INTRODUCTION TO NEVANLINNA THEORY: 1.
ALGEBRAIC CURVES

MIN RU

ABSTRACT. In this set of notes, we give an introduction to Nevanlinna
theory of algebraic curves

The Gauss-Bonnet Theorem. We first introduce some notations: On
C or locally on a Riemann surface M, we let z = = + v/—1y and % =

o) 0 0 o) o) 0 3 0 Jz
d,d° = Y21(H — 9), dd° = YL0d. Let
do* = 2a(z)dzdz

be a Hermitian pseudo-metric on a domain in C, or on a Riemann surface
expressed in terms of a local coordinate z. The Gauss curvature is defined
by

4 a
where %A = 2%. Let w be the associated curvature form of do? which is
given by

v—=1

w=a(z) dz Ndz.
7r
To w we associate the Ricci form Ric(w) = dd®loga. Then
K- _Ric(w)'
w

Both Ric(w) and K are defined whenever a is positive.

The remarkable socalled Gauss-Bonnet theorem states that, for any com-
pact Riemann surface M,

1
o /M KdA = x(M),

where x(M) = 2 — 2g is the Euler characteristic of M, and g is th egenus of
M.

The metric do? (or just 2a(z), or w) gives an inner product on the tangent

space T,M for p € M. Let TM = UpenT,M be the (holomorphic) tangent
1
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bundles, and Kj; = T*M be the canonical bundle (co-tangent bundle) ove
rM. The T M is trivilaized by taking % as basis. In general, we can consider
an arbitray (Hermitian) line bundle L. An Hermitian metric on L consists
of collections of {hs} with h, > 0 and smooth, on U, (the trivilization
domain), satisfying certain “transition law”. Similar to the Gauss curvature
case, we can define the first Chern form (curvature form) of (L, h) by

=1 _
ci(L,h) = —T&? log hg = —ddlog hq

s

In this notion, when taking L = TM, and h = do?, then the Gauss-Bonnent
theorem can be re-stated as

/ c1(TM,h) =2 —2g.
M

Theorem (Degree formula). Assume that s € H°(M, L), then

/ c1(L,h) = #{s =0} = deg L, counting multiplicities.
M

The proof is done by applying Stokes’ theorem to dd®log||s||?> where
5]2 = |sa|?ha plus the basis fact:

lim dlog |z|> = 1.

e—0 |2|=e

Using this, the Gauss-Bonnet theorem is the same as the following result,
which is a special case of so-called Riemann-Roch theorem:

Riemann-Roch Theorem. On a compact Riemann Surface M:
deg(Knr) =29 —2
where Ky is the canonical bundle (or divisor) and g is the genus of M.

It is also desirable to allow h has zeros. We write (in the sense of distri-
bution)

/ dd“[log h] = / dd®log h + #{h = 0},

M M

then we have, for s € H(M, L)

1) - [ ddflogh) = #(s = 0) = deg(L),
M

counting multiplicities.

The Riemann-Hurwitz theorem: Let f : S — S’ be a holomorphic map
with S and S’ being two compact Riemann surfaces. We call v¢(p) the
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multiplicity of f at p € S if there are local coordinates z for S at p € S and
w for S at f(p) respectively such that w = 2V(),

Riemann-Hurwitz: Let f : S — P! be a holomorphic map. Then (2g —
2) = —2deg(f) +>_,cs(v(p) — 1), where g the genus of S.

Proof. Let wpg be the Fubini-Study form on P'. Then f*wrg induces a
pseudo-metric on Tg, the (holomorphic) tangent bundle of S. Thus (1) and

Gauss-Bonnet imply, for ffwpg = h(z)gdz AdZ
/dec log h + deg(ram(f)) = —degTg = 2g — 2
or, equivalently,
[ Ric(ers) = 20 =2 = degram( 1))

where f*Ric(wrg) = Ric(f*wps) = dd®log h. Now, from

1 v—1
= dw A d = dd®log(1 2
RS = [y TPy ar 4040 = ddlog(l + ),
for affine coordinate (w,1) € P!, we have Ric(wrs) = —2wpg, Hence, from

the definition that deg(f) = [q f*wrs, we get

—2deg(f) = —Q/Sf*wFS:/gf*RiC(wFS)

= 292 deg(ram(f)) =29 — 2 Y (v(p) ~ 1)
peS

where ram(f) is the ramification divisor. This finishes the proof.

For any rational function f on a compact Riemann surface S, we also
have deg f = #(f = 0) = #(f = 00) = #f~'{a}, counting multiplicities,
for Va € CU{oo}. Regarding f as a holomorphic mapping f : § — CU{c0},
and let ay,...,a, € CU{oco}. Let E = f~({ay,...,a4}) C S. Define the
ramification

r(E) =Y (v(p) = 1).
peEE
Then, from the definition of the degree, we have ¢qd = |E| + r(E). By
applying Riemann-Hurwitz theorem, we have r(F) < 2deg(f) + 2(g — 1),
where g =genus of S, so we get
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Algebraic SMT: Let S be a compact Riemann surface of genus g. Let
f:S — P! = CuU{oco} be holomorphic, and let ay,...,a, € P}(C). Let
E = f'({a1,...,a4}) C S. Then

(g —2)deg(f) < |E[+2(g—1).

Corollary(ABC-Theorem): Let k be an algebraically closed field, and
C'/k is a smooth projective curve of genus g. Let a,b € k(C) be non-constant
functions such that a +b = 1. Then

deg(a) = deg(b) < | M|+ 29 — 2

where M is the set of the zeros and poles of a,b.

Proof. Apply the second main theorem to the map f := 7 with E =
{0,—1,00}.

Define the height h(a, b, ¢) = max{|al, ||, |c|} for integers a, b, c and the
radical r(a,b,c) = H p. The abc conjecture says that the height cannot be

plabe
much larger than the radical

abc Conjecture(Masser and Oesterlé): Let a,b, ¢ coprime nonzero in-
tegers with a + b = ¢. Then for every ¢ > 0 there exists a constant C. > 0
such that
max{lal, 8], |e]} < Cc ] »'*
pl(abe)

Algebraic curves into the projective spaces

Let f: S — P"(C) be a linearly nondegenerate algebraic curve (i.e. f(5)
is not contained in any proper subspaces of P"(C)). Let P € S and let z be
a local coordinate centered around S with z(P) = 0. Let f be given locally
by the vector function f(z) = (fo(2), ..., fu(2)), where fo,..., f, are (local)
holomorphic functions without common zero.

k+1
Frpo=fAf A AfP - A\ Cm

Evidently F,+1 = 0. Since f is linearly non-degenerate, Fy % 0 for 0 <
k < n. The map F, = P(F}) : C —» P(A*"t cntl) ¢ PNe(C), where
N, = % — 1 and P is the natural projection, is called the k-
th associated map. WLOG, assume that fp(0) # 0. Making a linear
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change of coordinates in C"*!, we may take f(0) = (1,0,...,0). We have
F1(0) = -+ = £al0) = 0. Waite (f1(2),.s fa(2)) = 21 (£L(2), s £1(2)) with
(fL(0),..., f1(0)) # 0. Now make a linear change of the last n coordinates
in C"* so that (f£(0),..., f1(0)) = (1,0,...,0). Write (f3(2),..., fL(z)) =
292701 (f2(2), ..., f2(2)) with (f2(0),..., £2(0)) # 0. Now make a change of
the last n — 1 coordinates in C"*! so that (f2(0),..., f2(0)) = (1,0,...,0),
and continuing in this way we end up with a system of coordinates for C™*!
in terms of which

(2) f(z):(zéo—i_'”7261_}_”'7”'72(5”_{—”')7

where 0 = §y < 61 < --- < d,, and where z is a local coordinate centered
around P with z(P) = 0. Such expression is called the normal form of f.
The integers

(3) Vi:5i+1—6i—1,0§i§n—1

are called the stationary indices of order i at the point z = 0. The stationary
point, that is, the points with non-zero stationary index, are isolated and
hence are finite in number. Note that, we have

f(z) = (1_|_ ’Z1+V1 —+ .. ’Z2+V1+V2 + .. '."zn+V1+~~-+Vn + )

We also note that v(zg) is the ramfication index of f at zp, i.e.

oo = i nt, (22)).

Thus ffwrs = \/T_T]z — 20|?1GOh(2)dz A dz where h(z) > 0. Similarly,
Vp+1(20) is the ramfication index of Fy, at zp. Let

(4) o) = ka(P).

PeS

Let dj, be the degree of the k—th associate curve Fj, of f. Then we have the
following Pliicker formula.

