
INTRODUCTION TO NEVANLINNA THEORY: 1.

ALGEBRAIC CURVES

MIN RU

Abstract. In this set of notes, we give an introduction to Nevanlinna
theory of algebraic curves

The Gauss-Bonnet Theorem. We first introduce some notations: On
C or locally on a Riemann surface M , we let z = x +

√
−1y and ∂

∂z =
1
2

(
∂
∂x −

√
−1 ∂

∂y

)
, ∂
∂z̄ = 1

2

(
∂
∂x +

√
−1 ∂

∂y

)
, ∂ = ∂

∂zdz, ∂̄ = ∂
∂z̄dz̄, d = ∂ +

∂̄, dc =
√
−1

4π (∂̄ − ∂), ddc =
√
−1

2π ∂∂̄. Let

dσ2 = 2a(z)dzdz̄

be a Hermitian pseudo-metric on a domain in C, or on a Riemann surface
expressed in terms of a local coordinate z. The Gauss curvature is defined
by

K = −1

4

4 log a

a
,

where 1
24 = 2 ∂2

∂z∂z̄ . Let ω be the associated curvature form of dσ2 which is
given by

ω = a(z)

√
−1

2π
dz ∧ dz̄.

To ω we associate the Ricci form Ric(ω) = ddc log a. Then

K = −Ric(ω)

ω
.

Both Ric(ω) and K are defined whenever a is positive.

The remarkable socalled Gauss-Bonnet theorem states that, for any com-
pact Riemann surface M ,

1

2π

∫
M
KdA = χ(M),

where χ(M) = 2− 2g is the Euler characteristic of M , and g is th egenus of
M .

The metric dσ2 (or just 2a(z), or ω) gives an inner product on the tangent
space TpM for p ∈M . Let TM = ∪p∈MTpM be the (holomorphic) tangent

1



2 MIN RU

bundles, and KM = T ∗M be the canonical bundle (co-tangent bundle) ove
rM . The TM is trivilaized by taking ∂

∂z as basis. In general, we can consider
an arbitray (Hermitian) line bundle L. An Hermitian metric on L consists
of collections of {hα} with hα > 0 and smooth, on Uα (the trivilization
domain), satisfying certain “transition law”. Similar to the Gauss curvature
case, we can define the first Chern form (curvature form) of (L, h) by

c1(L, h) = −
√
−1

2π
∂∂̄ log hα = −ddc log hα

In this notion, when taking L = TM , and h = dσ2, then the Gauss-Bonnent
theorem can be re-stated as∫

M
c1(TM, h) = 2− 2g.

Theorem (Degree formula). Assume that s ∈ H0(M,L), then∫
M
c1(L, h) = #{s = 0} = degL, counting multiplicities.

The proof is done by applying Stokes’ theorem to ddc log ‖s‖2 where
‖s‖2 = |sα|2hα plus the basis fact:

lim
ε→0

∫
|z|=ε

dc log |z|2 = 1.

Using this, the Gauss-Bonnet theorem is the same as the following result,
which is a special case of so-called Riemann-Roch theorem:

Riemann-Roch Theorem. On a compact Riemann Surface M :

deg(KM ) = 2g − 2

where KM is the canonical bundle (or divisor) and g is the genus of M .

It is also desirable to allow h has zeros. We write (in the sense of distri-
bution) ∫

M
ddc[log h] :=

∫
M
ddc log h+ #{h = 0},

then we have, for s ∈ H0(M,L)

(1) −
∫
M
ddc[log h] = #(s = 0) = deg(L),

counting multiplicities.

The Riemann-Hurwitz theorem: Let f : S → S′ be a holomorphic map
with S and S′ being two compact Riemann surfaces. We call υf (p) the
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multiplicity of f at p ∈ S if there are local coordinates z for S at p ∈ S and
w for S′ at f(p) respectively such that w = zυ(p).

Riemann-Hurwitz: Let f : S → P1 be a holomorphic map. Then (2g −
2) = −2 deg(f) +

∑
p∈S(υ(p)− 1), where g the genus of S.

Proof. Let ωFS be the Fubini-Study form on P1. Then f∗ωFS induces a
pseudo-metric on TS , the (holomorphic) tangent bundle of S. Thus (1) and

Gauss-Bonnet imply, for f∗ωFS = h(z)
√
−1

2π dz ∧ dz̄∫
S
ddc log h+ deg(ram(f)) = −deg TS = 2g − 2

or, equivalently, ∫
S
f∗Ric(ωFS) = 2g − 2− deg(ram(f)),

where f∗Ric(ωFS) = Ric(f∗ωFS) = ddc log h. Now, from

ωFS =
1

(1 + |w|2)2

√
−1

2π
dw ∧ dw̄ = ddc log(1 + |w|2),

for affine coordinate (w, 1) ∈ P1, we have Ric(ωFS) = −2ωFS , Hence, from
the definition that deg(f) =

∫
S f
∗ωFS , we get

−2 deg(f) = −2

∫
S
f∗ωFS =

∫
S
f∗Ric(ωFS)

= 2g − 2− deg(ram(f)) = 2g − 2−
∑
p∈S

(υ(p)− 1)

where ram(f) is the ramification divisor. This finishes the proof.

For any rational function f on a compact Riemann surface S, we also
have deg f = #(f = 0) = #(f = ∞) = #f−1{a}, counting multiplicities,
for ∀a ∈ C∪{∞}. Regarding f as a holomorphic mapping f : S → C∪{∞},
and let a1, . . . , aq ∈ C ∪ {∞}. Let E = f−1({a1, . . . , aq}) ⊂ S. Define the
ramification

r(E) :=
∑
p∈E

(υ(p)− 1).

Then, from the definition of the degree, we have qd = |E| + r(E). By
applying Riemann-Hurwitz theorem, we have r(E) ≤ 2 deg(f) + 2(g − 1),
where g =genus of S, so we get
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Algebraic SMT: Let S be a compact Riemann surface of genus g. Let
f : S → P1 = C ∪ {∞} be holomorphic, and let a1, . . . , aq ∈ P1(C). Let
E = f−1({a1, . . . , aq}) ⊂ S. Then

(q − 2) deg(f) ≤ |E|+ 2(g − 1).

Corollary(ABC-Theorem): Let k be an algebraically closed field, and
C/k is a smooth projective curve of genus g. Let a, b ∈ k(C) be non-constant
functions such that a+ b = 1. Then

deg(a) = deg(b) ≤ |M |+ 2g − 2

where M is the set of the zeros and poles of a, b.

Proof. Apply the second main theorem to the map f := a
b with E =

{0,−1,∞}.

Define the height h(a, b, c) = max{|a|, |b|, |c|} for integers a, b, c and the

radical r(a, b, c) =
∏
p|abc

p. The abc conjecture says that the height cannot be

much larger than the radical

abc Conjecture(Masser and Oesterlé): Let a, b, c coprime nonzero in-
tegers with a + b = c. Then for every ε > 0 there exists a constant Cε > 0
such that

max{|a|, |b|, |c|} ≤ Cε
∏
p|(abc)

p1+ε.

Algebraic curves into the projective spaces

Let f : S → Pn(C) be a linearly nondegenerate algebraic curve (i.e. f(S)
is not contained in any proper subspaces of Pn(C)). Let P ∈ S and let z be
a local coordinate centered around S with z(P ) = 0. Let f be given locally
by the vector function f(z) = (f0(z), ..., fn(z)), where f0, . . . , fn are (local)
holomorphic functions without common zero.

Fk := f ∧ f ′ ∧ · · · ∧ f (k) : C→
k+1∧

Cn+1.

Evidently Fn+1 ≡ 0. Since f is linearly non-degenerate, Fk 6≡ 0 for 0 ≤
k ≤ n. The map Fk = P(Fk) : C → P(

∧k+1 Cn+1) ⊂ PNk(C), where

Nk = (n+1)!
(k+1)!(n−k)! − 1 and P is the natural projection, is called the k-

th associated map. WLOG, assume that f0(0) 6= 0. Making a linear
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change of coordinates in Cn+1, we may take f(0) = (1, 0, ..., 0). We have
f1(0) = · · · = fn(0) = 0. Write (f1(z), ..., fn(z)) = zδ1(f1

1 (z), ..., f1
n(z)) with

(f1
1 (0), ..., f1

n(0)) 6= 0. Now make a linear change of the last n coordinates
in Cn+1 so that (f1

1 (0), ..., f1
n(0)) = (1, 0, ..., 0). Write (f1

2 (z), ..., f1
n(z)) =

zδ2−δ1(f2
2 (z), ..., f2

n(z)) with (f2
2 (0), ..., f2

n(0)) 6= 0. Now make a change of
the last n − 1 coordinates in Cn+1 so that (f2

2 (0), ..., f2
n(0)) = (1, 0, ..., 0),

and continuing in this way we end up with a system of coordinates for Cn+1

in terms of which

(2) f(z) = (zδ0 + · · · , zδ1 + · · · , ..., zδn + · · · ),

where 0 = δ0 < δ1 < · · · < δn, and where z is a local coordinate centered
around P with z(P ) = 0. Such expression is called the normal form of f .
The integers

(3) νi = δi+1 − δi − 1, 0 ≤ i ≤ n− 1

are called the stationary indices of order i at the point z = 0. The stationary
point, that is, the points with non-zero stationary index, are isolated and
hence are finite in number. Note that, we have

f(z) = (1 + · · · , z1+ν1 + · · · , z2+ν1+ν2 + · · · ..., zn+ν1+···+νn + · · · ).

We also note that ν1(z0) is the ramfication index of f at z0, i.e.

ν1(z0) := min

{
(ordz0

(
∂fi
∂z

)}
.

Thus f∗ωFS =
√
−1
2 |z − z0|2ν1(z0)h(z)dz ∧ dz̄ where h(z0) > 0. Similarly,

νk+1(z0) is the ramfication index of Fk at z0. Let

(4) σk =
∑
P∈S

νk(P ).

Let dk be the degree of the k−th associate curve Fk of f . Then we have the
following Plücker formula.

Plücker formula: We have

dk−1 − 2dk + dk+1 = 2g − 2− σk, 1 ≤ k ≤ n− 1,

where dk = deg(Fk).

The proof comes from the following formula: Let

Ωk = F ∗kωk = ddc log ‖Fk‖2 =:

√
−1

2π
hkdz ∧ dz̄, 0 ≤ k ≤ n,

then

hk(z) =
‖Fk−1‖2‖Fk+1‖2

‖Fk‖4
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for 0 ≤ k ≤ n, and by convention ‖F−1‖ ≡ 1. Thus

ddc log hk = Fk−1
∗ωk−1 + Fk+1

∗ωk+1 − 2F ∗kωk.

