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Chapter 1

Holomorphic functions and
complex manifolds

In this chapter, we will introduce holomorphic functions of several variables and
give basic properties of these functions. The complex manifolds and currents
of de Rham will also be introduced. They will allow us to have a general and
intrinsic point of view on some objects and some results presented in this chapter.
Currents will be systematically used later.

1.1 Holomorphic functions and ∂ equation

In the complex vector space Cn, we consider the canonical system of complex
coordinates

z = (z1, . . . , zn) with zj ∈ C.
Let xj and yj denote the real part and the imaginary part of zj. We have

zj = xj + iyj and zj = xj − iyj for j = 1, . . . , n.

We can then identify Cn with the real vector space R2n provided with the real
coordinates

(x1, y1, . . . , xn, yn)

and the canonical orientation associated with this system of coordinates.
The derivations with respect to the variables zj and zj are defined by the

following formulas

∂

∂zj
=

1

2

( ∂

∂xj
− i ∂

∂yj

)
and

∂

∂zj
=

1

2

( ∂

∂xj
+ i

∂

∂yj

)
.

We can thus express the equations with respect to xj, yj in terms of the derivations
with respect to zj, zj by the following formulas

∂

∂xj
=

∂

∂zj
+

∂

∂zj
and

∂

∂yj
= i
( ∂

∂zj
− ∂

∂zj

)
.
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6 CHAPTER 1. HOLOMORPHIC FUNCTIONS

Definition 1.1.1. Let Ω be a domain, i.e., an open connected set, of Cn. Let
f : Ω→ C be a C 1 function with complex values defined in Ω. We say that f is
holomorphic if

∂f

∂zj
= 0 for all j = 1, . . . , n.

In other words, the function f is holomorphic if it is holomorphic in each variable
zj.

At every point a = (a1, . . . , an) ∈ Ω, we can consider the Taylor expansion of
order 1 of the function f at a

f(z) = f(a) +
n∑
j=1

αj(zj − aj) + βj(zj − aj) + o(‖z − a‖),

where

αj =
∂f

∂zj
(a) and βj =

∂f

∂zj
(a).

The function f is therefore holomorphic if and only if the polynomial part in the
above expansion is affine in zj, i.e., the differential of f at a is C-linear for all
a ∈ Ω.

Reminder. The differential of f at a is the R-linear map

z 7→
n∑
j=1

αjzj + βjzj.

Definition 1.1.2. Let F : Ω → Cm be a C 1 mapping defined in a domain
Ω ⊂ Cn. We write F = (f1, . . . , fm) using the canonical coordinate system of
Cm. We say that the map F is holomorphic if all coordinate functions fj are
holomorphic. A bijective map F : Ω → Ω′ between two domains of Cn is bi-
holomorphic if F and its inverse F−1 are holomorphic.

Let us denote by wj : Cm → C the holomorphic function which assigns to
each point of Cm its j-th complex coordinate, i.e., (w1, . . . , wm) is the canonical
complex coordinate system of Cm. Then F : Ω→ Cm is holomorphic if and only
if wj ◦ F is holomorphic for all j = 1, . . . ,m. This property is also equivalent to
the fact that the differential of F is C-linear at every point of Ω.

Proposition 1.1.3. The composition of two holomorphic maps is holomorphic
in its domain of definition.

Proof. We need to show that if G = (G1, ..., Gm) : Ω → W and F : W → C
are holomorphic then F ◦ G is holomorphic, where Ω ⊂ Cn and W ⊂ Cm are
domains.
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It is clear that F ◦ G ∈ C 1(Ω). Moreover, for each a ∈ Ω and for every
j = 1, ..., n,

∂F ◦G
∂zj

(a) =
n∑
k=1

∂F

∂wk
(G(a))

∂Gk

∂zj
(a) +

n∑
k=1

∂F

∂wk
(G(a))

∂Gk

∂zj
(a) = 0.

Hence F ◦G is holomorphic in Ω.

Proposition 1.1.4. Let F : Ω → Cm be a C 1 map defined on a domain Ω of
Cn. If F is holomorphic for some linear systems of complex coordinates on Cn

and Cm, then it is holomorphic for all linear systems of complex coordinates on
Cn and Cm.

Proof. This is a consequence of the previous proposition because a change of
complex coordinates corresponds to the composition with a C-affine mapping.
The last map is holomorphic by definition.

Examples 1.1.5. By definition, if f and g are holomorphic on Ω, so is f ± g.
Proposition 1.1.3 implies that f 2, g2 and (f±g)2 are holomorphic. We deduce that
fg is holomorphic. By definition, linear maps in z1, . . . , zn are holomorphic on Cn.
We deduce that the polynomials in z1, . . . , zn are holomorphic on Cn. Applying
Proposition 1.1.3 again, we obtain that rational fractions in z1, . . . , zn and their
compositions with exp(·), sin(·), cos(·), log(·) . . . are holomorphic on their domains
of definition. The function |z1|2 is not holomorphic because its differential is not
C-linear.

The following two results are direct consequences of the definition of holomor-
phic functions and the properties of holomorphic functions of one variable.

Theorem 1.1.6 (the uniqueness theorem). Let f be a holomorphic function on
a domain Ω in Cn. If f vanishes on a non-empty open set, then f is identically
zero on Ω.

This result can also be deduced from the Cauchy formula and its consequences
which will be presented in the next section.

Theorem 1.1.7. Let F = (f1, . . . , fn) be a holomorphic map in a domain Ω of
Cn with values in Cn. Let a ∈ Ω be such that the complex Jacobian matrix

JacCF (a) =
(∂fj
∂zl

(a)
)

1≤j,l≤n

is invertible. Then F admits a holomorphic inverse map F−1 from a neighborhood
of F (a) to a neighborhood of a such that F−1(F (a)) = a and F−1 ◦ F = id.
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Indeed, we know that F admits an inverse F−1 of class C 1. To verify that
F−1 is holomorphic it is enough to check that its differential is C-linear. For this,
we can assume that a = 0 and that F is a linear function. Verification is therefore
trivial : the inverse of a C-linear map is C-linear.

We’ll see later that all holomorphic functions are of class C∞. To end this
section, we will express the notion of holomorphicity in a more compact and
intrinsic form.

The relations between zj and its real and imaginary parts lead to the following
relations between the linear forms dzj, dzj and dxj, dyj:

dzj = dxj + idyj and dzj = dxj − idyj.

We deduce that

dxj =
1

2

(
dzj + dzj

)
and dyj =

1

2i

(
dzj − dzj

)
.

Thus, any differential form can be expressed on an open set of R2n in terms of
zj, zj, dzj and dzj with j = 1, . . . , n . For example, we can write

x1dx2 ∧ dy3 =
(z1 + z1

2

)1

2

(
dz2 + dz2

)
∧ 1

2i

(
dz3 − dz3

)
.

Definition 1.1.8. We say that a differential p-form in an open subset of Cn is
of bi-degree (r, s) if it is of degree r in dzj and of degree s in dzj. We also say
that it is a differential (r, s)-form.

We see that every differential p-form is a sum of differential (r, s)-forms with
r + s = p. We define two differential operators ∂ and ∂ on the space of C 1

functions by

∂f =
n∑
j=1

∂f

∂zj
dzj and ∂f =

n∑
j=1

∂f

∂zj
dzj.

It is not difficult to verify that d = ∂ + ∂.
The function f is then holomorphic if and only if it satisfies the equation

∂f = 0.

The differential (0, 1)-form ∂f thus measures the holomorphic defect of the func-
tion f . The resolution of the equation ∂

∂f = g with the unknown f and the data g

and its variants is one of the most fundamental problems in complex analysis
and geometry. We will see later several applications of this equation in various
situations.
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The operators ∂ and ∂ are also defined on differential forms of any bi-degree.
Note that for I = (i1, . . . , ip) with 1 ≤ ik ≤ n

dzI = dzi1 ∧ . . . ∧ dzip and dzI = dzi1 ∧ . . . ∧ dzip .

Every (p, q)-form is written as a linear combination of (p, q)-forms of the type

hIJ(z)dzI ∧ dzJ with |I| = p and |J | = q

where hIJ(z) is a function. This expression is unique if we consider only the
multi-indices I, J with i1 < · · · < ip and j1 < · · · < jq.

The operators ∂ and ∂ are defined on the last differential form by

∂
(
hIJ(z)dzI ∧ dzJ

)
= ∂hIJ(z) ∧ dzI ∧ dzJ

and
∂
(
hIJ(z)dzI ∧ dzJ

)
= ∂hIJ(z) ∧ dzI ∧ dzJ .

They are extended by linearity to all (p, q)-forms of class C 1. If ϕ is of bi-degree
(p, q) then ∂ϕ and ∂φ are of degree (p + 1, q) and (p, q + 1), respectively. In
particular, ∂ϕ = 0 if p = n and ∂ϕ = 0 if q = n.

We check without difficulty that d = ∂ + ∂. The identity of d ◦ d = 0 implies
that

∂ ◦ ∂ = 0, ∂ ◦ ∂ = 0 and ∂ ◦ ∂ + ∂ ◦ ∂ = 0.

In particular, a necessary condition for the equation

∂f = g,

where the unknown f is a (p, q)-form of class C 2, admits a solution, is that the
given (p, q + 1)-form g is ∂-closed, i.e., ∂g = 0.

Theorem 1.1.9 (Serre 1953). Let g be a smooth ∂-closed (p, q)-form with compact
support in Cn with 1 ≤ q ≤ n− 1. Then there is a smooth (p, q − 1)-form f with
compact support in Cn such that

∂f = g.

Proof. (for the case with q = 1) We give here the proof only for the case where
q = 1 which will be used later. Let I = (i1, . . . , ip) with 1 ≤ i1 < · · · < ip ≤ n. By
writing g using the canonical coordinate system over Cn, it is easy to check that
the sum of the components of g that contain dzI is ∂-closed. As a consequence,
we only need to consider the case where g is the product of dzI with a (0, 1)-form
∂-closed. Without losing any generality, we can assume that g is itself a (0, 1)-
form ∂-closed because we can multiply the solution with dzI in order to get the
case p 6= 0.
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In what follows, to simplify the notation, we assume that n = 2. The general
case is treated exactly in the same way. So we have

g(z) = g1(z)dz1 + g2(z)dz2

where g1, g2 are smooth functions with compact support in C2.
Recall the formula Cauchy-Pompeiu (1912) that we will need, see Theorem

1.5.13 below. Let Ω be a bounded smooth domain in C. Its boundary bΩ is
oriented in the positive direction (we always use this orientation for the boundary
of a domain or a complex manifold). Let h be a smooth function in Ω. So we
have

1

2iπ

{∫
bΩ

h(ξ)dξ

ξ − z
+

∫
Ω

∂h
∂z

(ξ)dξ ∧ dξ
ξ − z

}
=

{
h(z) if z ∈ Ω

0 if z 6∈ Ω.

Note that if h has compact support in Ω, the first integral vanishes. This is the
case we will use.

The Cauchy-Pompeiu formula suggests to set

f(z1, z2) =
1

2iπ

∫
ξ∈C

g1(ξ, z2)dξ ∧ dξ
ξ − z1

=
1

2iπ

∫
η∈C

g1(η + z1, z2)dη ∧ dη
η

·

Using polar coordinates for η, we see that f is a smooth function.
A direct calculation gives

∂f

∂z1

(z1, z2) =
1

2iπ

∫
η∈C

∂g1
∂z1

(η + z1, z2)dη ∧ dη
η

= g1(z1, z2).

On the other hand, the fact that ∂g = 0 is equivalent to

∂g2

∂z1

=
∂g1

∂z2

·

By using the Cauchy-Pompeiu formula, we obtain

∂f

∂z2

(z1, z2) =
1

2iπ

∫
η∈C

∂g1
∂z2

(η, z2)dξ ∧ dξ
ξ − z1

=
1

2iπ

∫
η∈C

∂g2
∂z1

(η, z2)dξ ∧ dξ
ξ − z1

= g2(z1, z2).

Then f satisfies the equation
∂f = g.

It remains to verify that the support of f is compact. The last equation
shows that f is holomorphic in a neighborhood of infinity because g has compact
support. It has been deduced from its definition that f vanishes when |z2| is large
enough. Theorem 1.1.6 implies that f is zero in a neighborhood of infinity. This
completes the proof of the theorem for the case q = 1.
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We say that a differential form g is ∂-exact if it is equal to ∂f for some
differential form f . The ∂-exact forms are ∂-closed because ∂ ◦ ∂ = 0. The
obstruction for solving the equation ∂ with compact support in a domain Ω is
the Dolbeault cohomology group defined by

Hp,q

∂
(Ω)compact =

{
smooth ∂-closed (p, q)-forms with compact support in Ω

}{
smooth ∂-exact (p, q)-forms with compact support in Ω

} ·
This notion admits many variants, e.g., for general complex manifolds and for
differential forms with a non-compact support

Hp,q

∂
(Ω) =

{
smooth ∂-closed(p, q)-forms in Ω

}{
smooth ∂-exact(p, q)-forms in Ω

} ·
It is important to study the size of these groups. Theorem 1.1.9 above says

that
Hp,q

∂
(Cn)compact = 0 if 1 ≤ q ≤ n− 1.

The next section provides an application of this result. It should be emphasized
here that the property is not valid for q = n.

Finally, note that when q = 0, the Dolbeault group is equal to

Hp,0

∂
(Ω) =

{
smooth ∂-closed (p, 0)-forms in Ω

}
.

This is the space of p-forms that do not depend on dz1, . . . , dzn whose coefficients
are holomorphic functions. They are called (p, 0)-holomorphic forms. We then
deduce, using Theorem 1.1.6, that Hp,0(Ω)compact = 0 for all p.

1.2 Cauchy formula and applications

For all a ∈ C and r > 0, denote by D(a, r) the open disc with center a and radius
r in C. For a = (a1, . . . , an) ∈ Cn and r = (r1, . . . , rn) ∈ Rn

+, the polydisc with
center a and radius r is defined by

Dn(a, r) =
n∏
j=1

D(aj, rj).

The Cauchy formula for holomorphic functions in one variable is generalized to
the case of several variables as follows.

Theorem 1.2.1 (Cauchy formula). Let f be a holomorphic function in the poly-
disc Dn(a, r) in Cn and continuous up to the boundary. Then we have, for every
z ∈ Dn(a, r),

f(z) =
1

(2iπ)n

∫
|ξ1−a1|=r1

· · ·
∫
|ξn−an|=rn

f(ξ)

(ξ1 − z1) . . . (ξn − zn)
dξ1 . . . dξn.
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Proof. The proof of this theorem uses a simple induction on n and the classical
Cauchy formula. We present here the case n = 2 in order to simplify the nota-
tions. By the continuity, it suffices to show the same formula for the polydisc of
radius (r1 − ε, . . . , rn − ε) and then take ε → 0. So we can reduce the polydisc
and assume that f is holomorphic in a neighborhood Ω of D2(a, r).

We consider in C2 the vertical complex line L passing through z, i.e., the set
of points whose first coordinate is equal to z1. Its intersection with Ω is an open
set of L containing the disc L ∩ D2(a, r). Since the restriction of f to L ∩ Ω is
holomorphic, the Cauchy formula applied to the disc L ∩ D2(a, r) gives

f(z) =
1

2iπ

∫
|ξ2−a2|=r2

f(z1, ξ2)

ξ2 − z2

dξ2.

Now, for each fixed ξ2 with |ξ2− a2| = r2, we consider the horizontal complex
line L′ which is the set of points whose second coordinate is ξ2. Its intersection
with D2(a, r) is a disc in L′ on which Cauchy formula can be applied again. We
obtain

f(z1, ξ2) =
1

2iπ

∫
|ξ1−z1|=r1

f(ξ1, ξ2)

ξ1 − z1

dξ1.

By substituting the obtained value of f(z1, ξ2) in the above formula of f(z), we
obtain the formula stated in the theorem.

We can deduce several consequences from the definition of a holomorphic
function, from the above Cauchy formula, and from the properties of holomorphic
functions of one variable. With the exception of Hartogs’ theorem, the following
results are shown as in the case of dimension 1 and we do not give the proofs
here.

Corollary 1.2.2. Let f be a holomorphic function in a domain Ω in Cn. Then
f is of class C∞ in Ω. If Dn(a, r) is a relatively compact polydisc in Ω, then f
can be expanded in power series

f(z) =
∑
k∈Nn

ck(z − a)k with ck =
1

k!

∂|k|f

∂kz
(a)

which converges normally (and therefore uniformly) in Dn(a, r) to f(z).

Notations. For k = (k1, . . . , kn), we denote k! = k1! . . . kn!, |k| = k1 + · · · + kn
and

(z − a)k = (z − a1)k1 . . . (z − an)kn and ∂kz = ∂k1z1 . . . ∂
knzn.

Corollary 1.2.3. With the notations as in the last corollary, we have

∂|k|f(z)

∂kz
=

k!

(2iπ)n

∫
|ξ1−a1|=r1

· · ·
∫
|ξn−an|=rn

f(ξ)

(ξ1 − z1)k1+1 . . . (ξn − zn)kn+1
dξ1 . . . dξn.
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Corollary 1.2.4 (maximum principle). Let f be a holomorphic function in a
domain Ω in Cn. Suppose that |f | admits a local maximum at a point in Ω. Then
f is constant.

Corollary 1.2.5 (Liouville’s theorem). Let f be a holomorphic function in Cn

with polynomial growth at infinity. Then f is a polynomial. More precisely,
suppose there exists a constant N ∈ R≥0 such that f(z) = O(‖z‖N) when ‖z‖ →
∞. Then f is a polynomial of degree at most N in z1, . . . , zn. In particular, if f
is bounded, it is constant.

Corollary 1.2.6 (criterion of normality). Let Ω be a domain in Cn and let K be
a compact subset of Cm. Then the set F of holomorphic maps in Ω with values
in K is compact in the following sense: any sequence of F admits a subsequence
that converges locally uniformly in Ω to an element of F .

In the following, we will present the Hartogs’ phenomenon as a consequence
of the Cauchy formula. This discovery, due to Hartogs, is the first property that
distinguishes the complex analysis of several variables from the more classical
theory of one variable.

Consider a polydisc Dn(a, r) in Cn. Let p be an integer such that 1 ≤ p < n
(so n ≥ 2) and let ε = (ε1, . . . , εn) with εj are constants satisfying 0 < ε < rj for
all j = 1, . . . , n. Denote by Hn(a, r, ε) the domain in Cn which is the union of the
two following domains:

D :=
{
z ∈ Dn(a, r), |zj − aj| < εj for j > p

}
and

A :=
{
z ∈ Dn(a, r), |zj − aj| > rj − εj for j ≤ p

}
.