Pliicker formula: We have
dg—1—2dp +dy1=29—2—o0f, 1<k<n-1,
where dj, = deg(Fy).

The proof comes from the following formula: Let

V-1
Q. = Ffwyp = dd°log ||Fg || = S5 hkdz Ndz, 0 <k <n,

then
Pt [Pl |
| Fy 4

hk(z)
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for 0 < k < n, and by convention ||[F_;|| = 1. Thus
dd®log hy, = Fy_1*wi_1 + Fk+1*wk+1 — QFEwk.

V=1

Note that the pseudo-metric (form) €, =: %S —=hypdz A dz gives a metric

on the tangent bundle 7'S, thus by the formula (1) and the Gauss-Bonnet
theoerem (or Riemann-Roch theorem) in section 1, we get

/ dd[log hi] = 2g — 2,
M
or, equivalently,
/ ddlog hy, + o, = 29 — 2.
M

This gives
di—1 — 2dg + diy1 + o, = 29 — 2.

This proves the formula.

Note that, using the fact that (assuming that d_; = 0 and noticing that
d, =0), we have

n—1

Z(n — k)(dk—1 — 2dg + di1) = —(n + 1)do.
i=0

So we have so-called the Brill-Segre formula, which is the extension of the
Riemann-Hurwitz theorem stated in Section 1.

Brill-Segre formula. Let S be a a compact Riemann surface of geneus g
and let f: S — P™ be a linearly non-degenerate holomorphic map. Then
n—1
D (n—k)or =n(n+1)(g— 1)+ (n+ 1) deg(f).
k=0

SMT for algebraic curves (simple version). Let S be a compact Rie-
mann surface of genus g. Let f : S — P"(C) be a linearly nondegenerate
algebraic curve. Let Hi,...,Hy be the hyperplanes in P™(C), located in
general position. Let E = nglf_l(Hj). Then

1
(g = (n+1))deg(f) < gn(n+1){2(g - 1) + [E]}.
Proof: Write H = {L = 0}, and let [; := L;(f). For P € E, since Hy,..., H,

are in general position, at most n hyperplanes can intersect f(S) at the
point P, hence there exits subset Ap C {1,2,...,q} with #Ap < n such
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that vp(l;) = 0 for any j & Ap. Write Ap = {i1,...,4} wtih [ < n and
without loss of geberality, we assume that

]- S UP(li1) S T S UP(lil)'

We choose homogeneous coordinates (p, . .., (, for P"(C) such that H;,i €
Ap are the coordinate hyperplanes. So, for a parameter ¢ for S such that
t(P) = 0, the equation of the curve can be put into the normal form

(5) C0=t60+"',"'7Cn:t6n+"',

where 0 = §y < 01 < -+ < dy, and with 0;(P) > vp(l;;) for j =1,2,...,1.
Recall that, for 0 <k <mn, op, =) cqvk(z) = ¢ (5k~+1( ) — Or(z) — 1),
so, for P € F,

Y (n—kwp(P) = Y (n—k)(0k1(P) = 6k(P) = 1)

k k

= 50(P)+"‘+5n71(P)_%n(n+l)

> 3 oplls) — gr(nt )= 3 welly) — gnln 1),

JEAP 1<j<q

where in the last equation, we used the fact that vp(l;) = 0 for j ¢ Ap. Now
using the fact that, by the fundamental theorem of algebra, } p.pvp(lj) =
deg(f) for each j, we get

dtn=Kor = Y > (n—kw(P)= > > el —fnn—i—l)\E\

k PEE &k 1<j<q PEE

= qdeg(f) — gu(n -+ 1)|B]

Applying the Brill-Segre formula finishes the proof.

The SMT for algebraic curves. Let S be a compact Riemann surface of
genus g. Let f : S — P™ be a holomorphic map and assume that f is linearly
non-degenerate. Let Hy, ..., H, be the hypersurfaces in general position. Let
E C S be a finite subset of S. Then

G-+ Ddeg(f) < 33 minfm,vp(Ly(F))
j=1 P¢E

+ gn(n+1D{2(g - 1) +|E]},

N

where, at P € S, we locally write f = [fo : -+ : fu] with fo,..., f, being
holomorphic functions without common zeros.
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Remark: By the sum formula, the above theorem implies that

Z > (wp(Li(f) - Jain {vr(fi)})

< (n+1)deg(f) + gnn+ D{2g — 1) +|E]}

Proof. To prove this theorem, we only need to modify the above proof. We
use the the same notations in the previous proof. In above, we have proved
that, for P € E,

Y (n—kw(P) = Y (n—k)(§1(P) = 5(P) — 1)

k k

= Go(P)+ -+ 6y 1 (P) — én(n +1)

=Y Up(zij)—%n(nﬂ) = ) wplly) - %n(n—kl).

JEAP 1<j<q
Thus

Z Z (n —d)v (P ZZUP +1)|E|.

PeFE 0<i<n-—1 PcFE j=1
Now for P ¢ E, we have,

n

Y (n—i(P) = > (6:(P)—i) = Y max{0,vp(l;) — n}

0<i<n—1 i=0 jeAp
= Y (vp(ly) — min{n,vp(l;)})
JEApP
= > (vp(l;) — min{n,vp(l;)}).
j=1
Thus,

Z Z n— i)y (P) > Z Z(Up(lj) — min{n,vp(l;)}).

PEE 0<i<n—1 PEE j=1

Therefore,

(n—ioi=>_ [ > (n-iu(P)

0<i<n—1 Pes \0<i<n—1

> Y wpl) - 30 Y minfnvp (1)) - Y gy
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= qdeg(f Zme{n vp(l;)} — (n2+ )|E]

j=1 P¢E
This, together with Brill-Segre formula proves the theorem.



LECTURE 2 AND 3 (AHLFORS’ NEGATIVE CURVATURE
METHOD)

MIN RU

ABSTRACT. In this set of notes, we give an introduction to Nevanlinna
theory. We present the Ahlfor’s negative curvature method.

2.1 The Gauss Curvature

We first recall some notations. Let
do* = 2a(z)dzdz

be a Hermitian pseudo-metric on a domain in C, or a Riemann surface
expressed in terms of a local coordinate z. The Gauss curvature is defined
by

4 a

where A = 28‘2—;2. Let w := a(z)gdz A dZz be the associated metric form.
To w we associate the Ricci form

(1) Ric(w) = dd‘loga.
Then
) o _Rl(;(w).

Both Ric(w) and K are defined whenever a is positive.

Example. Let D(r) be the disc of radius r on C. The metric
4r2dzdz
is called the Poincaré metric on D(r). Let

272 V-1
= dz \Ndz
G ER R .

(3) ds® =

then
Ric(w) = w,
So the Gaussian curvature K of the Poincaré metric is —1.

We prove a generalization of the Schwarz-Pick Lemma by Ahlfors.
1
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Theorem 2.1(Ahlfors) Let ds? denote the Poincaré metric on the unit
disc D. Let do? be any Hermitian pseudo-metric on D whose Gaussian
curvature is bounded above by —1. Then

do? < ds?.

Proof. Let D, be the disc of radius r < 1 with the Poincaré metric ds? of
curvature —1 given by

2r?
We compare this metric with do? = 2b(z)dzdz. Put
b(2)
ar(z)

Since p(z) — —oo as z — ID,, there is a point zy € D, such that

ds® = 2a,(z)dzdz where a,(z) =

pu(z) = log

w(z0) = sup{pu(z);z € D, } > —c0.
Then b(zp) > 0. Since z¢ is a maximal point of u(z),

2

0"
> .
02 555 0)

On the other hand, since the Gausssian curvature of the Poincaré metric is
—1 and the curvature of do? is bounded above by —1,

o? ]()g ar 52 logb
o logar _ .
020z ar(z) and 9207 (2) > b(2)
So , , )
O d*logb d%log a,
> — B - B ‘
02 550270 = T2z (0) — 5,55 (0) 2 blz0) — ar(z0)

Hence a,(z9) > b(zp) and so p(z9) < 0. By the choice of zy, we have p(z) <0
on D, that is

ar(z) > b(z).
The Theorem is proven by letting r — 1.

The classical Schwarz-Pick Lemma immediately follows from the Corol-
lary.