Note that the pseudo-metric (form) Ωk =:
√
−1

2π hkdz ∧ dz̄ gives a metric
on the tangent bundle TS, thus by the formula (1) and the Gauss-Bonnet
theoerem (or Riemann-Roch theorem) in section 1, we get∫

M
ddc[log hk] = 2g − 2,

or, equivalently, ∫
M
ddc log hk + σk = 2g − 2.

This gives

dk−1 − 2dk + dk+1 + σk = 2g − 2.

This proves the formula.

Note that, using the fact that (assuming that d−1 = 0 and noticing that
dn = 0), we have

n−1∑
i=0

(n− k)(dk−1 − 2dk + dk+1) = −(n+ 1)d0.

So we have so-called the Brill-Segre formula, which is the extension of the
Riemann-Hurwitz theorem stated in Section 1.

Brill-Segre formula. Let S be a a compact Riemann surface of geneus g
and let f : S → Pn be a linearly non-degenerate holomorphic map. Then

n−1∑
k=0

(n− k)σk = n(n+ 1)(g − 1) + (n+ 1) deg(f).

SMT for algebraic curves (simple version). Let S be a compact Rie-
mann surface of genus g. Let f : S → Pn(C) be a linearly nondegenerate
algebraic curve. Let H1, . . . ,Hq be the hyperplanes in Pn(C), located in
general position. Let E = ∪qj=1f

−1(Hj). Then

(q − (n+ 1)) deg(f) ≤ 1

2
n(n+ 1){2(g − 1) + |E|}.

Proof: Write H = {L = 0}, and let lj := Lj(f). For P ∈ E, since H1, . . . ,Hq

are in general position, at most n hyperplanes can intersect f(S) at the
point P , hence there exits subset AP ⊂ {1, 2, . . . , q} with #AP ≤ n such
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that υP (lj) = 0 for any j 6∈ AP . Write AP = {i1, . . . , il} wtih l ≤ n and
without loss of geberality, we assume that

1 ≤ υP (li1) ≤ · · · ≤ υP (lil).

We choose homogeneous coordinates ζ0, . . . , ζn for Pn(C) such that Hi, i ∈
AP are the coordinate hyperplanes. So, for a parameter t for S such that
t(P ) = 0, the equation of the curve can be put into the normal form

(5) ζ0 = tδ0 + · · · , · · · , ζn = tδn + · · · ,

where 0 = δ0 < δ1 < · · · < δn, and with δj(P ) ≥ υP (lij ) for j = 1, 2, . . . , l.
Recall that, for 0 ≤ k ≤ n, σk =

∑
x∈S νk(x) =

∑
x∈S(δk+1(x)− δk(x)− 1),

so, for P ∈ E,∑
k

(n− k)νk(P ) =
∑
k

(n− k)(δk+1(P )− δk(P )− 1)

= δ0(P ) + · · ·+ δn−1(P )− 1

2
n(n+ 1)

≥
∑
j∈AP

υP (lij )−
1

2
n(n+ 1) =

∑
1≤j≤q

υP (lj)−
1

2
n(n+ 1),

where in the last equation, we used the fact that υP (lj) = 0 for j 6∈ AP . Now
using the fact that, by the fundamental theorem of algebra,

∑
P∈E υP (lj) =

deg(f) for each j, we get∑
k

(n− k)σk ≥
∑
P∈E

∑
k

(n− k)νk(P ) ≥
∑

1≤j≤q

∑
P∈E

υP (lj)−
1

2
n(n+ 1)|E|

= q deg(f)− 1

2
n(n+ 1)|E|.

Applying the Brill-Segre formula finishes the proof.

The SMT for algebraic curves. Let S be a compact Riemann surface of
genus g. Let f : S → Pn be a holomorphic map and assume that f is linearly
non-degenerate. Let H1, . . . ,Hq be the hypersurfaces in general position. Let
E ⊂ S be a finite subset of S. Then

(q − (n+ 1) deg(f) ≤
q∑
j=1

∑
P 6∈E

min{n, υP (Lj(f))}

+
1

2
n(n+ 1){2(g − 1) + |E|},

where, at P ∈ S, we locally write f = [f0 : · · · : fn] with f0, . . . , fn being
holomorphic functions without common zeros.
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Remark: By the sum formula, the above theorem implies that
q∑
j=1

∑
P∈E

(υP (Lj(f))− min
0≤i≤n

{υP (fi)})

≤ (n+ 1) deg(f) +
1

2
n(n+ 1){2(g − 1) + |E|}.

Proof. To prove this theorem, we only need to modify the above proof. We
use the the same notations in the previous proof. In above, we have proved
that, for P ∈ E,∑
k

(n− k)νk(P ) =
∑
k

(n− k)(δk+1(P )− δk(P )− 1)

= δ0(P ) + · · ·+ δn−1(P )− 1

2
n(n+ 1)

≥
∑
j∈AP

υP (lij )−
1

2
n(n+ 1) =

∑
1≤j≤q

υP (lj)−
1

2
n(n+ 1).

Thus ∑
P∈E

∑
0≤i≤n−1

(n− i)νi(P ) ≥
∑
P∈E

q∑
j=1

υP (lj)−
n(n+ 1)

2
|E|.

Now for P 6∈ E, we have,∑
0≤i≤n−1

(n− i)νi(P ) =
n∑
i=0

(δi(P )− i) ≥
∑
j∈AP

max{0, υP (lj)− n}

=
∑
j∈AP

(υP (lj)−min{n, υP (lj)})

=

q∑
j=1

(υP (lj)−min{n, υP (lj)}).

Thus, ∑
P 6∈E

∑
0≤i≤n−1

(n− i)νi(P ) ≥
∑
P 6∈E

q∑
j=1

(υP (lj)−min{n, υP (lj)}).

Therefore, ∑
0≤i≤n−1

(n− i)σi =
∑
P∈S

 ∑
0≤i≤n−1

(n− i)νi(P )


≥

q∑
j=1

∑
P∈S

υP (lj)−
q∑
j=1

∑
P 6∈E

min{n, υP (lj)} −
n(n+ 1)

2
|E|
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= q deg(f)−
q∑
j=1

∑
P 6∈E

min{n, υP (lj)} −
n(n+ 1)

2
|E|.

This, together with Brill-Segre formula proves the theorem.
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METHOD)

MIN RU

Abstract. In this set of notes, we give an introduction to Nevanlinna
theory. We present the Ahlfor’s negative curvature method.

2.1 The Gauss Curvature

We first recall some notations. Let

dσ2 = 2a(z)dzdz̄

be a Hermitian pseudo-metric on a domain in C, or a Riemann surface
expressed in terms of a local coordinate z. The Gauss curvature is defined
by

K = −1

4

4 log a

a
,

where 1
24 = 2 ∂2

∂z∂z̄ . Let ω := a(z)
√
−1

2π dz ∧ dz̄ be the associated metric form.
To ω we associate the Ricci form

(1) Ric(ω) = ddc log a.

Then

(2) K = −Ric(ω)

ω
.

Both Ric(ω) and K are defined whenever a is positive.

Example. Let D(r) be the disc of radius r on C. The metric

(3) ds2 =
4r2dzdz̄

(r2 − |z|2)2

is called the Poincaré metric on D(r). Let

ω =
2r2

(r2 − |z|2)2

√
−1

2π
dz ∧ dz̄,

then
Ric(ω) = ω,

So the Gaussian curvature K of the Poincaré metric is −1.

We prove a generalization of the Schwarz-Pick Lemma by Ahlfors.
1
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Theorem 2.1(Ahlfors) Let ds2 denote the Poincaré metric on the unit
disc D. Let dσ2 be any Hermitian pseudo-metric on D whose Gaussian
curvature is bounded above by −1. Then

dσ2 ≤ ds2.

Proof. Let Dr be the disc of radius r < 1 with the Poincaré metric ds2 of
curvature −1 given by

ds2 = 2ar(z)dzdz̄ where ar(z) =
2r2

(r2 − |z|2)2
.

We compare this metric with dσ2 = 2b(z)dzdz̄. Put

µ(z) = log
b(z)

ar(z)
.

Since µ(z)→ −∞ as z → ∂Dr, there is a point z0 ∈ Dr such that

µ(z0) = sup{µ(z); z ∈ Dr} > −∞.
Then b(z0) > 0. Since z0 is a maximal point of µ(z),

0 ≥ ∂2µ

∂z∂z̄
(z0).

On the other hand, since the Gausssian curvature of the Poincaré metric is
−1 and the curvature of dσ2 is bounded above by −1,

∂2 log ar
∂z∂z̄

= ar(z) and
∂2 log b

∂z∂z̄
(z) ≥ b(z).

So

0 ≥ ∂2µ

∂z∂z̄
(z0) =

∂2 log b

∂z∂z̄
(z0)− ∂2 log ar

∂z∂z̄
(z0) ≥ b(z0)− ar(z0).

Hence ar(z0) ≥ b(z0) and so µ(z0) ≤ 0. By the choice of z0, we have µ(z) ≤ 0
on Dr, that is

ar(z) ≥ b(z).
The Theorem is proven by letting r → 1.

The classical Schwarz-Pick Lemma immediately follows from the Corol-
lary.

Corollary 2.1(Schwarz-Pick Lemma) Let D be the unit disc with the
Poicaré metric ds2. Then every holomorphic map f : D → D is distance-
decreasing, i.e.,

f∗ds2 ≤ ds2, or equivalently

|f ′(z)|
1− |f(z)|2

≤ 1

1− |z|2
, for z ∈ D.
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Consider P1(C) − {ai}qi=1 with q ≥ 3. Let ‖z, a‖ denote the spherical
distance of P1(C). Define a hermitian metric dσ2 on M by

dσ2 =
1∏q

i=1 ‖z, ai‖2(log c‖z, ai‖2)2
· 4

(1 + |z|2)2
dzdz̄

where c > 0 is a constant. Taking small c > 0, one finds that the Gaussian
curvature Kdσ2 ≤ −k < 0 with a constant k > 0. Hence, the pseudo-metric
f∗dσ2 on C also has Gaussian curvature ≤ −k. By Ahlfors-Schwarz lemma,
we have

1∏q
i=1 ‖f(z), ai‖(log c‖f(z), ai‖2)

· 4|f ′(z)|
(1 + |f(z)|2)

≤ 2r

(r2 − |z|2)
.

By letting r → +∞, we get f ′(z) ≡ 0, thus f is constant. This proves the
little Picard’s theorem.