We call Hn(a, r, ε) a Hartogs’ figure which is a pot-looking domain.

Theorem 1.2.7 (Hartogs 1906). Let f be a holomorphic function in a Hartogs’
figure Hn(a, r, ε) as above. Then one can extend f in a unique way to a holomor-
phic function in Dn(a, r).

Proof. The uniqueness of the extension is a consequence of Theorem 1.1.6. Let
r′ = (r′1, . . . , r

′
n) such that rj − εj < r′j < rj for j ≤ p and εj < r′j < rj for j > p.

It suffices to extend f to a holomorphic function on Dn(a, r′).
Since f is holomorphic in Hn(a, r, ε), by arguing as in Theorem 1.2.1, we

obtain for all z ∈ Dn(a, r′) ∩Hn(a, r, ε)

f(z) =
1

(2iπ)n

∫
|ξ1−a1|=r′1

· · ·
∫
|ξn−an|=r′n

f(ξ)

(ξ1 − z1) . . . (ξn − zn)
dξ1 . . . dξn.

The last expression defines a holomorphic function on Dn(a, r′) which is there-
fore a holomorphic extension of f on Dn(a, r′). This completes the proof of the
theorem.
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Note that in dimension 1, every domain Ω in C has a holomorphic function
that does not extend holomorphically on any larger open set. Here is a useful
variant of Hartogs’ Theorem.

Theorem 1.2.8 (Hartogs 1906, Brown 1936, Fueter 1939). Let Ω be a domain
in Cn with n ≥ 2 and let K be a compact subset of Ω. Suppose that Ω \ K is
connected. Then every holomorphic function in Ω \K can be extended uniquely
to a holomorphic function in Ω.

Proof. Let f be a holomorphic function in Ω \ K. Let χ be a smooth function
with compact support in Ω such that χ = 1 in a neighborhood of K. We consider
the function (1− χ)f . It is well-defined in Ω and it is extended by zero through
K. This function is not holomorphic but we will ”correct” it in order to obtain
a holomorphic extension of f in Ω.

Let’s consider the smooth (0, 1)-form g defined by

g = ∂(−χf) = ∂((1− χ)f).

This form is defined and ∂-exact in Ω \ K. It vanishes near the boundary of
Ω \ K. Therefore, it can be extended by zero to a smooth ∂-closed (0, 1)-form
with compact support in Cn.

By Theorem 1.1.9, there is a smooth function h with compact support in Cn

such that
∂h = g.

We use here the hypothesis that n ≥ 2. This equation shows that h is holomorphic
outside the support of g. Denote by D the unbounded component of the support
complement of g in Cn. Since h vanishes near infinity, it is zero on D.

Recall that we have extended the function (1− χ)f by zero through K. Let

f̃ = (1− χ)f − h.

This function is well-defined on Ω and satisfied

∂f̃ = ∂((1− χ)f)− ∂h = 0.

So it’s a holomorphic function in Ω. It is equal to f in the non-empty open
D ∩ (Ω \ K). Since Ω \ K is connected, Theorem 1.1.6 implies that f̃ = f in

Ω \K. So f̃ is a holomorphic extension of f to Ω.

The proof of the last theorem illustrates a fundamental idea in complex anal-
ysis. It can be summarized as follows. When one wants to construct holomor-
phic functions (or more generally, maps or other holomorphic objects) satisfying
certain properties, it is easier to construct smooth functions satisfying similar
properties. Then, we solve, when it is possible, a suitable ∂-equation in order to
correct the smooth function and obtain a holomorphic one.
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We end this section with the following important remark. Let Ω be a domain
in Cn. In general, there may exist different domains Ω̃ containing Ω such that any
holomorphic function in Ω has a holomorphic extension in Ω̃. For example, if Ω
contains a Hartogs’ figure Hn(a, r, ε) such that Ω∩Dn(a, r) is connected, then any
holomorphic function in Ω admits a holomorphic extension to Ω∪Dn(a, r). This
is no longer true in general without hypothesis on the connectness of Ω∩Dn(a, r).

In general, if a holomorphic function has holomorphic extensions in Ω̃ and Ω̃′, it
is not always true that the extensions coincide in Ω̃ ∩ Ω̃′.

1.3 Complex manifolds and analytic subsets

Complex manifolds of dimension n are topological spaces locally modelled by the
open subsets of Cn. They are defined as (real) differentiable manifolds except
that transition maps are holomorphic.

Definition 1.3.1. Let X be a separate topological space that is a countable
collection of compact sets. Let n be a positive integer. We call atlas (holomorphic
of dimension n) on X a given cover of X by a family of open sets (Uj)j∈J and
homeomorphisms φj : Uj → Ωj with values in open subsets Ωj of Cn such that
for all j, k ∈ J the transition map

φj ◦ φ−1
k : φk(Uj ∩ Uk)→ φj(Uj ∩ Uk)

is holomorphic.

Definition 1.3.2. Two atlases on X are equivalent if their union is also an atlas.
A space X with a class of equivalent atlases of dimension n is called a complex
manifold of dimension n. The pair (Uj, φj) is called a (holomorphic) chart of
X. The components of φj are local coordinates of X. A complex manifold of
dimension 1 is also called a Riemann surface.

To simplify the notations, we often forget the map φj, identify Uj with an
open subset of Cn and consider z = (z1, . . . , zn) as local coordinates of X.

Definition 1.3.3. With the above notations, a function f : X → C is holomor-
phic if f ◦ φ−1

j is holomorphic in Ωj for all j ∈ J . If X ′ is a complex manifold of
dimension n′ equipped with an atlas (U ′k, φ

′
k)k∈K , a map F : X → X ′ is holomor-

phic if φ′k ◦ F ◦ φ−1
j is holomorphic on its domain of definition for all j ∈ J and

k ∈ K.

It should be emphasized that meromorphic functions of one variable are holo-
morphic maps with values in the Riemann sphere P1 (see the definition below).

Convention. We often suppose that a manifold is connected. If a statement is
false when the manifold has several related components, this convention applies.
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Examples 1.3.4 (projective spaces). The Euclidean space Cn and its open sub-
sets are complex manifolds of dimension n. The set of complex lines in Cn+1

passing through 0 is provided with a natural structure of a compact complex
manifold of dimension n. It is denoted by Pn, CPn or Pn(C). We now give the
construction of the complex structure of Pn which is naturally induced by that
of Cn+1.

Denote by (z0, . . . , zn) the standard complex coordinates of Cn+1. Two vectors
in Cn+1\{0} are considered equivalent if they are C-colinear. Then Pn is identified
with the quotient of Cn+1 \ {0} by the considered equivalence relation. Denote
by π the canonical projection

π : Cn+1 \ {0} → Pn.

The image of a point z = (z0, . . . , zn) by π is noted [z] = [z0 : · · · : zn]. The last
expression is called the homogeneous coordinates of the point [z] = π(z).

Consider on Pn the topology induced by that of Cn+1 via the map π . For all
0 ≤ j ≤ n, let Uj be the image of Cn+1 \ {zj = 0} by π. These open sets cover
Pn. Consider the bijective map φj : Uj → Cn defined by

φj[z] =
(z0

zj
, . . . ,

zj−1

zj
,
zj+1

zj
, . . . ,

zn
zj

)
.

It is not difficult to check that the (Uj, φj) form an atlas and thus define a complex
manifold structure on Pn for which π is holomorphic.

Example 1.3.5 (complex tori). Let Γ be a commutative free discrete subgroup
of maximal rank 2n of Cn, i.e., Γ ' Z2n. For example, we can take Γ = Zn + iZn.
Two points of Cn are considered equivalent if they are equal modulo Γ. Consider
the quotient of Cn by this equivalence relation

T = Cn/Γ.

Let γ1, . . . , γ2n be a generating family of Γ. Denote by Ω the parallelepiped
generated by these vectors. We get T by successively identifying the parallel faces
of Ω. So we see that T is compact.

Denote by π : Cn → T the natural projection. If Ω is a small enough open
subset of Cn, the restriction of π on Ω is bijective on π(Ω). It is easy to check
that the open subsets π(Ω) of T define an atlas and therefore a complex manifold
structure on T.

The manifold T constructed in this way is called a complex torus of dimension
n. Complex tori of the same dimension are all diffeomorphic to each other but
they are not all biholomorphic to each other.

Example 1.3.6 (Hopf manifold). Let A : Cn → Cn be the map A(z) = 1
2
z. It

induces a group action Z on Cn

Z× Cn → Cn with (k, z) 7→ Ak(z) = A ◦ · · · ◦ A(z) (k fois).
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Denote by H the set of orbits of Z in Cn \ {0}, i.e., the quotient of Cn \ {0} by
the equivalence relation: z ∼ w if z = Ak(w) for some k ∈ Z.

If B(0, r) denotes the ball of center 0 and radius r, then H can be obtained
by identifying the two components of the boundary of B(0, 2) \ B(0, 1) via the
mapping A. We see that H is compact.

The natural projection from Cn \ {0} onto H induces a complex manifold
structure on H. This is an example of Hopf manifold. The construct can extend
to any holomorphic injective map A : Ω → Ω in an open subset Ω of Cn such
that A(Ω) is relatively compact in Ω.

Definition 1.3.7. Let X and Y be complex manifolds of dimension, respectively,
n and m, with m ≤ n. Let τ : Y → X be a holomorphic map, injective, proper
and of maximal rank at every point. Then the image τ(Y ) of τ is called a
submanifold of dimension m and of codimension n −m of X. We also say that
τ(Y ) is a complex manifold embedded in X.

The rank of a holomorphic map at a point is the rank of its complex Jacobian
matrix at that point which is defined on charts of Y and X. The rank does not
depend on the choice of these charts.

Examples 1.3.8. The zero set of a non-constant holomorphic affine function on
Cn is a submanifold of dimension n− 1 of Cn which is called complex hyperplane
of Cn. It is bi-holomorphic to Cn−1.

The closed set Pn \Uj is the image of {zj = 0}\{0} by π. It is bi-holomorphic
to Pn−1. Thus, when we identify Uj to Cn via the map φj, the projective space
Pn can be seen as a compactification of Cn by adding at infinity a copy of the
projective space Pn−1. The non-zero complex linear functions in Cn+1 define
hyperplanes passing through 0. Their images by π are bi-holomorphic to Pn−1

and called the projective hyperplanes of Pn.

The graph of a holomorphic map from X to X ′ is a complex submanifold of
X ×X ′. In particular, the diagonal of X ×X is a submanifold of X ×X. There
are complex manifolds of all dimensions, i.e., generic tori, which do not admit
any submanifolds of positive dimension and codimension.

Theorem 1.3.9. Let Z be a complex submanifold of dimension m of a complex
manifold X of dimension n. Let a be a point in Z. Then there exists a chart
(U, φ) of X containing a such that φ(a) = 0 and Z ∩ U is the pull-back by φ of
the linear subspace {zm+1 = · · · = zn = 0} of Cn.

Proof. We can restrict ourselves to a chart of X that contains a. Therefore, we
can assume that X is a neighborhood of 0 in Cn and a = 0. Moreover, with the
notations as above, we can also assume that Y is a neighborhood of 0 in Cm with
τ(Y ) = Z and τ(0) = 0. We write τ = (τ1, . . . , τn) using the standard coordinates
w = (w1, . . . , wm) in Cm and z = (z1, . . . , zn) in Cn.
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Since τ is of maximal rank, by using a linear change of complex coordinates
of Cn, we can assume that

∂τj
∂wk

(0) =

{
1 if j = k ≤ m

0 otherwise.

By Theorem 1.1.7, using a holomorphic change of coordinates in a neighborhood
of 0 ∈ Cm, we can assume that

τj(w) = wj for j = 1, . . . ,m.

Finally, we consider the biholomorphic map φ from a neighborhood of 0 ∈ Cn

to another neighborhood of 0 ∈ Cn defined by

φ(z) =
(
z1, . . . , zm, zm+1 − τm+1(z′), . . . , zn − τn(z′)

)
with z′ = (z1, . . . , zm).

It is clear that in a neighborhood of 0 the submanifold Z is the pull-back by φ of
the subspace {zm+1 = · · · = zn = 0}. The theorem follows.

We check easily with the definition of manifold that a non-empty closed subset
Z of X verifying the property given in the last theorem is a complex submanifold
of dimension m of X.

Example 1.3.10 (Blow up). In this example, we give a very useful construc-
tion of complex manifolds. This is the blow-up of a manifold along a smooth
submanifold. We first consider the simplest case: the blow-up of a point.

Let Cn be the Euclidean space with canonical coordinates z = (z1, . . . , zn). Let
Pn−1 be the projective space of dimension n−1 with the homogeneous coordinates
[ξ] = [ξ1 : · · · : ξn]. Denote by Ĉn the set of common zeros of the polynomials
zjξk − zkξj, i.e.,

Ĉn =
{

(z, [ξ]) ∈ Cn × Pn−1 : zjξk = zkξj for all 1 ≤ j, k ≤ n
}
.

Denote by π the canonical projection of Ĉn on Cn. Observe that

π−1(z) = (z, [z]) for all z ∈ Cn \ {0} and π−1(0) = {0} × Pn−1.

In particular, Ĉn \ π−1(0) is biholomorphic to Cn \ {0}. So, Ĉn is obtained by
replacing the point 0 by a projective space of dimension n−1. We can also see Cn

as the union of complex lines passing through 0 and Ĉn is obtained by separating
at 0 these lines. Thus, {0} × Pn−1 identifies with the parameter space for these

lines. We show that Ĉn is a submanifold of dimension n of Cn × Pn−1.
Fix a point a ∈ Ĉn. It suffices to show that there exist local coordinates at

a verifying a property similar to that of Theorem 1.3.9. It is enough to consider
the case where a belongs to {0} × Pn−1. Without loss of generality, we can



1.3. COMPLEX MANIFOLDS AND ANALYTIC SUBSETS 19

assume that a = (0, [ξ]) with ξn = 1. In the chart {ξn = 1}, with coordinates

(z1, . . . , zn, ξ1, . . . , ξn−1), the set Ĉn is defined by the equation zj = ξjzn for j =
1, . . . , n− 1. We see that in the coordinates

(w1, . . . , w2n−1) = (z1 − ξ1zn, . . . , zn−1 − ξn−1zn, zn, ξ1, . . . , ξn−1),

Ĉn identifies with the linear subspace {w1 = · · · = wn−1 = 0}. We conclude that

Ĉn is a submanifold of dimension n of Cn×Pn−1 and we also see that {0}×Pn−1 is

a submanifold of dimension n−1 of Ĉn which is defined in the above coordinates
by the equation wn = 0.

Now, let X be a complex manifold of dimension n and let a be a point of X.
We can identify a neighborhood U of a with a neighborhood of 0 in Cn that we
also denote by U . The blow-up of X at a is obtained by gluing X \ U with the

blow-up Û = π−1(U) of U at 0. The construction uses a complex local coordinates
system. However, it does not depend on the choice of these coordinates because
we have the following lemma.

Lemma 1.3.11. Let φ be a biholomorphic map from a neighborhood U of 0 to
another neighborhood U ′ of 0 in Cn with φ(0) = 0. Denote π : Û → U and

π′ : Û ′ → U ′ the blow-up of U and U ′ at 0. Then, there exists a biholomorphic
map φ̂ : Û → Û ′ such that

π′ ◦ φ̂ = φ ◦ π.

Proof. Observe that the last identity defines a unique map

φ̂ : Û \ π−1(0)→ Û ′ \ π′−1(0).

It is equal to π′−1 ◦ φ ◦ π.

Claim. φ̂ can be extended by continuity to a map from Û to Û ′. This extension
is also denoted by φ̂.

We admit this claim for the moment, and we first finish the proof of the
lemma. Observe that φ̂ is holomorphic. This is a simple application of the
Cauchy formula by using local coordinates in Û and Û ′, see Theorem 1.3.19 for
a more general situation. This also applies to the map φ−1 and we obtain a
holomorphic map φ̂−1 : Û ′ → Û . The observation made at the beginning of the
proof shows that φ̂−1 ◦ φ̂ = id on Û \ π−1(0). This identity is extended to Û by

continuity. We find that φ̂ : Û → Û ′ is biholomorphic.
It remains to prove the claim. It suffices to consider the following cases.

Case 1. φ is a linear map.

Case 2. φ = id +O(‖z‖2) when z → 0.

Indeed, every map φ can be obtained by composing these two types of maps. For
the first case, we obtain the claim with direct calculations. This is left to the
reader. We show the claim in the second case.
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Let (am) be a sequence of points in Û \ π−1(0) which converges to a point

a ∈ π−1(0). We must show that the sequence φ̂(am) converges. We can write
am = (z(m), [z(m)]) with z(m) 6= 0 and a = (0, [ξ]). Then we have z(m) → 0 and
[z(m)]→ [ξ]. Since φ = id +O(‖z‖2), it’s not hard to see that

φ̂(z(m)) = (φ(z(m)), [φ(z(m)])→ (0, [ξ]).

This completes the proof of the lemma.

If Y is another complex, the blow-up of X × Y along {a} × Y is equal to the

product X̂ × Y of the blow-up X̂ of X at a with Y

If Z is a submanifold of X, the blow-up X̂ of X along Z is obtained as follows.
Locally on a suitable chart, thanks to Theorem 1.3.9, we can just apply the last
case. We cover Z by a family of such charts. The blow-up will be constructed by
using the above local model. Then, we can show that they glue themselves in a
natural and canonical way to a complex manifold X̂. For this last point, we need
a property a little more complicated than Lemma 1.3.11. We do not present it
here.

There is a canonical holomorphic projection π : X̂ → X which defines a
bijection between X̂ \ π−1(Z) and X \ Z . The set π−1(Z) is a submanifold of

dimension n−1 of X̂. The restriction of π to π−1(Z) is a holomorphic submersion
(i.e., surjective and of maximal rank) in Z whose fibers are biholomorphic to
Pn−m−1 if m = dimZ.

Definition 1.3.12. A complex manifold X is called Stein if it is biholomorphic
to a complex submanifold of a complex vector space CN . We say that X is
projective if it is biholomorphic to a complex submanifold of a projective space
PN .

A projective manifold is always compact. Using the maximum principle, we
can show that Stein’s manifolds do not contain any compact complex submani-
folds of positive dimension. These two important classes of manifolds are there-
fore disjoint when the dimension n is positive.

Definition 1.3.13. Let X be a complex manifold of dimension n. We call Her-
mitian metric on X the given a Hermitian product h on the complex tangent
space Tana(X) at each point a of X which smoothly depends on a.

