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The prime spectrum of a ring

Let k be a field. Let k[x1, . . . , xn] be a polynomial ring in n variables, and f1, . . . , fm
polynomials in x1, . . . , xn.
Algebraic geometry concerns with algebraic sets, namely

V (I ) = {(a1, . . . , an) ∈ kn : fi (a1, . . . , an) = 0, i = 1, . . . ,m}.

Affine schemes are a generalization of algebraic sets.

Let A be a non-trivial ring. Denote by Spec(A) the collection of prime ideals of A. The
Zorn lemma ensures that A has maximal ideals, and hence prime ideals, so that Spec(A)
is non-empty. We endow Spec(A) with the topology whose closed sets are

V (I ) = {p ∈ Spec(A) : I ⊆ p}

for some ideal I of A.
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The prime spectrum of a ring

Lemma 1 (Properties of the Zariski topology)

The following statements hold for all ideals I , J and indexed family of ideals (Ii )i∈Λ of A.

1 V ((0)) = Spec(A),V ((1)) = ∅.
2 V (I ) ∪ V (J) = V (I ∩ J) = V (IJ).

3
⋂

i∈Λ V (Ii ) = V (
∑

i∈Λ Ii ).

4 If I ⊆ J then V (I ) ⊇ V (J).

5 The closed points of Spec(A) are the maximal ideals of A. Moreover, for any prime
ideal p ∈ Spec(A), {p} = V (p).

Example 2

Let k be a field, then Spec(k) = {(0)}.
Let k[x ] be the polynomial ring over k. Then Spec(k[x ]) = {(0), (x − a) : a ∈ k}.
For any n ≥ 2, Spec(k[x ]/(xn)) = {(x)}, as k[x ]/(xn) has only one prime ideal generated
by x , the residue class of x .
We have Spec(Z) = {(0), (p) : p a prime number}.

Affine k-groups 4 / 33



The prime spectrum of a ring

Lemma 1 (Properties of the Zariski topology)

The following statements hold for all ideals I , J and indexed family of ideals (Ii )i∈Λ of A.

1 V ((0)) = Spec(A),V ((1)) = ∅.
2 V (I ) ∪ V (J) = V (I ∩ J) = V (IJ).

3
⋂

i∈Λ V (Ii ) = V (
∑

i∈Λ Ii ).

4 If I ⊆ J then V (I ) ⊇ V (J).

5 The closed points of Spec(A) are the maximal ideals of A. Moreover, for any prime
ideal p ∈ Spec(A), {p} = V (p).

Example 2

Let k be a field, then Spec(k) = {(0)}.
Let k[x ] be the polynomial ring over k. Then Spec(k[x ]) = {(0), (x − a) : a ∈ k}.
For any n ≥ 2, Spec(k[x ]/(xn)) = {(x)}, as k[x ]/(xn) has only one prime ideal generated
by x , the residue class of x .
We have Spec(Z) = {(0), (p) : p a prime number}.

Affine k-groups 4 / 33



The prime spectrum of a ring

For f ∈ A, the set

D(f ) = {p ∈ Spec(A) : f /∈ p} = Spec(A) \ V ((f ))

is open, and called a basic open subset of Spec(A).

Lemma 3 (The basic open subsets form a base for the Zariski topology)

For any ideal I = (xi : i ∈ Λ) and elements f , g ∈ A, the following hold.

1 Spec(A) \ V (I ) =
⋃

i∈Λ D(xi ).

2 D(f ) ∩ D(g) = D(fg).

The following is also simple to prove.

Lemma 4

Let f : A→ B be a ring homomorphism. Then for any q ∈ Spec(B), we have
f −1(q) = {x ∈ A : f (x) ∈ q} is a prime ideal in Spec(A). Hence there is an induced map
Spec(f ) : Spec(B)→ Spec(A), q 7→ f −1(q)
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Sheaves of abelian groups and sheaves of rings

Let X be a topological space. A presheaf of abelian groups F on X is a rule of assigning
to each open subsets U of X an abelian group F(U), and each pair of open subsets
V ⊆ U a map of abelian groups ρUV : F(U)→ F(V ) (called the restriction map), such
that the following conditions hold:

(0) F(∅) = 0.