In general, for any compact Riemann surface of genus ≥ 2. It’s universal
cover of such is the upper half-plane. So the Poincaré metric on the upper
half-plane induces a complete metric on the Riemann surface with Gaussian
curvature as −1. So the implies that Ahlfors-Schwarz lemma implies that
every holomorphic map f : C→M with g ≥ 2 must be constant.

2.2 The Second Main Theorems

In this section, we introduce an alternative method which uses the inte-
gration technique and establish the Second Main Theorem for holomorphic
curves into compact Riemann surfaces. To do the estimate, we use the
following lemmas.

Lemma 2.1(Green-Jensen formula). Let g be a function on 4(r) with
at worst log-singularities. Then∫ r

0

dt

t

∫
|ζ|<t

ddcg + Singg(r) =
1

2

(∫ 2π

0
g(reiθ)

dθ

2π
− g(0)

)
,

where Singg(r) =
∫ r

0
dt
t limε→0

∫
S(Singg ,ε)(r)

dcg. We write left-hand side as∫ r
0
dt
t

∫
|ζ|<t dd

c[g]. So we have∫ r

0

dt

t

∫
|ζ|<t

ddc[g] =
1

2

(∫ 2π

0
g(reiθ)

dθ

2π
− g(0)

)
.

Lemma 2.2(Calculus Lemma) Let T be a strictly nondecreasing function
of class C1 defined on (0,∞). Let γ > be a number such that T (γ) ≥ e. Let
φ be a strictly positive nondecreasing function such that∫ ∞

e

1

tφ(t)
dt = c0(φ) <∞.
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Then the inequality

T ′(r) ≤ T (r)φ(T (r))

holds for all r ≥ γ outside a set of Lebesgue measure ≤ c0(φ).

Proof. Let A ⊂ [γ,∞) be the set of r such that T ′(r) ≥ T (r)φ(T (r)). Then

meas(A) =

∫
A
dr ≤

∫ ∞
γ

T ′(r)

T (r)φ(T (r))
dr =

∫ ∞
e

dt

tφ(t)
= c0(φ),

which proves the lemma.

The typical use of the calculus lemma is as follows: Let Γ be a non-
negative function on C, define

TΓ(r) =

∫ r

0

dt

t

∫
|z|<t

Γ

√
−1

2π
dz ∧ dz̄.

Then we have, for every ε > 0,

2

∫ 2π

0
Γ(reiθ)

dθ

2π
≤ (TΓ(r))1+ε(brTΓ(r)T εΓ(r))ε ‖E .

So, for every δ > 0,

(4) log

∫ 2π

0
Γ(reiθ)

dθ

2π
≤ (1 + δ)2 log TΓ(r) + δ log r ‖E .

To see how to get the above conclusion, we take, in the calculus lemma,
φ(t) = tε, and notice that, using polar coordinate,

√
−1

2π
dz ∧ dz̄ = 2rdr ∧ dθ

2π
,

Hence

r
dTΓ

dr
=

∫ 2π

0

(∫ r

0
Γ(teiθ)tdt

)
dθ

2π
,

1

r

d

dr

(
r
dTΓ

dr

)
= 2

∫ 2π

0
Γ(reiθ)

dθ

2π
.

We introduce the following notations in the classical Nevanlinna theory.

Definition 2.1. Let f : C → P1(C). Let ‖w1, w2‖ be the chordal (sphere-
ical) distance on P1(C). Then

mf (r, a) =

∫ 2π

0
(ua ◦ f)(reiθ)

dθ

2π
, ua(x) = log ‖x, a‖−1,

Nf (r, a) =
∑

f(ζ)=a,|ζ|<r

log
r

|ζ|
, the sum counting multiplicity,
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Tf (r) =

∫ r

0

dt

t

∫
|z|<t

f∗ωFS =

∫
|z|≤r

log
r

|z|
f∗ωFS , where ωFS = ddc log ‖w‖2.

N1(r) is a counting function of the points where f ′ = 0 and

‖x, a‖ =
|x− a|√

1 + |x|2
√

1 + |a|2
if a <∞, ‖x, a‖ =

1√
1 + |x|2

if a =∞.

Noticing

ddc[log ‖f, a‖2] = −f∗ωFS + [f = a]

and by pplying the Green-Jesen formula, we get

Theorem 2.2(Nevanlinna’s FMT). mf (a, r) +Nf (r, a) = Tf (r) +O(1).

We prove the SMT of Nevanlinna.

Theorem 2.3(Nevanlinna’s SMT). Let f : C → P1 be a nonconstant
holomorphic map. Let a1, . . . , aq be distinct points in P1. Then∑

i

mf (r, ai) +N1(r) ≤ 2Tf (r) +O(log Tf (r)) + δlog r ‖E .

Method 1 of the proof. Consider

Ψ =
ωFS∏q

j=1(‖w, aj‖2(log ‖w, aj‖2)2)
or just take Ψ =

ωFS∏q
j=1 ‖w, aj‖2+ε

Write f∗ωFS = 1
2e(f)

√
−1

2π dζ ∧ dζ̄. First note that

Tf (r) = Tf,ωFS
(r) =

∫ r

0

dt

t

∫
|z|<t

f∗ωFS = −1

2

∫ r

0

dt

t

∫
|z|<t

f∗RicωFS

= −1

2

∫ r

0

dt

t

∫
|z|<t

ddc log e(f) = −1

4

∫ 2π

0
log e(f)(reiθ)

dθ

2π
+

1

2
N1(r),

i.e.

(5)
1

2

∫ 2π

0
log e(f)(reiθ)

dθ

2π
= −2Tf (r) +N1(r).

Secondly, note that, by the First Main Theorem,∫ 2π

0
log(log ‖f(reiθ), aj‖2)2 dθ

2π
≤ 2 log

∫ 2π

0
log

1

‖f(reiθ), aj‖
dθ

2π
+O(1)(6)

= 2 logmf (r, aj) +O(1) ≤ log Tf (r) +O(1).

So if we writre

f∗Ψ = Γ

√
−1

2π
dζ ∧ dζ̄.
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Then, by noticing (5) and (6), we get

(7)

q∑
j=1

mf (r, aj)− 2Tf (r) +N1(r) ≤ 1

2

∫
|ζ|=r

(log Γ)
dθ

2π
+O(log Tf (r)).

On the other hand, by Jensen’s formula (Convacity of log) and by Calculus
lemma,

1

2

∫
|ζ|=r

(log Γ) ≤ log

∫
|ζ|=r

Γ ≤ (1 + δ)2 log TΓ(r) + δ log r ‖E

where

TΓ(r) =

∫ r

0

dt

t

∫
|ζ|≤t

Γ

√
−1

2π
dζ ∧ dζ̄ =

∫ r

0

dt

t

∫
|ζ|≤t

f∗Ψ.

It gets down to estimate TΓ(r). Indeed, by a change of variable formula
(consulting Theorem 2.14 of the book “Functions of one complex variable”
by J.B. Conway), ∫

P1

nf (r, a)Ψ(a) =

∫
|z|≤r

f∗Ψ.

So, using the First Main Theorem,

TΓ(r) =

∫ r

0

dt

t

∫
|z|<t

f∗Ψ =

∫
P1

Nf (r, a)Ψ(a) ≤
∫
P1

Tf (r)Ψ(a) +O(1)

= cTf (r) +O(1),

where c =
∫
P1 Ψ is a constant. This finishes the proof.

We also give an alternative proof by through the curvature computation.
Recall the following lemma in our curvature computation (see Lemma 2.6
below).

Lemma 2.3 For any ε > 0,

ddc log

(
1

log ‖w, a‖2

)2

≥ cωFS
‖w, a‖2(log ‖w, a‖2)2

− εωFS

for some positive constant c.

By pulling back by f , this gives,
q∑
j=1

ddc log
1

log2 ‖f(z), aj‖2
+ ddc log ‖f‖2ε ≥ c

q∑
j=1

f∗ωFS

‖f(z), aj‖2 log2 ‖f(z), aj‖2

≥ Cf∗ωFS∏q
j=1(‖f(z), aj‖2(log ‖f(z), aj‖2)2)

.

So, if we let

(8) h =
‖f‖2ε∏q

j=1(log ‖f(z), aj‖2)2
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then the above gives
(9)

ddc log h ≥ cf∗ωFS
‖f‖2ε

∏q
j=1(‖f(z), aj‖2)

h =
Ce(f)h

‖f‖2ε
∏q
j=1(‖f(z), aj‖2)

ddc|z|2,

where f∗ωFS = 1
2e(f)ddc|z|2. Write ddc log h = h∗ddc|z|2, then

h∗ ≥ Ce(f)h

‖f‖2ε
∏q
j=1(‖f(z), aj‖2)

.

Similar to the (7), we have

q∑
j=1

mf (r, aj)− (2 + ε)Tf (r) +N1(r) +
1

2

∫ 2π

0
log h(reiθ)

dθ

2π

≤ 1

2

∫ 2π

0
log h∗(reiθ)

dθ

2π
.

We now estimate the upper bound of

∫ 2π

0
log h∗(reiθ)

dθ

2π
. By the convexity

of log, (9), and calculus lemma (see (4)), and Green-Jensen formula,∫ 2π

0
log h∗(reiθ)

dθ

2π
≤ log

∫ 2π

0
h∗(reiθ)

dθ

2π
≤ (1 + δ)2 log Th∗(r) + δ log r ‖E

≤ (1 + δ)2 log(

∫ 2π

0
log h(reiθ)

dθ

2π
) + δ log r ‖E .

Notice that c log
∫ 2π

0 log h(reiθ) dθ2π −
∫ 2π

0 log h(reiθ) dθ2π is bounded from above
(for r big enough), we have

q∑
j=1

mf (r, aj) +N1(r) ≤ (2 + ε)Tf (r) + δ log r ‖E .

This proves our theorem.

The SMT was extended by S.S. Chern in 1960 to Compact Riemann
surfaces. Let M be a compact Riemann surface and let ω be a positive (1,1)
form of class C1 on M such that

∫
M ω = 1. Consider the equation, in the

sense of currents,

(10) ddcu = ω − δa,

where δa is the Dirac measure at a. The equation (10) admits a positive
solution ua, smooth in M\{a}, with a log singularity at the point a. We
define the proximity function

(11) mf,ω(r, a) =
1

2

∫ 2π

0
ua(f(reiθ))

dθ

2π
.
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Theorem 2.4(Chern’s SMT) Let M be a compact Riemann surface. Let
ω be a positive (1,1) form on M . Let f : C → M be a non-constant
holomorphic map. Let a1, . . . , aq be distinct points on M . Then, for every
ε > 0,

q∑
j=1

mf (r, aj) + Tf,Ric(ω)(r) +Nf,ram(r) ≤ εTf,ω(r) + δ log r ‖E .