In the local coordinates z = (z1, . . . , zn), the complex tangent space Tana(X)
can be identified to the vector space spanned by the derivatives ∂/∂zj. For all
vectors

u =
n∑
j=1

uj
∂

∂zj
and v =

n∑
j=1

vj
∂

∂zj
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in Tana(X), we have

h(u, v) =
n∑

j,k=1

hj,kujvk

where the matrix (hj,k)1≤j,k≤n is Hermitian, positive definite and smoothly de-
pends on a.

The Hermitian product h induces a scalar product on Tana(X) seen as a real
space of dimension 2n. Thus, h induces a Riemannian metric g on X defined by

g(u, v) = Reh(u, v) =
1

2

(
h(u, v) + h(v, u)

)
.

Let

ω(u, v) = − Imh(u, v) = − 1

2i

(
h(u, v)− h(v, u)

)
.

It is an anti-symmetric form. We can therefore identify it with a differential
(1, 1)-form on X. In the above local coordinates, we have

ω(z) = − 1

2i

n∑
j,k=1

hj,kdzj ∧ dzk =
i

2

n∑
j,k=1

hj,kdzj ∧ dzk.

A differential (1, 1)-form ω associated with positive definite Hermitian ma-
trices as above is called strictly positive. The Hermitian metric h is completely
determined by such a form ω. This is why we call also Hermitian metric any
strictly positive smooth (1, 1)-form. We can note here that it is easy to construct
Hermitian structures on a complex manifold: it suffices to first construct locally
the strictly positive (1, 1)-forms and then ”glue” them by using a partition of
unity.

The following result gives a remarkable property of the complex manifolds
and Hermitian metrics.

Theorem 1.3.14 (Wirtinger 1936). Let X be a complex manifold with a Hermi-
tian metric ω. Let Y be a complex submanifold of dimension m of X. Then the
2m-dimensional volume of Y is equal to

vol2m(Y ) =
1

m!

∫
Y

ωm.

Note that the volume of a 2m-dimensional Riemannian manifold is the integral
of the volume form on this manifold. It is a differential 2m-form which, in each
point, is 1 on an orthonormal basis of the tangent space at that point. Wirtinger’s
theorem is remarkable because we use here the form ωm which does not depend
on the manifold Y .
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Proof. Fix a point a ∈ Y . By Theorem 1.3.9, we can choose local coordinates z
such that z = 0 at a and the tangent plane of Y at a is given by {zm+1 = · · · =
zn = 0}. By making a linear change of coordinates, we can assume that at 0 we
have

ω =
i

2

∑
1≤j≤n

dzj ∧ dzj =
∑

1≤j≤n

dxj ∧ dyj.

This form is actually associated with the standard metric on Cn ' R2n. The
volume form of Y at 0 is therefore equal to dx1 ∧ dy1 ∧ . . .∧ dxm ∧ dym. It is easy
to verify that this form is equal at 0 to the restriction of 1

p!
ωp to Y . The theorem

follows.

Definition 1.3.15. A Hermitian form ω is called Kähler form if it is closed, i.e.,
dω = 0. The associated metric on X is called a a Kähler metric.

Note that every submanifold Y of a Kähler manifold (X,ω) is also Kähler
because the restriction of ω to Y is also a Kähler form on Y . The product of
two Kähler manifolds is also Kähler. The Hopf manifolds of dimension n ≥ 2
are not Kähler. The Kähler manifolds form a very large class of manifolds with
many remarkable properties. We can unfortunately consider in this text only
very particular cases.

The Euclidean space Cn is Kähler with, for example, the standard metric

ω =
i

2

∑
1≤j≤n

dzj ∧ dzj

which is clearly Kähler. The Stein manifolds and their open subsets are therefore
Kähler manifolds.

The projective space Pn as well as all projective manifolds are Kähler. We
can check that the form ω given on the charts {zj 6= 0} of Pn by

ω = i∂∂ log
( n∑
k=0

∣∣∣zk
zj

∣∣∣2)
is well-defined (the formulas agree on the intersections of their domains) and
Kähler. It is called the Fubini-Study form on Pn.

In the rest of this section, we will introduce the analytic sets which generalizes
the notion of complex submanifold. Let X be a complex manifold of dimension
n.

Definition 1.3.16. A complex hypersurface of X is a non-empty closed subset
H of X such that each point a ∈ H admits a neighborhood in which H is the
zero set of a holomorphic function that is not identically zero.
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We will give in the following a local description of hypersurfaces. Let H be a
complex hypersurface of X and let a be a point of H. Let U be a neighborhood
of a and h a holomorphic function in U such that

H ∩ U = {h = 0}.

By reducing U , we can find local coordinates z = (z1, . . . , zn) on U such that the
restriction of h to the line L = {z1 = · · · = zn−1 = 0} is not identically zero. The
latter property is equivalent to the fact that H ∩ U ∩ L is discrete in U ∩ L.

Since H is closed, we can further reduce U to assume that U is a polydisc
Dn(0, r) and that h does not vanish on the horizontal part of the boundary of
Dn(0, r) which is defined by{

|z1| < r1, . . . , |zn−1| < rn−1, |zn| = rn
}
.

In order to stay in a fairly general situation, we do not assume that a = 0 but
only that a belongs to Dn(0, r).

Denote z′ = (z1, . . . , zn−1), r′ = (r1, . . . , rn−1) and by Dn−1(0, r′) the polydisc
of center 0 and of radius r′ in Cn−1. The following result gives the local structure
of complex hypersurfaces

Theorem 1.3.17. With the notation as above, there is a unitary polynomial in
zn, called the Weierstrass polynomial,

P (z) = zdn + a1(z′)zd−1
n + · · ·+ ad(z

′)

whose coefficients are holomorphic functions on Dn−1(0, r′) such that

H ∩ Dn(0, r) = {P = 0}

and that h is equal to the product of P with a holomorphic function non-vanishing
in Dn(0, r). In particular, the set H ∩

(
{z′} ×D(0, rn)

)
depends continuously on

z′ ∈ Dn−1(r).

Proof. The restriction of h to the disc Dz′ = {z′} × {|zn| < rn} is a holomorphic
function in zn which does not vanish on the boundary of the disc. The number
of zeros counted with multiplicity is equal to

d =
1

2iπ

∫
bDz′

∂h
∂zn
dzn

h
·

The formula shows that this integer depends continuously on z′. It is therefore
constant.

Denote by ξ1(z′), . . . , ξd(z
′) these zeros and set

P (z) =
d∏
j=1

(zn − ξj(z′)) = zdn + b1(z′)zd−1
n + · · ·+ bd(z

′).
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It is clear that

H ∩ Dn(0, r) = {P = 0}.

We set

ck(z
′) =

d∑
j=1

ξj(z
′)k.

Observe that bk(z
′) are symmetric polynomials in ξj(z

′) which can be expressed
as polynomial functions of ck(z

′). On the other hand, the residue formula in one
variable implies that

ck(z
′) =

1

2iπ

∫
bDz′

zkn

∂h
∂zn
dzn

h
·

It follows that ck are holomorphic functions in z′. As a consequence, bk(z
′)

are also holomorphic.

Set f = h/P . It is a well-defined function in Dn(0, r) \ H which can be
extended on each vertical disc to a holomorphic function nowhere-vanishing on
this disc. It remains to show that f is holomorphic in Dn(0, r). Using the fact
that this function is holomorphic in the neighborhood of the horizontal part of
the boundary of Dn(0, r) and the Cauchy formula first applied to the variable zn
and then to the other variables as in Theorem 1.2.7, we obtain for ξ ∈ Dn(0, r)
that

f(w) =
1

(2iπ)n

∫
|z1|=r1,...,|zn|=rn

f(z)dz1 ∧ . . . ∧ dzn
(z1 − w1) . . . (zn − wn)

·

It is clear now that f is holomorphic.

Theorem 1.3.18. With the notation above, there is a unique unitary polynomial
Pmin(z) in zn with holomorphic functions in Dn−1(0, r′) as coefficients such that
every holomorphic function in Dn(0, r) vanishing on H is a product of Pmin with
a holomorphic function in Dn(0, r).

For the proof, we need the following result.

Theorem 1.3.19. Let E be a closed set contained in a hypersurface of X. Let f
be a holomorphic function in X \E. Suppose that f is bounded near every point
of E. Then, f can be extended uniquely to a holomorphic function in X.

Proof. It is a local problem. We can thus reduce to the case where X is a
neighborhood of a polydisc Dn(0, r) and E is contained in a hypersurface H as
above. Since f is bounded in Dn(0, r), on each vertical disc it can be extended
uniquely to a holomorphic function on this disc. Using the Cauchy formula as at
the end of the proof of Theorem 1.3.17, we show that this extension is holomorphic
in Dn(0, r).
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Proof of Theorem 1.3.18. Let F be the family of unitary polynomials in
zn whose coefficients are holomorphic in Dn−1(0, r′), and which vanish on H ∩
Dn(0, r). By Theorem 1.3.17, this family is nonempty. Let Pmin be an element in
F of minimal degree d. We show that it verifies the theorem.

If g is a holomorphic function vanishing on H ∩ Dn(0, r), we construct as
in Theorem 1.3.17 an element of F which divides g. Consider an arbitrary
polynomial Q in zn, not necessarily unitary, which vanishes on H ∩Dn(0, r). We
show that Q is divisible by Pmin. It implies that Pmin divides g and also the
uniqueness of Pmin.

Denote by M the set of functions written in the form f1/f2 with f1, f2 are
holomorphic in Dn−1(0, r′) and f2 is not identically zero. The function f1/f2 is
holomorphic outside the zeros of f2. We consider Q and Pmin as functions with
coefficients in M . Let R be a unitary polynomial whose coefficients is in M
and which is the largest common divisor of Q and Pmin. It suffices to show that
R = Pmin. For this, we only need to prove that degR ≥ degPmin or R ∈ F .

The polynomial R can be obtained by Euclidean algorithm. By this algorithm,
we see that there is a holomorphic function b which is not identically zero in
Dn−1(0, r′) such that if b(z′) 6= 0, R(z′, ·) is the largest common divisor of Q(z′, ·)
and Pmin(z′, ·). Since the zero set of Pmin is exactly H, the zeros of R(z′, ·) are
in H ∩ ({z′} × D(0, rn)). We see that the coefficients of R, which are symmetric
functions in their roots, must be holomorphic and bounded outside {b = 0}. By
Theorem 1.3.19, the coefficients of R are holomorphic in Dn−1(0, r′).

The polynomial R vanishes in H ∩ ({z′} × D(0, rn)) if z′ is not in {b = 0}.
The last assertion of Theorem 1.3.17 shows that this property is true for all z′.
It follows that R belongs to F . This completes the proof of the theorem. �

Theorem 1.3.20. With the notation as in Theorem 1.3.18, the set Σ of z′ ∈
Dn−1(0, r′) such that the roots of Pmin(z′, ·) are not all simple, is a hypersurface
of Dn−1(0, r′). In particular, H \ (Σ × C) is a holomorphic covering of degree d
over Dn−1(0, r′) \ Σ, where d is the degree of P in zn.

Proof. Denote by ξ1(z′), . . . , ξd(z
′) the roots of Pmin(z′, ·) counted with multiplic-

ity. Consider the discriminant of Pmin defined by

∆(z′) =
∏
j 6=l

(ξj(z
′)− ξl(z′)).

Note that this function is holomorphic in z′ because it is a symmetric function in
ξj. The set Σ, which is also the zero set of ∆, is then a hypersurface of Dn−1(0, r′).
It suffices for the first assertion to show that ∆ is not identically zero.

Suppose that ∆ is identically zero. Then for each z′ the polynomials Pmin(z′, ·)
and ∂Pmin(z′,·)

∂zn
have a common root. Using the Euclidean algorithm as above, we

can construct a non-constant unitary polynomial S which is the largest common
divisor of these two polynomials. It follows that Pmin/S is a polynomial that
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vanishes on H ∩ Dn(0, r). This contradicts the definition of Pmin and completes
the proof of the first assertion.

Consider a point a′ 6∈ Σ. Then the points ξ1(a′), . . . ξd(a
′) are distinct. For z′

in a polydisc D′ small enough centered at a′, the zeros of Pmin(z′, ·) are simple.
Since the zero set of Pmin(z′, ·) depends continuously on z′, we can number ξj(z

′)
so that they continuously depend on z′ ∈ D. Thus, above D, H is a union of
small disjoint graphs. We can apply Theorem 1.3.18 in a neighborhood of each
of these graphs and conclude that they are the zero sets of polynomials of degree
1. In other words, they are the graphs of holomorphic functions. So H is a
holomorphic covering of degree d over Dn−1(0, r′) \ Σ.

Definition 1.3.21. Let Z be a closed subset of X. We say that Z is an analytic
subset of X if for every point a ∈ Z, there exist a neighborhood U of a and
a familly of holomorphic functions in U such that Z ∩ U is the set of common
zeros of these holomorphic functions, i.e., Z ∩U is the intersection of a family of
hypersurfaces of U . An analytic subset Z is irreducible if it is not the union of
two analytic subsets not equal to Z.

We now give some properties of analytic subsets. Their proofs (with the
exception of Hironaka’s theorem) are elementary but quite long. They are not
shown here.

Theorem 1.3.22. Every analytic subset Z of X is a locally finite union of irre-
ducible analytic subsets. They are called irreducible components of Z.

The first assertion of this theorem means that each compact subset of X meets
only a finite number of irreducible components of Z.

Theorem 1.3.23. Let Z be an irreducible analytic subset of X. Let a be a
point of Z. Then there exist local coordinates z = (z′, z′′) with z′ = (z1, . . . , zp)
and z′′ = (zp+1, . . . , zn) in a neighborhood of a that we identify with a polydisc
Dn(0, r) = Dp(0, r

′) × Dn−p(0, r
′′) with r = (r′, r′′), r′ = (r1, . . . , rp) and r′′ =

(rp+1, . . . , rn) such that

1. The set Z does not intersect Dp(0, r
′)× bDn−p(0, r

′′);

2. The projection from Z \ (Σ × Dn−p(0, r
′′)) to Dp(0, r

′) \ Σ is a non-empty
finite covering for some hypersurface Σ of Dp(0, r

′);

3. The intersection Z∩Dn(0, r) is the set of common zeros of a finite family of
polynomials in z′′ whose coefficients are holomorphic functions in Dp(0, r

′);

4. The integer p does not depend on the point a and is called the dimension of
Z.

Note that the number of polynomials in the point 3) above is at least equal
to n− p.
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Definition 1.3.24. When Z is not irreducible, the dimension of Z is the max-
imal dimension of its irreducible components. When all components of Z are of
dimension p, we say that Z is of pure dimension p. A point a of Z is said regular
if it belongs to a single irreducible component of Z and if in the previous theo-
rem, we can find local coordinates in a neighborhood of a such that the covering
mentioned in this theorem is of degree 1. A non-regular point of X is called
singular.

We see that a is regular if and only if there are local coordinates such that in
a neighborhood of this point, Z is identified with a linear subspace as in Theorem
1.3.9.

Theorem 1.3.25. Let Z be an irreducible analytic subset of dimension p of X.
Let reg(Z) and sing(Z) be the sets of regular and singular points of Z respectively.
Then sing(Z) is an analytic subset of dimension at most p− 1 of X and reg(Z)
is a connected submanifold of dimension p of X \ sing(Z). In particular, sing(Z)
is a closed subset of X.

Examples 1.3.26. In C2, the union of two axes is an analytic subset of dimension
1 singular at 0. The complex curve of equation z2

1 = z3
2 is singular at 0. It is

also the image of the map t 7→ (t3, t2) defined on C. In the higher dimension,
the singularities of an analytic set can be much more complicated. The previous
theorems allow to have a stratification by considering the singularities of the
singular part which is also an analytical subset; the singularities of the last set,
etc.

We finish this section with the following important and difficult theorem.

Theorem 1.3.27 (Hironaka). Let Z be an analytic subset of X. Then there exist

a complex manifold X̂ and a proper holomorphic map π : X̂ → X such that

1. The map π defines a bijection between X̂ \ π−1(sing(Z)) and X \ sing(Z);

2. The closure of π−1(reg(Z)) in X̂ is a regular analytic subset of X̂; it is
called strict transform of Z by π;

3. The map π is a locally finite composition of blow-ups.

1.4 Bochner-Martinelli and Leray Formulas

The Cauchy formula we have seen is valid only for specific domains in Cn, namely
polydiscs. It allows to calculate the values of a holomorphic function, as well as
its derivatives, in such a domain in terms of the values on the boundary of the
domain. We will give in this section formulas valid for the general domains with
piecewise smooth boundary.
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For z ∈ Cn, let

ω(z) = dz1 ∧ . . . ∧ dzn,

and

ω′(z) =
n∑
j=1

(−1)j−1zjdz1 ∧ . . . ∧ dzj−1 ∧ dzj+1 ∧ . . . ∧ dzn.

These forms are related by the following formula

dω′ = nω.

Theorem 1.4.1 (Bochner-Martinelli 1943). Let Ω be a bounded piecewise smooth
domain in Cn. Let f be a holomorphic function in Ω and continuous up to the
boundary. Then we have for every a ∈ Ω

f(a) =
(−1)

n(n−1)
2 (n− 1)!

(2iπ)n

∫
z∈bΩ

f(z)
ω′(z − a) ∧ ω(z)

‖z − a‖2n
·

In dimension 1, we find the Cauchy formula. The Cauchy formula can be
applied to every line through a. Taking an average of the results obtained, we
can prove the Bochner-Martinelli formula above. We will give below another
proof of Theorem 1.4.1 but before that we introduce some useful notions.

Consider the projective space Pn with the standard homogeneous coordinates
[z] = [z0 : · · · : zn]. We also consider Cn as a chart of Pn by identifying it with
the open subset {z0 = 1} of Pn on which we can use as before the standard
coordinates z = (z1, . . . , zn).

Every projective hyperplane of Pn is defined by a non-zero homogeneous poly-
nomial of degree 1 in z0, . . . , zn

〈ξ, z〉 =
n∑
j=0

ξjzj.

This polynomial is unique up to a multiplicative constant. In other words, we
can parametrize these projective hyperplanes by the points [ξ] = [ξ0 : · · · : ξn]
of another projective space of dimension n denoted by Pn∗. The hyperplane
associated with ξ is denoted by Hξ.

For each fixed z, 〈ξ, z〉 is a homogeneous polynomial of degree 1 in ξ. It
defines a hyperplane of Pn∗ that we’ll denote by H∗z . We have (Pn)∗∗ = Pn. We
also define the incidence manifold Q by

Q :=
{

(ξ, z) ∈ Pn∗ × Cn : 〈ξ, z〉 = 0
}
.