(1) The self-restriction ρUU : F(U)→ F(U) is the identity map.

(2) For all open subsets W ⊆ V ⊆ U, ρUW = ρVW ◦ ρUV .

For each s ∈ F(U), the restriction image ρUV (s) is also denoted by s|V .
Elements of the set F(U) are called sections of F over U.
A sheaf of abelian groups F on X is a presheaf of abelian groups that satisfies two
additional conditions:

(3) For each open subset U, each an open covering
⋃

i Vi of U, and an element
s ∈ F(U), if s|Vi = 0 for every i , then s = 0.

(4) For each open subset U, each an open covering
⋃

i Vi of U, and elements
si ∈ F(Vi ), such that si |Vi∩Vj = sj |Vi∩Vj for all i , j , then there exist an element
s ∈ F(U) whose restriction to Vi is precisely si for every i .
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Sheaves of abelian groups and sheaves of rings

Example 5

Let k be a field. A sheaf F on Spec(k) = {(0)} is uniquely determined by the abelian
group F({(0)}).

Definition 6 (Stalks at points)

For a presheaf F on X and an element P ∈ X , the stalk of F at P is the direct limit

lim−→
P∈U open

F(U),

via the restriction maps. It is denoted by FP . Elements of FP are called germs of the
sections of F at P.

An element of FP is a pair 〈U, s〉 where U is an open neighborhood of P, s ∈ F(U),
subjected to the equivalence relation: 〈U, s〉 = 〈V , t〉 if there is an open neighborhood
W ⊆ U ∩ V of P such that s|W = t|W .
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Sheaves of abelian groups and sheaves of rings

We can define the notions of morphisms between sheaves on X . We can also show that a
morphism of sheaves F → G is an isomorphism if and only if the induced maps on stalks
FP → GP at points of X are isomorphisms.

Definition 7 (Direct image sheaf)

Let f : X → Y be a continuous map of topological spaces. For any sheaf F on X , define
the direct image f∗F of F as follows: for any open subset U of Y , let
(f∗F)(U) = F(f −1(U)). We can check that f∗F is a sheaf on Y with the canonical
induced restriction maps.

A presheaf (resp. sheaf) of rings on X is defined analogously, replacing abelian groups
and group homomorphisms by rings and ring homomorphisms.
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Affine schemes

Let us define a sheaf of rings O = OSpec(A) on the prime spectrum Spec(A), following
Hartshorne’s book [2].
For each p ∈ Spec(A), let Ap be the localization of A at p. For each open subset U of
Spec(A), define O(U) to be the set of functions s : U →

∐
p∈U Ap such that for each

p ∈ U, s(p) ∈ Ap, and for each such p, there exists an open neighborhood V ⊆ U of p
and elements a, f ∈ A such that for every q ∈ V , we have f /∈ q and s(q) = a/f .

This is similar to the construction of the sheafification of a presheaf.
We can check that O(U) is a ring with the unit element given by s(p) = 1 for every
p ∈ U. For open sets V ⊆ U, O(U)→ O(V ) is defined as the obvious restriction.

Definition 8 (Locally ringed spaces)

A ringed space is a pair (X ,OX ) consisting of a top. space X and a sheaf of rings OX .
The ringed space (X ,OX ) is called a locally ringed space if for each P ∈ X , OX ,P is a
local ring.
A morphism of ringed spaces (X ,OX )→ (Y ,OY ) is a pair (f , f #), where f : X → Y is
continuous and f # : OY → f∗OX is a morphism of sheaves of rings on Y .
A morphism of locally ring spaces is a morphism of ringed spaces
(f , f #) : (X ,OX )→ (Y ,OY ), such that for each P ∈ X , the natural map
f #
P : OY ,f (P) → OX ,P is a local homomorphism.
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Affine schemes

For each f ∈ A, denote by Af the localization of A at the multiplicative subset
{1, f , f 2, . . .}.

Theorem 9 (Spec(A) as a locally ringed space [2, Proposition 2.2])

Let A be a ring, and (Spec(A),O) the structure defined above.