Proof. Consider

Ψ = C

 q∏
j=1

(u−2
aj exp(uaj ))

ω

where C is chosen such that
∫
M Ψ = 1. Write

f∗Ψ = Γ

√
−1

2π
dζ ∧ dζ̄.

Then, similar to (7), we get
q∑
j=1

mf (r, aj) + Tf,Ric(ω)(r) +Nf,ram(r)

≤ 1

2

∫ 2π

0
log Γ(reiθ)

dθ

2π
+O(log Tf,ω(r)).

Using the concavity of log and calculus lemma, we have,∫ 2π

0
log Γ(reiθ)

dθ

2π
≤ log

∫ 2π

0
Γ(reiθ)

dθ

2π
+O(1) ≤ (1 + δ)2 log TΓ(r) + δ log r ‖E .

It remains to estimate

TΓ(r) =

∫ r

0

dt

t

∫
|ζ|≤t

Γ

√
−1

2π
dζ ∧ dζ̄ =

∫ r

0

dt

t

∫
|ζ|≤t

f∗Ψ.

We follow the approach by Ahlfors-Chern. The change of variable formula
gives, ∫

M
nf (r, a)Ψ(a) =

∫
|ζ|≤r

f∗Ψ.

So, using the First Main Theorem,∫ r

0

dt

t

∫
|ζ|≤t

f∗Ψ =

∫
M
Nf (r, a)Ψ(a) ≤

∫
M
Tf,ω(r)Ψ(a)+O(1) = Tf,ω(r)+O(1).

This finishes the proof of Theorem.

2.3 Ahlfors’ Second Main Theorem for maps into Pn(C)

We derive the Second Main Theorem for holomorphic maps from C into
Pn intersecting hyperplanes.
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A. Associated curves and the Plücker’s formula. Let f : C→ Pn(C)
be a linearly non-degenerate holomorphic map. Let f : C→ Cn+1 − {0} be
a reduced representation of f . Consider the holomorphic map Fk defined
by

Fk = f ∧ f ′ ∧ · · · ∧ f (k) : C→
k+1∧

Cn+1.

Evidently Fn+1 ≡ 0. Since f is linearly non-degenerate, Fk 6≡ 0 for 0 ≤
k ≤ n. The map Fk = P(Fk) : C → P(

∧k+1 Cn+1) = PNk(C), where

Nk = (n+1)!
(k+1)!(n−k)! − 1 and P is the natural projection, is called the k-th

associated map. Let ωk = ddc log ‖Z‖2 be the Fubini-Study form on
PNk(C), where Z = [x0 : · · · : xNk

] ∈ PNk(C). Let

(12) Ωk = F ∗kωk =

√
−1

2π
hkdz ∧ dz̄, 0 ≤ k ≤ n,

be the pull-back via the k-th associated curve. Observe that since Fk has
no indeterminacy points, Ωk = F ∗kωk is smooth and hk is non-negative. We
recall the following lemma.

Lemma 2.4

hk(z) =
‖Fk−1‖2‖Fk+1‖2

‖Fk‖4
for 0 ≤ k ≤ n, and by convention ‖F−1‖ ≡ 1.

Define the kth characteristic function

TFk
(r) =

∫ r

0

dt

t

∫
|z|≤t

F ∗kωk,

and
Tf (r) = TF0(r).

Lemma 2.5 Let δ > 0. Then, for any 0 ≤ k ≤ n,

Ndk(r, 0) + TFk
(r) ≤ 2(n+ 1)2Tf (r) +O(log Tf (r)) + δ log r ‖E ,

where Ndk(r, 0) is the counting function for the zeros of Fk.

B. The projective distance. For integers 1 ≤ q ≤ p ≤ n+ 1, the interior
product ξbα ∈

∧p−q Cn+1 of vectors ξ ∈
∧p+1 Cn+1 and α ∈

∧q+1(Cn+1)∗

is defined by
β(ξbα) = (α ∧ β)(ξ)

for any β ∈
∧p−q(Cn+1)∗. Let

H = {[x0 : · · · : xn] | a0x0 + · · ·+ anxn = 0}
be a hyperplane in Pn(C) with unit normal vector a = (a0, · · · , an). In the
rest of this section, we regard a as a vector in (Cn+1)∗ which is defined by
a(x) = a0x0 + · · ·+ anxn for each x = (x0, · · · , xn) ∈ Cn+1, where (Cn+1)∗
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is the dual space of Cn+1. Let x ∈ P(
∧k+1 Cn+1), the projective distance

is defined by

(13) ‖x;H‖ =
‖ξba‖
‖ξ‖‖a‖

where ξ ∈
∧k+1 Cn+1 with P(ξ) = x. For a given hyperplane H, Let

φk(H) = ‖Fk;H‖2. We shall need the following product to sum estimate.
It is an extension of the estimate of the geometric mean by the arithmetic
mean.

Proposition 2.1 [Product to the sum estimate] Let H1, . . . ,Hq be
hyperplanes in Pn(C) in general position. Let k ∈ Z[0, n−1] with n−k ≤ q.
Then there exists a constant ck > 0 such that

Ck

 q∏
j=1

φk+1(Hj)

φk(Hj) log2(µ/φk(Hj)

1/(n−k)

≤
q∑
j=1

φk+1(Hj)

φk(Hj) log2(µ/φk(Hj)

on C− ∪qj=1{φk(Hj) = 0}.

C. The curvature computation.

Lemma 2.6 For every ε > 0 there exists a µ0(ε) ≥ 1 such that for all
µ ≥ µ0(ε) and for any hyperplane H ⊂ Pn we have

ddc log
1

log2(µ/φk(H))
≥ 2φk+1(H)

φk(H) log2(µ/φk(H))
Ωk − εΩk.

We are now ready to prove the following important theorem.

Theorem 2.5 Let H1, . . . ,Hq be hyperplanes in Pn(C) in general position.
Let f : C → Pn be a holomorphic map which is linearly non-degenerate.
Then, for every ε > 0, there exists some positive number µ > 1 and C,
depending only on ε and Hj , 1 ≤ j ≤ q, such that

ddc log

∏n−1
k=0 ‖Fk‖2ε∏

1≤j≤q,0≤k≤n−1 log2(µ/φk(Hj))

≥ C

(
‖F0‖2(q−(n+1))‖Fn‖2∏q

j=1 |F0(Hj)|2
∏n−1
k=0 log2(µ/φk(Hj))

) 2
n(n+1)

ddc|z|2.

Proof. We denote the left hand side by A, then, by the definition of Ωk, we
have

A = ε

n−1∑
k=0

Ωk +

q∑
j=1

n−1∑
k=0

ddc log
1

log2(µ/φk(Hj))
.
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Choose a µ in Lemma 2.6, then we have

A ≥ ε
n−1∑
k=0

Ωk +

q∑
j=1

n−1∑
k=0

(
2φk+1(Hj)

φk(Hj) log2(µ/φk(Hj))
− ε

q

)
Ωk

= 2

n−1∑
k=0

 q∑
j=1

Φjk

Ωk

where

Φjk :=
φk+1(Hj)

φk(Hj) log2(µ/φk(Hj))
.

By Proposition 2.1, we have

A ≥ C1

n−1∑
k=0

 q∏
j=1

Φjk

 1
n−k

Ωk = C1

n−1∑
k=0

 q∏
j=1

Φjk

 1
n−k

hkdd
c|z|2

for some constant C1 > 0. We use the following elementary inequality: For
all positive numbers x1, . . . , xn and a1, . . . , aq,

a1x1 + · · · anxn
a1 + · · ·+ an

≥ (xa11 · · ·x
an
n )1/(a1+···+an).

Thus, by letting ak = n− k and xk := 1
ak

(∏q
j=1 Φjk

) 1
n−k

hk, we have

n−1∑
k=0

 q∏
j=1

Φjk

 1
n−k

hk ≥ C2

n−1∏
k=0

hn−kk

q∏
j=1

Φjk

 2
n(n+1)

.

for some constant C2 > 0. Thus

A ≥ c
n−1∏
k=0

hn−kk

q∏
j=1

Φjk

 2
n(n+1)

ddc|z|2

for some constant c > 0. On the other hand, we have

n−1∏
k=0

Φjk =

n−1∏
k=0

φk+1(Hj)

φk(Hj) log2(µ/φk(Hj)

=
‖F0‖2

|F0(Hj)|2
n−1∏
k=0

1

log2(µ/φk(Hj))
.

and
n−1∏
k=0

hn−kk =
n−1∏
k=0

(
‖Fk−1‖2‖Fk+1‖2

‖Fk‖4

)n−k
=

‖Fn‖2

|F0‖2(n+1)
,
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because φ0(Hj) = |F0(Hj)|2/‖F0‖2, φn(Hj) = 1 and the product is tele-
scope. Therefore, we get,

A ≥ C

(
‖F0‖2(q−(n+1))‖Fn‖2∏q

j=1(F0(Hj)|2
∏n−1
k=0 log2(µ/φk(Hj))

) 2
n(n+1)

ddc|z|2

which proves our theorem.

Let

(14) ĥ :=

∏n−1
k=0 ‖Fk‖2ε∏

1≤j≤q,0≤k≤n−1 log2(µ/φk(Hj))
.

Corollary.

ddc log ĥ ≥ C

(
‖F0‖2(q−(n+1))‖Fn‖2 · ĥ

(‖F0‖ · · · ‖Fn−1‖)2ε
∏q
j=1 |F0(Hj)|2

) 2
n(n+1)

ddc|z|2,

We now ready to prove the Second Main Theorem. Recall that, for any
hyperplane H in Pn(C), the proximity function is

mf (r,H) = −1

2

∫ 2π

0
log φ(H)(reiθ)

dθ

2π

and the height function is

TFk
(r) = 2

∫ r

0

dt

t

∫
|z|≤t

F ∗kωFS = 2

∫
|z|≤r

log
r

|z|
F ∗kωFS .

Theorem 2.6 [Second Main Theorem]. Let H1, . . . ,Hq be hyperplanes
in Pn(C) in general position. Let f : C → Pn(C) be a linearly non-
degenerated holomorphic curve (i.e. its image is not contained in any proper
subspaces). Then, for any ε > 0 and δ > 0, the inequality

q∑
j=1

mf (r,Hj) +NW (r, 0)

≤ (n+ 1 + ε)Tf (r) + δ log r ‖E .

Proof. Write ddc log ĥ = h∗ddc|z|2, then, from the Corollary,

h∗ ≥ C

(
‖F0‖2(q−(n+1))‖Fn‖2 · ĥ

(‖F0‖ · · · ‖Fn−1‖)2ε
∏q
j=1 |F0(Hj)|2

) 2
n(n+1)

.