We will only consider in the following z ∈ Cn. In order to simplify the notations,
we always assume that z0 = 1.
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Let

ω̃(ξ) =
n∑
j=1

(−1)j−1ξjdξ1 ∧ . . . ∧ dξj−1 ∧ dξj+1 ∧ . . . ∧ dξn.

Observe that for every a ∈ Cn fixed, the form

ω̃(ξ) ∧ ω(z)

〈ξ, a〉n

in Cn+1×Cn induces a holomorphic (2n− 1, 0)-form in (Pn∗ \H∗a)×Cn. We will
use the same formula for the induced form.

Note that this form is closed in Q \ (H∗a × Cn) since it is a holomorphic
(2n− 1, 0)-form in a complex manifold of dimension 2n− 1.

We consider the map ξa(z) defined in Ω \ {a} with values in Pn∗ by

ξa
j
(z) = zj − aj for j = 1, . . . , n and ξa

0
(z) = −

n∑
j=1

ξaj (z)zj.

The projective hyperplane associated with ξa(z) is orthogonal at z to the complex
line joining a and z. Thus, the graph of ξa in Pn∗ × Cn is contained in

Qa
Ω = Q ∩ (Pn∗ × (Ω \ {a})).

Proof of Theorem 1.4.1. By reducing the Ω, we can assume that f is holo-
morphic in a neighborhood of Ω. Observe that the form

ω′(z − a) ∧ ω(z)

‖z − a‖2n

in Ω \ {a} is the pull-back by the map ξ
a

of the form

(−1)n
ω̃(ξ) ∧ ω(z)

〈ξ, a〉n

introduced above in (Pn∗ \H∗a) × Cn. As a consequence, the form considered in
Ω \ {a} is closed. This point can be checked by a simple direct calculation.

Since f is holomorphic, we deduce that the form

f(z)
ω′(z − a) ∧ ω(z)

‖z − a‖2n

is also closed in Ω \ {a}.
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For every ε > 0, by using the Stokes’ formula for the domain
Ω \ {‖z − a‖ ≤ ε}, we have

(−1)
n(n−1)

2 (n− 1)!

(2iπ)n

∫
z∈bΩ

f(z)
ω′(z − a) ∧ ω(z)

‖z − a‖2n

=
(−1)

n(n−1)
2 (n− 1)!

(2iπ)n

∫
‖z−a‖=ε

f(z)
ω′(z − a) ∧ ω(z)

‖z − a‖2n

=
(−1)

n(n−1)
2 (n− 1)!

(2iπ)nε2n

∫
‖z−a‖=ε

f(z)ω′(z − a) ∧ ω(z).

Since dω′ = nω, the Stokes’ formula applied to the ball {‖z− a‖ ≤ ε} implies
that the last integral is equal to

(−1)
n(n−1)

2 n!

(2iπ)nε2n

∫
‖z−a‖≤ε

f(z)ω(z) ∧ ω(z).

When ε→ 0, the last expression tends to f(z) since

(−1)
n(n−1)

2 n!

(2iπ)nε2n

∫
‖z−a‖≤ε

ω(z) ∧ ω(z) = 1.

The result follows. �

Reminder. (Stokes’ formula) Let Ω be a bounded piecewise smooth domain in
Rn. Let α be an (n − 1)-form of class C 1 in Ω, continuous up to the boundary.
Then we have ∫

Ω

dα = (−1)n−1

∫
bΩ

α.

The formula can be extended to manifolds with piecewise smooth boundary.

Definition 1.4.2. A smooth mapping ξa : bΩ→ Pn∗ is called Leray if its graph
is continuous in Qa

Ω and if this graph is homotopic to the graph of the mapping
ξa restricted to bΩ.

Note that for such a mapping, the projective hyperplane associated with ξa(z)
passes through z but does not contain the point a. It is a continuous deformation
of ξa in the class of maps with the same properties.

Theorem 1.4.3 (Leray 1959). Let Ω, a and a Leray map ξa be as above. Let f
be a holomorphic function in Ω continuous up to the boundary. Then we have

f(a) =
(−1)

n(n+1)
2 (n− 1)!

(2iπ)n

∫
z∈bΩ

f(z)
ω̃(ξa(z)) ∧ ω(z)

〈ξa(z), a〉n
·
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Proof. By continuity, we can reduce Ω and assume that f is holomorphic in a
neighborhood of Ω. Observe that the form

(−1)
n(n+1)

2 f(z)
ω̃(ξ) ∧ ω(z)

〈ξ, a〉n

is closed in Qa
Ω since f is holomorphic.

Therefore, its integral on the graph of ξa is equal to its integral on the graph
above bΩ of the map ξa. Here, we use the homotopy invariance. By Theorem
1.4.1, the second integral is f(a). The first one is exactly the one given in the
statement. The result follows.

Consider the particular case where Ω is a smooth convex domain defined by
a real-valued smooth convex function ρ in Cn such that

Ω =
{
z ∈ Cn : ρ(z) < 0

}
.

We consider the map ξ defined in bΩ by

ξj(z) =
∂ρ

∂zj
(z) for j = 1, . . . , n and ξ0(z) = −

n∑
j=1

ξj(z)zj,

which assigns to each point z ∈ bΩ the complex hyperplane tangent to bΩ at z.
Since Ω is convex, we can verify that the map ξ is a Leray map. Indeed, we

can first deform Ω to a small ball B of center a while keeping the convexity. The
complex hyperplane tangent to bΩ are deformed continuously to complex tangent
hyperplanes of bB remaining in Cn\{a}. Finally, we can use homotheties of center
a to deform the complex tangent hyperplanes of bB to the hyperplanes associated
with ξa.

We deduce from Leray’s formula the following result.

Corollary 1.4.4 (Leray 1956). With the notations as above, if f is holomorphic
in Ω and continuous up to the boundary, we have

f(a) =
(−1)

n(n−1)
2 (n− 1)!

(2iπ)n

∫
z∈bΩ

f(z)
ω′(∂ρ

∂z
) ∧ ω(z)

〈∂ρ
∂z
, z − a〉n

,

where
∂ρ

∂z
=
( ∂ρ
∂z1

, . . . ,
∂ρ

∂zn

)
.

Note that an advantage of this formula in comparison with the Bochner-
Martinelli formula is that the kernel used here depends holomorphically on a.
Applying the last corollary to the ball of center 0 and radius R, we obtain the
following formula.
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Corollary 1.4.5 (Szegö-Bochner 1943). Let f be a holomorphic function in the
ball of center 0 and of radius R which is continuous up to the boundary. Then
for each point a in this ball we have

f(a) =
(n− 1)!R

(2iπ)n

∫
‖z‖=R

f(z)dvol2n−1(z)

(R2 − 〈a, z〉)n
,

where dvol2n−1 is the volume form on the sphere {‖z‖ = R}.

When n = 1, we find the Cauchy formula in a disc.

We finish this section by giving the solution of the ∂ equation for the data
with compact support in Cn. The proof will be given in the next section.

Theorem 1.4.6. Let g be a smooth ∂-closed (p, q)-form with compact support in
Cn with 0 ≤ p ≤ n and 1 ≤ q ≤ n. Then the following (p, q − 1)-form f satisfies
the equation ∂f = g

f(a) = (−1)p+q−1 (−1)
n(n−1)

2 (n− 1)!

(2iπ)n

∫
z∈Cn

g(z) ∧ ω
′(z − a) ∧ ω(z − a)

‖z − a‖2n
·

The differential form under the sign of the integration depends on dzj, dzj
and also on daj, daj. Terms that are not of maximal degree in dzj, dzj do not
contribute to this integral.

There are similar integral formulas giving the solutions of the ∂ equation in a
smooth convex domain for the smooth forms g on Ω which do not have compact
support. These formulas are more complicated and involve the values of g on the
boundary of Ω.

1.5 De Rham currents

De Rham currents are fundamental tools in complex analysis, geometry and dy-
namics. We will introduce them and give more conceptual interpretations of some
results presented in the previous sections.

Let X be an oriented smooth real manifold of dimension n. Denote by Dp(X)
the space of smooth p-forms with compact support in X.

Definition 1.5.1. A current of degree p (we also say a current of dimension n−p
or a p-current) on X is a continuous linear functional on the space Dn−p(X) with
respect to the canonical topology. A distribution in the sense of Schwartz is a
current of maximal degree n and dimension 0.

If T is a p-current on X, its value at ϕ ∈ Dn−p(X) is denoted by 〈T, ϕ〉 or by
T (ϕ). This value depends on ϕ. The continuity of T is equivalent to the following
property:
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if ϕk → ϕ in Dn−p(X) then 〈T, ϕk〉 → 〈T, ϕ〉.

Recall that ϕk → ϕ in Dn−p(X) if and only if these forms are supported by
the same compact subset of X and ‖ϕk − ϕ‖C r → 0 for all 0 ≤ r <∞.

We often use on the space of currents the weak topology given by the following
definition.

Definition 1.5.2. We say that the sequence of p-currents Tk on X converges
weakly to a p-current T if

〈Tk, ϕ〉 → 〈T, ϕ〉 for every test form ϕ ∈ Dn−p(X).

If U is an open subset of X, we can consider the restriction of T to the space
Dn−p(U) which is considered as a subspace of Dn−p(X). This is the restriction
of the current T to the open set U .

Proposition 1.5.3. Let T be a p-current on X.

1. There is a closed set F which is the smallest closed set such that the re-
striction of T on X \ F is zero. This closed set is called the support of T
and is denoted by supp(T );

2. The current T extends in a unique way to a continuous linear form, again
denoted by T , on the smooth (n−p)-forms ϕ with supp(ϕ)∩supp(T ) compact
such that 〈T, ϕ〉 = 〈T, ϕ′〉 if ϕ = ϕ′ on a neighborhood of supp(T ).

Proof. 1. Let F be the family of all open subsets of X on which T is zero. Let
U be the union of these open sets. For the first assertion, it suffices to show that
U is an element of F and set F = X \ U .

Let ϕ be a smooth form with support in a compact subset K of U . We have
to show that 〈T, ϕ〉 = 0. Since K is compact, there exists a finite family of open
sets Uj ∈ F such that K ⊂ ∪jUj. Let (χj) be a family of smooth functions with
compact support in Uj such that

∑
χj = 1 on K. We have

〈T, ϕ〉 =
〈
T,
∑

χjϕ
〉

=
∑
〈T, χjϕ〉.

Since χjϕ is supported by Uj, the last expression vanishes. The result follows.

2. Let ϕ be a smooth (n− p)-form such that supp(ϕ) ∩ supp(T ) is compact.
Let χ be a smooth function with compact support which is equal to 1 in a
neighborhood of supp(ϕ) ∩ supp(T ). Set

〈T̃ , ϕ〉 = 〈T, χϕ〉.

By definition of supp(T ), we see that this formula does not depend on the choice

of χ. In particular, we have 〈T̃ , φ〉 = 〈T, ϕ〉 if ϕ has compact support. It is easy

to check that T̃ verifies the proposition. The uniqueness is also clear because
the last identity in the proposition requires that the extension is defined by the
formula above.
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Note that we show with similar arguments that a current on an open subset
U of X with compact support also defines a current on X.

Definition 1.5.4. We say that T is a current of order s if for every compact set
K ⊂ X, there exists a constant cK > 0 such that

|〈T, ϕ〉| ≤ cK‖ϕ‖C s for every test form ϕ with support in K.

If such s does not exist, we say that T is of infinite order. Radon measures are
the distributions of order 0.

Proposition 1.5.5. The restriction of a p-current T on X to a relatively compact
open subset of X is of finite order. If T is of order s, it extends uniquely to a
continuous linear functional on the space of (n−p)-forms of class C s with compact
support in X.

Proof. Let U be a relatively compact open subset of X. Suppose that the re-
striction of T to U is not of finite order. Then for each s ∈ N there is a smooth
(n− p)-form ϕs with compact support in U such that

‖ϕs‖C s = 1 and 〈T, ϕs〉 ≥ 2s.

We set

Φs =
s∑
j=0

2−jϕj and Φ =
∞∑
j=0

2−jϕj.

Since U b X, we have Φs → Φ in Dn−p(X). The continuity of T implies that

〈T,Φ〉 = lim
s→∞
〈T,Φs〉 =∞.

This is a contradiction. Hence, the restriction of T to U is of finite order.

Now, we suppose that T is of order s on X. The inequality in the definition
1.5.4 allows T to be extended in a unique way to a continuous linear functional
on the space of (n − p)-forms of class C s with compact support in X because
Dn−p(X) is dense in the last space for the C s norm.

We now give two other basic examples of currents of order 0 that justify the
”degree” and ”dimension” terminologies for currents.

Example 1.5.6. If α is a differential p-form with locally integrable coefficients,
then α defines a p-current of order 0 by the formula

〈α, ϕ〉 =

∫
X

α ∧ ϕ for ϕ ∈ Dn−p(X).
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Example 1.5.7. Let Y be an oriented real submanifold of dimension n − p of
X. Then Y defines a p-current of order 0, denoted by [Y ], with

〈[Y ], ϕ〉 =

∫
Y

ϕ pour ϕ ∈ Dn−p(X).

This the current of integration on Y . The definition extends to oriented real
manifolds that are not necessarily closed but have a finite (n − p)-dimensional
volume in each compact subset of X.

The two previous examples are very important for the applications but also
to test the properties that we want to check for a larger class of currents.

Definition 1.5.8. Let T be a p-current on X. We define the (p+ 1)-current dT
on X by

〈dT, ψ〉 = (−1)p+1〈T, dψ〉 for every ψ ∈ Dn−p−1(X).

By convention, we have dT = 0 if p = n and more general every current of degree
strictly greater than n is zero.

If T is of order s and if α is a q-form of class C s, we define the product T ∧α
by

〈T ∧ α, ψ〉 = 〈T, α ∧ ψ〉 for every ψ ∈ Dn−p−q(X).

The current dT is of order s+1 if T is of order s. If T is given by a differential
form α of class C 1, by the Stokes’ formula on X, dT is given by the form dα. If
Y is an (n − p)-dimensional smooth oriented submanifold with boundary of X,
the Stokes’ formula on Y is written in the language of currents in the form

d[Y ] = (−1)n−p+1[bY ].

The identity d ◦ d = 0 on the differential forms implies the same identity for
currents.

Now we introduce two other important operations on currents. Let π : X → Y
be a smooth mapping between two oriented smooth real manifolds. Let T be a
current of dimension k on X. Suppose that the restriction of π to supp(T ) is
proper. Then we can define the push-forward of T by π. It is a current of
dimension k on Y , denoted by π∗(T ), defined by

〈π∗(T ), ψ〉 = 〈T, π∗(ψ)〉 for every smooth k-form ψ with compact support in X.

The properness of π on supp(T ) ensures that the last expression is well-defined.

We now consider a submersion π : X → Y . We have the following lemma.

Lemma 1.5.9. If α is a smooth form with compact support in X, then the current
π∗(α) is defined by a smooth form on Y .
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Proof. Observe that if (χj)j∈J is a partition of unity of X, then

π∗(α) =
∑
j∈J

π∗(χjα).

As a consequence, since π is a submersion, using a suitable partition of unity, we
reduce the problem to the case where X is the product Y ×Z of Y with another
manifold and π is the canonical projection on Y . Moreover, we can assume that
Y and Z are open subsets of Euclidean spaces.

Denote by (y, z) the standard coordinates on Y and Z. Let ψ be a smooth
form with compact support in Y of suitable degree. Then we have, by the Fubini’s
theorem,

〈π∗(α), ψ〉 =

∫
Y×Z

α(y, z) ∧ ψ(y) =

∫
y∈Y

(∫
z∈Z

α(y, z)
)
ψ(y).

Hence

π∗(α) =

∫
z∈Z

α(y, z).

The last expression is a form whose coefficients are obtained by integrating the
coefficients of α along the fibers of π. We see that π∗(α) is equal to a smooth
form.

Let S be a p-current on Y . The last lemma allows to define the pull-back of
S by π. This is a p-current on X denoted by π∗(S) and given by

〈π∗(S), ϕ〉 = 〈S, π∗(ϕ)〉 for every ϕ ∈ Dn−p(X).

The following proposition is a direct consequence of the above definitions.

Proposition 1.5.10. The push-forward and pull-back operators on the currents,
when they are well-defined, commute with the operator d.

We will use currents on complex manifolds. Now letX be a complex manifold
of dimension n (and thus of real dimension 2n).

Definition 1.5.11. A p-current T on X is of bi-degree (r, s) and of bidimension
(n− r, n− s) with r+ s = p if it vanishes on the forms of bi-degree (n− r′, n− s′)
in D2n−p(X) when (r′, s′) 6= (r, s). We also define the operators ∂ and ∂ by

〈∂T, ψ〉 = (−1)p+1〈T, ∂ψ〉 and 〈∂T, ψ〉 = (−1)p+1〈T, ∂ψ〉 for ψ ∈ D2n−p−1(X).

We can easily verify that if T is a (r, s)-current, ∂T and ∂T are of bi-degree
(r+ 1, s) and (r, s+ 1) respectively. In addition, the following identities hold for
currents as in the case of smooth forms:

d = ∂ + ∂, ∂ ◦ ∂ = 0, ∂ ◦ ∂ = 0 and ∂ ◦ ∂ + ∂ ◦ ∂ = 0.
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These operators commute with the push-forward and pull-back operators by a
holomorphic map when they are well-defined.

We will now interpret some well-known results in the language of currents
which give a more conceptual point of view.

Cauchy-Pompeiu formula. Let Ω be a domain in C with piecewise smooth
boundary. We define by integration a (0, 0)-current on C, denoted by [Ω]. By
Stokes’ formula, we have

d[Ω] = −[bΩ].

In order to define [bΩ], we use the hypothesis that Ω has piecewise smooth bound-
ary. We fix a point a ∈ C \ bΩ and consider the (1, 0)-current

T =
dz

2iπ(z − a)
∧ [Ω].

This current is well-defined because in the polar coordinates, we verify easily that
the differential form involved here is locally integrable. The support of T is equal
to Ω.

Lemma 1.5.12. We have

∂T = dT =

{
dz

2iπ(z−a)
∧ [bΩ]− δa if a ∈ Ω

dz
2iπ(z−a)

∧ [bΩ] if a 6∈ Ω

where δa is the Dirac measure centered at a.

Proof. The first identity is clear because of a bi-degree reason. On C \ {a}, the
involved differential form in the definition of T is smooth and closed. Therefore,
the definition of the operator d implies

dT = − dz

2iπ(z − a)
∧ d[Ω] =

dz

2iπ(z − a)
∧ [bΩ] on C \ {a}.