1 For each p ∈ Spec(A), the stalk Op is isomorphic to Ap.

2 For each f ∈ A, there is a ring isomorphism O(D(f )) ∼= Af .

3 In particular, the ring of global sections O(Spec(A)) is isomorphic to A.

Hence the pair (Spec(A),OSpec(A)) is a locally ringed space.
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Affine schemes

Theorem 10 ([2, Proposition 2.3])

Let A be a ring.

1 If f : A→ B is a ring homomorphism then we get an induced morphism of locally
ringed spaces

(Spec(B),OSpec(B))→ (Spec(A),OSpec(A)).

2 If A,B are rings, then any morphism of locally ringed spaces Spec(B)→ Spec(A) is
induced by a ring homomorphism f : A→ B as in (2).

Example 11

Let k be a field, A an arbitrary ring, not necessarily a k-algebra. For each prime ideal p of
A, let κ(p) = Ap/pAp the residue field of Ap.
A morphism of schemes Spec(k)→ Spec(A) corresponds bijectively to a pair (p, ι)
consisting of an ideal p ∈ Spec(A) and a field extension ι : κ(p)→ k.
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Affine schemes

Remark 12 (Affine schemes over a ring k)

Let k be a ring, not necessarily a field. A k-algebra is a ring A together with a ring
homomorphism k → A. Let A,B be k-algebras. A homomorphism of k-algebras
f : A→ B is a ring homomorphism making the following diagram commutative

A
f // B

k

__ ??

If A is a k-algebra, then by Theorem 10, we have a morphism of locally ringed spaces
(affine schemes) Spec(A)→ Spec(k).
An affine scheme Spec(A) together with a morphism of affine schemes
Spec(A)→ Spec(k) is called an affine scheme over Spec(k) (or an affine scheme over k,
by abuse of notation). All of our discussions of affine schemes can be generalized to
affine schemes over Spec(k).
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Affine schemes

A Spec(A)

��

//

k

OO

Spec(k)

Example 13

Let A = k[x1, . . . , xn] be a polynomial ring in n variables over k. The affine scheme
Spec(k[x1, . . . , xn]) is called the n-dimensional affine space over k, denoted by An

k .

We note that the category of k-algebras is equivalent to the category of affine schemes
over k, via the functor Spec.
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Affine schemes

Example 14

Let k be a field, A be a k-algebra, and φ : Spec(k)→ Spec(A) be a morphism of affine
schemes over k. We claim that this map corresponds to a maximal ideal p ∈ Spec(A)
such that A/p ∼= k.

Indeed, the map φ corresponds to a ring map f : A→ k such that the composition map

k → A
f−→ k is the identity. By Example 11, letting p = φ((0)) = Ker(f ), then there is an

injection A/p→ k. Since the composition k → A/p
f−→ k remains the identity, A/p→ k

is surjective, hence an isomorphism. Hence p is a maximal ideal of A and A/p ∼= k.
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Affine schemes

Let A and B be k-algebras. Recall that the tensor product A⊗k B is again a k-algebra
and satisfies a certain universal property.

C S

**

��

%%
A⊗k B

bb

Aoo

jj

Spec(A⊗k B) //

��

Spec(A)

��

//

B

OO

VV

k

OO

oo Spec(B) // Spec(k)

The universal property of tensor products of k-algebras translates to a universal property
of fiber products of affine schemes over k. This is illustrated in the above diagram.
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Yoneda lemma and the functor of points

Let k be a ring. Denote by k-Alg the category of k-algebras and morphisms of
k-algebras. Let A be an object in k-Alg. Denote by Spk(A) the functor from k-Alg to
Set, given by

Spk(A)(R) = Homk-Alg(A,R).

The functor Spk(A) is called the functor of points of Spec(A). We will see that the
affine scheme Spec(A) can be identified with the functor Spk(A), as each of them can
be identified with A.

Example 15 (The geometry of the functor of points)

Let k be a field, A = k[x , y ]/(x2 − y 3). Then for any k-algebra R,
Spk(A)(R) = Homk-Alg(A,R) is precisely {(a, b) ∈ R2 : a2 − b3 = 0}. We can do similarly
for the more general case A = k[x1, . . . , xn]/(f1, . . . , fm), where each fi is a polynomial of
x1, . . . , xn with coefficients in k. For each k-algebra R, Spk(R) is the set of solutions for
the equations f1 = · · · = fm = 0 with values in R.
This is the reason why for a k-algebra A, we call Spk(A)(R) the set of R-valued points of
A (respectively Spec(A)).
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Yoneda lemma and the functor of points

Consider the category of functors from k-Alg to Set. For two such functors F ,G , denote
by Mor(F ,G) the collection of natural transformations φ : F → G .