Hence, similar to (7),

n(n+ 1)

2

1

4π

∫ 2π

0
log h∗(reiθ)dθ ≥

q∑
n=1

mf (r,Hj)− (n+ 1)Tf (r) +NW (r, 0)
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−ε(TF0(r) + · · ·+ TFn−1(r)) +
1

4π

∫ 2π

0
log ĥ(reiθ)dθ.

On the other hand, by the convexity of log and the Calculus lemma (see
(4)), and the Green-Jensen formula,∫ 2π

0
log h∗(reiθ)dθ ≤ (1 + δ)2 log Tĥ(r) + δ log r ‖E

≤ (1 + δ)2 log

(
1

4π

∫ 2π

0
log ĥ(reiθ)dθ

)
+ δ log r ‖E .

Notice that

C0 log

(
1

4π

∫ 2π

0
log ĥ(reiθ)dθ

)
− 1

4π

∫ 2π

0
log ĥ(reiθ)dθ

is bounded from above, and by using Lemma 2.5, it proves our Second Main
Theorem.

Construction of the metric with negative curvature. Let f : C →
Pn − ∪qj=1Hj be a non-constant holomorphic map, where Hj , 1 ≤ j ≤ q
are hyperplanes in general position. Assume that f is m-linearly non-
degenerate, i.e., f(C) is contained in a subspace of dimension m ≤ n, but
not any subspace of lower dimension. Without a loss of generality, we as-
sume that f : C → Pm. Then f is linearly non-degenerate. Furthermore,
the hyperplanes Hj ∩Pm, 1 ≤ j ≤ q are in m-subgeneral position. Let ω(j)

be the Nochka Weights associated with H̃j = Hj ∩ Pm. Then, similar to
Proposition 2.1, we have the following product-to-sum estimate.

Lemma 2.7 For any constant N ≥ 1 and 1/q ≤ λk ≤ 1/(m − k), there
exists a positive constant Ck > 0 which depends only on k and the given
hyperplanes such that

Cp

 q∏
j=1

(
φk+1(Hj)

φk(Hj)

)ω(j) 1

(N − log φk(Hj))2

λk

≤
q∑
j=1

φk+1(Hj)

φk(Hj)(N − log φk(Hj))2

on DR − ∪qj=1{φk(Hj) = 0}.

To construct the pseudo-metric on D(R), we write

Ωk = F ∗kωk =

√
−1

2π
ak(z)dz ∧ dz̄
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and

σk = Ck

q∏
j=1

[(
φk+1(Hj)

φk(Hj)

)ω(j)

· 1

(N − log φk(Hj))2

]λk
· ak,

where Ck is the positive constant in the product-to-sum estimate above,
λk = 1/[m− k+ 2q(m− k)2/N ] and N ≥ 1. We take the geometric mean of
σk and define

Γ =

√
−1

2π
c
m−1∏
k=0

σ
βm/λk
k dz ∧ dz̄,

where βm = 1/
∑m−1

k=0 λ
−1
k and c = 2(

∏m−1
k=0 λ

λ−1
k
k )βm . Let

Γ =

√
−1

2π
h(z)dz ∧ dz̄,

then

(15) h(z) = c

q∏
j=1

(
1

φ0(Hj)ω(j)

)βm q∏
j=1

[
m−1∏
k=0

a
βm/λk
k

(N − log φk(Hj))2βm

]
.

Theorem 2.7 For q ≥ 2n−m+ 2, and

2q/N <

∑q
j=1 ω(j)− (m+ 1)

m(m+ 2)
,

we have

ddc log h(z) ≥
√
−1

2π
h(z)dz ∧ dz̄.

Proof. From (15) it follows that

ddc log h(z)

= −βm
q∑
j=1

ω(j)ddc log φ0(Hj) + βm

q∑
j=1

m−1∑
k=0

ddc log

(
1

N − log φk(Hj)

)2

+βm

m−1∑
k=1

(1/λk)dd
c log ak.

By the Plucker’s formula, ddc log ak = Ωk+1 − 2Ωk + Ωk−1 and
ddc log φ0(Hj) = −Ω0. These, together with Lemma 2.6, imply that

ddc log h(z) ≥ βm

 q∑
j=1

ω(j)Ω0 + 2

q∑
j=1

m−1∑
k=0

φk+1(Hj)

φk(Hj)(N − log φk(H))2
Ωk

− 2q

N

m−1∑
k=0

Ωk +

m−1∑
k=0

[(m− k) + (m− k)2 2q

N
]{Ωk+1 − 2Ωk + Ωk−1}

)
.
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Using Lemma 2.6, it follows that

q∑
j=1

φk+1(Hj)

φk(Hj)(N − log φk(Hj))2
Ωk

≥ Ck

 q∏
j=1

(
φk+1(Hj)

φk(Hj)

)ω(j) 1

(N − log φk(Hj))2

λk

Ωk

=

√
−1

2π
σk(z)dz ∧ dz̄.

Notice that Ωm = 0, so that

m−1∑
k=0

(m− k)(Ωk+1 − 2Ωk + Ωk−1) = −(m+ 1)Ω0,

and therefore

ddc log h(z)

≥ βm

 q∑
j=1

ω(j)Ω0 + 2

√
−1

2π

m−1∑
k=0

σk(z)dz ∧ dz̄ − (m+ 1)Ω0 − (m2 + 2m)
2q

N
Ω0

+

m−2∑
k=1

[(m− k + 1)2 − 2(m− k)2 + (m− k − 1)2 − 1]
2q

N
Ωk

+
2q

N
Ωm−1

)
.

We use the following elementary inequality: For all positive numbers
x1, . . . , xn and a1, . . . , aq,

a1x1 + · · · anxn ≥ (a1 + · · ·+ an)(xa11 · · ·x
an
n )1/(a1+···+an).

Letting ak = λ−1
k we have

m−1∑
k=1

σk ≥
c

2βm

m−1∏
k=0

σ
βm/λk
k =

h(z)

2βm

and therefore

ddc log h(z) ≥ βm

 q∑
j=1

ω(j)− (m+ 1)− (m2 + 2m)
2q

N

Ω0 +
m−2∑
k=1

2q

N
Ωk

+
2q

N
Ωm−1

]
+

√
−1

2π
h(z)dz ∧ dz̄.
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From the property of Nochka’s weight. , we have

θ(

q∑
j=1

ω(j)− (m+ 1)) = q − 2n+m− 1 > 0,

and θ > 0, so (
∑q

j=1 ω(j) − (m + 1)) > 0. Using this and the choice of N
gives us

ddc log h(z) ≥
√
−1

2π
h(z)dz ∧ dz̄.

Using Ahlfors-Schearz lemma, we have

h(z) ≤
(

2R

R2 − |z|2

)2

.

Letting R→∞, we have h(z) ≡ 0 on C, which gives a contradiction. So we
again derive the following theorem.

Theorem 2.8 Pn−∪qj=1Hj is Brody hyperbolic if Hj , 1 ≤ j ≤ q, are hyper-
planes in general position and q ≥ 2n+ 1.

Note that M. Green actually showed that Pn − ∪qj=1Hj is Kobayashi
hyperbolic and hyperbolically embedded in Pn if Hj are hyperplanes in
general position and q ≥ 2n+ 1.
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Abstract. In this set of notes, we extend H. Cartan’s Second Main
Theorem to holomorpihc curves into (general) projective varieties.

Holomorphic curves into projective varieties: The First Main
Tehorem.

Let X be a projective variety and let f : C→ X be a holomorphic map.
We first give some definitions: Let L→ X be a positive line bundle having
a metric with h. The height or characteristic function, denoted by Tf,L(r),
of f with respective to (L, h) is defined by

Tf,L(r) =

∫ r

0

dt

t

∫
Bt

f∗c1(L, h).

It can be easily proved that Tf,L(r) is essentially independent (up to a
bounded term) of the choice of the metric and is determined by the bundle
itself. It can also be proved that f must be constant if L is ample (i.e.
c1(L, h) > 0) and Tf,L(r) is bounded. We can also prove that f is rational if
Tf (L, r) = O(logr) (assuming L is ample). The definition of Tf,L(r) extends
to arbitrary line bundles L (not necessarily ample).

The Weil-function of D and the Proximity function of f with respect to
D (assuming that O(D) has an Hermitian metric): we defined the Weil
function of D as

λD(x) := − log ‖sD(x)‖
sD is a canonical meromorphic section associated with D. The proximity
function is defined by

mf (r,D) =

∫ 2π

0
λD(f(reiθ))

dθ

2π
.

As an example, the Weil function for the hyperplanes H = {a0x0 + · · · +
anxn = 0} ⊂ Pn is given by

λH(x) = log
max0≤i≤n |xi|max0≤i≤n |ai|
|a0x0 + · · ·+ anxn|

.

1



2 MIN RU

Lemma 4.1 The Weil functions λD for Cartier divisors D on a complex
projective variety X satisfy the following properties.

(a) Additivity: If λ1 and λ2 are Weil functions for Cartier divisors D1

and D2 on X, respectively, then λ1 +λ2 extends uniquely to a Weil function
for D1 +D2.

(b) Functoriality: If λ is a Weil function for a Cartier divisor D on
X, and if φ : X ′ → X is a morphism such that φ(X ′) 6⊂ SuppD, then
x 7→ λ(φ(x)) is a Weil function for the Cartier divisor φ∗D on X ′.

(c) Normalization: If X = Pn, and if D = {z0 = 0} ⊂ X is the
hyperplane at infinity, then the function

λD([z0 : · · · : zn]) := log
max{|z0|, . . . , |zn|}

|x0|
is a Weil function for D.

(d) Uniqueness: If both λ1 and λ2 are Weil functions for a Cartier
divisor D on X, then λ1 = λ2 +O(1).

(e) Boundedness from below: If D is an effective divisor and λ is a
Weil function for D, then λ is bounded from below.

(f) Principal divisors: If D is a principal divisor (f), then − log |f | is
a Weil function for D.

The Counting function of f with respect to D = [s = 0], where s ∈ H0(M,L)
is

Nf (r,D) =

∫ r

0
nf (t,D)

dt

t
,

where nf (t,D) is the number of zeros of s ◦ f = 0 inside |z| < t, counting
multiplicities.

Theorem 4.1 (First Main Theorem) Let f : C → X be holomorphic,
L → X Hermitian line bundle, s ∈ H0(X,L) with D = [s = 0]. Assume
that s ◦ f 6≡ 0, then

Tf,L(r) = mf (r,D) +Nf (r,D) +O(1).