When a is not in Ω, it does not belong to the support of T and consequently, the
last identity is valid on C.

It remains to verify that dT = −δa in a neighborhood of a assuming a ∈ Ω.
In order to simplify the notations, we can assume that Ω = C and a = 0. We
have

T =
dz

2iπz
·

We have to show that ∂T = −δ0.
Since T is invariant by rotations around 0, it suffices to consider the smooth

radial functions with compact support h(r) with r = |z|. Using the polar coordi-
nates (r, θ), we have

〈∂T, h〉 =

∫
C

dz

2iπz
∧ ∂h =

∫
R+×[0,2π]

1

2π
h′(r)dr ∧ dθ = −h(0).
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This completes the proof of the lemma.
Note that with similar calculations we obtain

i

π
∂∂ log |z − a| = δa.

Analogous identities are used systematically for plurisubharmonic functions and
positive closed currents.

We deduce the following result.

Theorem 1.5.13 (Cauchy-Pompeiu 1912). Let Ω be a bounded piecewise smooth
domain. Let f be a function in Ω smooth up to boundary. Then we have

1

2iπ

{∫
bΩ

f(z)dz

z − a
+

∫
Ω

∂f
∂z

(z)dz ∧ dz
z − a

}
=

{
f(a) if a ∈ Ω

0 if a 6∈ Ω.

Proof. We extend f to a smooth function on C. This step is not necessary if we
are used to calculating with currents. Consider the case a ∈ Ω. The other cases
can be treated in the same way.

By the previous lemma, we have

−
∫

Ω

∂f
∂z
dz ∧ dz

2iπ(z − a)
= −〈T, ∂f〉 = 〈∂T, f〉 =

∫
bΩ

f(z)dz

2iπ(z − a)
− f(a).

The result follows.

When f is a holomorphic function on Ω, smooth up to the boundary, we
obtain the Cauchy formula

f(a) =
1

2iπ

∫
bΩ

f(z)dz

z − a
for a ∈ Ω.

The formula holds if f is holomorphic on Ω and continuous up to the boundary.
Indeed, we can reduce Ω to get back to the previous case.

Bochner-Martinelli formula. The Bochner-Martinelli formula given in The-
orem 1.4.1 can be interpreted in the same way. Let Ω be a piecewise smooth
domain in Cn. We consider the (n, n− 1)-current

T =
(−1)

n(n−1)
2 (n− 1)!

(2iπ)n
· ω
′(z − a) ∧ ω(z)

‖z − a‖2n
∧ [Ω].

With the calculations as in Theorem 1.4.1 and Lemma 1.5.12, we have the fol-
lowing result which implies the Bochner-Martinelli formula.
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Lemma 1.5.14. With the notation above, we have

∂T = dT =
(−1)

n(n−1)
2 (n− 1)!

(2iπ)n
· ω
′(z − a) ∧ ω(z)

‖z − a‖2n
∧ [bΩ]− cδa

with c = 1 if a ∈ Ω and c = 0 if a 6∈ Ω.

Note also that we have

(n− 1)!
ω′(z − a) ∧ ω(z)

‖z − a‖2n
= (−1)

n(n+1)
2 (∂ log ‖z − a‖2) ∧ (i∂∂ log ‖z − a‖2)n−1

on Cn \ {a}. In order to verify this identity, we can assume a = 0 and use the
invariance of forms by the unitary group and by homogeneity. It then remains to
verify the identity at a point, e.g., (1, 0 . . . , 0). The calculations are then simple.

∂-equation. We will construct here the solution to the ∂-equation. The guiding
idea is very general. It can be used for other equations like ∂∂, d or ∂.

We consider the map π : Cn × Cn → Cn given by π(z, a) = z − a. The
parameter a in the previous sections is considered as a variable here. The diagonal
∆ of Cn×Cn is equal to π−1(0). This property is written in terms of currents in
the formula

[∆] = π∗(δ0).

Note that the operator π∗ is well-defined because π is a submersion.
We deduce from Lemma 1.5.14, applied to the case where Ω = Cn, that

[∆] = ∂π∗(T ) = ∂
{(−1)

n(n−1)
2 (n− 1)!

(2iπ)n
· ω
′(z − a) ∧ ω(z − a)

‖z − a‖2n

}
on Cn × Cn.

We say that π∗(T ) is a kernel for the resolution of ∂ on Cn.

Proof of Theorem 1.4.6. Let g be as in this theorem. We consider the current

S = (−1)p+q−1g(z)∧π∗(T ) = (−1)p+q−1g(z)∧(−1)
n(n−1)

2 (n− 1)!

(2iπ)n
·ω
′(z − a) ∧ ω(z − a)

‖z − a‖2n

on Cn × Cn. Since g is smooth and ∂-closed, we have

∂S = g(z) ∧ [∆] = g(a) ∧ [∆].

Observe that since g has compact support, the projection Π2 of Cn × Cn on
the second factor is proper on the support of S. Moreover, the form f defined in
the theorem is exactly equal to (Π2)∗(S). Hence

∂f(a) = ∂(Π2)∗(S) = (Π2)∗(∂S) = (Π2)∗(g(a) ∧ [∆]) = g(a).

This completes the proof of the theorem. �
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Chapter 2

L2-method, Stein manifolds and
pluripotential theory

This chapter contains an introduction of L2-method. We will also give several
properties of Stein manifolds and pseudoconvex domains in Cn which are very
useful. The central objects of this theory are positive closed currents. It will
be introduced with basic properties. Positive closed currents are a main tool in
complex dynamics.

2.1 Subharmonic functions on Rn

The pluriharmonic functions which will be used later are sub-harmonic functions
in any local complex coordinates. In this section, we will recall the notion of
sub-harmonic functions on Rn and its fundamentals properties.

Let x = (x1, . . . , xn) be the standard coordinates in Rn. Recall that the
Laplace operator is defined as

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

·

Definition 2.1.1. Let Ω be a domain in Rn. A C 2 function v : Ω → R is
harmonic if

∆v = 0 on Ω.

Note that this notion depends on the coordinates. The following theorem
asserts that harmonic functions are smooth.

Theorem 2.1.2 (Poisson’s formula). Let v be a harmonic function on a ball B
centered at 0 of radius r which is continuously defined on the closed ball B. Then
for every y ∈ B, we have

v(y) =

∫
x∈bB

v(x)
r2 − ‖y‖2

πnr‖x− y‖n
dvoln−1(x),

41
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where πn is the (n−1)-dimensional volume of the unit sphere in Rn and dvoln−1(·)
is the volume form on bB. In particular, u is of class C∞ on B.

When y is the center of B, we can deduce that v(0) is the average value of v
on the sphere bB. We will first prove the following result which gives the solution
of Dirichlet problem on a ball. It gives the answer of the question of finding a
harmonic function on a ball knowing its values on the boundary

Theorem 2.1.3. Let v be a continuous function on bB. Then the Poisson integral
defined in the previous theorem

ṽ(y) =

∫
x∈bB

v(x)
r2 − ‖y‖2

πnr‖x− y‖n
dvoln−1(x),

defines a harmonic function on B which can be extended continuously to the
boundary and equal to v on bB.

Proof. By homogeneity, in order to simplify the notations, we can suppose that
r = 1. To prove that ṽ is harmonic, it is enough to prove that the Poisson kernel
is harmonic at y, i.e.

∆y

( 1− ‖y‖2

πn‖x− y‖n
)

= 0.

This can be deduce by a direct calculation which we will leave for the reader. We
can suppose that x = (1, 0, . . . , 0) for simplicity.

We need to prove that ṽ extends continuously to the boundary of B and
equals to v on bB. When v = 1, the function ṽ is harmonic and radial. Since ṽ is
smooth at 0, we have ∂ṽ

∂ρ
(0) = 0. A direct calculation gives that ṽ(0) = 1. Apply

Laplacian on smooth radial functions, we have

∆ =
∂2

∂ρ2
+
n− 1

ρ

∂

∂ρ
with ρ = ‖y‖.

We will prove that ṽ is constant. If it is not the case, then considering an
extremal point of ∂ṽ

∂ρ
, we deduce from ∆ṽ = 0 that ṽ is monotone when ρ ∈ [0, 1].

The equation ∆ṽ = 0 also implies that ṽ is either concave and increasing or
convex and decreasing with respect to ρ. This contradicts to the fact that the
derivative of ṽ vanishes at 0.

In general, we set y′ = y‖y‖−1. It is enough to prove that ṽ(y)−v(y′) converges
to 0 uniformly when y tends to bB. Fix a constant ε > 0 and choosing a constant
δ > 0 such that |v(x)− v(y′)| ≤ ε when ‖x− y′‖ ≤ δ. By the case v = 1, we have

v(y′) =

∫
x∈bB

v(y′)
1− ‖y‖2

πnr‖x− y‖n
dvoln−1(x),
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hence

|ṽ(y)− v(y′)| ≤
∣∣∣ ∫
‖x−y′‖>δ

(v(x)− v(y′))
1− ‖y‖2

πn‖x− y‖n
dvoln−1(x)

∣∣∣
+
∣∣∣ ∫
‖x−y′‖≤δ

(v(x)− v(y′))
1− ‖y‖2

πn‖x− y‖n
dvoln−1(x)

∣∣∣.
The first integral converges uniformly to 0 when y → y′ since ‖y‖ → 1 and

‖x− y‖ ≥ 1
2
‖x− y′‖ ≥ δ

2
. The second integral is bounded from above by ε times

of ∫
x∈bB

1− ‖y‖2

πn‖x− y‖n
dvoln−1(x).

which is equal to 1 by the case when v = 1. Then the theorem follows.

Prove of Theorem 2.1.2. By using Theorem 2.1.3, it is enough to prove that if
a harmonic function v on B extends continuously to the boundary and vanishes on
bB, then v vanishes everywhere. Assume by contradiction that v is not identically
zero. By multiplying v with a constant, we can suppose that max v = 3.

Let χ be a smooth increasing convex function on R such that χ(t) = 0 if t ≤ 1
and χ(t) = t2 − 3 if t > 2. Then the function χ(v) vanishes on bB. Moreover, we
have

∆(χ(v)) = χ′′(v)‖~∇v‖2 + χ′(v)∆v = χ′′(v)‖~∇v‖2.

Hence by a Stokes formula,∫
B
χ′′(v)‖~∇v‖2dvoln =

∫
B

∆(χ(v))dvoln = 0,

Since χ is convex, we deduce that χ′′ ≥ 0 thus ~∇v = 0 when χ′′(v) is strictly

positive. In particular, ~∇v = 0 when v > 2. This implies that v is locally
constant on {v > 2}. This contradicts to the assumption that max v = 3 and the
continuity of v. �

Reminder. We used the following version of Stokes’ formula which is valid for
C 2 functions with compact support in Rn∫

Rn
u∆vdvoln =

∫
Rn
v∆udvoln.

It can be obtained by integration by parts.

Corollary 2.1.4. Let (vm) be a sequence of harmonic functions on Ω. Suppose
that vm converges in L1

loc to a function v. Then v is equal to a harmonic function
almost everywhere.
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Proof. Let B1 and B2 be two balls centered at a of radii r1, r2 respectively which
are contained in Ω with r1 < r2. We prove that v equal almost everywhere to a
harmonic function on B1. For simplicity of notations, we suppose that a = 0.

We can apply Poisson formula for a ball centered at 0 of radius r for every
x ∈ B1 and for every r1 < r < r2. By considering the average of Poisson integral
at r ∈ [r1, r2], we obtained that

vm(y) =

∫
x∈B2\B1

vm(x)
‖x‖2 − ‖y‖2

‖x− y‖n
η(x),

with a smooth form η which is independent of v and x. This formula implies that
the values of vm on B1 can be calculated as averages of vm on B2 \ B1.

As the sequence (vm) converges in L1
loc, we deduce by this formula that vm

converges locally uniformly on B1 to a function v′. Moreover, the sequence of
derivative of order k of vm also converges locally uniformly to the derivative of
order k of v′. In particular, ∆v′ = lim ∆vm = 0 hence v′ is harmonic. The
function v is the limit of vm in L1

loc, it equals to v′ in L1
loc. In other words, v

equals to a harmonic function almost everywhere.

Corollary 2.1.5. Let (vm) be a sequence of harmonic functions on Ω. Suppose
that it is a bounded sequence in L1

loc. Then is has a subsequence converging locally
uniformly along with its sequences of derivatives to a harmonic functions on Ω.

Proof. The formula in the proof of the last corollary implies that vm is locally
uniformly bounded with respect to m. Considering the derivatives with respect
to y in this formula, we deduce that the sequence of derivatives of vm is also
locally uniformly bounded with respect to m. Consequently, the sequence (vm)
is locally equicontinuous and so do the sequences of derivatives of vm. Then the
corollary follows from Ascoli’s theorem and the previous corollary.

Definition 2.1.6. A function u : Ω → R ∪ {−∞}, non identically −∞, is
subharmonic if it is upper semi-continuous (u.s.c.) and if it verifies the following
sub-mean inequality: for every closed ball B centered at a contained in Ω, we
have

u(a) ≤ 1

|bB|

∫
bB
u(x)dvoln−1(x)

where |bB| is (n− 1)-dimensional volume of the sphere bB.

Note that this inequality combining with the upper semi-continuity implies
that

u(a) = lim
r→0

1

|bB|

∫
bB
u(x)dvoln−1(x),

where r is the radius B.
The following proposition is a consequence of the last definition.
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Proposition 2.1.7. Every subharmonic function is locally bounded from above
and locally integrable. Moreover, it verifies the maximum principle: a subhar-
monic function does not have any strict local maximum.

Proof. The first property is true for every u.s.c. function. The third is a conse-
quence of the submean inequality. We will prove the second property

Let u be a subharmonic function on a domain Ω as above. Considering a
subset E = {u = −∞} of poles of f . We claim that E has empty interior.
Indeed, if it is not, then there exists a ball B centered at a 6∈ E of radius r
such that bB intersects the interior of E. But this contradicts to the submean
inequality. Then E has empty interior. Then we can find a cover of open balls
of Ω with centers in Ω \ E.

Since the problem is local, we can suppose that u is defined on a ball B
centered at a 6∈ E. Moreover, since u is locally bounded from above, we can
subtract u by a constant so that u is negative. Thus. the submean inequality
implies that u is integrable in B. This completes the proof. Note that the local
integrability implies that n-dimensional volume of E is 0.

Proposition 2.1.8. Let u : Ω→ R∪{−∞} be a function which is not identically
−∞ on a domain Ω in Rn.

1. If there exists sequence (um)m≥0 of subharmonic functions on Ω which de-
creases pointwise to u, then u is also subharmonic.

2. If u is subharmonic, then for every open set Ω′ relatively compact in Ω,
there exists a sequence of smooth subharmonic functions (um)m≥0 on Ω′

which decreases pointwise to u.

Proof. 1. The decreasing limit preserves the upper semi-continuity. Thus u is
u.s.c. This can be deduced by using the fact that u−1([a,+∞[) is the intersection
of u−1

m ([a,+∞[) and that the semi-continuity of u means that u−1([a,+∞[) is
closed for every a. The submean inequality is also preserved by the decreasing
limit. Thus u is subharmonic.

2. Let ρ be a smooth positive function on R with compact support in [1, 2]
such that ∫

Rn
ρ(‖x‖)dvoln(x) = 1.

Set
ρm(r) = 2mnρ(2mr).

This function verifies the same properties as ρ except that its support is contained
in [2−m, 2−m+1] which tends to 0 as m tends to infinity.

Considering the function um = u ∗ ρm, i.e.

um(x) =

∫
y∈Rn

u(y)ρm(‖x− y‖)dvoln(y) =

∫
α∈Rn

u(x+ α)ρm(‖α‖)dvoln(α).
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This function is defined on Ω′ when m is big enough. The properties of the
convolution operator imply that um is smooth. This is also a property of integrals
with parameters.

Denote by τα(x) = x+ α the translation by the vector α ∈ Rn. The function
um can be seen as the average of harmonic functions um ◦ τα with 2−m ≤ ‖α‖ ≤
2−m+1. So we can deduce that um is subharmonic. Indeed, it is smooth and it
verifies the submean inequality. We need to prove that um(x) decreases to u(x)
when m tends to infinity.

Fix a point a ∈ Ω′. For small enough r ≥ 0, set

v(r) =
1

|bB(a, r)|

∫
y∈bB(a,r)

u(y)dvoln−1(y).

Then um(a) is a mean value of v(r) when r ∈ supp(ρm). Hence um(a) converges
to u(a). Moreover, it is enough to prove that v(r) is increasing in order to prove
that um is decreasing.

Indeed, in a neighborhood of a, the function v(‖x−a‖) is an average function
of u◦ τα. Then it is subharmonic since the submean inequality is obvious and the
upper semi-continuity follows as a consequence of Fatou’s lemma. As it is radial,
we deduce by the definition of subharmonic functions that it is increasing. This
completes the proof of the proposition.

Reminder. (Fatou’s lemma) Let µ be a positive measure and (hm) be a sequence
of positive measurable functions. Then we have∫

(lim inf
m→∞

hm)dµ ≤ lim inf
m→∞

∫
hmdµ.

The functions um are bounded from above then we apply Fatou’s lemma for the
sequence (−c− um) for some constant c.

Proposition 2.1.9. Let u be a C 2 function on an open subset Ω of Rn. Then u
is subharmonic if and only if

∆u ≥ 0.

In particular, a function u of class C 2 is harmonic if and only if u and −u are
subharmonic (this property still holds without assuming that u is C 2)

Proof. Suppose that u is subharmonic. We will prove that ∆u ≥ 0 pointwise.
Without loss of generality, we can assume that 0 ∈ Ω and it is enough to prove
that ∆u(0) ≥ 0.

Observing that if a function v is either constant or equals to xi or xixj with
i 6= j, then it verifies the mean value property

v(0) =
1

|bB|

∫
bB
v(x)dvoln−1(x)
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for every ball B centered at 0. This can be verified easily by using the parity of
v.

The average of x2
i on bB does not depend on i. The sum of these values for

i = 1, . . . , n is r2 so each of them is 1
n
r2. We can deduce using Taylor expansion

of u at 0 with r is the radius of B
1

|bB|

∫
bB
u(x)dvoln−1(x)− u(0) = ∆u(0)r2 + o(r2).

The submean inequality implies that ∆u(0) ≥ 0.
Suppose now ∆u ≥ 0. We verify that u satisfies the submean inequality.

Without loss of generality, we suppose that B is the unit ball of Rn. We need to
prove that

u(0) ≤
∫
bB
u(x)dvoln−1(x).

