Aut(F) an open
subgroup.
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LThe main theorem of Galois category

Enough to construct X with F(X) 2 Aut(F)/K, for K C Aut(F) an open
subgroup.

Can find Y Galois with U = Ker(G — [ [, Aut(F(X;))) is contained in H.
Then by fully faithfulness

Aut(Y) = Autgses(F(Y))
= AUtG—sets(Aut(F)/U)
=~ (Aut(F)/U)*

which contains (K/U)%".
Get M <> (K/U)°PP.
Let X = Y /M , i.e., X is the coequalizer of the arrows

m:Y — Y, mé& M. Since F is exact we see that F(X) = G/H and the
proof is complete.

O

v
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