Corollary 2.1(Schwarz-Pick Lemma) Let D be the unit disc with the
Poicaré metric ds?>. Then every holomorphic map f : D — D is distance-
decreasing, i.e.,
f*ds* < ds?, or equivalently
rel
L—[f()PP — 1= [z

for z € D.
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Consider P!(C) — {a;}2, with ¢ > 3. Let ||z,al| denote the spherical
distance of P!(C). Define a hermitian metric do? on M by

1 4
do? = : dzdz
i1 12, ail*(logcl|z, ail|?)? (1 +2[?)?
where ¢ > 0 is a constant. Taking small ¢ > 0, one finds that the Gaussian
curvature Ky, < —k < 0 with a constant £ > 0. Hence, the pseudo-metric
f*do? on C also has Gaussian curvature < —k. By Ahlfors-Schwarz lemma,
we have

1 aWel o

iz 1£(2), aillQog el £ (=), aill®) (L +[f(2)I?) — (r* —[2]*)
By letting r — 400, we get f'(z) = 0, thus f is constant. This proves the
little Picard’s theorem.

In general, for any compact Riemann surface of genus > 2. It’s universal
cover of such is the upper half-plane. So the Poincaré metric on the upper
half-plane induces a complete metric on the Riemann surface with Gaussian
curvature as —1. So the implies that Ahlfors-Schwarz lemma implies that
every holomorphic map f: C — M with g > 2 must be constant.

2.2 The Second Main Theorems

In this section, we introduce an alternative method which uses the inte-
gration technique and establish the Second Main Theorem for holomorphic
curves into compact Riemann surfaces. To do the estimate, we use the
following lemmas.

Lemma 2.1(Green-Jensen formula). Let g be a function on A(r) with
at worst log-singularities. Then

Tdt/ , L%  ,.do
- dd®g + Sing,(r :</ g(re —90>,
/0 t e 4(7) 3\, ( )27r (0)

where Singy(r) = [y %limeﬁo fS(Sz’ngg,e)(r) dg. We write left-hand side as
J% f\c|<t dd[g]. So we have

[5] v =3 ([ ooy - g0)).

Lemma 2.2(Calculus Lemma) Let T be a strictly nondecreasing function
of class C* defined on (0,00). Let vy > be a number such that T(y) > e. Let
¢ be a strictly positive nondecreasing function such that

S |
/6 %dt:co(¢)<oo.
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Then the inequality
T'(r) < T(r)p(T(r))

holds for all r > v outside a set of Lebesgue measure < co(¢).

Proof. Let A C [y,00) be the set of r such that T"(r) > T(r)¢(T'(r)). Then

meas(A /dr / )d :/:ot;(tt):%(@’

which proves the lemma.

The typical use of the calculus lemma is as follows: Let I' be a non-
negative function on C, define

:/ @ Fﬁldz/\di.
0 |z|<t

2T

Then we have, for every € > 0,

27
2 [T e < @) BT T )

So, for every ¢ > 0,

27
(4) log/ I’(rew)ﬁ < (1 —i—5) logTr(r) + d0logr ||E.
0

l\D

To see how to get the above conclusion, we take, in the calculus lemma,
¢(t) = t¢, and notice that, using polar coordinate,

e

2

dTr moT do
— = T(te)tdt | —
"ar /0 </0 (") > 21’
1d [ dTt 2 9. dO

— ) =2/ T —.
rdr <T dr ) /0 (re )277

We introduce the following notations in the classical Nevanlinna theory.

Definition 2.1. Let f : C — P!(C). Let ||wy,ws|| be the chordal (sphere-
ical) distance on P*(C). Then

27 ) d@ 3
myrea) = [ (o Nre") 5 uole) = Tog a7

.
Ny(ra)= 3 logys,
FQ)=alcl<r

dz Ndz = 2rdr N\ ﬁ,
2w

Hence

the sum counting multiplicity,
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T dt
Ty(r) = / — ffwps = / log Lf*wpg, where wpg = dd°log ||wl|?.
o t Jpz<t zl<r 2]

Ni(r) is a counting function of the points where f' =0 and
— 1
|z, al| [z —d if a < 0o, |z,a] = ———u if a = co.

1+ 2P+ a? 1+ [z]2

Noticing
dd’[log || f,al’] = —f*wrs + [f = ]
and by pplying the Green-Jesen formula, we get

Theorem 2.2(Nevanlinna’s FMT). mg(a,r) + N¢(r,a) = T¢(r) + O(1).
We prove the SMT of Nevanlinna.

Theorem 2.3(Nevanlinna’s SMT). Let f : C — P! be a nonconstant
holomorphic map. Let a1,...,aq be distinct points in P!. Then

Z my(r,a;) + Ni(r) < 2T4(r) + O(log Ty (7)) + dlog 7 || -

Method 1 of the proof. Consider

WFS . WFS
U= or just take ¥ =
i=1([lw, a;]*(log [lw, a;1?)?)

i1 lw, aj[>+e

Write f*wpg = %e(f)%d( A dC. First note that

T dt . 1 ["dt o
Tf(r) = TfWJFs(T):/ - f WFS:—/(; — ffRicwps

0o t Jp<t 2 b J)z<t
1" dt e o df 1
= 2| = °] == 1 N_— 4+ =N
s ) T aesetn = = [Trosetnre) g+ i)
ie.
e 0. dO
(5) 2/ log e(f)(rew)? = —2T¢(r) + Ni(r).
0 ™
Secondly, note that, by the First Main Theorem,
2 2
4 , do T 1 de
6 / log(log frew,a-22<210g/ log———+——— +0(1
( ) 0 ( || ( ) JH ) 7 0 Hf(rew)vaju 21t ( )

= 2logmy(r,a;) +O(1) < log Ty(r) + O(1).

So if we writre

U= FEdC AdC.
2
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Then, by noticing (5) and (6), we get

s

y 1 do
(7) me(r, a;) —2T¢(r) + Ni(r) < 5 /|C|:T(10gp)2 + O(log Ty(r)).

On the other hand, by Jensen’s formula (Convacity of log) and by Calculus
lemma,

1
2/ (logT) < log/ <1+ 5)2 logTr(r) +0logr ||E
[¢]=r ICl=r

dt dt
(r) = / / dCAdC / AU
K<t 27 cl<t

It gets down to estimate 71 (r). Indeed, by a change of variable formula

(consulting Theorem 2.14 of the book “Functions of one complex variable”
by J.B. Conway),

where

/ ng(r,a)¥(a) = fru.

p! |z|<r

So, using the First Main Theorem,
" dt

i) = [F[ rv= [ Neove s [ 1ewe o
0o t Jiz<« p! pl

= Iy(r)+0(1),
where ¢ = fPl ¥ is a constant. This finishes the proof.

We also give an alternative proof by through the curvature computation.
Recall the following lemma in our curvature computation (see Lemma 2.6

below).

Lemma 2.3 For any € > 0,

1 2 CWES
dd€lo > —
g<log||w,a||2> = Nw, a2 (log w, a2 ~ “FF

for some positive constant c.

By pulling back by f, this gives,

a q
1 ffwrs
dd‘ log +ddlog || f|* >
jz_; log? || f(2), a;]|? Z:: ), ajl[?log || f(2), a2
Cf*wrs

= TG a2oe 17, a7
So, if we let

2¢
. 171

j—1(log || f(2), a;]1%)?
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then the above gives
(9)

dd®log h > Cf wrS h= Ce(f)h

AP TG (), a5l12) 1P T (11 (2), a1%)

where ffwpg = %e( )ddc|z|2. Write dd®logh = h*ddc|z|2, then
cepn

TSP = (1 (2)s a50%)

Similar to the (7), we have

h*

I 0. dO

me ryaj) — (2+€)T¢(r) + Ni(r) + = log h(re*)—

2 0 2
1 [ 0, 46
< - 1 * 0 —
< 2/0 og h*(re )277

2T

0. dO
We now estimate the upper bound of / log h*(re’e)z—
s

of log, (9), and calculus lemma (see (4)), and Green-Jensen formula,

. By the convexity

=]

o * 0 do o * 0 do 2
log h*(re”)— < log h*(re”)— < (14 6)°logTh=(r) + dlogr ||
0 2T 0 2T

2 )
< (146)? log(/ log h(rew)d—e) +dlogr ||E.
0

Notice that clog fo log h(re )dfr 2” log h(rew)% is bounded from above
(for r big enough), we have

me(r, a;j) + Ni(r) < (24 €)Ty(r) + dlogr ||E.
j=1

This proves our theorem.

The SMT was extended by S.S. Chern in 1960 to Compact Riemann
surfaces. Let M be a compact Riemann surface and let w be a positive (1,1)
form of class C' on M such that i) yw = 1. Consider the equation, in the
sense of currents,

(10) ddu = w — g,

where 4, is the Dirac measure at a. The equation (10) admits a positive
solution u,, smooth in M\{a}, with a log singularity at the point a. We
define the proximity function

2
(1) miulrea) =5 [ wa(rre) g
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Theorem 2.4(Chern’s SMT) Let M be a compact Riemann surface. Let
w be a positive (1,1) form on M. Let f : C — M be a non-constant
holomorphic map. Let ai,...,aq be distinct points on M. Then, for every
e >0,

> myp(ria;) + T, Ricw)(T) + Niram(r) < €Ty (r) + dlogr ||p.