By considering the rotation τ at 0 and the averages of u ◦ τ , we reduce to the
case u is radial. We can also suppose that u vanishes on bB and we will prove
that u(0) ≤ 0. If it is not true, the same arguments as in the proof of Theorem
2.1.2 can be applied and give a contradiction. This completes the proof of the
proposition.

Remark 2.1.10. If u is locally subharmonic then the function um constructed
in Proposition 2.1.8 are smooth and locally subharmonic. By Proposition 2.1.9,
these functions are subharmonic. As the sequence um decreasing to u and the
domain of definition of um tends to Ω, we deduce that u is subharmonic on Ω.
So subharmonicity is a local property.

Recall that a distribution on an open subset of Rn is a current of maximal
degree. Using the standard coordinates (x1, . . . , xn), we usually identify an n-

current T with a 0-current T̃ as following

〈T̃ , hdx1 ∧ . . . ∧ dxn〉 = 〈T, h〉,

for every smooth function h with compact support in Ω. We can see that this
operator defines a bijection between n-currents and 0-currents. In particular, we
can consider a function L1

loc as a distribution.
We define the derivatives of an n-current T as〈∂|I|T

∂xI
, h
〉

= (−1)|I|
〈
T,
∂|I|h

∂xI

〉
.

Corollary 2.1.11. Let u be a subharmonic function on a domain Ω of Rn. Then
the distribution ∆u is a positive Radon measure. Moreover, if K and L are com-
pact subsets of Ω such that K b L, then there exists a constant c > 0 independent
of u such that

‖∆u‖K ≤ c‖u‖L1(L),

where ‖ · ‖K is the mass on K.
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Proof. The first assertion is true for smooth subharmonic functions. By applying
Proposition 2.1.8, we deduce that in general, ∆u is the weak limit of a sequence
of positive measures. Therefore, it is a positive measure. We use here a fact that
weak limits of positive Radon measures are positive Radon measures.

Let χ be a smooth function with compact support in L such that χ = 1 on
K. We have

‖∆u‖K ≤ 〈∆u, χ〉 =

∫
u∆χdvoln ≤ c‖u‖L1(L)

with c = ‖∆χ‖∞ which is independent of u.

The following result is very useful in the construction of subharmonic func-
tions. We have seen an application in Theorem 2.1.2.

Corollary 2.1.12. Let u1, . . . , um be subharmonic functions on a domain Ω of
Rn. Let χ : Rm → R be a convex function which is increasing with respect to each
variable. Then χ(u1, . . . , um) is subharmonic. In particular, max(u1, . . . , um) is
a subharmonic functions.

Proof. We approximate χ and ui by a decreasing sequence of smooth functions
in the same category to reduce the problem to the smooth case. Then by a direct
calculation, we have

∆χ(u1, . . . , um) =
n∑

i,j,k=1

∂2χ

∂ui∂uj

∂ui
∂xk

∂uj
∂xk

+
n∑
j=1

∂χ

∂uj
∆uj.

The first sum is positive since u is convex and the matrix( ∂2χ

∂ui∂uj

)
is semi-positive. The second sum is also positive since χ is increasing with re-
spect to each variable. Therefore, ∆χ(u1, . . . , um) ≥ 0 and χ(u1, . . . , χm) are
subharmonic.

We have the following proposition.

Proposition 2.1.13 (Newton’s potential). Let

Γ(x) =


1
2
|x| if n = 1

1
2π

log ‖x‖ if n = 2

− 1
n(n−2)ωn‖x‖n−2 if n ≥ 3,

where ωn is the volume of the unit ball of Rn. Then Γ is subharmonic on Rn,
harmonic on Rn \ {0} and we have

∆Γ = δ0 on Rn.
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Proof. The fact that Γ is harmonic outside 0 follows from a direct calculation.
We can use here the fact that for radial functions, we have

∆ =
∂2

∂r2
+
n− 1

r

∂

∂r
where r = ‖x‖.

Let Γε be a function defined as Γ but we replace ‖x‖ by
√
‖x‖2 + ε with

ε > 0. We verify by a direct calculation that ∆Γε ≥ 0. Thus Γε is subharmonic
and when ε decreases to 0, Γε decreases to Γ. Therefore, Γ is subharmonic.

It still needs to show that ∆Γ = δ0 on Rn. As ∆, Γ and δ0 are invariants by
the orthogonal group O(n), it is enough to prove that for every radial smooth
function h(r) with compact support that∫

Rn
Γ(x)∆h(r)dvoln(x) = h(0)

which is equivalent to ∫ ∞
0

Γ(r)∆h(r)nωnr
n−1dr = h(0).

As h is smooth and radial on Rn, we have

h′(0) = 0 and ∆h = h′′ +
n− 1

r
h′.

We obtain the result by using the integral by parts in one variable.

Corollary 2.1.14. Let µ be a positive Radon measure with compact support in
Rn. Then the function

uµ(x) =

∫
y∈Rn

Γ(x− y)dµ(y)

is subharmonic in Rn. Moreover, we have

∆uµ = µ

in the sense of distributions.

Proof. Without loss of generality, we can suppose that µ is a probability mea-
sure. Then u is an average of subharmonic functions. We deduce that it is also
subharmonic.

We first prove the identity in the corollary. By using Fubini theorem, we have
for every smooth function with compact support that

〈∆uµ, h〉 = 〈uµ,∆h〉

=

∫
x∈Rn

(∫
y∈Rn

Γ(x− y)∆h(x)dµ(y)
)
dvoln(x)

=

∫
y∈Rn

(∫
x∈Rn

Γ(x− y)∆h(x)dvoln(x)
)
dµ(y)

=

∫
y∈Rn

(∫
x∈Rn

Γ(x)∆h(x+ y)dvoln(x)
)
dµ(y).
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By Proposition 2.1.13, the last expression is equal to an integral of h with respect
to µ since the integral in the parentheses is h(y). This is true for every h. We
deduce that ∆uµ = µ in the sense of distributions.

Remark 2.1.15. Let µk be positive Radon measures with compact support. If
µk converges to a measure µ, it is not difficult to show that uµk converges to uµ
in L1

loc.

The following result gives us the compactness property of subharmonic func-
tions in L1

loc space.

Theorem 2.1.16. Let u be an L1
loc function on Ω and let (uk) be a sequence of

subharmonic functions on Ω.

1. Suppose that ∆u is a positive Radon measure. Then u is equal almost every-
where to a subharmonic function. If ∆u = 0, u is equal almost everywhere
to a harmonic function.

2. Suppose that (uk) are bounded in L1
loc. Then we can extract a convergence

subsequence in L1
loc of (uk) and the limit also equals almost everywhere to a

subharmonic function on Ω.

3. Suppose that (uk) is locally uniformly bounded from above. Then either (uk)
converges uniformly on compact subsets to −∞ when k →∞ or (uk) has a
subsequence converging in L1

loc and the limit is equal almost everywhere to
a subharmonic function on Ω.

Proof. 1. By reducing the domain Ω, we can suppose that the measure µ = ∆u
has finite mass with compact support in Rn. Considering the function uµ defined
as above and set v = u− uµ. We have ∆v = 0. Then it is enough to prove that
v equals almost everywhere to a harmonic function. This also gives the second
part of this assertion.

Let ρm be a function defined as in the proof of Proposition 2.1.8. Set

vm(x) =

∫
y∈Rn

v(y)ρm(‖x− y‖)dvoln(y)

=

∫
α∈Rn

v(x+ α)ρm(‖α‖)dvoln(α).

By properties of convolutions, vm is a smooth function which tends to v in L1
loc

when m tends to infinity. The calculation as in the proof of Corollary 2.1.14
prove that ∆vm = 0. So vm is harmonic. By Corollary 2.1.5, v equals in L1

loc to
a harmonic function. Thus we obtain the first assertion.

2. By reducing Ω, we can suppose that Ω is compact. By Corollary 2.1.11,
we can also suppose that µk = ∆uk is a measure with support in Ω with mass
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bounded uniformly in k. Note that uµk is the function constructed as in Corol-
lary 2.1.14 with the measure µk. Since the set of positive Radon measures on Ω
with masses bounded by a fixed constant is compact, we can, after extracting a
subsequence, suppose that µk converges to a measure µ.

Observe that the family of functions Γ(x− y) with y ∈ Ω is bounded in L1
loc.

Then we can deduce that the family uµk is also bounded in L1
loc. We obtained

uµk → uµ in L1
loc since µk → µ. It is enough now to prove that the sequence

vk = uk − uµk has a convergent subsequence in L1
loc and the limit equals almost

everywhere to a harmonic function v in Ω.

By part 1), vk equals almost everywhere to a harmonic function. Moreover,
the above discussion proves that the sequence (vk) is bounded in L1

loc. Then
Corollary 2.1.5 implies the desired result.

3. As the sequence (uk) is locally bounded from above, we can suppose without
loss of generality that the functions uk are negative. Suppose that (uk) does not
converge uniformly on compact subsets to −∞. By extracting subsequences, we
can suppose that the sequence uk(ak) is bounded from below with some sequence
(ak) relatively compact in Ω. We can also suppose that ak converges to a point
a ∈ Ω. By part 2), it is enough to prove that (uk) is bounded in L1

loc.

Let B be a closed ball centered at a in Ω. By applying the submean inequality
on balls centered at ak containing in B, we deduce that (uk) is bounded in L1

loc(B).
Let B′ be another closed ball containing in Ω centered at a point a′ ∈ B. We
prove that (uk) is bounded in L1

loc(B′). By iterating this construction, we can
deduce that (uk) is bounded in L1

loc(Ω).

Let U be a small enough neighborhood of a′. As (uk) is bounded in L1(U),
there exists bk ∈ U such that uk(bk) is bounded from below by a constant inde-
pendent to k. The fact that U is small allows us to use the submean inequality on
a ball centered at bk containing in B′. Then we can deduce that (uk) is bounded
in L1

loc(B′). This completes the proof of the theorem.

Corollary 2.1.17. Let u be an L1
loc function on a domain Ω. Suppose that ∆u

is smooth. Then u equals almost everywhere to a smooth function. Moreover, if
u is subharmonic then u is smooth.

Proof. Set µ = ∆u. Since the problem is local, we can suppose that µ has finite
mass and has compact support. Since µ is smooth on Ω, the Newton potential
uµ is also smooth on Ω. We deduce by the last theorem that u − uµ equals
almost everywhere to a harmonic function v. As harmonic functions are smooth,
u equals almost everywhere to the smooth function uµ + v.

The function uµ+v is subharmonic. If u is subharmonic, it equals everywhere
to uµ + v. Then u is smooth.

We have a property which is very useful.
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Theorem 2.1.18 (Hartogs’s lemma). Let (uk) be a sequence of subharmonic
functions on Ω which converges in L1

loc to a subharmonic function u. Then we
have

lim sup
k→∞

uk ≤ u.

Moreover, if K is a compact set in Ω and if v is a continuous function which is
strictly bigger that u on K, then uk < v on K when k large enough.

Proof. It is enough to prove the second assertion since it implies the first assertion
by using a sequence of continuous functions on K decreasing to u. Suppose
that the second assertion is wrong. By extracting subsequences, we can find a
sequence (ak) in K converging to a point a such that uk(ak) ≥ v(ak). Then by
semi-continuity, there exists a constant δ > 0 such that for k large enough

uk(ak) > v(a)− δ and v(a)− 2δ > u(a).

As u is u.s.c., we can find a constant ε > 0 such that the average of u on the ball
B(a, ε) is smaller than v(a)−2δ. The submean inequality implies that the average
of uk on B(ak, ε) is at least uk(ak) hence bigger than v(a) − δ. This contradicts
to the fact that uk converges to u in L1

loc.

We finish this section by following result which is true only in dimension 2.

Theorem 2.1.19. Let F be a family of subharmonic functions in a domain Ω
of R2. Suppose that F is bounded in L1

loc. Then for every compact K ⊂ Ω, there
exist constants α > 0 and c > 0 such that∫

K

eα|u(x)|dvol2(x) ≤ c for all u ∈ F .

Proof. Since the problem is local, we can suppose that Ω is contained in a small
disc centered at 0. By Corollary 2.1.11, after reducing Ω if necessary, we can
suppose that the mass of ∆u is bounded for u ∈ F . By multiplying F with the
same constant, we can suppose that the mass of ∆u bounded by 1. By adding a
constant to elements of F , we can suppose that elements of F are negatives.

As in the proof of Theorem 2.1.16, we can write u = uµ + v, where µ = ∆u,
v is a harmonic function with bounded norm in L1 and

uµ(x) =

∫
y∈Ω

1

2π
log ‖x− y‖dµ(y).

The submean inequality implies that |v| is bounded on K by a fixed constant. It
is now enough to verify the inequality in the theorem with uµ instead of u.

Recall that we supposed Ω is contained in a small disc. We consider only the
case when µ is a probability measure, the case when mass of µ is smaller than 1
follows easily. Observing that for y ∈ Ω, the integral∫

x∈K
e− log ‖x−y‖dvol2(x)
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is bounded by a constant c independent of y. As the function t 7→ et is convex,
we deduce from Jensen inequality that∫

K

euµ(x)dvol2(x) ≤
∫
y∈C

(∫
K

elog ‖x−y‖dvol2(x)
)
dµ(y).

The last expression is bounded by c. The result then follows.

2.2 Plurisubharmonic functions and L2-method

We will consider in this section only complex manifolds. Firstly, in the case of
one variables, by identifying C with R2, we can define subharmonic functions on
open sets of C. We have for every function u that

i∂∂u =
1

2
∆u(idz ∧ dz).

If f is a holomorphic function then

∆(u ◦ f) = |f ′|2∆u.

Hence if a function is harmonic or subharmonic on an open subset of C, it still
is in any local complex coordinates of this open set. Consequently, the notion of
(sub)-harmonic functions is invariant by change of coordinates and then extends
to functions on Riemann surfaces.

Definition 2.2.1. Let X be a connected complex manifold and u : X →
R∪{−∞} be a function which is not identically−∞. We say that u is plurisubhar-
monic (p.s.h.) if its restriction to each holomorphic disc in X is either identically
−∞ or a subharmonic function. Precisely, if h : D → X is a holomorphic map
on a disc D of C, then u ◦ h is either identically −∞ or a subharmonic function
on D. The function u is called pluriharmonic if both u and −u are p.s.h.

Proposition 2.2.2. Let u : X → R be a smooth function. Then u is p.s.h.
if and only if i∂∂u is a semi-positive Hermitian (1, 1)-form. The function u is
pluriharmonic if and only if ∂∂u = 0.

Proof. The second assertion is a direct consequence of the first one. We now prove
the first assertion. Note that as u is a real function, ∂∂u is always a Hermitian
(1, 1)-form.

Let h : D → X be a holomorphic disc as in the previous definition. If w is
the standard coordinate in C, we have

1

2
∆(u ◦ h)idw ∧ dw = i∂∂(u ◦ h) = h∗(i∂∂u).



54 CHAPTER 2. L2-METHOD AND STEIN MANIFOLDS

If i∂∂u is semi-positive, we verify without difficulty, using local coordinates
on X, that h∗(i∂∂u) is positive. Hence we deduce that u is p.s.h.

Suppose now that u◦h is subharmonic for every h, or equivalently, ∆(u◦h) ≥ 0
for every h. Fix a point a ∈ X and ζ a tangent vector of X at a. It is enough to
prove that i∂∂u(a)(ζ, ζ) ≥ 0.

Choosing a map h defining on a disc D centered at 0 whose differential maps
the tangent vector ∂

∂w
at 0 to the vector ζ. The identity

i∂∂u(a)(ζ, ζ) =
1

2
∆(u ◦ h)(0).

gives the desired inequality.

The proposition above allows us to prove the following result by using Propo-
sition 2.1.8, Corollaries 2.1.11 and 2.1.12 and the ideas in these results.

Proposition 2.2.3. Let u : X → R∪{−∞} be a function which is not identically
−∞ on a complex manifold X.

1. If there exists a sequence (un)n≥0 of p.s.h. functions on X which decreases
pointwise to u, then u is p.s.h.

2. If u is p.s.h. on an open subset X of Cn, then for every open X ′ relatively
compact in X, there exists a sequence of smooth p.s.h. functions (un)n≥0

on X ′ which decreases pointwise to u.

3. Let u1, . . . , um be p.s.h. functions on X. If χ : Rm → R is a convex
function which is increasing in each variable, then χ(u1, . . . , um) is p.s.h.
In particular, max(u1, . . . , um) is p.s.h.

The following proposition allows us to apply the properties of subharmonic
functions to p.s.h. functions.

Proposition 2.2.4. A function u : X → R ∪ {−∞} is p.s.h. if and only if it
is subharmonic with respect to every local complex coordinate system on X. In
particular, p.s.h. functions are L1

loc.

Proof. Suppose that u is p.s.h. Let z = (z1, . . . , zn) be a local complex coordinate
system. We identify the corresponding chart in X to an open subset in R2n

equipped with the system of coordinates (x1, y1, . . . , xn, yn), where xj = Re zj
and yj = Im zj. If u is smooth, a direct calculation proves that ∆u is equal to 2
times of the trace of i∂∂u. In general, we reduce the problem to the smooth case
by using Proposition 2.2.3.

Conversely, by Remark 2.1.10, the subharmonicity is a local property. We
deduce that the plurisubharmonicity is also a local property. We can suppose
that u is defined on an open subset of Cn and it is subharmonic with respect to
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any linear systems of complex coordinates on Cn. We need to prove that u is
p.s.h.

If u is smooth, the arguments as above prove that the trace of the matrix
associated with i∂∂u is semi-positive on any linear system of complex coordinates
on Cn. Fix a point a and a system of coordinates such that the matrix associated
with i∂∂u is diagonal. For every j, the change of coordinates zj 7→ λzj multiplies
j-th element of the diagonal of the matrix by |λ|−2 and preserves the rest. The
trace is still positive hence we deduce that i∂∂u is semi-positive. By Proposition
2.2.2, u is p.s.h.

In general, we construct as in Proposition 2.1.8 a sequence of smooth functions
uk which decreases to u. As u is subharmonic with respect to every linear system
of complex coordinates, so does uk. By the previous case, uk is p.s.h. Finally,
Proposition 2.2.3 implies that u is p.s.h.

The following result is a consequence of Theorems 2.1.16 and 2.1.18.

Theorem 2.2.5. Let (uk) be a sequence of p.s.h. functions on X.

1. Suppose that (uk) is bounded in L1
loc. Then we can extract from (uk) a

subsequence which converges in L1
loc and the limit equals almost everywhere

to a p.s.h. function.