Proof. By definition, on Uα, ‖sD‖2 = |sα|2hα, so by Poincare-Lelong for-
mula,

ddc[log ‖sD‖2] = −c1(L, h) + [D].

The FMT is thus obtained by applying the Green-Jensen formula.

Cartan’s Second Main Theorem: We now recall the Second Main The-
orem for the case that X = Pn(C) and for divisors of hyperplanes, proved
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earlier. We write Tf (r) := Tf (L, r) which is called the Cartan’s charac-
teristic function, where L = OPn(1). In the case X = Pn. Recall that
|Z| defines an Hermitian norm in tautological bundle mentioned earlier. Its
dual bundle, the hyperplane section bundle, denoted by OPn(1), has tran-
sition function gα,β = zα/zβ, where Uα = {zα 6= 0}. The sections of L are
sH = {< a, Z > /zα} with [sH = 0] = H = {a0z0 + · · · + anzn = 0}. The
metric on L is give hα = |zα|2/‖Z‖2. Thus it first Chen form is

c1(L, h) = −ddc log hα = ddc log ‖Z|2.

It is called the Fubini-Study metric on Pn. Hence, by Green-Jensen formula,

Tf (r) =

∫ r

r0

dt

t

∫
|ζ|≤t

f∗c1(L, h) =

∫ r

r0

dt

t

∫
|ζ|≤t

ddc log ‖f‖2

=

∫ 2π

0
log ‖f(reiθ)‖dθ

2π
+O(1),

where f = (f0, . . . , fn) is a reduced representation of f , i.e. f0, . . . , fn have
no common zeros.

λH(x) = log
‖x‖‖a|
| < x,a > |

.

Given hyperplanes H1, . . . ,Hq (or a1, . . . ,aq). We say that H1, . . . ,Hq are
in general position if for any injective map µ : {0, 1, . . . , n} → {1, . . . , q},
aµ(0), . . . ,aµ(n) are linearly independent. For hyperplanes H1, . . . ,Hq in gen-
eral position we have the following product to the sum estimate.

Lemma (Product to the sum estimate) Let H1, . . . ,Hq be hyperplanes
in Pn(C), located in general position. Denote by T the set of all injective
maps µ : {0, 1, . . . , n} → {1, . . . , q}. Then

q∑
j=1

mf (r,Hj) ≤
∫ 2π

0
max
µ∈T

n∑
i=0

λHµ(i)(f(reiθ))
dθ

2π
+O(1).

Theorem 4.2 (The Second Main Theorem) Let H1, . . . ,Hq be hyper-
planes in Pn(C) in general position. Let f : C → Pn(C) be a linearly
non-degenerated holomorphic curve (i.e. its image is not contained in any
proper subspaces). Then for any δ > 0 the inequality

q∑
j=1

mf (r,Hj) +NW (r, 0)

≤ (n+ 1)Tf (r) +O(log+ Tf (r)) + δ log r +O(1)‖Eδ .
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The proof was done earlier through the negative curvature method. We
outline here a proof of SMT of Cartan using the logaritmhic derivative
lemma.

Lemma LDL (Logarithmic Derivative Lemma). Let f(z) be a mero-
morphic function. Then, for δ > 0∫ 2π

0
log+

∣∣∣∣f ′f (reiθ)

∣∣∣∣ dθ2π
≤
(

1 +
(1 + δ)2

2

)
log+ Tf (r) +

δ

2
log r +O(1)‖E(δ)

where ‖E means that the inequality holds for all r except the set E with finite
Lebesgue measure.

Proof. For w ∈ C, we define an surface element as follows:

Φ =
1

(1 + log2 |w|)|w|2

√
−1

4π2
dw ∧ dw̄.

This is a (1, 1) form on C with singularities at w = 0,∞. By computation∫
C

Φ =

∫
C

1

(1 + log2 r)|r|2
1

2π2
rdrdθ = 1.

By the change of the variable formula (or notice that nf (t, w) is the number
of times that the point w ∈ C is covered by f(D(t)), where D(t) = {|ζ| < t})
we have (consulting Theorem 2.14 of the book ”Functions of one complex
variable” by J.B. Conway)∫

4(t)
f∗Φ =

∫
w∈C

nf (t, w)Φ(w).

Thus, by letting µ(r) :=
∫ r

1
dt
t

∫
4(t) f

∗Φ, we have

µ(r) =

∫ r

1

dt

t

∫
4(t)

|f ′|2

(1 + log2 |f |)|f |2

√
−1

4π2
dz ∧ dz̄

=

∫
w∈C

∫ r

1

dt

t
nf (t, w)Φ(w) =

∫
w∈C

Nf (r, w)Φ(w) ≤ Tf (r) +O(1)

where the last inequality holds is due to the the First Main Theorem. By
the calculus lemma, we get

1

π

∫
|z|=r

|f ′|2

(1 + log2 |f |)|f |2
dθ

2π
≤ (µ(r))(1+δ)2rδbδ‖Eδ

where b is a constant. By making use of this, the Calculus lemma and the
concavity of the logarithm function, we carry the following computations:∫ 2π

0
log+

∣∣∣∣f ′f (reiθ)

∣∣∣∣ dθ2π
=

1

4π

∫
|z|=r

log+

(
|f ′|2

(1 + log2 |f |)|f |2
((1 + log2 |f |)

)
dθ

≤ 1

4π

∫
|z|=r

log+

(
|f ′|2

(1 + log2 |f |)|f |2

)
dθ
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+
1

4π

∫
|z|=r

log+(1 + (log+ |f |+ log+(1/|f |))2)dθ

≤ 1

4π

∫
|z|=r

log

(
1 +

|f ′|2

(1 + log2 |f |)|f |2

)
dθ

+
1

2π

∫
|z|=r

log+(log+ |f |+ log+(1/|f |))dθ +
1

2
log 2

≤ 1

2
log

(
1 +

1

2π

∫
|z|=r

|f ′|2

(1 + log2 |f |)|f |2
dθ

)

+
1

2π

∫
|z|=r

log(1 + log+ |f |+ log+(1/|f |))dθ +
1

2
log 2

≤ 1

2
log

(
1 +

1

2
µ(1+δ)2(r)rδbδ

)
+ log (1 +m(r, f) +m(r, 1/f)) +

1

2
log 2‖Eδ

≤ 1

2
log

(
1 +

1

2
(µ(r))(1+δ)2rδbδ

)
+ log+ Tf (r) +O(1)‖Eδ

≤
(

1 +
(1 + δ)2

2

)
log+ Tf (r) +

δ

2
log r +O(1)‖E(δ).

This proves the lemma.

Outline of the proof of SMT:

• We will use the following properties of the Wronski determinants.
a) W (f0, . . . , fn) 6≡ 0 iff f0, . . . , fn are linearly independent.
b) If (g0, . . . , gn) = (f0, . . . , fn)B where B is an invertible matrix,

then W (g0, . . . , gn) = detBW (f0, . . . , fn).
c) W (gg0, . . . , ggn) = gn+1W (f0, . . . , fn).
d) Let A(f0, . . . , fn) := W (f0, . . . , fn)/(f0 · · · fn),

Then, A(gg0, . . . , ggn) = A(f0, . . . , fn), and form LDL,
m(r,A(f0, . . . , fn) = O(log Tf (r) + log r)‖E .
• If Hj : Lj(x) = 0, 1 ≤ j ≤ q are hyperplanes in general position,

then, for every z ∈ C,

‖f(z)‖q

|L1(f)(z) · · ·Lq(f)(z)|
≤ C ‖f(z)‖n+1

|Li1(f)(z) · · ·Lin+1(f)(z)|
,

or

‖f(z)‖q−(n+1)

∣∣∣∣ W (f0, . . . , fn)

L1(f)(z) · · ·Lq(f)(z)

∣∣∣∣ ≤ C∣∣∣∣W (Li0(f), . . . , Lin(f))

Li0(f) · · ·Lin(f)

∣∣∣∣
= CA(f0, . . . , fn),
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here we used the property that W (Li0(f), . . . , Lin(f))=
Ci0,...,inW (f0, . . . , fn).
• If f is linearly non-degenerate, then W (f0, . . . , fn) 6≡ 0.

The above outline of proof actually gives the following more general form
of SMT, which is more convenient to use.

Theorem 4.3 (The general theorem of Cartan)). Let f = [f0 : · · · :
fn] : C → Pn(C) be a holomorphic curve whose image is not contained in
any proper subspaces. Let H1, ...,Hq (or a1, . . . ,aq) be arbitrary hyperplanes
in Pn(C). Denote by W (f0, . . . , fn) the Wronskian of f0, . . . , fn. Then, for
any δ > 0, the inequality∫ 2π

0
max
K

∑
k∈K

λHk(f(reiθ))
dθ

2π
+NW (r, 0)

≤ (n+ 1)Tf (r) +O(log Tf (r)) + δ log r +O(1)‖Eδ
where the maximum is taken over all subsets K of {1, . . . , q} such that aj , j ∈
K, are linearly independent.

Theorem 4.2 is obtained from above plus the “product to sum estimate”
Lemma.

The Second Main Theorem for General Divisors on Projective
Varieties

The Basic Theorem: The starting point is the following result which is
basically a reformulation of H. Cartan’s theorem (the general form). We call
it the “Basic Theorem”.

Theorem 4.4 (Basic Theorem) [Ru-Vojta, 2017]. Let X be a complex
projective variety and let D be a Cartier divisor on X, let V be a nonzero
linear subspace of H0(X,O(D)), and let s1, . . . , sq be nonzero elements of
V . Let f : C → X be a holomorphic map with Zariski-dense image. Then,
for any ε > 0,∫ 2π

0
max
J

∑
j∈J

λsj (f(reiθ))
dθ

2π
≤ (dimV + ε)Tf,D(r) ‖

where the set J ranges over all subsets of {1, . . . , q} such that the sections
(sj)j∈J are linearly independent.

Proof. Let d = dimV . We may assume that d > 1 (otherwise, all Dj are the
same divisor, and the sets J have at most one element each, so the theorem
follows immediately from the First Main Theorem.

Let Φ: X 99K Pd−1 be the rational map associated to the linear system
V . Let X ′ be the closure of the graph of Φ, and let p : X ′ → X and



NEVANLINNA THEORY, LECTURE 4 7

φ : X ′ → Pd−1 be the projection morphisms. Let f̃ : : C→ X ′ be the lifting
of f .