Proof. Consider
q

U=C l_I(U(IJ2 exp(uq,)) | w
j=1
where C' is chosen such that [,, ¥ = 1. Write

U= FEdC A dC.
2

Then, similar to (7), we get

Z mf (7‘, aj) + Tf,RiC(w) (T) + nyram(T)

I N
< - log I'(re'”) — + O(log Tt (7).
2 0 2T ’

Using the concavity of log and calculus lemma, we have,

27 i do 27 do )
logT(re"”)— < log D(re®)— + O(1) < (14 6)2log Tr(r) + dlogr || 5.
0 2 0 2

It remains to estimate

/dt VLo dé = /
C\<t 2 §|<t

We follow the approach by Ahlfors-Chern. The change of variable formula

gives,
/ nf(r,a)\li(a):/ .
M I¢l<r

So, using the First Main Theorem,

"t L _
/O L \I/—/MNf(r,a)\I/(a)§/MTfM(T)\I/(a)—}—O(l)—wa(r)—i—O(l).

I¢I<t
This finishes the proof of Theorem.

2.3 Ahlfors’ Second Main Theorem for maps into P"(C)

We derive the Second Main Theorem for holomorphic maps from C into
P™ intersecting hyperplanes.
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A. Associated curves and the Plicker’s formula. Let f: C — P*(C)
be a linearly non-degenerate holomorphic map. Let f : C — C**1 — {0} be
a reduced representation of f. Consider the holomorphic map F; defined
by
k+1
Fp=fAf A AfB.Cc— A Cmth

Evidently F, 11 = 0. Since f is linearly non-degenerate, Fy # 0 for 0 <
k < n. The map F, = P(F) : C — P(A*T1Crtl) = PNe(C), where

N = % — 1 and P is the natural projection, is called the k-th
associated map. Let wy = dd°log|Z||* be the Fubini-Study form on
PNk (C), where Z = [xg : - -+ : wn,] € PV#(C). Let
v—1
(12) QkIF]:wk: Thkdz/\di, 0<k<n,
0

be the pull-back via the k-th associated curve. Observe that since Fj has
no indeterminacy points, 2, = Fjwj, is smooth and hy, is non-negative. We
recall the following lemma.

Lemma 2.4
B ]| Frqa?
| Fg |4

for 0 < k < n, and by convention [|[F_;|| = 1.

hk(z) = |

Define the kth characteristic function
T dt .
TFk('I") = / / FkCUk-,
o t Jp<t

Ty(r) = Try(r).
Lemma 2.5 Let § > 0. Then, for any 0 < k < n,
Ng, (r,0) +Tp, (r) <2(n+ 1)2Tf(7") + O(log T¢(r)) + dlogr ||,

where Ng, (r,0) is the counting function for the zeros of Fy.

and

B. The projective distance. For integers 1 < ¢ < p < n+1, the interior
product ¢[a € AP"7C"! of vectors € € AP C™ and o € ATTH(C )
is defined by

Bla) = (anB)(€)
for any 3 € AP79(C"T1)*. Let

H={[zg: - :xy] | aoxo+ -+ apzy, =0}

be a hyperplane in P"(C) with unit normal vector a = (ag, - -- ,ay). In the
rest of this section, we regard a as a vector in (C"*!)* which is defined by
a(x) = apzo + - -+ + apw, for each x = (xg, -+ ,x,) € C"L where (C*1)*
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is the dual space of C"1. Let z € P(A*! C"*1), the projective distance
is defined by
| = €12l

13 -HIl =
(13) I B0 =l

where £ € /\kJr1 C*! with P(¢) = x. For a given hyperplane H, Let
éx(H) = ||Fy; H||?>. We shall need the following product to sum estimate.
It is an extension of the estimate of the geometric mean by the arithmetic
mean.

Proposition 2.1 [Product to the sum estimate] Let Hi,..., H, be
hyperplanes in P"(C) in general position. Let k € Z[0,n— 1] with n—k < q.
Then there exists a constant ¢; > 0 such that

1/(n—k)

2 Gr+1(Hj) . Prt1(H;)
Ch Hm( ;) 108 1/ 62 () Z og? (u/n ()

on C — U?:1{¢k(Hj) = 0}.
C. The curvature computation.

Lemma 2.6 For every e > 0 there exists a pg(e) > 1 such that for all
> po(e) and for any hyperplane H C P" we have

1 S 2¢41(H)
log?(p1/dr(H)) ~ ¢r(H)log?(u/dr(H))

We are now ready to prove the following important theorem.

dd® log Qk — GQk.

Theorem 2.5 Let Hy, ..., H, be hyperplanes in P"(C) in general position.
Let f : C — P™ be a holomorphic map which is linearly non-degenerate.
Then, for every € > 0, there exists some positive number p > 1 and C,
depending only on € and H;,1 < j < g, such that

dd¢ log anl ||:F/€||26
H1§]§q,ogk§n 110g (n/or(Hj))
2
> c< [ 26+ B 2 )”“”” a2
B [19, [Fo(H;)? TTrZ0 log® (1/ ¢w(H;))

Proof. We denote the left hand side by A, then, by the definition of {2, we
have

1
A=c¢ Q dd® 1 .
2t Z %8 1og2 (1) ol H))



LECTURE 2 AND 3 (AHLFORS’ NEGATIVE CURVATURE METHOD) 11
Choose a 1 in Lemma 2.6, then we have

L 241 (H;) _€
4= ZQk+ZZ< i) 1og?(1u/dw(H;)) Q> o

7=1 k=0

n—1 q
= 2> (D % | %
k=0 \j=1

where
Prr1(H;)
or(Hj)log®(n/ow(H;))

(I)jk =
By Proposition 2.1, we have

n—k n—1 q n—=k

n—1 q
A=) | [T 2 Q=C1> | ]2 hidd®|2|*
k=0 \j=1 k=0 \j=1

for some constant C'; > 0. We use the following elementary inequality: For
all positive numbers x1,...,x, and a1,...,aq,

a1xr, + - Ap Ty > (ﬂj'clll . _$an)1/(a1+“.+an)
n .

a+---+ap
1
Thus, by letting a = n — k and xj, := i (H?Zl @jk) " hk, we have
1 _2
n—1 q n—k n—1 q n(n+1)
Z H (I)jk hi > Cy hzﬁk H (I)jk
k=0 \j=1 k=0 j=1
for some constant C5 > 0. Thus
2
n—1 q n(n+1)
—k 2
Azc[] | i ] @in dd°|z|
k=0 j=1

for some constant ¢ > 0. On the other hand, we have

n—1 n—1
Bri1(Hj)
Oy =
k:I:[O ” kl:[o or(H;)log (1) by (Hj;)

n—1

IFol? T 1
Fo(H)P 1L 1067 (u/ou(Hy))

and

n—1 -1 —k
T he* = h <”Fk—l||2HFk+1H2>n _Fa?
Pl [l [Fo|[2(n D)

k=0
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because ¢o(H;) = |Fo(H;)*/||Fol? ¢n(H;) = 1 and the product is tele-
scope. Therefore, we get,
2

AsC ( [ 20Ut DB ) T
— o\ T (Fo(Hy) P TTiZ log® (1/ ok (Hj))

which proves our theorem.

Let
ngqupgkgnfl 10g2 (1) dx(Hj))
Corollary.
2
; [ o2 @D Fy |2 - A ey 2
dd‘logh > C dd’|z|*,
((\FOH B )2 IT52, [Fo(Hj)P?