2. Suppose that (uk) is locally uniformly bounded from above. Then either (uk)
converges uniformly on compact subsets to −∞ when k → ∞, or (uk) has
a convergence subsequence in L1

loc and the limit equals almost everywhere to
a p.s.h. function on X.

3. If (uk) converges in L1
loc to a p.s.h. function u, then

lim sup
k→∞

uk ≤ u.

Moreover, if K is a compact set in X and v is a continuous function which
is strictly bigger than u on K, then uk < v on K when k large enough.

Theorem 2.2.6. Let F be a family of p.s.h. functions on X which is bounded
in L1

loc. Let dvol2n(·) be the volume form associated to a fixed Riemannian metric
on X. Then for every compact K in X, there exist constants c > 0 and α > 0
such that

u ≤ c on K and

∫
K

eα|u(z)|dvol2n(z) ≤ c for u ∈ F .

Proof. As F is bounded in L1
loc, it is not difficult to deduce by the submean

inequality that on compact subsets of X, the functions in F are bounded from
above by the same constant. Without loss of generality, by reducing X if neces-
sary, we can suppose that these functions are negative on X and their L1 norms
are bounded by 1. We need to prove the second estimate of the theorem.
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Since the problem is local, we can suppose that K and X are balls centered
at 0 of radii 1/4 and 4 in Cn respectively. Fix a constant M large enough. For
every u ∈ F , as ‖u‖L1 ≤ 1, the set {u < −M} has small volume. We deduce
that there exists a point a ∈ K depending on u such that u(a) ≥ −M . As K is
contained in B(a, 1), it is enough to prove that∫

B(a,1)

e−αu(z)dvol2n(z) ≤ c

for some positive constants c and α.
By using Fubini theorem for a family of complex lines passing through a, we

reduce the problem to the case of subharmonic functions of one variable.

Fact. There exist constants α > 0 and c > 0 such that∫
|z|<1

e−αuidz ∧ dz ≤ c

for every negative subharmonic functions u on the disc {|z| < 3} of C with
u(0) ≥ −1.

By Theorem 2.1.16, the considered family in the fact above is compact in L1
loc.

The estimate in this fact is a consequence of Theorem 2.1.19. This completes the
proof of the theorem.

Corollary 2.2.7. Every p.s.h. function is Lploc for every 1 ≤ p <∞. Moreover,
if a sequence (uk) of p.s.h. functions on X converges in L1

loc to a p.s.h. function
u, it also converges to u in Lploc for every 1 ≤ p <∞.

Proof. The first property is deduced from the exponential estimate above and
from the fact that ex & xp when x ≥ 0.

The second assertion, by subtracting from uk and u by a constant, we can
suppose that these functions are negative on K. Fix a compact set K in X and
a constant ε > 0. We have to prove that

‖uk − u‖Lp(K) ≤ 3ε

when k large enough. Let M > 0 be a large enough constant which we will fixe
later. Set

vk = max(uk,−M) and v = max(v,−M).

As |vk − v| ≤ min(M, |uk − u|), by Minskowski inequality,(∫
K

|uk − u|p
)1/p

≤
(∫

K

|vk − v|p
)1/p

+
(∫

K

|uk − vk|p
)1/p

+
(∫

K

|u− v|p
)1/p

≤
(
Mp−1

∫
K

|uk − u|
)1/p

+
(∫

K

|uk − vk|p
)1/p

+

∫
K

|u− v|p
)1/p

.
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Observe that uk = vk on the set {uk > −M} and |uk− vk| ≤ uk. The functions u
and v satisfy the same properties. We deduce that the last sum above is bounded
by (

Mp−1

∫
K

|uk − u|
)1/p

+
(
M−1

∫
K

|uk|p+1
)1/p

+
(
M−1

∫
K

|u|p+1
)1/p

.

The first term tends to 0 when uk tends to u in L1
loc. The last two terms are

smaller that ε since M is big and the integrals of |uk|p+1 and |u|p+1 are bounded
thanks to the exponential estimate in Theorem 2.2.6.

We will end this section by giving a version of a fundamental theorem in L2

theory. The proof of this result will not be presented here. We will consider sev-
eral consequences which illustrate the power of this method in complex analysis
and complex geometry.

Definition 2.2.8. A smooth function u : X → R is strictly p.s.h. if i∂∂u is
given by a definite positive Hermitian form at every point. A function u : X →
R∪ {−∞} is called strictly p.s.h. if it is locally a sum of a smooth strictly p.s.h.
function and a p.s.h. function.

Definition 2.2.9. We say a complex manifold X is pseudoconvex if it admits a
smooth strictly p.s.h. function u which is exhaustive. The last property means
that for every c ∈ R, the set {u ≤ c} is compact in X or the map u : X → R is
unbounded from above and proper.

In Cn, the function u = ‖z‖2 verifies this property. Consequently, every Stein
manifold is pseudoconvex. We will see later that conversely, the pseudoconvex
manifolds are Stein.

Considering a sequence of pseudoconvex complex manifolds of dimension n
with a smooth strictly p.s.h. exhaustive function u as above. Fix a Hermitian
metric on X and denote by dvol2n(·) the associated volume form.

Theorem 2.2.10. Let ϕ be a smooth p.s.h. function on X. Then there exists a
convex smooth increasing function χ : R→ R and a constant c > 0, independent
to ϕ, such that the equation ∂f = g, with a given ∂-closed (p, q + 1)-form g, has
a unique solution f which is a (p, q)-form such that∫

X

‖f‖2e−ϕ−χ(u)dvol2n ≤ c

∫
X

‖g‖2e−ϕ−χ(u)dvol2n

under the assumption that the last integral is finite.

Note that in this theorem, the forms f and g are of class L2
loc and the operator

∂ is defined in the sense of currents. When the given form g is smooth, we can
obtain by this method a smooth f . In the particular case that we will use later,
q = 1, we have the following result.
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Proposition 2.2.11. Let g be a smooth (p, 1)-form. Then every solution f of
the equation

∂f = g

in the sense of currents is defined by a smooth function.

Proof. The problem is local, then we can suppose that X is an open set of Cn.
An argument as in Theorem 1.1.9 allows us to reduce to the case when p = 0.
We have ∂∂f is a smooth (1, 1)-form since it equals to ∂g. We have seen that
∆f which is, up to the multiplication by a constant, equal to the coefficient
of (∂∂f) ∧ (i∂∂‖z‖2)n−1. The last current is equal to ∂g ∧ (i∂∂‖z‖2)n−1 hence
smooth. We conclude by using Corollary 2.1.17.

We also have the following corollary of the above theorem.

Corollary 2.2.12. Let X be a pseudoconvex manifold of dimension n. If g is
a ∂-closed (p, q)-form of class L2

loc (reps. smooth) on X with q ≥ 1, then there
exists a (p, q − 1)-form of class L2

loc (resp. smooth) on X such that

∂f = g.

Proof. (For the first case) We will apply Theorem 2.2.10 for a suitable function
ϕ. By this theorem, it is enough to construct a smooth p.s.h. function ϕ such
that g is of class L2 with respect to the measure e−ϕ−χ(u)dvol2n. As the function
χ(u) is bounded from below, it is enough to find ϕ such that g is of class L2 with
respect to the measure e−ϕdvol2n.

By adding to u a constant, we can suppose that u is positive. Note that for
k ∈ N,

Ak = 1 +

∫
{u<k}

‖g‖2dvol2n.

Choose a smooth increasing strictly convex function χ̃ : R→ R such that χ̃(t) ≥
Ak+1 + k for t ≥ k and set

ϕ = χ̃(u).

This function is a smooth strictly p.s.h. Moreover, we have∫
X

‖g‖2e−ϕdvol2n =
∞∑
k=0

∫
{k≤u<k+1}

‖g‖2e−χ̃(u)dvol2n

≤
∞∑
k=0

e−Ak+1−k
∫
{u<k+1}

‖g‖2dvol2n

=
∞∑
k=0

e−k.

The result then follows.
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In some situations, we can use Theorem 2.2.10 for a singular function ϕ. In
this case, we approximate ϕ by smooth p.s.h. functions. This is in fact a crucial
technique in many applications of L2 method. Here is an example we will use
later.

Theorem 2.2.13. Theorem 2.2.10 is still true for every p.s.h. function ϕ such
that {ϕ = −∞} is closed and ϕ is smooth outside this set.

Proof. Let ϑ be a smooth convex increasing function on R which is equal to
max(·, 0) outside [−1/2, 1/2]. For k ≥ 0, set

ϕk = ϑ(ϕ+ k)− k.

This is a sequence of smooth p.s.h. functions which decreases to ϕ.
By Theorem 2.2.10, there exist forms fk such that

∂fk = g and

∫
X

‖fk‖2e−ϕk−χ(u)dvol2n ≤ c

∫
X

‖g‖2e−ϕk−χ(u)dvol2n.

We use here an important fact that c and χ are independent of ϕk. In the last line,
the first integral is bounded from below by a similar integral where we replace ϕk
by ϕ0 and the second integral is bounded from above by a similar integral where
we replace ϕk by ϕ. We deduce that the sequence (fk) is bounded in L2

loc. So
we can extract a sequence which converges weakly to a form f of class L2

loc such
that ∂f = g in the sense of currents.

For every open set Ω relatively compact in X and for every fixed m, we have∫
Ω

‖f‖2e−ϕm−χ(u)dvol2n ≤ lim sup
k→∞

∫
Ω

‖fk‖2e−ϕm−χ(u)dvol2n

≤ lim sup
k→∞

∫
Ω

‖fk‖2e−ϕk−χ(u)dvol2n

≤ c

∫
X

‖g‖2e−ϕ−χ(u)dvol2n.

Then we obtain the desired result by letting m tend to ∞.

2.3 Some properties of Stein manifolds

In this section, we will give some characterisations and properties of Stein man-
ifolds. Let X be a complex manifold of dimension n. We need the following
notion.

Definition 2.3.1. Let K be a subset of X. We call holomorphically convex hull
of K in X the set K̂ of all points x ∈ X such that

|f(x)| ≤ sup
K
|f |
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for every holomorphic function f on X. We say K is holomorphically convex in
X if K̂ = K.

By definition, K̂ is the intersection of closed sets of the type {|f | ≤ c} which
contain K where f is a holomorphic function on X and c is some positive con-
stant. Moreover, the intersection of a family of holomorphically convex sets is
also holomorphically convex.

Example 2.3.2. The holomorphically convex hull of Hn(a, r, ε) in Dn(a, r) is
equal to D(a, r). Indeed, if f is a holomorphic function on Dn(a, r), x is a point
in Dn(a, r) and c = f(x) then the function

1

f(z)− c

does not extend to a holomorphic function on Dn(a, r). By Theorem 1.2.7, it
can not be extended holomorphically to Hn(a, r). It means that the hypersur-
face {f = c} intersects Hn(a, r, ε). Hence we deduce that x is contained in the
holomorphically convex hull of Hn(a, r, ε).

The following proposition describes a bit about the geometry of holomorphi-
cally convex sets.

Proposition 2.3.3. Let K be a subset of X. Let π : Ω → X be a holomorphic
map defined on an open set Ω of Cm. Let L be a subset of Ω and L̂ be its
holomorphically convex hull in Ω. If π(L) ⊂ K then π(L̂) ⊂ K̂.

Proof. Consider a holomorphic function f on X and a point y ∈ L̂. By applying
the definition of L̂ to f ◦ π, we have

|f(π(y))| ≤ sup
π(L)

|f | ≤ sup
K
|f |.

Hence π(y) ∈ K̂. This implies the proposition.

We can apply this proposition when Ω \ L is compact. In this case, by maxi-

mum principle, we have L̂ = Ω and π(Ω) ⊂ K̂ if π(Ω\L) ⊂ K. We can also apply
this proposition then Ω = Dn(a, r) and L = Hn(a, r, ε). Then we will obtain that

π(Dn(a, r)) ⊂ K̂ when π(Hn(a, r, ε)) ⊂ K.

Definition 2.3.4. An open relatively compact subset P of X is called analytic
polyhedral of order N of X if it is the union of connected components of F−1(DN)
where F : X → CN is a holomorphic map and DN is the unit polydisc of CN .

We have the following lemma.

Lemma 2.3.5. Let K be a compact holomorphically convex subset of X. Then
for every neighborhood Ω of K, there exists an analytic polyhedral P of X such
that

K ⊂ P ⊂ Ω.
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Proof. We can suppose that Ω is compact. For every a ∈ bΩ, we can find a
holomorphic function f such that |f | < 1 on K and |f(a)| > 1. Then K is
contained in the intersection of every subset of the form {|f | < 1} with f as
above and bΩ is covered by sets of the form {|f | > 1}. As Ω is compact, there
exists a finite family of holomorphic functions f1, . . . , fN such that bΩ is covered
by open sets {|fi| > 1}. Then we can deduce that the map F = (f1, . . . , fN)
defines the desired analytic polyhedral in the lemma.

Theorem 2.3.6. Let X be a pseudoconvex manifold with a smooth strictly p.s.h.
exhaustive function u. If K is contained in {u ≤ c} for some constant c then so

is K̂. In particular, the compact set {u ≤ c} is holomorphically convex for every
c ∈ R.

Proof. It is enough to prove the second assertion. Fix a point a such that u(a) > c.
We will construct a holomorphic function f such that |f(a)| > supK |f | with
K = {u ≤ c}. Without loss of generality, by adding to u a constant and by
multiplying u by a positive constant, we can suppose that c = −2 and u(a) = 1.
The principal idea here is to construct first a smooth function f ′ verifying the
desired property and then we will modify it in order to obtain a holomorphic
function f . The modification will make use of the solution of the ∂ equation.

We identify a small neighborhood of a with the unit ball in Cn and a with the
center 0. We can construct easily a negative function v with compact support in
{u > 0}, smooth apart from 0 and equals to 2n log ‖z‖ in a neighborhood of 0.
In particular, it is p.s.h. in a neighborhood of a = 0.

Fix a smooth function f ′ on X with compact support in {u > 0} such that
f ′(a) = 1 and f ′ is holomorphic in a neighborhood of a. Set g = ∂f ′. It is a
smooth (0, 1)-form with compact support and vanishes in a neighborhood of a.
Let A be a constant large enough that we will fix later. Set

ϕ = v + Au.

As A is large and u is strictly p.s.h., the function ϕ is p.s.h.
By Proposition 2.2.11 and Theorem 2.2.13, there exists a smooth function f ′′

such that

∂f ′′ = g and

∫
X

|f ′′|2e−v−Aue−χ(u)dvol2n ≤ c

∫
X

‖g‖2e−v−Aue−χ(u)dvol2n.

Note that the last integral is finite since g vanishes in a neighborhood of a. Recall
also that χ and c do not depend on A.

Since e−v is not integrable in a neighborhood of a, necessarily we will have
f ′′(a) = 0. Moreover, as u > 0 on the support of g, the last integral is bounded
by a constant independent to A. We deduce that if A is large enough then the
L2-norm of f ′′ on {u < −1} is small. Since g vanishes in {u < −1}, f ′′ is
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holomorphic on this open set. The Cauchy formula (Theorem 1.2.1) implies that
f ′′ is small on K.

Finally, set

f = f ′ − f ′′.

By above discussion, we will have f(a) = 1 and f is small on K. It implies the
result.

Theorem 2.3.7. Let X be pseudoconvex manifold and let K be a holomorphically
convex set in X. Let h be a holomorphic function in a neighborhood of K. Then h
can be approximated uniformly on K by holomorphic functions on X. Precisely,
for every ε > 0, there exists a holomorphic function f on X such that

|f − h| < ε on K.

Proof. Choosing an analytic polyhedral P associated with a map F = (f1, . . . , fN)
such that K ⊂ P and h is defined on P . For 0 < δ < 1, set

Pδ = {z ∈ P, max |fj(z)| < 1− δ}.

We choose also a constant 0 < δ < 1
2

small enough and a function ρ with compact
support in P such that K ⊂ P4δ and ρ = 1 on Pδ.

Consider the equation

∂f ′ = ∂(ρh)

and the positive p.s.h. function

ϕ = log
(
1 +

N∑
j=1

(1− 2δ)−γ|fj|γ
)
,

where γ is a large constant. Observe that ∂(ρh) vanishes on Pδ and also vanishes
outside P .

By Theorem 2.2.10, there exists a solution f ′ such that∫
P3δ

|f ′|2e−ϕ−χ(u)dvol2n ≤ c

∫
P\Pδ
‖∂(ρh)‖2e−ϕ−χ(u)dvol2n.

As γ is large, ϕ is very small on P3δ and very large on P \Pδ. We deduce that the
L2 norm of f ′ on P3δ is small. By Cauchy formula, f ′ is small on K. Therefore,
the function f = ρ − f ′ is holomorphic and close to h on K since it equals to
h− f ′ on K. The theorem follows.

We have the following important theorem.

Theorem 2.3.8. A manifold X is Stein if and only if it is pseudoconvex.
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We have seen the necessary condition. Now suppose that X is pseudoconvex
with a smooth exhaustive p.s.h. function u as above. We will prove that X is in
fact Stein. The proof is done in several steps.

Lemma 2.3.9. Let a, b be two distinct points in X. Then there exists a holo-
morphic function f on X such that f(a) 6= f(b).

Proof. Let ϕ be as in the proof of Theorem 2.3.6. We construct functions ϕk
as in Theorem 2.2.13. For k large, we have ϕk(a) � ϕk(b). Hence the function
u′ = ϕk + u is smooth exhaustive strictly p.s.h. with u′(a) < u′(b). Using this
function, we deduce from Theorem 2.3.6 that there exists a holomorphic function
f such that |f(a)| > |f(b)|.

Lemma 2.3.10. For every a ∈ X, there exists a holomorphic map F : X → Cn

which defines a biholomorphic map between a neighborhood of a and its image.

Proof. We retake the principal idea of the proof of Theorem 2.3.6 but with a
function ϕ more singular at a, i.e. ϕ = 2v + Au. Recall that the function f ′′ is
holomorphic in a neighborhood of a = 0. The integrability of the function

|f ′′|2e−v−Aue−χ(u) ∼ |f ′′|2‖z‖−4n

implies that f ′′ vanishes at a and so does its derivative of order 1. Consequently,
the holomorphic function f = f ′ − f ′′ equals to f at a up to order 1.

Finally, in order to obtain F as in the lemma, it is enough to construct
a smooth map F ′ with compact support, holomorphic in a neighborhood of a
whose differential has maximal rank at a. This can be verified easily by using
local coordinates and a cut-off function. The method above can be applied for
each coordinate of F and allows us to construct a holomorphic map F with
maximal rank at a. This map F verifies the lemma (see Theorem 1.1.7).