Note that, even though Φ extends to the morphism φ : X ′ → Pd−1, the
linear system of H0(X ′, p∗O(D)) corresponding to V may still have base
points. What is true, however, is that there is an effective Cartier divisor B
on X ′ such that, for each nonzero s ∈ V , there is a hyperplane H in Pd−1

such that p∗(s) − B = φ∗H. (More precisely, φ∗O(1) ∼= O(p∗D − B). The
map

α : H0(X ′,O(p∗D −B))→ H0(X,O(p∗D))

defined by tensoring with the canonical global section sB of O(B) is injective,
and its image contains p∗(V ). The preimage α−1(p∗(V )) corresponds to a
base-point-free linear system for the divisor p∗D −B.)

For each j = 1, . . . , q, let Hj be the hyperplane in Pd−1 for which p∗(sj)−
B = φ∗Hj . Then,

(1) λp∗Dj = λφ∗Hj + λB +O(1) .

By functoriality of Weil functions, λp∗Dj (f̃(z)) = λDj (f(z)). Therefore it
will suffice to prove the inequality∫ 2π

0

max
J

∑
j∈J

λHj (φ(f̃)(reiθ)) + λB(f̃(reiθ))

 dθ

2π

≤exc (dimV + ε)Tf,D(r).

(2)

For any subset J of {1, . . . , q}, the sections sj , j ∈ J , are linearly indepen-
dent elements of V if and only if the hyperplanes Hj , j ∈ J , lie in general

position in Pd−1. Thus we may apply the above H. Cartan’s Theorem to
obtain that

(3)

∫ ∞
0

max
J

∑
j∈J

λHj (φ(f̃)(reiθ))
dθ

2π
≤exc (dimV + ε)Tφ(f̃)(r).

From (1), we get Tφ(f̃)(r) = Tf,D(r) − Tf̃ ,B(r) + O(1). On the other hand,

since each set J as above has at most dimV elements and B is effective, we
get

(#J)λB(x) ≤ (dimV )λB(x) +O(1)

for all x ∈ X ′. Hence∫ 2π

0

max
J

∑
j∈J

λHj (φ(f̃)(reiθ)) + λB(f̃(reiθ))

 dθ

2π

≤exc (dimV + ε)Tf,D(r)− (dimV + ε)Tf̃ ,B(r) + (dimV )mf̃ (r,B)

≤exc (dimV + ε)Tf,D(r),
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where, in the last inequality, we used the first main theorem that mf̃ (r,B) ≤
Tf̃ ,B(r) +O(1). This finishes the proof.

Nevanlinna Constant: The above Basic Theorem motivates the fol-
lowing notation of the Nevanlinna constant: Let X be a smooth projec-
tive variety and D be an effective Cartier divisor on X. For any section
s ∈ H0(X,O(D)), we use ordEs, or ordE(s), to denote the coefficients of
(s) in E where (s) is the divisor on X associated to s.

Definition. Let X be a smoothl complex projective variety, and D be an
effective Cartier divisor on X. The Nevanlinna constant of D, denoted by
Nev(D), is given by

Nev(D) := inf
N

(
inf

{µN ,VN}

dimVN
µN

)
,

where the infimum “inf
N

” is taken over all positive integers N and the in-

fimum “ inf
{µN ,VN}

” is taken over all pairs {µN , VN} where µN is a positive

real number and VN ⊂ H0(X,O(ND)) is a linear subspace with dimVN ≥ 2
such that, for all P ∈ suppD, there exists a basis B of VN with

(4)
∑
s∈B

ordE(s) ≥ µNordE(ND)

for all irreducible component E of D passing through P . If
dimH0(X,O(ND)) ≤ 1 for all positive integers N , we define Nev(D) =
+∞.

Theorem 4.5 [Ru, J. of Geometric Analysis, 2016]. Let X be a complex
smooth projective variety and D be an effective Cartier divisor on X. Then,
for every ε > 0,

mf (r,D) ≤ (Nev(D) + ε)Tf,D(r) ‖

holds for any Zariski dense holomorphic mapping f : C→ X.

Outline of the proof: Denote by σ0 the set of all prime divisors occurring in
D, so we can write

D =
∑
E∈σ0

ordE(D)E.

Let

Σ := {σ ⊂ σ0 | ∩E∈σ E 6= ∅}.

For an arbitrary x ∈ X, from the claim above, pick σ ∈ Σ (depends on x)
for which

λD(x) ≤ λDσ,1(x)
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where Dσ,1 :=
∑

E∈σ ordE(D)E. Now for each σ ∈ Σ, by definition, there is

a basis Bσ of VN ⊂ H0(X,ND) such that∑
s∈Bσ

ordE(s) ≥ µN ordE(ND),

at some (and hence all) points P ∈ ∩E∈σE. Since Σ is finite, {Bσ | σ ∈ Σ}
is a finite collection of bases of VN . Thus, we have, using the property of
Weil function that, if D1 ≥ D2, then λD1 ≥ λD2 , we get that,

λND(x) ≤ 1

µN
max
σ∈Σ

∑
s∈Bσ

λs(x).

The theorem can thus be derived by taking x = f(reiθ), by taking integration
and then by applying the Basic Theorem above.

Define δf (D), the Nevanlinna defect of f with respect to D, by

δf (D) := lim inf
r→+∞

mf (r,D)

Tf,D(r)
.

Corollary[Defect Relation]. Let D be an effective Cartier divisor on a
smooth complex projective variety X. Then

δf (D) ≤ Nev(D)

for any Zariski dense holomorphic map f : C→ X.

Corollary. Let D be an effective Cartier divisor on a complex normal
projective variety X. If Nev(D) < 1, then every holomorphic map f : C→
X \D is not Zariski dense, i.e., the image of f must be contained in a proper
subvariety of X.

Proof. Note that f : C → X \ D implies that mf (r,D) = Tf,D(r) + O(1).
So δf (D) = 1. Assume that f is Zariski dense, then above Corollary implies
that

1 = δf (D) ≤ Nev(D) < 1

which gives a contradiction. So f is not Zariski dense. Previous results can
be derived by computing the Nevanlinna constant Nev(D).

Example. Let X = Pn and D = H1 + · · · + Hq where H1, · · · , Hq are
hyperplanes in Pn in general position. We take N = 1 and consider V1 :=
H0(Pn,O(D)) ∼= H0(Pn,OPn(q)). Then dimV1 =

(
q+n
n

)
. For each P ∈

SuppD, since H1, · · · , Hq are in general position, P ∈ Hi1 ∩ · · · ∩Hil with
{i1, . . . , il} ⊂ {1, . . . , q} and l ≤ n. Without loss of generality, we can just
assume Hi1 = {z1 = 0}, · · · , Hil = {zl = 0} by taking proper coordinates

for Pn. Now we take the basis B = {zi00 · · · zinn | i0 + · · ·+ in = q} for V1 =
H0(Pn,OPn(q)). Then, for each irreducible component E of D containing
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P , say E = {zj0 = 0} with 1 ≤ j0 ≤ l, we have ordE{zj = 0} = 0 for j 6= j0,
ordE{zj0 = 0} = 1 and thus ordE D = 1. On the other hand,∑
s∈B

ordE s =
∑
~i

ij0 =
1

n+ 1

∑
~i

(i0+· · ·+in) =
q

n+ 1

(
q + n

n

)
=

q

n+ 1
dimV1,

where, in above, the sum is taken for all~i = (i0, . . . , in) with i0 +· · ·+in = q,

and we used the fact that the number of choices of ~i = (i0, . . . , in) with
i0 + · · ·+ in = q is

(
q+n
n

)
. Thus we can take µ1 = q

n+1 dimV1, and hence,

Nev(D) ≤ dimV1

µ1
=
n+ 1

q
.

The Recent Result of Ru-Vojta: Let L be a big line sheaf and let D
be a nonzero effective Cartier divisor on a complete variety X. We define

(5) β(L , D) = lim inf
N→∞

∑
m≥1 h

0(L N (−mD))

Nh0(L N )
.

(Note that |L N | does not have to be base point free.)

Theorem 4.6[Ru-Vojta, 2017]. Let X be a complex projective variety and
let D1, . . . , Dq be nonzero effective Cartier divisors intersecting properly on
X. Let L be a big line sheaf on X. Let f : C → X be a holomorphic
mapping with Zariski-dense image. Then, for every ε > 0,

q∑
i=1

β(L , Di)mf (r,Di) ≤ (1 + ε)Tf,L (r) ‖E .

Note, if X is smooth and D1, . . . , Dq are in general position, then
D1, . . . , Dq intersect properly on X.

We also note that if D1 is linearly equivalent to D2, then β(L , D1) =
β(L , D2). Assume thatDi is linearly equivalent to diA onX for i = 1, . . . , q,
then

γ(Dj) = lim
N→∞

N (qN)nAn

n! + o(Nn+1)
An(qN−1)n+1

(n+1)! + o(Nn+1)
=
n+ 1

q
.

Thus the Theorem of Ru-Vojta above recovers the following Theorem of Ru:

Theorem [Ru, 2009]. Let X be a smooth complex projective variety and
D1, . . . , Dq be effective divisors on X, located in general position. Suppose
that there exists an ample divisor A on X and positive integers di such that
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Di is linearly equivalent to diA on X for i = 1, . . . , q. Let f : C → X be a
holomorphic mapping with Zariski-dense image. Then, for every ε > 0,

q∑
i=1

1

di
mf (r,Di) ≤ (dimX + 1 + ε)Tf,A(r) ‖E .

The proof of Theorem 4.6 uses the the filtration constructed by Pascal
Autissier (see his Duke paper). We first review his results.

Let D1, . . . , Dr be effective Cartier divisors on a projective variety X.
Assume that they intersect properly on X, and that

⋂r
i=1Di is non-empty.

Let L be a line sheaf over X with l := h0(L ) ≥ 1.

Definition 0.1. A subset N ⊂ Nr is said to be saturated if a + b ∈ N for
any a ∈ Nr and b ∈ N .

Lemma 0.2 (Lemma 3.2, in Autissier’s paper). Let A be a local ring and
(φ1, . . . , φr) be a regular sequence of A. Let M and N be two saturated
subsets of Nr.Then

I(M) ∩ I(N) = I(M ∩N),

where, for N ⊂ Nr, I(N) is the ideal of A generated by {φb11 · · ·φbrq | b ∈ N}.

Remark 0.3. We use Lemma 0.2 in the following particular situation: Let
� = (R+)r \ {0}. For each t ∈ � and x ∈ R+, let

N(t, x) = {b ∈ Nr | t1b1 + · · ·+ trbr ≥ x}.
Notice that N(t, x) ∩ N(u, y) ⊂ N(λt + (1 − λ)u, λx + (1 − λ)y) for all
λ ∈ [0, 1]. So, from Lemma 0.2, we have

(6) I(N(t, x)) ∩ I(N(u, y)) ⊂ I(N(λt + (1− λ)u, λx+ (1− λ)y))

for any t,u ∈ �; x, y ∈ R+; and λ ∈ [0, 1].