Lemma 16 (Yoneda Lemma)

Let A be a k-algebra. For any functor F from k-Alg to Set, the map φ 7→ φ(A)(idA) is a
bijection

Mor(Spk(A),F ) ∼= F (A).

Proof. Let φ : Spk(A)→ F be a natural transformation. The result follows by inspecting
the diagram

idA ∈ Homk-Alg(A,A)

��

φ(A) // F (A)

��
Homk-Alg(A,R)

φ(R)
// F (R)

and using the definition of natural transformations.
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Yoneda lemma and the functor of points

Clearly Spk(A) is determined by A. Now we claim that conversely A can be recovered
from Spk(A) in a natural way.
Denote by A1 the functor Spk(k[x ]). For each functor F from k-Alg to Set, consider the
set Mor(F ,A1). We call this the coordinate ring of the functor F , and denote it by O(F ),
for the reason explained by the next lemma.

Lemma 17 (Coordinate rings of functors)

For any functor F from k-Alg to Set, the set Mor(F ,A1) has a natural structure of a
k-algebra. Moreover, for any k-algebra A, there is an isomorphism of k-algebras

Mor(Spk(A),A1) ∼= A.

Proof. Let b ∈ k, φ, θ ∈ Mor(F ,A1). For each k-algebra R, we have maps φ(R),
θ(R) : F (R)→ A1(R) = Homk-Alg(k[x ],R) ∼= R. Hence we can define naturally the maps
φ(R) + θ(R), φ(R)θ(R), bφ(R) using the k-algebra structure of R. This yields a k-algebra
structure on Mor(F ,A1), as we can check that φ+ θ, φθ, bφ are natural transformations.
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Yoneda lemma and the functor of points

From Yoneda Lemma 16,

Mor(Spk(A),A1) ∼= A1(A) = Homk-Alg(k[x ],A) ∼= A.

We can check that these isomorphisms respect the k-algebra structures. This completes
the proof.

A functor from k-Alg to Set is called representable if it has the form Spk(A) for some
k-algebra A, i.e. it is given by

R 7→ Homk-Alg(A,R) = Spk(A)(R).
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Yoneda lemma and the functor of points

Remark(Equivalences between categories)
In summary, Lemma 17 implies that we have an equivalence of categories between k-Alg
and the category of representable functors from k-Alg to Set.
Together with Theorem 10 and Remark 12, we also conclude that there is an equivalence
of categories between affine schemes over k and representable functors from k-Alg to
Set.

FUNCTs
CATs Affine schemes

k-Alg
Representable functors

over k from k-Alg to Set

Spec /O Spec(A) ←− A
X −→ O(X )

Spk /Mor(−,A1)
A −→ Spk(A)

O(F ) = Mor(F ,A1) ←− F
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Affine group schemes over k

We have seen that affine schemes over k can be regarded as representable functors from
k-Alg to Set. Denote Grp the category of groups and group homomorphisms. For
k-algebras A,R, we see that Homk-Alg(A,R) has the structure of a group (even a
commutative k-algebra).

For simplicity, we call a functor from k-Alg to Set a set functor, and a functor from
k-Alg to Grp a group functor on k-Alg.
We say that a functor from k-Alg to Grp is representable if the underlying set functor is
representable, namely there exists a k-algebra A such that this functor has the form
R 7→ Homk-Alg(A,R).

Definition 18 (Affine group schemes)

An affine group scheme over k (or simply affine k-group) is a representable functor from
k-Alg to Grp. If G is a representable functor from k-Alg to Grp of the form
R 7→ Homk-Alg(A,R) for some k-algebra A, we say that G is represented by A.
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Affine group schemes over k

Example 19

(1) Let Ga be the functor R 7→ (R,+), sending a k-algebra R to its underlying abelian
group structure. This is a functor from k-Alg to Grp. It is represented by k[x ], since

Homk-Alg(k[x ],R) ∼= R.