We now ready to prove the Second Main Theorem. Recall that, for any
hyperplane H in P"*(C), the proximity function is

2T
mi(r, H) = — /0 log 6(H) (re™)

and the height function is
" dt . o
Tp(r)=2 [ — Frwps =2 log — Fjwrs.
0o t Jiz<t <r 2]

df&
2

Theorem 2.6 [Second Main Theorem]|. Let Hi,..., H; be hyperplanes
in P*(C) in general position. Let f : C — P"(C) be a linearly non-
degenerated holomorphic curve (i.e. its image is not contained in any proper
subspaces). Then, for any € > 0 and § > 0, the inequality

my(r, Hj) + Nw (r,0)

a
7j=1
< (n+1+eT¢(r)+dlogr |k

Proof. Write ddlog h = h*dd¢|z|?, then, from the Corollary,

2

F 2(g—(n+1)) Fn Q.B n(n+1)

Y o U R
([Fol[ - [IFn-1l)?ITj=1 [Fo(H;)]

Hence, similar to (7),

nn+1) 1 2w R 4
S > )
5 g /0 log h*(re'”)df > nEZI my(r,H;) — (n+ 1)T¢(r) + Nw(r,0)
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1 2 R )
—€e(Tpy(r)+---+Tp,_(r)) + 47r/ log h(re')ds.
0
On the other hand, by the convexity of log and the Calculus lemma (see
(4)), and the Green-Jensen formula,

2m
/ log h*(re?)ds < (1+6)2logTﬁ(r)+5logr||E
0

1 2T N .
< (146)%log <47r/ log h(rew)dH) +dlogr ||E.
0

Notice that

1 21 R ) 1 27 . )
Cy log (M / log h(rew)d9> -0 / log h(re'?)do
0 0

is bounded from above, and by using Lemma 2.5, it proves our Second Main
Theorem.

Construction of the metric with negative curvature. Let f : C —
P — U?ZlHj be a non-constant holomorphic map, where H;,1 < j < ¢
are hyperplanes in general position. Assume that f is m-linearly non-
degenerate, i.e., f(C) is contained in a subspace of dimension m < n, but
not any subspace of lower dimension. Without a loss of generality, we as-
sume that f : C — P™. Then f is linearly non-degenerate. Furthermore,
the hyperplanes H; N P™,1 < j < q are in m-subgeneral position. Let w(j)
be the Nochka Weights associated with ﬁj = H; N P™. Then, similar to
Proposition 2.1, we have the following product-to-sum estimate.

Lemma 2.7 For any constant N > 1 and 1/¢ < A\p < 1/(m — k), there
exists a positive constant C} > 0 which depends only on k£ and the given
hyperplanes such that

Ak

I Pr+1(H;)
< 2 SN — log on(IT))P
on Dp — ngl{cf)k(Hj) = 0}.

To construct the pseudo-metric on D(R), we write

—1
—ag(2)dz Ndz

Qk = F,;‘wk = o
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and
Ak

b w(j) 1
C’“HK i, > (N —ogan(H)E|

where Cj, is the positive constant in the product-to-sum estimate above,
A = 1/[m—k+2q(m —k)?/N] and N > 1. We take the geometric mean of
oy, and define

1 m—1
r— ”2 e [] o *dz= ndz,
v
k=0

1
where 8, = 1/ 377 At and ¢ = 2(T[7, )\z’c )Pm . Let

= \éfh(z)dz N dz,
then
q 1 Bm 4 m—1 BM/’\k
(15)  h(z)= CH <W> H LEIO (N — 1og Ox(H;))?Pm

Theorem 2.7 For ¢ > 2n — m + 2, and
< w(j) — (m+1)

2q/N <

m(m + 2) ’
we have
v—1
dd‘log h(z) > Th(z)dz N dZ.
T
Proof. From (15) it follows that
dd€log h(z)
q m—1 1 2
J)dd log ¢o(Hj) + B dd*log ( )
]zz: 32;1 k=0 — log ¢4 (H;)
m—1
+Bm Y (1/A¢)dd" log ay,.
k=1
By the Plucker’'s formula, ddlogar = Qg1 — 2Q; + Qr_1 and
dd®log ¢o(H;) = —Qp. These, together with Lemma 2.6, imply that
q m—1
H4
dd®logh(z) = Bm | D w(i)Q+2) Dri (H) Qi

¢r(Hj) (N — log ¢r(H))?
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Using Lemma 2.6, it follows that

! Pr+1(H;) O
= on(Hj)(N —log dx(Hj))?

Ak
a w(J)
<Z>k+1(Hj)) 1
> C < Qg
g ]];[1 o (Hj) (N — log ¢x(H;))?
= _1Uk(z)dz A dz.
2w
Notice that ©,, = 0, so that
m—1
> (m = k) Qa1 — 2% + Qy) = —(m + 1)y,
k=0
and therefore
dd€log h(z)
q /7 m—
Zw (20—1-272 (2)dz A dzZ — (m +1)Q — (m? + 2m) qQO
Jj=1 =0
-2

We use the following elementary inequality: For all positive numbers
Z1,...,Tp and ay,...,aq,

a1y + - apxy > (a1 + -+ + an)(:r(fl . xZ")l/(‘llﬁL"*an).

Letting a, = )\,;1 we have

m—1 m—1
c B/ _ 1(2)
k

and therefore

q
2
ddlogh(z) = B || Swli) = (m+1) = (m® + 2m) 2L Qo+Z T
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From the property of Nochka’s weight. , we have

00> w(i) —(m+1)=g—2n+m—1>0,
j=1

and 6 > 0, so (3.9_, w(j) — (m + 1)) > 0. Using this and the choice of N

j=1
gives us
=1 h
27

dd®log h(z) > (z)dz N dZ.

Using Ahlfors-Schearz lemma, we have

h(z) < (1%22_%)2.

Letting R — oo, we have h(z) = 0 on C, which gives a contradiction. So we
again derive the following theorem.

Theorem 2.8 P" — U?ZlHj is Brody hyperbolic if H;,1 < j < q, are hyper-
planes in general position and q > 2n + 1.

Note that M. Green actually showed that P" — U?ZIHj is Kobayashi
hyperbolic and hyperbolically embedded in P™ if H; are hyperplanes in
general position and g > 2n + 1.
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ABSTRACT. In this set of notes, we extend H. Cartan’s Second Main
Theorem to holomorpihc curves into (general) projective varieties.

Holomorphic curves into projective varieties: The First Main
Tehorem.

Let X be a projective variety and let f : C — X be a holomorphic map.
We first give some definitions: Let L — X be a positive line bundle having
a metric with h. The height or characteristic function, denoted by T’ 1.(r),
of f with respective to (L, h) is defined by

"dt
TfyL(’l“) :/ — f*Cl(L,h).
o t /B
It can be easily proved that T (r) is essentially independent (up to a
bounded term) of the choice of the metric and is determined by the bundle
itself. It can also be proved that f must be constant if L is ample (i.e.
c1(L,h) > 0) and Ty, (r) is bounded. We can also prove that f is rational if
T¢(L,r) = O(logr) (assuming L is ample). The definition of T 1,(r) extends
to arbitrary line bundles L (not necessarily ample).

The Weil-function of D and the Proximity function of f with respect to
D (assuming that O(D) has an Hermitian metric): we defined the Weil
function of D as

Ap(z) := —log||sp(z)]|

sp is a canonical meromorphic section associated with D. The proximity
function is defined by

2m
ms(r D) = [ An(rire®g.

™

As an example, the Weil function for the hyperplanes H = {agzo + - - +
anty, = 0} C P" is given by
maxogign |.Tl| maxogign |CLZ|

lapgzg + - + anxy|
1

An(x) = log
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Lemma 4.1 The Weil functions Ap for Cartier divisors D on a complex
projective variety X satisfy the following properties.

(a) Additivity: If \y and Ny are Weil functions for Cartier divisors Dy
and Dy on X, respectively, then A1 + Ao extends uniquely to a Weil function
for D1+ D.

(b) Functoriality: If A is a Weil function for a Cartier divisor D on
X, and if ¢ : X' — X is a morphism such that ¢(X') ¢ SuppD, then
x = Mo(z)) is a Weil function for the Cartier divisor ¢*D on X'.

(¢) Normalization: If X = P", and if D = {29 = 0} C X is the
hyperplane at infinity, then the function
max{|2o], ..., |zn|}
|0

Ap(z0 - za]) = log
is a Weil function for D.

(d) Uniqueness: If both \1 and Ao are Weil functions for a Cartier
divisor D on X, then A1 = A2 + O(1).

(e) Boundedness from below: If D is an effective divisor and X\ is a
Weil function for D, then X is bounded from below.

(f) Principal divisors: If D is a principal divisor (f), then —log|f| is
a Weil function for D.

The Counting function of f with respect to D = [s = 0], where s € H°(M, L)
is

" dt
Ny(r,D) = nf(taD)?v
0
where ng(t, D) is the number of zeros of so f = 0 inside |z| < ¢, counting
multiplicities.

Theorem 4.1 (First Main Theorem) Let f : C — X be holomorphic,
L — X Hermitian line bundle, s € HY(X,L) with D = [s = 0]. Assume
that so f Z 0, then

Ty p(r) =mg(r,D)+ N¢(r, D)+ O(1).

Proof. By definition, on Uy, |sp||?> = |sa|?ha, so by Poincare-Lelong for-
mula,
dd“log ||sp||*] = —c1(L, h) + [D].