Lemma 2.3.11. Let K be a compact subset of X. Then there exists a holomor-
phic map F : X → CN such that F is injective and regular on K. The last
property means that the differential of F has maximal rank at every point of K.

Proof. By Lemma 2.3.10, for each point a ∈ K, we can choose a neighborhood Ua
of a and a holomorphic map Fa : X → Cn which sends Ua biholomorphically onto
an open set of Cn. As K is compact, we can choose a finite family (a, Ua, Fa)
such that these Ua cover K. Denote by W the union of Ua × Ua. This is a
neighborhood of the diagonal of K ×K.

By Lemma 2.3.9, for each point (b, c) in K×K\W , there exists a holomorphic
function fb,c such that fb,c(b) 6= fb,c(c). By continuity, there exists a neighborbood
Vb,c of (b, c) in K ×K such that fb,c(z) 6= fb,c(w) when (z, w) ∈ Vb,c.

Since K ×K \W is compact, there exists a finite family (b, c, fb,c, Vb,c) such
that Vb,c’s cover K×K\W . Denote by F the holomorphic map whose components
are components of fb,c and components of Fa in two families above. It is clear
that this map F verifies the lemma.
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Recall that our goal is to prove that X is Stein, i.e. to construct a regular
holomorphic map, injective and proper from X to an Euclidean space. The rest
of the proof is a bit technical. We need the control of the integer N used in the
last lemma. The two lemmas following, we don’t need the assumption that X is
pseudoconvex.

Lemma 2.3.12. Let F = (f1, . . . , fN+1) : X → CN+1 be a holomorphic map
with N ≥ 2n and let K be a compact subset of X. Suppose that F is regular in
a neighborhood of K. Then for almost every a = (a1, . . . , aN) ∈ CN , the map
Fa : X → CN defined as

Fa = (f1 + a1fN+1, . . . , fN + aNfN+1)

is regular in a neighborhood of K.

Proof. Let U be a small neighborhood of K on which F is regular. Consider a
set Y of points (z, a) ∈ U ×CN such that Fa is not regular with respect to z. In
local coordinates, it means that the rank of the matrix(∂fj

∂zk
+ aj

∂fN+1

∂zk

)
1≤j≤N,1≤k≤n

is strictly less than n in z. In particular, Y is an analytic subset of U × CN .
For each fixed point z in U , since F is regular in z, the matrix(∂fj

∂zk

)
1≤j≤N+1,1≤k≤n

has maximal rank n. It is not difficult to see that the points a ∈ CN such that
(z, a) ∈ Y form an analytic subset of dimension at most n− 1 in CN

Hence we deduce that the dimension of Y is at most 2n − 1. Its projection
in CN is then a set of zero volume. Hence almost every a ∈ CN is outside the
projection of Y . We deduce that for almost every a, the map Fa is regular on
U .

Lemma 2.3.13. Let F = (f1, . . . , fN+1) : X → CN+1 be a holomorphic map
with N ≥ 2n + 1 and let K be a compact set of X. Suppose that F is injective
in a neighborhood of K. Then almost every a = (a1, . . . , aN) ∈ CN , the map
Fa : X → CN defined as in the last lemma is injective in a neighborhood of K.

Proof. Let U be a neighborhood of K on which F is injective. Denote by ∆ the
diagonal of U ×U and Z the set of points (z, w, a) ∈ (U ×U \∆)×CN such that
Fa(z) = Fa(w). By definition, this is an analytic set of (U × U \∆)× CN .

For each fixed point (z, w) ∈ (U × U \ ∆), as F (z) 6= F (w), there exists at
most one point a ∈ CN such that (z, w, a) ∈ Z. We deduce that the dimension
of Z is at most 2n. Its projection in CN has volume 0 since N ≥ 2n + 1. The
lemma then follows.
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We have the following lemma which gives a more precise version of Lemma
2.3.5 in the case of pseudoconvex manifolds.

Proposition 2.3.14. Let K be a holomorphically convex compact subset of a
pseudoconvex manifold X. Then for every neighborhood Ω of K, there exists an
analytic polyhedral P of order 2n such that

K ⊂ P b Ω.

Proof. By Lemma 2.3.5, it is enough to prove that if P is a polyhedral of order
N + 1 ≥ 2n + 1 such that K ⊂ P b Ω, there exists a polyhedral P ′ of order N
such that K ⊂ P b Ω.

Let F = (f1, . . . , fN+1) : X → CN+1 be a holomorphic map such that P is a
union the components of

{z ∈ X, |fj(z)| < 1 for j = 1, . . . , N + 1}.

By Lemmas 2.3.11 and 2.3.12, we can perturb slightly F in order to suppose that
F is regular in a neighborhood of P .

The map ( f1

fN+1

, . . . ,
fN
fN+1

, fN+1

)
is regular in a neighborhood of

L = {z ∈ P , |fN+1(z)| = 1}.

By applying Lemma 2.3.12 to this map, we can perturb F in order to suppose
that

G =
( f1

fN+1

, . . . ,
fN
fN+1

)
is regular in a neighborhood of L.

Let 0 < c0 < c1 < c2 < 1 be constants such that

K ⊂ {z, |fj(z)| < c0 for every j}

and let G be a regular neighborhood of

{z ∈ P , |fN+1(z)| ≥ c2}.

Set F ′ = (f ′1, . . . , f
′
N) with

f ′j = c−k1 (fkj − fkN+1)

for a big enough integer k. Note that P ′ is the union of all components of

∆ = {z, |f ′j(z)| < 1 for j = 1, . . . , N}
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which intersect K. It is clear that K is contained in P ′.
It is enough now to verify that P ′ is contained in

Ω = {z ∈ P, |fN+1(z)| < c2}.

Indeed, since k is big, this property implies that |fj| < 1 on P ′ and hence on
P ′ ⊂ P .

Let z be a point of ∆ ∩ bΩ. We have for j ≤ N

|fj(z)k − fN+1(z)k| < ck1 and |fN+1(z)| ≤ c2.

As k is big, we deduce that |fj(z)| < 1 for every j ≤ N hence |fN+1(z)| = c2

since z ∈ bΩ. We also deduce that

|Gj(z)k − 1| ≤ ck1c
−k
2 if Gj =

fj
fN+1

·

Let w ∈ P such that dist(w, z) = k−2. We prove that w does not belong to
∆. This implies that z does not belong to P ′. We have

|fN+1(w)| = |fN+1(z)|+O(k−2) = c2 +O(k−2)

and since G is regular in a neighborhood of z

|Gj(w)−Gj(z)| = αjk
−2 +O(k−4)

with max1≤j≤N αj ≥ α for some constant α > 0 independent of k and z. We also
have

|Gj(w)k −Gj(z)k| = |[Gj(z) +Gj(w)−Gj(z)]k −Gj(z)k| = αjk
−1 + o(k−1).

Finally, we deduce from the above estimates that

max
1≤j≤N

|fj(w)k − fN+1(w)k| = max
1≤j≤N

|Gj(w)k − 1||fN+1(w)|k > ck1.

This completes the prove of the proposition

Proposition 2.3.15. Let X be a pseudoconvex manifold of dimension n. Then
there exists a proper holomorphic map from X in C2n+1.

Proof. Let u be a smooth exhaustive strictly p.s.h. on X. Set

Km = {u ≤ m}.

By the previous proposition, we can find a sequence (Pm)m∈N of polyhedra of
order 2n such that

Pm ⊂ Km ⊂ Pm+1.
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We also have ∪Pm = X. Then we construct holomorphic functions f1, . . . , f2n

such that

max
1≤j≤2n

|fj| > m on bPm for every m.

Let h
(m)
1 , . . . , h

(m)
2n be holomorphic functions defining Pm, i.e. Pm is the union

of components of

{z, |h(m)
j (z)| < 1 for j = 1, . . . , 2n}.

By replacing h
(m)
j by a suitable power, we can suppose that

max
1≤j≤2n

|h(m+1)
j | ≤ 1

4
on Pm.

We can easily verify that if (km) is a sequence of positive integers sufficiently
increasing, the functions

fj =
∑
k≥0

(2h
(m)
j )km

are well-defined and satisfy the desired property.
Now we construct the function f2n+1 such that the map (f1, . . . , f2n+1) is

proper. For this, it is enough to obtain a function f2n+1 such that for every m,
we have|f2n+1| ≥ m on

Gm = {z ∈ Pm+1 \ Pm, max
1≤j≤2n

|fj(z)| ≤ m}

since this implies that

max
1≤j≤2n+1

|fj(z)| ≥ m on Pm+1 \ Pm for every m and hence on X \ Pm.

The properties of f1, . . . f2n imply that Gm is the disjoint union of compact
sets

Hm = {z ∈ Pm, max
1≤j≤2n

|fj(z)| ≤ m}.

Moreover, the holomorphically convex hull of Gm ∪Hm is contained in the set

{z ∈ X, max
1≤j≤2n

|fj(z)| ≤ m}.

Then we deduce that this hull is the union of Gm, Hm and a compact set H ′m
which does not intersect Pm+1.

By applying Theorem 2.3.7 to a function which vanishes in a neighborhood
of Hm ∪H ′m and equals to a big constant in a neighborhood of Gm, we obtain a
holomorphic function gm on X such that

|gm| ≤ 2−m−1 on Hm and |gm| ≥ m+ 1 on Gm.
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We can easily verify that the function

f2n+1 =
∞∑
m=0

gm

meets our needs. This completes the proof of the proposition.

End of the proof Theorem 2.3.8. It is enough to construct a regular injective
map F from X to C2n+1. Indeed, the map F and the construction in the last
proposition is regular, proper and injective from X to C4n+2.

We choose an increasing sequence of compact sets Km in X whose union is
equal to X. By Lemmas 2.3.11, 2.3.12 and 2.3.13, there exists a holomorphic map
Fm : X → C2n+1 which is injective and regular in a neighborhood of Km. By
multiplying Fm with a small constant, we can suppose that Fm and the differential
of Fm have norms less that 2−m on Km. We can deduce by this property that if
a holomorphic function G : X → C2n+1 is injective and regular in a neighborhood
of Km, there exists a constant δ > 0 such that

G+
∑
l≥0

AlFl

verifies the same property for every matrix Al of the type (2n+ 1)× (2n+ 1) with
complex coefficients of the norms less than δ.

By Lemmas 2.3.12 and 2.3.13, if A1 is a generic matrix small enough, then
the map F0 +A1F1 is injective and regular on K1. As we observed, this property
is still valid when we add to this map a small combination of Fl. So, we obtain
by induction small matrices Al such that the map

F = F0 +
∑
l≥1

AlFl

is injective and regular in each compact Km. This completes the proof of the
theorem. �

Theorem 2.3.16. Let X be a complex manifold admitting a smooth positive
strictly p.s.h. function, e.g. an open set of a Stein manifold. Then the following
properties are equivalent:

1. X is Stein.

2. X admits a smooth exhaustive p.s.h. function.

3. For every compact set K in X, its holomorphically convex hull is compact.

Proof. We have seen that (1) ⇒ (2) and (1) ⇒ (3). We prove that (2) ⇒ (1).
Let u be a smooth strictly p.s.h. function on X. Let ϕ be a smooth exhaustive
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p.s.h. function on X. It is enough to construct a function ũ smooth exhaustive
strictly p.s.h. Let χ : R → R be a smooth increasing convex function that we
will fix later. Set

ũ = u+ χ(ϕ).

It is clear that ũ is smooth strictly p.s.h. We prove that it is exhaustive for some
conveniently chosen χ. The principal problem here is that u can be unbounded
from below. Consider the compact sets Ki = {ϕ ≤ i} and set

λi = max
Ki+1

|u|+ i.

We choose χ such that χ(i) ≥ λi for i ≥ 0. Then we have on Ki+1 \Ki

ũ ≥ −max
Ki+1

|u|+ χ(i) ≥ i.

Hence ũ is exhaustive.
It is left to prove that (3) ⇒ (2). Suppose the property (3). It is enough

to construct a smooth exhaustive p.s.h. function on X. The property (3) and
Lemma 2.3.5 imply the existence of a sequence of analytic polyhedrons Pm such
that

Pm ⊂ Pm+1 and ∪ Pm = X.

We will prove that there exists smooth p.s.h. functions um on X such that um ≥ 1
on X \ Pm and the Cm norm of um on Pm−1 is less than 2−m. Then it is enough
to set u =

∑
um to obtain a smooth exhaustive p.s.h. function.

Now, let P be an arbitrary polyhedral of X and K a compact subset of P .
Let ε, A be positive constants and let m be a natural integer. It is enough to
construct a smooth p.s.h. function v on X such that v ≥ A on X \P and its Cm

norm on K is less than ε.
Let F = (f1, . . . , fN) : X → Cm be a holomorphic function such that P is a

union of components of {|fj| < 1 for every j}. Let 0 < c < 1 be a constant such
that |fj| < c on K for every j. Set

v′ =
N∑
j=1

c−2k|fj|2k,

where k is a big integer. It is clear that v′ is p.s.h. and its Cm norm on K is
small. Moreover v′ > A in a neighborhood of bP .

We will modify v′ outside P in order to obtain the desired function v. Set

v =

{
v′ sur P

max(v′, A) on X \ P.

This function is clearly bigger than A on X \ P and p.s.h. on X \ P . Hence it is
p.s.h. on X since it equals to v′ in a neighborhood of P .



70 CHAPTER 2. L2-METHOD AND STEIN MANIFOLDS

This function is not necessarily smooth. In order to obtain a smooth on,
it is enough to replace the function max(·, A) used in the definition of v by an
increasing smooth function, equals to max(·, A) except on a small neighborhood
of A. This completes the proof of the theorem.

Theorem 2.3.17. Let X be a domain in a manifold X ′. Suppose that X is
Stein. Then there exists a holomorphic function f on X which can not extend
holomorphically through the boundary of X. More precisely, there does not exist
an open set Ω′ of X ′ and a component Ω of X ∩ Ω′ such that Ω 6= Ω′ and the
restriction of f to Ω can be extended holomorphically to Ω′.

Proof. Let u be a smooth exhaustive strictly p.s.h. function on X. We choose
a sequence (xm) of points in X such that cm = u(xm) strictly increases to in-
finity and it meets every open set Ω′. We will construct a function f such that
|f(xm)| → ∞. It is clear that this function satisfies the theorem.

By Theorem 2.3.6, the compact Km = {u ≤ cm} is holomorphically convex.
As xm+1 is not in this compact, there exists a holomorphic function fm such that

max
Km
|fm| < 1 < |fm(xm+1)|.

If (km) is a sufficiently increasing positive integers, we can easily verify that the
sum

f =
∞∑
m=1

fkmm

converges to a holomorphic function with |f(xm)| → ∞.

The following result is the converse of the last theorem.

Theorem 2.3.18. Let X be a domain in a Stein manifold. Suppose that X admits
a function f which cannot be extended holomorphically to a larger domain. Then
X is Stein.

Proof. We give here the proof when X = Cn. The general case can be obtain
by using the same idea with some extra technical details. Let K be a compact
subset of X. By Theorem 2.3.16, it is enough to prove that its holomorphically
convex hull in X is compact.

We choose a constant r0 > 0 sufficiently small such that the union K ′ of all
polydisc of radius r = (r0, . . . , r0) centered at a point of K is compact in X. Set
A = maxK′ |f |. By Cauchy formula, we have

max
K

∣∣∣∂|k|f
∂zk

∣∣∣ ≤ Ak!r−|k| for every k ∈ Nn.

We deduce that if w is a point in K̂∣∣∣∂|k|f
∂zk

(w)
∣∣∣ ≤ Ak!r−|k| for every k ∈ Nn.
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Consequently, the power series associated to f at w converges on the polydisc
centered at w with radius r. The hypothesis on f implies that this polydisc is
contained in X. We deduce that dist(K̂, bX) ≥ r0. On other hand, as X ⊂ Cn,

K̂ is bounded in Cn. We deduce that K̂ is compact.

2.4 Positive closed currents

See the lecture notes by Sibony and myself.
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Appendix: differential forms

This is a little introduction to differential forms, a minimum needed for this
course on Complex Analysis. We advise those who do not know them to follow
a course or read a book on Differential Geometry where this notion is defined in
a more conceptual way.

Differential forms. Let Ω be a domain in Rn. A differential p-form or a
differential form of degree p is a linear combination of terms of the type

h(x)dxi1 ∧ . . . ∧ dxip with 1 ≤ ik ≤ n,

where h is a function and where the wedge product ∧ respects the following rule

dxi ∧ dxj = −dxj ∧ dxi.

It follows from this rule that

dxi ∧ dxi = 0 for every i.

In particular, every differential p-form with p > n is zero.
Applying this rule, we see that every differential p-form α is written in a

unique way in the form

α =
∑

αI(x)dxI with I = (i1, . . . , ip) and 1 ≤ i1 < · · · < ip ≤ n,

where
dxI = dxi1 ∧ . . . ∧ dxip .

Note that in order to have the uniqueness of the decomposition, the ascending
order of ik is important.

Summarizing, a differential form can be seen as a function on Ω with values
in the exterior algebra generated by dx1, . . . , dxn.

d operator. This operator is defined on the functions by following formula

dh =
n∑
i=1

∂h

∂xi
dxi.

It extends to p-forms by
d(hdxI) = dh ∧ dxI

and by linearity. So, if α is a p-form, then dα is a (p+ 1)-form.
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Proposition 1. We have
d ◦ d = 0.

Proof. It suffices to verify this property for functions. We have

d(dh) = d

n∑
i=1

∂h

∂xi
dxi =

n∑
i,j=1

∂2h

∂xj∂xi
dxj ∧ dxi.

The result is obtained by using the calculation rule above and the fact that

∂2h

∂xj∂xi
=

∂2h

∂xi∂xj
·

Note here that we assume that the functions and forms are all smooth but we
can also discuss the case with less regularity.

Definition 2. We say that a p-form α is closed if dα = 0 and exact if it is equal
to dβ for some (p− 1)-form β.

The above proposition shows that the exact forms are all closed.

Pull-back operator. Let π = (π1, . . . , πn′) : Ω→ Ω′ be a smooth map between
a domain Ω ⊂ Rn and a domain Ω′ ⊂ Rn′ . If α is a differential p-form on Ω′, we
can define a differential p-form π∗(α) on Ω in the following way:

for α = h(x′)dx′i1 ∧ . . . ∧ dx
′
ip, we set

π∗(α) = h(π(x))dπi1(x) ∧ . . . ∧ dπip(x)

and we extend the operator to the other differential p-forms by linearity.

This definition applies especially to coordinate changes. In this case, we have
n = n′ and π is a diffeomorphism.