Definition 0.4. Let W be a vector space of finite dimension. A filtration
of W is a family of subspaces F = (Fx)x∈R+ of subspaces of W such that
Fx ⊇ Fy whenever x ≤ y, and such that Fx = {0} for x big enough. A basis
B of W is said to be adapted to F if B ∩Fx is a basis of Fx for every real
number x ≥ 0.

Lemma 0.5 (Levin). Let F and G be two filtrations of W . Then there exists
a basis of W which is adapted to both F and G.

For any fixed t ∈ �, we construct a filtration of H0(X,L ) as follows: for
x ∈ R+, one defines the ideal I(t, x) of OX by

(7) I(t, x) =
∑

b∈N(t,x)

OX(−
r∑
i=1

biDi) ,
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and let

(8) F(t)x = H0(X,L ⊗ I(t, x)) .

Then (F(t)x)x∈R+ is a filtration of H0(X,L ).

For s ∈ H0(X,L )− {0}, let µt(s) = sup{y ∈ R+ | s ∈ F(t)y}. Also let

(9) F (t) =
1

h0(L )

∫ +∞

0
(dimF(t)x) dx .

Note that, for all u > 0 and all t ∈ �, we have N(ut, x) = N(t, u−1x),
which implies F(ut)x = F(t)u−1x, and therefore

(10) F (ut) =

∫ ∞
0

dim F (t)u−1x

h0(L )
dx = u

∫ ∞
0

dim F (t)y
h0(L )

dy = uF (t) .

Remark 0.6. Let B = {s1, . . . , sl} be a basis of H0(X,L ) with l = h0(L ).
Then we have

F (t) ≥ 1

l

∫ ∞
0

#(F(t)x ∩ B)dx =
1

l

l∑
k=1

µt(sk),

where equality holds if B is adapted to the filtration (F(t)x)x∈R+ .

The key result we will use about this filtration is the following Proposition.

Proposition 0.7 (Théorème 3.6 in Autisser’s paper). With the notations
and assumptions above, let F : �→ R+ be the map defined in (9). Then F
is concave. In particular, for all β1, . . . , βr ∈ (0,∞) and all t ∈ � satisfying∑
βiti = 1,

(11) F (t) ≥ min
i

 1

βi

∑
m≥1

h0(L (−mDi))

h0(L )

 .

Proof. For any t,u ∈ � and λ ∈ [0, 1], we need to prove that

(12) F (λt + (1− λ)u) ≥ λF (t) + (1− λ)F (u).

By Lemma 0.5, there exists a basis B = {s1, . . . , sl} of H0(X,L ) with
l = h0(L ), which is adapted both to (F(t)x)x∈R+ and to (F(u)y)y∈R+ .

For x, y ∈ R+, by Lemma 0.2 (or Remark 0.3), since D1, . . . , Dr intersect
properly on X,

F(t)x ∩ F(u)y ⊂ F(λt + (1− λ)u)λx+(1−λ)y.

For s ∈ H0(X,L ) − {0}, we have, from the definition of µt(s) and µu(s),
s ∈ F(λt + (1− λ)u)λx+(1−λ)y for x < µt(s) and y < µu(s), and thus

µλt+(1−λ)u(s) ≥ λµt(s) + (1− λ)µu(s).
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Taking s = sj and summing it over j = 1, . . . , l, we get, by Remark 0.6,

F (λt + (1− λ)u) ≥ λ1

l

l∑
j=1

µt(sj) + (1− λ)
1

l

l∑
j=1

µu(sj).

On the other hand, since B = {s1, . . . , sl} is a basis adapted to both F(t) and

F(u), from Remark 0.6, F (t) = 1
l

∑l
j=1 µt(sj) and F (u) = 1

l

∑l
j=1 µu(sj).

Thus

F (λt + (1− λ)u) ≥ λF (t) + (1− λ)F (u),

which proves that F is a convex function.

To prove (11), let e1 = (1, 0, . . . , 0), · · · , er = (0, 0, . . . , 1) be the standard
basis of Rr, and let t be as in (11). Then, by convexity of F and by (10),
we get

F (t) ≥ min
i
F (β−1

i ei) = min
i
β−1
i F (ei)

and, obviously, F (ei) = 1
h0(L )

∑
m≥1 h

0(L (−mDi)) for i = 1, . . . , r. �

Proof of Theorem of Ru-Vojta. We replace β(L , Di) with a slightly smaller
βi ∈ Q for all i. Let ε > 0 be as in the statement of the theorem. Choose
ε1 > 0, and positive integers N and b such that

(13)
(

1 +
n

b

)
max
1≤i≤q

βiN(h0(X,L N ) + ε1)∑
m≥1 h

0(X,L N (−mDi))
< 1 + ε .

Let

Σ =

{
σ ⊆ {1, . . . , q}

∣∣ ⋂
j∈σ

SuppDj 6= ∅
}
.

For σ ∈ Σ, let

4σ =

{
a = (ai) ∈

∏
i∈σ

β−1
i N

∣∣∣ ∑
i∈σ

βiai = b

}
.

For a ∈ 4σ as above, one defines the ideal Ia(x) of OX by

(14) Ia(x) =
∑
b

OX

(
−
∑
i∈σ

biDi

)
where the sum is taken for all b ∈ N#σ with

∑
i∈σ aibi ≥ x. Let

F(σ; a)x = H0(X,L N ⊗ Ia(x)) ,

which we regard as a subspace of H0(X,L N ), and let

F (σ; a) =
1

h0(L N )

∫ +∞

0
(dimF(σ; a)x) dx .
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Applying Proposition with the line sheaf being taken as L N , we have

F (σ; a) ≥ min
1≤i≤q

 b

βih0(L N )

∑
m≥1

h0(L N (−mDi))

 .

It is important to note that there are only finitely many ordered pairs (σ,a)
with σ ∈ Σ.

As before, for any nonzero s ∈ H0(X,L N ) and a ∈ 4σ, we define

(15) µa(s) = sup{x ∈ R+ : s ∈ F(σ; a)x} .

Let Bσ;a be a basis of H0(X,L N ) adapted to the above filtration
{F(σ; a)x}x∈R+ . By Remark 0.6, F (σ,a) = 1

h0(LN )

∑
s∈Bσ;a µa(s). Hence

(16)
∑
s∈Bσ;a

µa(s) ≥ min
1≤i≤q

b

βi

∑
m≥1

h0(L N (−mDi)) .

Let σ ∈ Σ, a ∈ 4σ, and s ∈ H0(X,L N ) with s 6= 0. Since the divisors Di

are all effective, it suffices to use only the leading terms in (14). The union
of the sets of leading terms as x ranges over the interval [0, µa(s)] is finite,
and each such b occurs in the sum (14) for a closed set of x. Therefore the
supremum (15) is actually a maximum. From the definition,

(17) L N ⊗ Ia(µa(s)) =
∑
b∈K

L N

(
−
∑
i∈σ

biDi

)
,

where K = Kσ,a,s is the set of minimal elements of {b ∈ N#σ |
∑

i∈σ aibi ≥
µa(s)} relative to the product partial ordering on N#σ. This set is finite,

Now for every z ∈ C, let

σ := {i ∈ {1, . . . , q} : f(z) ∈ Supp(Di}.

From the assumption that D1, . . . , Dq intersect properly (and hence lie in
general position), we have #σ ≤ n. For i ∈ σ, let

(18) ti =
βiλDi(f(z))∑q
j=1 βiλDj (f(z))

.

Note that λDj (f(z)) = 0 for all j /∈ σ, hence
∑

i∈σ βiti = 1. Since #σ ≤ n,
we have b ≤

∑
i∈σb(b + n)βitic ≤ b + n, and we may choose a = (ai) ∈ 4σ

such that

(19) ai ≤ (b+ n)ti for all i ∈ σ .
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With such chosen a and σ (which depends on z), we have, using (17), (18),
(19), and

∑
i∈σ aibi ≥ µa(s),

λs(f(z)) ≥ min
b∈K

∑
i∈σ

biλDi(f(z)) ≥

 q∑
j=1

βjλDj (f(z))

min
b∈K

∑
i∈σ

biti

≥

 q∑
j=1

βjλDj (f(z))

min
b∈K

aibi
b+ n

≥

 q∑
j=1

βjλDj (f(z))

 µa(s)

b+ n
.

(20)

where the set K = Kσ,a,s is as in (17). Combining above (16) then gives

∑
s∈Bσ

λs(f(z)) ≥

 q∑
j=1

βjλDj (f(z))

 ∑
s∈Bσ

µa(s)

b+ n

≥

 q∑
j=1

βjλDj (f(z))

 b

b+ n
min

1≤i≤q

∑
m≥1

h0(L N (−mDi))

βi
,

or equivalently,
(21)

q∑
j=1

βjλDj (f(z)) ≤ b+ n

b

max
1≤i≤q

∑
m≥1

βi
h0(L N (−mDi))

 ∑
s∈Bσ

λs(f(z)).

Write ⋃
σ;a

Bσ;a = B1 ∪ · · · ∪ BT1 = {s1, . . . , sT2}.

For each i = 1, . . . , T1, let Ji ⊆ {1, . . . , T2} be the subset such that Bi =
{sj : j ∈ Ji}. Then (21) implies that

q∑
j=1

βjλDj (f(z))(22)

≤ b+ n

b

max
1≤i≤q

∑
m≥1

βi
h0(L N (−mDi))

 max
1≤i≤T1

∑
j∈Ji

λsj (f(z)).

By applying the basic Theorem with ε1 in place of ε, we get

(23)

∫ 2π

0
max
J

∑
j∈J

λsj (f(reiθ))
dθ

2π
≤
(
h0(L N ) + ε1

)
Tf,LN (r) +O(1) ‖E
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here the maximum is taken over all subsets J of {1, . . . , T2} for which the
sections sj , j ∈ J , are linearly independent. Combining (22) and (23) gives
q∑
i=1

βimf (r,Di)λDi(x) ≤
(

1 +
n

b

)
max
1≤i≤q

βi(h
0(L N ) + ε1)∑

m≥1 h
0(L N (−mDi))

Tf,LN (r)+O(1) ‖E .

Using the fact that Tf,LN (r) = NTf,L (r) +O(1), we have

q∑
i=1

βimf (r,Di) ≤ (1 + ε)Tf,L (r) +O(1) ‖E .

By the choices of βi, this implies that
q∑
i=1

β(L , Di)mf (r,Di) ≤ (1 + ε)Tf,L (r) +O(1) ‖E .

This proves the theorem.


