Curvature of direct images

Abstract

The central result of these lectures is Berndtsson's theorem. In very rough approximation the theorem says that certain constructions involving holomorphic and plurisubharmonic functions produce plurisubharmonic functions.

Here is a more concrete formulation. Consider a surjective holomorphic submersion $p: X \to S$ of complex manifolds. We assume that the fibers of p, the complex manifolds $X_s = p^{-1}(s)$, have dimension n independent of s. Given a holomorphic vector bundle $E \to X$, endowed with a hermitian metric h^E , its L^2 direct image is a 'set theoretical hermitian vector bundle', or a 'field of Hilbert spaces' $(F, h) \to S$. The fiber of this direct image over $s \in S$ is the vector space F_s of E-valued holomorphic (n, 0) forms ϕ along X_s that are square integrable in the sense that

$$\int_{X_s} h^E(\phi \wedge \bar{\phi}) < \infty$$

(the left hand side here needs some interpretation!). If p is proper, and so the fibers X_s are compact, the integrability condition is automatically satisfied, and the F_s are finite dimensional, but in general dim F_s can be infinite. We denote the integral above $h_s(\phi, \phi)$; its square root defines a Hilbertian norm on F_s , and the collection $h = \{h_s\}_{s \in S}$ the field of Hilbert spaces (or, set theoretical hermitian Hilbert bundle) $(F, h) \to S$.

One can define the curvature of h in this general setting as well, and one instance of Berndtsson's theorem asserts that if X is Stein and h^E is semipositively curved, then the direct image $(F, h) \to S$ is also semipositively curved.

In the lectures I will develop the necessary background to the the direct image theorem, including the notions of curvature; give a proof of the theorem, which depends on the Hörmander–Skoda estimates for the $\bar{\partial}$ equation; and indicate an application.

References

- [B1] Bo Berndtsson, Curvature of vector bundles associated to holomorphic fibrations. Ann. of Math. (2) 169 (2009), no. 2, 531—560.
- [B2] Bo Berndtsson, Positivity of direct image bundles and convexity on the space of Kähler metrics. J. Differential Geom. 81 (2009), no. 3, 457–482.
- [BL] Bo Berndtsson, László Lempert, A proof of the Ohsawa–Takegoshi theorem with sharp estimates. J. Math. Soc. Japan 68 (2016), no. 4, 1461–1472.

- [D] Jean–Pierre Demailly, Complex analytic and differential geometry. https://www-fourier.ujf-grenoble.fr/ demailly/manuscripts/agbook.pdf
- [L] László Lempert, Extrapolation, a technique to estimate. Functional analysis, harmonic analysis, and image processing: a collection of papers in honor of Björn Jawerth, 271–281, Contemp. Math., 693, Amer. Math. Soc., Providence, RI, 2017.
- [LY] Kefeng Liu, Xiaokui Yang, Curvatures of direct image sheaves of vector bundles and applications. J. Differential Geom. 98 (2014), no. 1, 117–145.