Hence Ga is an affine group scheme. It is called the additive group.

(2) Consider the functor mapping a k-algebra R to SL2(R), the group of all matrices(
a b
c d

)
, such that a, b, c, d ∈ R, ad − bc = 1.

One can check that this is a group functor on k-Alg. It is represented by
A = k[x , y , z , t]/(xz − yt − 1), and it is called the special linear group SL2.
(3) Consider the functor mapping a k-algebra R to {1} (the trivial multiplicative group).
This is an affine group scheme represented by k, as Homk-Alg(k,R) ∼= {1}. It is called the
trivial group, and denoted by ∗.
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Exploiting the group structure

The axioms for a group (G ,m, e) (m the multiplication, e ∈ G the unit) can be restated
as follows (where below, inv : G → G is the inversion): The following diagrams are
commutative.

G × G
m

&&
G × G × G

id×m 55

m×id ))
G (associativity)

G × G
m

88

∗ × G
e×id
''

G

∼= 99

= %%

G × G

mww

(identity)

G

G × G
m

&&
G

(inv,id) 88

&&

G (inverse)

∗
e

88
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Exploiting the group structure

For two functors E ,F from k-Alg to Set, denote by E × F the rule R 7→ E(R)× F (R),
again a set functor. The universal property of tensor products implies that if E ,F are
represented by A,B ∈ k-Alg, then E × F is represented by A⊗k B.

The definition of affine group scheme can be reformulated as follows.

Lemma 20

An affine group scheme G over k is a representable functor from k-Alg to Set together
with natural transformations

m : G × G → G ,

such that for each k-algebra R, the induced map m(R) : G(R)× G(R)→ G(R) yields a
group structure on G(R).

Remark 21

If G is an affine group scheme over k, then we also have natural transformations
e : ∗ → G (where ∗ is the trivial group) and inv : G → G such that for each R ∈ k-Alg,
e(R) is the identity of G(R) and inv(R) is the inverse map of G(R).
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Further examples of affine group schemes

Example 22

(1) (The multiplicative group)
As a functor, R 7→ R× = {x ∈ R : xy = 1 for some y ∈ R}. It is represented by
k[x , y ]/(xy − 1) ∼= k[x , x−1]. The multiplicative group is denoted by Gm.

(2) (The constant algebraic group)
Let G be a finite group, and A =

∏
x∈G kx (as a ring, k |G |). The functor

(G)k : R 7→ (G)k(R) = Homk-Alg(A,R) is an algebraic k-group. We note that if R has no
idempotent other than 0 and 1 (for example, if R is a local ring), then (G)k(R) ∼= G . For
this reason, (G)k is called the constant algebraic group. It generalizes the trivial group,
which correspond to the case G = {1}.
(3) (The general linear group)
The functor R 7→ GLn(R) = {(xij)n×n : xij ∈ R, det((xij)) ∈ R×} is an affine k-group,
called the general linear group GLn. It is represented by
k[xij , y : 1 ≤ i , j ≤ n]/(y det((xij))− 1).
(4) (The n-th roots of unity)
The functor R 7→ µn(R) = {x ∈ R : xn = 1} is an affine k-group. It is represented by
k[x ]/(xn − 1).
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Affine group schemes and commutative Hopf algebras

Let A be a commutative k-algebra. Then G = Spec(A) is an affine group scheme over k
if there exist maps of k-algebras
∆ : A→ A⊗k A (comultiplication), ε : A→ k (coidentity), S : A→ A (coinverse)
satisfying the natural axioms on coassociativity, coidentity and coinverse:

1 (coassociativity)
(id⊗∆) ◦∆ = (∆⊗ id) ◦∆.

A⊗ A
id⊗∆
))

A

∆ 77

∆
''

A⊗ A⊗ A

A⊗ A
∆⊗id

55
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Affine group schemes and commutative Hopf algebras

1 (coidentity)

id = (ε⊗ id) ◦∆ : A
∆−→ A⊗ A

ε⊗id−−−→ k ⊗ A ∼= A.

A⊗ A
ε⊗id

((
A

∆ 77

= ''

k ⊗ A∼=

vv
A

2 (coinverse) (
A

∆−→ A⊗ A
(S,id)−−−→ A

)
=
(

A
ε−→ k ↪→ A

)
.