The FMT is thus obtained by applying the Green-Jensen formula.

Cartan’s Second Main Theorem: We now recall the Second Main The-
orem for the case that X = P"(C) and for divisors of hyperplanes, proved
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earlier. We write T¢(r) := T¢(L,r) which is called the Cartan’s charac-
teristic function, where L = Opn(1). In the case X = P". Recall that
|Z| defines an Hermitian norm in tautological bundle mentioned earlier. Its
dual bundle, the hyperplane section bundle, denoted by Opn (1), has tran-
sition function g, 3 = 2a/28, where U, = {zo # 0}. The sections of L are
sg=1{<a,Z > /zy} with [sg =0] = H = {apz0 + - - + anz, = 0}. The
metric on L is give hy = |24|?/||Z]||?. Thus it first Chen form is

c1(L, h) = —dd®log hy = dd®log || Z|*.

It is called the Fubini-Study metric on P". Hence, by Green-Jensen formula,

" dt ) " dt .
Tf(?")z/ " f cl(L,h)z/ t/ dd° log ||£]|?
o bl ro b JicI<t

2 ) d9
_ / log [ £(re®) | 22 + 0(1),
0 27T

where f = (fo,..., fn) is a reduced representation of f, i.e. fo,..., fn have
No common Zzeros.
[ENIEY
Ag(z) =log—————.
() 8 | <x,a>|

Given hyperplanes Hy,...,H, (or ai,...,a,). Wesay that Hy,..., H, are
in general position if for any injective map p : {0,1,...,n} — {1,...,q},
a,(0); - - - » Au(n) are linearly independent. For hyperplanes Hy, ..., Hy in gen-
eral position we have the following product to the sum estimate.

Lemma (Product to the sum estimate) Let Hy,..., Hy be hyperplanes
in P"(C), located in general position. Denote by T the set of all injective
maps p: {0,1,...,n} = {1,...,q}. Then

¢ 2 & ov, dO
me(r, Hj) < /0 maxZ)\HHm(f(re’e))—+O(1).
7=1 =0

pET “ 2m

Theorem 4.2 (The Second Main Theorem) Let Hy,...,H, be hyper-
planes in P"(C) in general position. Let f : C — P"(C) be a linearly
non-degenerated holomorphic curve (i.e. its image is not contained in any
proper subspaces). Then for any § > 0 the inequality

q
me(r, Hj) + Ny (r,0)
J=1

< (n+1)Ts(r) + Olog™ Ty (r)) + dlogr + O(1)| 5,
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The proof was done earlier through the negative curvature method. We
outline here a proof of SMT of Cartan using the logaritmhic derivative
lemma.

Lemma LDL (Logarithmic Derivative Lemma). Let f(z) be a mero-
morphic function. Then, for § >0

2 !
f 10 do
/0 log™ 7 Fre?)| 5 <

where || means that the inequality holds for all r except the set E with finite
Lebesgue measure.

1+ 6)? 0
<1 n H2)> log™ T (r) + 5 log + O(1)]| x5

Proof. For w € C, we define an surface element as follows:
1 V-
(1 + log? [w])[w]? 472

This is a (1,1) form on C with Slngulamtles at w = 0, 00. By computation

drdf =
/ / 1+log T) |r\227T2T "

By the change of the variable formula (or notice that ny(¢,w) is the number
of times that the point w € C is covered by f(D(t)), where D(t) = {|¢| < t})
we have (consulting Theorem 2.14 of the book ”Functions of one complex
variable” by J.B. Conway)

f*@:/ n (1 0)B(w).
A(t) weC

Thus, by letting pu(r =3 Ay f7®, we have

_ 7”@ ’f/‘Q \/7
0 = / A+l [7IfP 4n2 "

- /ec /1r %nf@’w)q)(w) - Ny (r,w)®(w) < Ty(r) + O(1)

weC
where the last inequality holds is due to the the First Main Theorem. By
the calculus lemma, we get

1 2 df
L. S B ()

dw/\dw

1+ log? [F)If2 27

where b is a constant. By making use of this, the Calculus lemma and the
concavity of the logarithm function, we carry the following computations:

2m f/ 0 die _ i +< |f/‘2 2 )
/0 g® | 7N 5r = T L \arog e (L loe D) 4

1 7P )
— log™t < do
am Je 5 NI+ g |12

IN
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+i . log* (1 + (log™ | f] + log™ (1/|£]))?)d6

IN

S log <1 + |f;‘2 2) do
AT Jjz)=r (1+1log® [ f])|f]

1
o [ o (log™ |f] +1og™ (1/171))d0 + 5 log?
|zl=r

1 1 1
21 — dé
9 0% <1+ 2 /zu (1+log? [ )] f]? )

1
tor log(1 + log™ | f| +log™(1/|f]))d6 + = log2
|2|=r

1 1
5 log (1 + §M(1+6)2 (r)r5b5)
(

1og1+m< 7+ mir1/9) + 5 loa2| e,

IN

IN

IN

tog (14 L (u(r)) 0+ %6) +log" Ty(r) + O()|5,

+
1
2
(1 o+ (5
This proves the lemma.

Outline of the proof of SMT:

e We will use the following properties of the Wronski determinants.

a) W(fg, ceosfn) Z0iff fo, ..., fn are linearly independent.

b) If (go,---,9n) = (fo,- -, fn)B where B is an invertible matrix,
then W(go,...,gn) =det BW(fo,..., fn)-
) (gg()aaggn) :gn+1W(f07"',fn)'

d) Let A(fo,afn) = W(foaafn)/(fofn)v
Then, A(gg0,-.-,99n) = A(fo,...,fn), and form LDL,
m(r, Afor- - ., fa) = Olog Ty(r) + log 1) 1.

o If H; : Lj(x) = 0,1 < j < ¢ are hyperplanes in general position,
then, for every z € C,

If )] <C 1f ()"
[Li(f)(2) -+ La(F)(2)] " 1Liy ()(2) -+ Ly (F)(2)]

or

£z o= | W o eos Jn)

Li(f)(2) - Le(N)(2) | —
= CA(fo,.., fn),

C‘W(Lio(f)w-wLin(f))
Li,(f)---Li, (f)
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here we wused the property that W(L;(f),...,Li, (f))=

Oio,...,inW(f()’ sy fn)
e If f is linearly non-degenerate, then W( fo, ..., fn) Z 0.

The above outline of proof actually gives the following more general form
of SMT, which is more convenient to use.

Theorem 4.3 (The general theorem of Cartan)). Let f = [fp : -+ :
fu]l : © = P"(C) be a holomorphic curve whose image is not contained in
any proper subspaces. Let Hy,...,H, (oray,...,a,) be arbitrary hyperplanes
in P"(C). Denote by W(fo, ..., fn) the Wronskian of fo,..., fn. Then, for
any § > 0, the inequality

2 de
/0 max Z /\Hk(f(rew))% + Nw (r,0)
keK
< (n+1)T5(r) + 0(log Ty(r)) + dlogr + O(1)|| s,
where the maximum is taken over all subsets K of {1,...,q} such thata;,j €

K, are linearly independent.

Theorem 4.2 is obtained from above plus the “product to sum estimate”
Lemma.

The Second Main Theorem for General Divisors on Projective
Varieties

The Basic Theorem: The starting point is the following result which is
basically a reformulation of H. Cartan’s theorem (the general form). We call
it the “Basic Theorem”.

Theorem 4.4 (Basic Theorem) [Ru-Vojta, 2017]. Let X be a complex
projective variety and let D be a Cartier divisor on X, let V' be a nonzero
linear subspace of H*(X,0(D)), and let s1,...,s, be nonzero elements of
V. Let f: C — X be a holomorphic map with Zariski-dense image. Then,
for any € > 0,

21

| max S A (e G < @imV +9Ty00) |
jeJ

where the set J ranges over all subsets of {1,...,q} such that the sections

(sj)jes are linearly independent.

Proof. Let d = dim V. We may assume that d > 1 (otherwise, all D; are the
same divisor, and the sets J have at most one element each, so the theorem
follows immediately from the First Main Theorem.

Let ®: X --» P41 be the rational map associated to the linear system
V. Let X’ be the closure of the graph of ®, and let p: X’ — X and
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¢: X' — P?1 be the projection morphisms. Let f :: C — X’ be the lifting
of f.