A⊗ A
(S,id)

''
A

∆ 77

ε ''

A

k

77
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Affine group schemes and commutative Hopf algebras
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Affine group schemes and commutative Hopf algebras

Definition 23

We say that A is a Hopf algebra if there exist homomorphisms of k-algebras called
comultiplication ∆ : A→ A⊗ A, counit ε : A→ k, and coinverse S : A→ A satisfying
the above conditions.

Theorem 24

Let A be a k-algebra, and ∆ : A→ A⊗ A be a homomorphism. Let G = Spk(A) and
m : G × G → G the natural transformation defined by ∆. Then (G ,m) is an affine group
scheme if and only if there exists a homomorphism of k-algebras ε : A→ k such that
(A,∆, ε) is a Hopf algebra.
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Affine group schemes and commutative Hopf algebras

We determine the Hopf algebra structure of some elementary affine k-groups.

Let G : k-Alg→ Grp be a group functor, whose underlying set functor is representable.
An element f of the coordinate ring O(G) = Mor(G ,A1) of G is a family of functions
fR : G(R)→ R of sets, indexed by R ∈ k-Alg, compatible with morphisms of k-algebras.
An element f1 ⊗ f2 of O(G)⊗O(G) defines a function (f1 ⊗ f2)R : G(R)× G(R)→ R by
the rule:

(f1 ⊗ f2)R(a, b) = (f1)R(a)(f2)R(b).

For f ∈ O(G), thanks to Yoneda, ∆f is the unique element of O(G)⊗O(G) such that

(∆f )R(a, b) = fR(ab), for all R and all a, b ∈ G(R).

Next, εf = f (1G(k)) ∈ k

idA ∈ G(A)

��

f // A

ε

��
G(k) // k

Finally Sf is the unique element of O(G) such that

(Sf )R(a) = fR(a−1), for all R and all a ∈ G(R).
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Affine group schemes and commutative Hopf algebras

Example 25

Consider the additive group Ga, whose coordinate ring is k[x ]. The functor Ga ×Ga is
represented by k[x ]⊗ k[x ] ∼= k[x1, x2]. For each k-algebra R, the group operation
Ga(R)×Ga(R)→ Ga(R) maps (f , g) to f + g . The corresponding map
∆ : k[x ]→ k[x ]⊗ k[x ] has the property that: (∆f )R(x1, x2) = fR(x1 + x2). The function
∆(x) = x ⊗ 1 + 1⊗ x has this property, and hence is the desired function.

The map ε : k[x ]→ k has the property that ε(f ) = f (1Ga(k)) = f (0).
The inverse S : k[x ]→ k[x ] is given by (Sf )(a) = f (−a) for any a ∈ k[x ]. Hence
(Sf )(x) = f (−x).

Example 26

Consider the multiplicative group Gm, whose coordinate ring is k[x , x−1]. The functor
Gm ×Gm is represented by k[x , x−1]⊗ k[x , x−1]. For each k-algebra R, the group
operation Gm(R)×Gm(R)→ Gm(R) maps (f , g) to fg . The corresponding map
∆ : k[x , x−1]→ k[x , x−1]⊗ k[x , x−1] has the property that: (∆f )R(y , z) = fR(yz) for all
y , z ∈ k[x , x−1]. The function ∆(x) = x ⊗ x has this property, and hence is the desired
function.
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Affine group schemes and commutative Hopf algebras

The map ε : k[x , x−1]→ k is given by ε(f ) = f (1Gm(k)) = f (1), so ε(x) = 1. The inverse
S : k[x , x−1]→ k[x , x−1] is given by (Sf )(x) = f (x−1) for any f ∈ k[x , x−1]. In
particular, Sx = x−1.

Example 27

Consider the group µn of n-th roots of unity, whose coordinate ring is A = k[x ]/(xn − 1),
where (to avoid triviality) we assume n ≥ 2.
One can check that the comultiplication ∆ : A→ A⊗ A is given by ∆(x) = x ⊗ x .
The counit ε : A→ k, x 7→ 1.
The coinverse S : A→ A, x 7→ xn−1.
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