Note that, even though ® extends to the morphism ¢: X’ — P41 the
linear system of H°(X' p*@ (D)) corresponding to V may still have base
points. What is true, however, is that there is an effective Cartier divisor B
on X’ such that, for each nonzero s € V, there is a hyperplane H in P?~!
such that p*(s) — B = ¢*H. (More precisely, ¢*0(1) = 0(p*D — B). The
map

a: HY(X',0(p*D — B)) — H*(X, 0(p*D))
defined by tensoring with the canonical global section sp of &'(B) is injective,
and its image contains p*(V). The preimage a~!(p*(V)) corresponds to a
base-point-free linear system for the divisor p*D — B.)

For each j = 1,...,¢, let H; be the hyperplane in P?~! for which p*(s;) —
B = ¢*H;. Then,

(1) ApD; = Agri; + A 4+ O(1) .

By functoriality of Weil functions, A\p«p,(f(2)) = Ap,;(f(z)). Therefore it
will suffice to prove the inequality

do

2w ~ ; 3 ]
/0 max Y Arr, ($()(re”)) + A5 (F(ré”) | 5

(2) o7

Sexc (dim V+ G)Tf’D(T).
For any subset J of {1,..., ¢}, the sections s;, j € J, are linearly indepen-
dent elements of V' if and only if the hyperplanes Hj;, j € J, lie in general

position in P?~!. Thus we may apply the above H. Cartan’s Theorem to
obtain that

e 5 ion A0 .

(3) /0 m?xz A, (6(f)(re 9))% Sexe (AmV + )Ty 7 ().

Jj€J
From (1), we get T(ma)(r) =Ty,p(r) = Tf g(r) + O(1). On the other hand,
since each set J as above has at most dim V' elements and B is effective, we
get

(#)Ap(2) < (dim V)Ap() + O(1)

for all z € X’. Hence

2 - . ~ . d9
/ max Y A, (&(F) (re”) + Ap(F(re”)) | o
0 jeJ
Seae (dmV +€)Typ(r) — (dimV + €)T5 5(r) + (dim V)m (r, B)
<ese (dimV + )Ty p(r),
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where, in the last inequality, we used the first main theorem that m Jz(r, B) <

T§ p(r) + O(1). This finishes the proof.

Nevanlinna Constant: The above Basic Theorem motivates the fol-
lowing notation of the Nevanlinna constant: Let X be a smooth projec-
tive variety and D be an effective Cartier divisor on X. For any section
s € HY(X,0(D)), we use ordgs, or ordg(s), to denote the coefficients of
(s) in E where (s) is the divisor on X associated to s.

Definition. Let X be a smoothl complex projective variety, and D be an
effective Cartier divisor on X. The Nevanlinna constant of D, denoted by
Nev(D), is given by

Ney(D) := inf ( inf dim VN) ,
N \{un.VN} BN

where the infimum “i]I\l/f” 1s taken over all positive integers N and the in-

114 ”

inf
{un,Vn}

real number and Vy C H°(X,O(ND)) is a linear subspace with dim Vi > 2
such that, for all P € suppD, there exists a basis B of Vi with

fimum is taken over all pairs {un,VN} where uyn is a positive

(4) Z ordg(s) > pyordg(ND)
seB
for all irreducible component E of D passing through P. If

dim H°(X,O(ND)) < 1 for all positive integers N, we define Nev(D) =
+o0.
Theorem 4.5 [Ru, J. of Geometric Analysis, 2016]. Let X be a complex

smooth projective variety and D be an effective Cartier divisor on X. Then,
for every e > 0,

my(r, D) < (New(D) + €) Ts,p(r) ||
holds for any Zariski dense holomorphic mapping f: C — X.

Outline of the proof: Denote by og the set of all prime divisors occurring in
D, so we can write

Let
Y:={oCoo| Npes E # 0}.

For an arbitrary x € X, from the claim above, pick o € ¥ (depends on )
for which

Ap(z) < Ap,, (z)
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where D1 := Y pc,orde(D)E. Now for each o € ¥, by definition, there is
a basis B, of Vy C H°(X, ND) such that

Z ordg(s) > puyordg(ND),
SGBO‘

at some (and hence all) points P € Nge, E. Since X is finite, {B, | 0 € ¥}
is a finite collection of bases of V. Thus, we have, using the property of
Weil function that, if D; > Ds, then Ap, > Ap,, we get that,

1
Anp(z) < — max As(z).

oEY
KN sSEB,

The theorem can thus be derived by taking x = f(re?), by taking integration
and then by applying the Basic Theorem above.

Define 07(D), the Nevanlinna defect of f with respect to D, by

... my(r,D)
5¢(D) =1 f oL
7(D) im_inf )

Corollary[Defect Relation]. Let D be an effective Cartier divisor on a
smooth complex projective variety X. Then

d¢(D) < Nev(D)
for any Zariski dense holomorphic map f: C — X.

Corollary. Let D be an effective Cartier divisor on a complex normal
projective variety X. If Nev(D) < 1, then every holomorphic map f : C —
X\ D is not Zariski dense, i.e., the image of f must be contained in a proper
subvariety of X.

Proof. Note that f : C — X \ D implies that my(r, D) = Ty p(r) + O(1).
So §¢(D) = 1. Assume that f is Zariski dense, then above Corollary implies
that

1=07(D) <Nev(D) <1
which gives a contradiction. So f is not Zariski dense. Previous results can
be derived by computing the Nevanlinna constant Nev(D).

Example. Let X = P" and D = Hy + --- + H; where Hy,--- ,H, are
hyperplanes in P” in general position. We take N = 1 and consider V; :=
HO(P",0(D)) = H°(P",Opn(q)). Then dimV; = (9}"). For each P €
SuppD, since Hy,--- , H, are in general position, P € H;, N ---N H;, with
{i1,...,41} € {1,...,q} and I < n. Without loss of generality, we can just
assume H;, = {z1 = 0},---,H;, = {z = 0} by taking proper coordinates
for P". Now we take the basis B = {20 ---zin | i+ -+~ +in = q} for Vi =
HY(P", Opn(q)). Then, for each irreducible component E of D containing
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P, say E = {z;, = 0} with 1 < jo <[, we have ordg{z; = 0} = 0 for j # jo,
ordg{zj, = 0} = 1 and thus ordg D = 1. On the other hand,

B : v 9 (gtn\ _ q .
o = i = g St v = 5 (1) = gt

seB

where, in above, the sum is taken for all i = (10, -+, in) With ig+- - -+, = ¢,
and we used the fact that the number of choices of i = (ig,...,in) with
g+ +i, =qis (q:”). Thus we can take iy = n+1 dim V7, and hence,
dim V; 1
Nev(D) < &1 _nt 1
M1 q

The Recent Result of Ru-Vojta: Let £ be a big line sheaf and let D
be a nonzero effective Cartier divisor on a complete variety X. We define

> RO( LN (—mD
(5) B(£, D) = liminf ZmlNh(O(gjg) )

(Note that |Z"| does not have to be base point free.)

Theorem 4.6[Ru-Vojta, 2017]. Let X be a complex projective variety and
let D1,..., Dy be nonzero effective Cartier divisors intersecting properly on
X. Let Z be a big line sheaf on X. Let f : C — X be a holomorphic
mapping with Zariski-dense image. Then, for every e > 0,

q

Y B(Z, Dymy(r,Di) < (14 €)Ty.2(r) |-

=1

Note, if X is smooth and Dq,...,D, are in general position, then
D+, ..., D, intersect properly on X.

We also note that if D; is linearly equivalent to Ds, then 5(.£, D) =
B(Z, Ds). Assume that D; is linearly equivalent to d;Aon X fori =1,...,q,
then

N@NEAT (N

v(Dj) = lim 0 =
77 Nooo AT (f(IrJLVH)? 4 o(NnH q

Thus the Theorem of Ru-Vojta above recovers the following Theorem of Ru:

Theorem [Ru, 2009]. Let X be a smooth complex projective variety and
Dy, ..., Dy be effective divisors on X, located in general position. Suppose
that there exists an ample divisor A on X and positive integers d; such that
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D; is linearly equivalent to d;A on X fori=1,...,q. Let f: C — X be a
holomorphic mapping with Zariski-dense image. Then, for every € > 0,

q
1

g Emf(r, D;) < (dim X 4+ 1+ €)Tra(r) ||E-

i=1

The proof of Theorem 4.6 uses the the filtration constructed by Pascal
Autissier (see his Duke paper). We first review his results.

Let Dy,..., D, be effective Cartier divisors on a projective variety X.
Assume that they intersect properly on X, and that (;_; D; is non-empty.
Let .Z be a line sheaf over X with [ := h%(Z) > 1.

Definition 0.1. A subset N C N" is said to be saturated if a+b € N for
anya €N and b € N.

Lemma 0.2 (Lemma 3.2, in Autissier’s paper). Let A be a local ring and
(¢1,...,0r) be a regular sequence of A. Let M and N be two saturated
subsets of N".Then

I(M)NZ(N)=Z(MNN),
where, for N C N", Z(N) is the ideal of A generated by {qbl{l e gbgr |be N}

Remark 0.3. We use Lemma 0.2 in the following particular situation: Let
0= (R")"\ {0}. For each t € O and z € R, let

N(t,z) = {b e N" | t1by + -+ t,bp > m}
Notice that N(t,z) N N(u,y) € N(At + (1 — N)u, Az + (1 — N)y) for all
A € [0,1]. So, from Lemma 0.2, we have
(6) Z(N(t,z))NZ(N(u,y)) CZ(NAt+ (1 —=XNu, Az + (1 —N)y))
for any t,u € O; z,y € R*; and A € [0,1].
Definition 0.4. Let W be a vector space of finite dimension. A filtration
of W is a family of subspaces F = (Fy)zer+ of subspaces of W such that
Fz O Fy whenever x <y, and such that F, = {0} for x big enough. A basis

B of W is said to be adapted to F if BN F, is a basis of F, for every real
number x > 0.

Lemma 0.5 (Levin). Let F and G be two filtrations of W. Then there exists
a basis of W which is adapted to both F and G.

For any fixed t € (], we construct a filtration of H%(X,.#) as follows: for
z € RT, one defines the ideal Z(t,z) of Ox by

(7) I(t,x)= Y  Ox(=Y biDy),
i=1

beN (t,z)
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and let
(8) F(t) = H'(X, Z @ I(t,z)) .
Then (F(t)z)zer+ is a filtration of HO(X, . &).
For s € HO(X, %) — {0}, let ug(s) = sup{y € RT | s € F(t),}. Also let
1 too

Note that, for all u > 0 and all t € 0J, we have N(ut,z) = N(t,u"1z),
which implies F(ut); = F(t),-1,, and therefore

(10) F(ut)—/odex—u/odey—uF(t).

Remark 0.6. Let B = {s1,...,5;} be a basis of H*(X,.%) with [ = h%(.Z).
Then we have

!
1 [ 1
F(t) > / #(F(t)e N B)dz = = > ju(sp),
U Jo l P
where equality holds if B is adapted to the filtration (F(t)z),ecr+-

The key result we will use about this filtration is the following Proposition.

Proposition 0.7 (Théoreme 3.6 in Autisser’s paper). With the notations
and assumptions above, let F': [0 — R be the map defined in (9). Then F

is concave. In particular, for all B1,...,0, € (0,00) and all t € O satisfying
> Biti =1,
1 hO(ZL(—mDy))
11 F(t) > min | — _—
) ©zmin | 52— orz)

Proof. For any t,u € O and X € [0, 1], we need to prove that

(12) F(At+ (1 —X)u) > AF(t) + (1 — X\)F(u).

By Lemma 0.5, there exists a basis B = {s1,...,5} of H*(X,.%) with
I = h(%), which is adapted both to (F(t)z).cg+ and to (F(u)y)ycr+-

For z,y € R™, by Lemma 0.2 (or Remark 0.3), since Dy, ..., D, intersect
properly on X,

F(t)e N F(u)y € FOb+ (1= M) s 1ayy-

For s € HY(X,.#) — {0}, we have, from the definition of pu¢(s) and py(s),
s € F(At + (1 = M) rpq(1-n)y for @ < pe(s) and y < pu(s), and thus

Eat+(1-xul8) = Apg(s) + (1T — A)pu(s).
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Taking s = s; and summing it over j = 1,...,l, we get, by Remark 0.6,

l l
PO+ (1= m) > A7 S palss) + (1= 07 ).
=1 j=1

On the other hand, since B = {sy, ..., s;} is a basis adapted to both F(t) and
F(u), from Remark 0.6, F(t) = 3 3\ ju(s;) and F(u) = + 20 pu(s;).
Thus

FAt+ (1 —Xu) > AF(t) + (1 — \)F(u),

which proves that F' is a convex function.

To prove (11), let 1 = (1,0,...,0), ---, €, = (0,0, ...,1) be the standard
basis of R", and let t be as in (11). Then, by convexity of F' and by (10),
we get

F(t) > mjnF(Bi_lei) = minﬂ;lF(ei)

and, obviously, F'(e;) = ﬁz) > m>1 O(ZL(—mDy)) fori=1,...,r. O
Proof of Theorem of Ru-Vojta. We replace §(.Z, D;) with a slightly smaller

B; € Q for all i. Let € > 0 be as in the statement of the theorem. Choose
€1 > 0, and positive integers N and b such that

(13) (1+3) s Eiij(:s((;’jg()jnﬁ))i)) <lte.
Let
Y= {ag {1,...,q}| nSupij ﬂ)} .
For o € ¥, let "
A, = {a: (a;) € []87'N ( 3 Biai = b} .
ico ico

For a € A, as above, one defines the ideal Z,(x) of Ox by

(14) Ta(z) =) Ox (— > biDi>
b

€0

where the sum is taken for all b € N#° with Y.  a;b; > z. Let

i€E0

Flosa), = H'(X, £ @ Ta(x))

which we regard as a subspace of H*(X, #"), and let
1

+00
F(o;a) = }M/O (dim F(o;a),) dz .
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Applying Proposition with the line sheaf being taken as .ZV, we have

) b
Flo) 2 i, | gy 212 -mD0)

m>1

It is important to note that there are only finitely many ordered pairs (o, a)
with o € X.

As before, for any nonzero s € H*(X, #") and a € A, we define

(15) pa(s) =sup{z € R" : s € F(o;a),} .

Let B,a be a basis of H(X,.#") adapted to the above filtration

{F(c;a)z}zer+- By Remark 0.6, F(0,a) = 7h0(§1$N) > scBy.a Hal(s). Hence
b
> i 0 N/ )
(16) EEB pa(s) > min 5; >1h (L% (—mDy)) .

Letoc € X, ac A,,and s € HO(X, Z"N) with s # 0. Since the divisors D;
are all effective, it suffices to use only the leading terms in (14). The union
of the sets of leading terms as = ranges over the interval [0, ua(s)] is finite,
and each such b occurs in the sum (14) for a closed set of . Therefore the
supremum (15) is actually a maximum. From the definition,

(17) LN @ Ta(pals) = Y 2V <— > b@) :
beK €0

where K = K, a5 is the set of minimal elements of {b € N7#o | Yo @ibi >
pa(s)} relative to the product partial ordering on N#°. This set is finite,

Now for every z € C, let

o:={ie{l,...,q}: f(z) € Supp(D;}.

From the assumption that D;,..., D, intersect properly (and hence lie in
general position), we have #o < n. For i € o, let
" L B

>y Bidp, (f(2)

Note that Ap,(f(z)) = 0 for all j ¢ o, hence ), Bit; = 1. Since #0 < n,
we have b < > 7. [(b+n)pBit;] < b+n, and we may choose a = (a;) € A,
such that

(19) a; < (b+n)t; forallieo.
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With such chosen a and o (which depends on z), we have, using (17), (18),
(19), and >, aib; > pa(s),

(20)

S (F(2)

s€EB,

Vv
/-
[~]=
&
>
S
=
X
~
»
m
o]
S =
+|2
3\_/

ho .,?N —mDi
) 3 é )
= = m>1 v

V
-~
[~]=
2
>
RS
=
X
g/
S8
+ |
S
—_
2
AN
<y

or equivalently,

(21)
b—I—n
ZBJAD b (fﬁ%z hOZN mD );A
Write

UBa;a281U"'UBT1 :{31,...,ST2}.

oa

For each i = 1,...,T1, let J; C {1,...,T>} be the subset such that B; =
{s;j : j € Ji}. Then (21) implies that

(22) > " BiAp, (f(2))
j=1

JE€Ji

b+n Bi

By applying the basic Theorem with €; in place of €, we get

21
(23) /0 max )\sj(f(rew))% < (ho(fN) + 61) Tf}gN(T) +0(1) ||g
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here the maximum is taken over all subsets J of {1,...,T>} for which the
sections s;, j € J, are linearly independent. Combining (22) and (23) gives

1 mn 1 0 N €
> fimyr. Do, (o) < (14 §) e <Pt (001 |15
=1 == m> 7

Using the fact that Ty o~ (r) = NTy #(r) + O(1), we have

> Bimg(r,D;) < (1+€) T 2(r) + O(1) || -
=1

By the choices of ;, this implies that

q
> B(Z, Diymy(r, Di) < (14 €Ty, 2(r) + O(1) || -
i=1

This proves the theorem.



